
Goal-Conditioned Variational Autoencoder
Trajectory Primitives with Continuous and
Discrete Latent Codes

著者 Osa Takayuki, Ikemoto Shuhei
journal or
publication title

SN Computer Science

volume 1
page range 303-1-303-10
year 2020-09-16
URL http://hdl.handle.net/10228/00008467

doi: https://doi.org/10.1007/s42979-020-00324-7

SN Computer Science manuscript No.
(will be inserted by the editor)

Goal-Conditioned Variational Autoencoder
Trajectory Primitives with Continuous and Discrete
Latent Codes

Takayuki Osa* · Shuehi Ikemoto

Received: date / Accepted: date

Abstract Imitation learning is an intuitive approach for teaching motion to
robotic systems. Although previous studies have proposed various methods to
model demonstrated movement primitives, one of the limitations of existing
methods is that the shape of the trajectories are encoded in high dimensional
space. The high dimensionality of the trajectory representation can be a bot-
tleneck in the subsequent process such as planning a sequence of primitive
motions. We address this problem by learning the latent space of the robot
trajectory. If the latent variable of the trajectories can be learned, it can be
used to tune the trajectory in an intuitive manner even when the user is an
expert. We propose a framework for modeling demonstrated trajectories with
a neural network that learns the low-dimensional latent space. Our neural net-
work structure is built on the variational autoencoder (VAE) with discrete and
continuous latent variables. We extend the structure of the existing VAE to
obtain the decoder that is conditioned on the goal position of the trajectory
for generalization to different goal positions. Although the inference performed
by VAE is not accurate, the positioning error at the generalized goal position
can be reduced to less than 1 mm by incorporating the projection onto the
solution space. To cope with requirement of the massive training data, we use
a trajectory augmentation technique inspired by the data augmentation com-
monly used in the computer vision community. In the proposed framework,

This work is supported by JSPS KAKENHI Grant Number 19K20370 and 18H01410.

T. Osa
Department of Human Intelligence Systems & Neuromorphic AI Hardware Research Center,
Kyushu Institute of Technology, Fukuoka, Japan
RIKEN center for Advanced Intelligence Project, Tokyo, Japan
E-mail: osa@brain.kyutech.ac.jp

S. Ikemoto
Department of Human Intelligence Systems & Neuromorphic AI Hardware Research Center,
Kyushu Institute of Technology, Fukuoka, Japan
E-mail: ikemoto@brain.kyutech.ac.jp

2 Takayuki Osa*, Shuehi Ikemoto

the latent variables that encodes the multiple types of trajectories are learned
in an unsupervised manner, although existing methods usually require label
information to model diverse behaviors. The learned decoder can be used as a
motion planner in which the user can specify the goal position and the trajec-
tory types by setting the latent variables. The experimental results show that
our neural network can be trained using a limited number of demonstrated
trajectories and that the interpretable latent representations can be learned.

Keywords Learning from demonstrations · Variational autoencoder

1 INTRODUCTION

Imitation learning (IL) [1] is an approach that can achieve such intuitive mo-
tion teaching. In IL, a user demonstrates how a task is performed, e.g. through
kinesthetic teaching (Fig. 1), and the system learns how to generalize demon-
strated trajectories to different conditions. Previous studies have proposed
various ways to model demonstrated trajectories such as Dynamic Movement
Primitive (DMP) [2] and Probabilistic Movement Primitive (ProMP) [4] and
Kernelized Movement Primitive (KMP) [5]. Although these methods can cope
with complex generalization of the demonstrated trajectories, one of the limi-
tations of existing methods is that the shape of the trajectories are encoded in
high dimensional space. A trajectory of a robotic manipulator is often high-
dimensional. For example, if we represent a trajectory of a manipulator with
7 DoFs as 100 way points, a trajectory will be represented as a vector with
700 dimensions. Even if we project a trajectory onto a weight space as in ex-
isting methods such as DMP [2], the trajectory will be encoded as a weight
vector with hundreds of dimensions. The high dimensionality of the trajectory
representation can be a bottleneck in the subsequent process such as planning
a sequence of primitive motions. We address this problem by learning the la-
tent space of the robot trajectory. If the low-dimensional latent variable of
the trajectories can be learned, it can be used to tune the trajectory when
planning and optimizing a sequence of primitive trajectories. In addition, by
encoding the trajectory type into the latent variable, we can model multiple
trajectory types with a single model, although existing frameworks usually
require separate multiple models to represent multiple behaviors.

Deep learning, which has contributed to recent advances in machine learn-
ing, is a powerful tool for coping with high-dimensional data. Moreover, it can
be used to learn latent representations that capture meaningful information
as low-dimensional data [6,7]. However, neural networks are notorious in that
they require thousands of samples for training. In the context of imitation
learning, it is costly to collect data of human demonstrations. Therefore, the
number of the available expert trajectories is often limited. To leverage the
power of neural networks in imitation learning, it is essential to address the
requirement of massive training data.

In this study, we present a framework for modeling multiple types of demon-
strated trajectories with a single neural network by learning latent represen-

Title Suppressed Due to Excessive Length 3

Fig. 1: Modeling the demonstrated trajectory through kinesthetic teaching is
essential in imitation learning.

tations. The proposed framework does not require information on the motion
type of the demonstrated trajectories, and the model is trained in an unsu-
pervised manner. To address the issue of the size of the training data, we
propose a trajectory augmentation trick that is inspired by the data augmen-
tation commonly used in the computer vision community. We also extend the
structure of the joint VAE proposed in [8] to obtain a decoder that is con-
ditioned on the goal position of the trajectory for generalization to different
goal positions. In this framework, different types of trajectories are encoded
in the discrete latent variable and the continuous variable interpolates the
input trajectories. The learned decoder can be used as a motion planner in
which the user can specify the goal position and the trajectory types by setting
the latent variables. The experimental results show that the proposed neural
network can be trained with a limited number of demonstrated trajectories
and learns interpretable low-dimensional representations. We think that our
framework will lead to the development of an imitation-learning-based robotic
system in which a user can select and modify the shape of a planned trajectory
by changing low-dimensional latent variables.

2 RELATED WORK

Imitation learning is a class of methods for learning the behavior demonstrated
by experts [1], and it is considered an intuitive approach that facilitates the
teaching of desired motions to a robotic system. Motion planning with im-
itation learning has been exploited in practical applications such as robotic
surgery [13]. Previous studies on movement primitives have proposed various
frameworks for modeling demonstrated trajectories, e.g. DMP [2], ProMP [4],
and KMP [5]. These methods enable the generalization of trajectories to dif-
ferent goal positions while maintaining the topological features of the demon-
strated trajectories. However, these methods do not learn lower-dimensional
latent representations of demonstrated trajectories, which would enable intu-
itive user-system interaction. Studies on deep generative models [6–8] show

4 Takayuki Osa*, Shuehi Ikemoto

that it is possible to learn intuitive latent representations of data. The original
study of VAE shows that VAE can learn the latent dimension which corre-
sponds to the facial expression and that the face image can be continuously
changed from a “sad” face to an “angry” face by changing the value of latent
variable [6]. In the context of imitation learning, it will be possible to generate
a new “middle” behavior by learning latent representations of demonstrated
trajectories.

The latent space of robotic trajectories has been leveraged in the con-
text of imitation learning. Studies such as [14,15] employed Gaussian Process
Latent Variable Model [16] and Principal Component Analysis to learn a low-
dimensional latent space to achieve efficient learning. However, it is not trivial
to learn both continuous and discrete latent variables using these methods. In
contrast, the autoencoder used in this study learns both discrete and contin-
uous latent variables.

Recent advances in reinforcement learning (RL) has made it possible to ap-
ply deep learning methods to robotic manipulation. The study in [17] trained
a neural network to generate a motor torque command from image inputs.
Studies such as [18] proposed algorithms to learn neural network policies us-
ing deep RL for real robots. In these recent studies, the use of neural networks
is often focused on Markov Decision Process (MDP) settings, where the agent
performs learning to generate a control input from a given state under stochas-
tic dynamics. The study in [19] is related to our work in that a neural network
learns to imitate demonstrated behaviors through learning the latent variable
for continuous control tasks. However, the use of neural networks for planning
problems is still unexplored. In planning problems, it is usually unnecessary
to consider a stochastic state transition as in the standard RL setting [20].
Instead, a desired trajectory is planned for a given deterministic state tran-
sition, which is actually valid assumption in practice. Many industrial robots
have solid position/velocity controllers, and there is no need to learn low-level
control. It is natural to consider that the system is fully actuated in these
cases. Therefore, we think that control of industrial robots requires an algo-
rithm that addresses the planning problem rather than the continuous control
problem.

A few recent studies have addressed the application of neural networks to
manipulation planning. The study in [21] proposed a neural network architec-
ture that predicts the deformation of objects after a simple manipulation. To
train the neural network, hundreds of manipulation trajectories were recorded.
The necessity of massive training data has been an issue of applying deep learn-
ing to motion planning. In our study, we propose a technique for generating
synthetic trajectories to address this issue.

3 AUTOENCODER TRAJECTORY PRIMITIVES

We present the proposed autoencoder to model the demonstrated trajectories,
which we refers to as a autoencoder trajectory primitive (ATP). The network

Title Suppressed Due to Excessive Length 5

architecture and the objective function are described. Then the process of cre-
ating a dataset with a sufficient number of trajectories from a limited number
of demonstrated trajectories is described.

3.1 Objective Function and Architecture

We denote by q ∈ Rd a configuration of a robot manipulator, where d is a
number of joints. A trajectory given by a sequence of configurations is de-
noted by ξ = [q0, . . . , qT] where T is the number of time steps. We assume
that a dataset of trajectories D = {ξi}Ni=1 is given. It is also assumed that N is
a sufficiently large to train a neural network. We describe the process of con-
structing such a dataset from a limited number of demonstrated trajectories
in the next section. In this study, we aim to learn the latent space of a given
dataset. The continuous and discrete latent variables are denoted by z and c,
respectively. We consider the variational autoencoder framework in which the
the posterior/encoder qφ(z, c|ξ) is represented by a neural network parame-
terized by a vector φ, and the likelihood/decoder pθ(ξ|z, c) is represented by
a neural network parameterized by a vector θ. For learning latent variables,
β-VAE model [22] is often employed in previous studies. When learning the
continuous and discrete variable z and c, the objective function of the β-VAE
model [22] is given by

Jβ = Eξ∼D [Lβ(θ,φ)] , (1)

where Lβ(θ,φ) is given by

Lβ(θ,φ) = Eqφ(z,c|ξ)[log pθ(ξ|z, c)]
−βDKL(qφ(z, c|ξ)||p(z, c)), (2)

where qφ(z, c|ξ) is the joint posterior, p(z, c) is the prior, pθ(ξ|z, c) is the likeli-
hood, andDKL(qφ(z, c|ξ)||p(z, c)) is the KL divergence between qφ(z, c|ξ) and
p(z, c). However, the latent variable learned by β-VAE is often non-intuitive.
For learning disentangled continuous and discrete representations, Dupont[8]
proposed the objective given as

Jjoint = Eξ∼D [Ljoint(θ,φ)] , (3)

where Ljoint(θ,φ) is given by

Ljoint(θ,φ) = Eqφ(z,c|ξ)[log pθ(ξ|z, c)]
−γ
∣∣DKL

(
qφ(z|ξ)||p(z)

)
− Cz

∣∣
−γ
∣∣DKL

(
qφ(c|ξ)||p(c)

)
− Cc

∣∣ , (4)

where Cz and Cc represent the information capacity, and γ is a coefficient. In
our framework, we can compute the end-effector position at the goal configu-
ration xg. This supervised information xg is incorporated into the proposed
neural network to obtain the decoder pθ(ξ|z, c,xg) conditioned on xg. This

6 Takayuki Osa*, Shuehi Ikemoto

…

…

…
…

…

…

…
…

…

…

Fig. 2: Network architecture of the proposed autoencoder trajectory primitive.
z is the continuous latent code and c is the discrete latent code.

supervised auxiliary code enables the generalization of the trajectories to dif-
ferent goal positions. We employ the objective function given by

J = Eξ∼D [L(θ,φ)− log qφ(xg|ξ)] (5)

where

L(θ,φ) = Eqφ(z,c,xg|ξ)[log pθ(ξ|z, c,xg)]
− γ

∣∣DKL

(
qφ(z|ξ)||p(z)

)
− Cz

∣∣
− γ

∣∣DKL

(
qφ(c|ξ)||p(c)

)
− Cc

∣∣ . (6)

It can be seen that our objective function is similar to that of the M2 model
proposed by Kingma et al. [23]. The second term in (5) can also be viewed
as a regularization term. We use the reparametrization trick in [6] for the
continuous latent variable z. To learn the discrete latent variable c, we employ
the reparametrization with the Gumbel Max trick as in [24].

The network architecture is shown in Fig. 2. The decoder obtained in our
framework can be used as a user-interface for motion planning, in which the
goal position can be specified from a given task and the user can tune the latent
code to obtain a preferable shape of the trajectory. We employ fully-connected
neural networks with two hidden layers for both the encoder and decoder. The
activation function was ReLU in our implementation. In our implementation,
input and reconstructed trajectories are represented in configuration space.
Therefore, inputs and outputs of the neural network are bounded between −π
to π. We think this property is suitable for training a neural network; if the
value of inputs and outputs are not bounded, it would be necessary to use the
batch normalization technique.

3.2 Trajectory Augmentation

When demonstrated trajectories {ξdemo
i }Mi=1 are given, we sample trajectories

around the demonstrated trajectories to create a dataset D = {ξi}Ni=1 with a

Title Suppressed Due to Excessive Length 7

sufficient number of trajectories to train the neural network. This approach
is inspired by the data augmentation commonly used in the computer vision
community.

To obtain various goal configurations, we sample perturbation at the goal
configuration by following a Gaussian distribution ∆qT ∼ N (0, Σg) where Σg
is a covariance matrix, which is diagonal in our implementation. The sampled
perturbation is smoothly propagated to the whole trajectory as

∆ξg = M†[0, . . . , 0, ∆qT]> (7)

where M† is the Moore-Penrose pseudo-inverse of the matrix M defined by

M =

0 0 0 . . . 0

0 2 −1
...

0 −1 2 −1
. . .

0 0 −1
. . . 0 0

0 0 2 −1 0
...

...
. . . −1 2 −1

0 0 . . . 0 −1 2

. (8)

The matrix M is used in the trajectory update in CHOMP [9] and is used
to project the trajectory onto the constraint trajectory space as we describe
later. M plays a role in smoothly propagating the difference of the trajectory
to the whole trajectory.

We also sample perturbation of the whole trajectory by following the dis-
tribution given as

βtraj(ξ) =

M∑
m=1

U(m)N (ξdemo
m , aM†), (9)

where a is a constant, and U(m) is the uniform distribution. In prior work [25],
the use of this covariance matrix for sampling trajectories was proposed, and
it was empirically shown that using this covariance matrix leads to a smooth
perturbation of the entire trajectory without changing the start and goal con-
figurations. Combining these techniques, we sample trajectories by following

ξsample = ∆ξg + ξβ (10)

where ∆ξg is obtained from (7), and ξβ is obtained from βtraj(ξ) given by (9).

3.3 Projection onto the Constraint Space

Although our decoder generates a trajectory from a given goal position, the
generated trajectory does not precisely satisfy the given goal position. How-
ever, it is difficult to explicitly incorporate the constraints such as via-points

8 Takayuki Osa*, Shuehi Ikemoto

0 10 20 30 40 50
Step

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Po
sit
io
n

0 10 20 30 40 50
Step

−0.2

−0.1

0.0

0.1

0.2

0.3

Po
sit
io
n

Fig. 3: Visualization of trajectories sampled for trajectory augmentation.

or joint limits in the autoencoder. To cope with this issue, we project the
generated trajectory onto the constraint solution space using a trajectory op-
timization method. To obtain the trajectory that satisfies the constraints, we
can employ trajectory optimization methods such as CHOMP [9] and Tra-
jOpt [10]. In this study, we employ the trajectory optimization method based
on CHOMP. The covariant trajectory update of CHOMP is given by

ξnew = arg min
ξ

{
C(ξc) + g>(ξ − ξc) +

η

2
‖ξ − ξc‖2M

}
(11)

where g = ∇C(ξ),ξnew is the updated plan of the trajectory, ξc is the current

plan of the trajectory, η is a regularization constant, and ‖ξ‖2M is the norm

defined by a matrix M as ‖ξ‖2M = ξ>Mξ. The trajectory update in (11) is
equivalent to the following:

ξnew = ξc − 1

η
M−1g. (12)

When the position of the end-effector at the goal position in the current plan
of the trajectory deviates from the given one, we shift the goal configuration
and update the entire trajectory by iterating the following update as discussed
in [26]:

ξnew = ξc + αM−1[0, . . . , 0, ∆q̃T]>, (13)

where α is the learning rate and ∆q̃T is given by

∆q̃T = J−1
[
xend(q0T)− xend(qcT)

0

]
. (14)

Constraints such as via-points and joint limits can also be incorporated in the
same manner.

Title Suppressed Due to Excessive Length 9

Algorithm 1 Autoencoder Trajectory Primitive (ATP)

Training phase:
1: Input: Trajectories demonstrated by experts {ξdemo

i }Mi=1
2: Sample N trajectories by following (7) and (9)
3: Train the neural network by minimizing J in (5)

Planning phase:
4: Input: Goal position xg , and latent code z, c
5: Generate the trajectory ξ∗ with the decoder
6: (Optional) Project the trajectory onto the constraint solution space
7: Return: planned trajectory ξ∗

(a) (b) (c) (d)

Fig. 4: Input trajectories and reconstructed trajectories. In (a)-(d), the upper
figures show the input trajectories and the lower figures show the reconstructed
trajectories. The blue sphere represents the goal position in task space, i.e.
xg = [0,−0.7, 0.2]. The latent variable for reconstructing the trajectory is
shown in Table 2.

4 Experiments

In this experiment, four demonstrated trajectories were used. To train the
ATP, we created 4000 synthetic trajectories by using the method described
in Section 3.2. The dimension of discrete variable c was four, and that of the
continuous variable z was five. In the following, we show the results obtained
when a neural network is trained using the conditions shown in Table 1. We
simulated a KUKA LWR robot1 with 7 degrees of freedoms. A simulator is
developed using V-REP [27]. To implement the variational autoencoder, we
adopted the PyTorch implementation provided by the author of [8]2.

1 We customized the color to show the motion more clearly.
2 available at https://github.com/Schlumberger/joint-vae

10 Takayuki Osa*, Shuehi Ikemoto

Fig. 4 shows the input trajectories and reconstructed trajectories3. In this
experiment, input trajectories are designed to represent different behavior pat-
terns. Figs 4(a) and (b) show trajectories planned for grasping a bottle with
different approach angles. Likewise, Figs 4(c) and (d) show trajectories planned
for grasping a bag with different orientations. Although other frameworks of-
ten require multiple demonstrations of the same pattern, the result shows
that our neural network can model multiple types of behaviors with a single
model. To examine the quality of the reconstructed trajectories, the trajec-
tories shown in Fig. 4 are not projected onto the constraint solution space.
Each input trajectory is successfully reconstructed as show in Fig. 4. The la-
tent variable generated for reconstructing the input trajectories are shown in
Table 2. Interestingly, the ATP encodes trajectories shown in Fig. 4(a) and
(b) into the same discrete latent code as shown in Table 2. As a result, the
input trajectories shown in Fig. 4(a) and (b) are interpolated via the contin-
uous latent variable z as we will see later. The same discussion holds for the
input trajectories shown in Fig. 4(c) and (d); these trajectories are encoded
in the same discrete latent code c = [0, 0, 0, 1], and they are interpolated via
the latent variable z. Thus, the trajectories demonstrated for the same tasks
are categorized into the same class represented by the discrete latent variable
c in this experiment. This result indicates that the APT can learn meaningful
discrete representations in an unsupervised manner.

As discussed in [8], the KL divergence DKL

(
q(z, c|ξ)||p(z, c)

)
is the upper-

bound of the mutual information between the latent variable and the data.

3 Please note that the frames shown in the figures are not synchronized due to the limi-
tation of our implementation.

Table 1: Conditions for training the neural network

Parameter Value

of epochs 250
batch size 100

of time step in a trajectory 50
of units in hidden layers in the encoder (300, 200)

Activation function in the encoder (relu, relu)
of units in hidden layers in the decoder (200, 300)

Activation function in the decoder (relu, relu)

Table 2: Latent variables generated for reconstruction shown in Fig. 4

Trajectory
in Fig. 4

z c

(a) [0.02, -0.25, 0.01, 0.04,-0.06] [0., 0., 0., 1.]
(b) [0.05, 0.57, -0.01, 0.04, -0.10] [0., 0., 0., 1.]
(c) [0.15, -0.30, -0.06, -0.01, -0.09] [1., 0., 0., 0.]
(d) [0.12, 0.28, -0.06, -0.03, -0.07] [1., 0., 0., 0.]

Title Suppressed Due to Excessive Length 11

0 50 100 150 200 250
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

KL
 d

isc
re

te

0 50 100 150 200 250
Epoch

0

1

2

3

4

5

KL
 c

on
tin

uo
us

z0
z1
z2
z3
z4

Fig. 5: The change of KL divergence during the training of our autoencoder.

Therefore, we plot the KL divergence of each latent unit during training in
Fig. 5 as in [8]. As shown, among the five continuous variables, only one channel
z1 has a significant value; other four channels do not. This result indicates that
we can obtain various trajectories that cover the training dataset by selecting
one of four discrete variable and changing only z1.

The trajectories obtained by changing c and z0 are shown in Fig. 6. It is
evident that the change of z0 does not result in a significant change of the
generated trajectories. This result is reasonable because the log of the KL
divergence in Fig. 5 indicates that z0 does not contain much information.

The trajectories obtained by changing c and z1 are shown in Fig. 7. It
is clear that the change of z1 results in significant change of the shapes of
generated trajectories. This result also fits with the result that only z1 contains
significant information as shown in Fig. 5. In the top row of Fig. 7, which
corresponds to c = [1, 0, 0, 0], one can see that the input trajectories shown
in Fig. 4(a) and (b) are continuously interpolated via the latent variable z.
Accordingly, the trajectory shown in the middle of the top row of Fig. 7 appears
to be a mixture of the trajectories shown in Fig. 4(a) and (b). Likewise, it can
be seen in the bottom row of Fig. 7, which corresponds to c = [0, 0, 0, 1], that
the input trajectories shown in Fig. 4(c) and (d) are continuously interpolated
via the latent variable z. As a result, the middle of the bottom row of Fig. 7
appears to be a mixture of the trajectories shown in Fig. 4(c) and (d).

The trajectories obtained by changing xg are shown in Fig. 8. The trajecto-
ries are properly generalized to different goal positions of the end-effector. As
discussed in [28], the output of the variational autoencoder is amortized varia-
tional inference. Therefore, the generalization with the decoder is not accurate,
e.g. the positioning error is approximately from 0.01 to 0.05 m. However, after
the projection with CHOMP, the positioning error at the goal position can be

12 Takayuki Osa*, Shuehi Ikemoto

Fig. 6: Trajectories generated by changing z0. From the top, each row corre-
sponds to c = [1, 0, 0, 0], c = [0, 1, 0, 0], c = [0, 0, 1, 0], c = [0, 0, 0, 1], respec-
tively. z1 = z2 = z3 = 0 and xg = [0,−0.7, 0.2] in all trajectories. The column
corresponds to varying z0.

significantly small, e.g., less than 1mm. This results show that the ATP can
generalize the learned trajectories to different goal positions.

From these results, it is evident that our autoencoder learned interpretable
latent representations from a limited number of demonstrated trajectories. On
the other hand, the hand orientation and the shape of the entire trajectory is
entangled in the learned latent variable; when changing z1, both the orientation
and the shape of the entire trajectory change. In practice, a user may need to
tune the shape of the entire trajectory without changing the hand orientation,
e.g. for collision avoidance. However, when using the latent variable learned
in this study, it is not possible to change the shape of the entire trajectory
without changing the hand orientation. We think that this result is due to the
property of the objective function of our neural network and that this point
needs to be addressed in future work.

Title Suppressed Due to Excessive Length 13

Fig. 7: Trajectories generated by changing z1. From the top, each row corre-
sponds to c = [1, 0, 0, 0], c = [0, 1, 0, 0], c = [0, 0, 1, 0], c = [0, 0, 0, 1], respec-
tively. z0 = z2 = z3 = 0 and xg = [0,−0.7, 0.2] in all trajectories. The column
corresponds to varying z1.

5 Discussion

The results indicate that the ATP learns useful latent representations for tun-
ing the trajectory shape. The learned decoder can be used as a motion planner
that takes the goal position and latent variable as its input. Using the ATP, a
user can teach the desired motion by performing a handful of demonstrations,
and when a trajectory is planned for a new task, a user can also select and
modify the trajectory by changing the discrete and continuous latent variables.
The trajectory augmentation presented in this paper can be viewed as a way
to autonomously explore the trajectory for learning useful low-dimensional
representations.

Existing movement primitive frameworks, such as DMP and ProMP, often
require separate models for representing diverse behaviors. In other words,
these frameworks require label information for learning multiple types of be-

14 Takayuki Osa*, Shuehi Ikemoto

Fig. 8: Trajectories generated by changing xg. The trajectories are properly
generalized to different goal positions. c = [1, 0, 0, 0] and z = [0., 1.28, 0., 0., 0.]
in all trajectories. The orange sphere indicates the specified goal position, and
the blue sphere indicates the goal position used in the demonstrated trajecto-
ries. The unit of xg is the meter in this simulation.

haviors. As a result, if a given demonstration dataset contains multiple types
of behaviors without labels, they often fails to model the given trajectories.
However, as shown by the experimental results, the ATP can model diverse
behavior by encoding the trajectory types into the latent variables in an un-
supervised manner. This property of the ATP is beneficial in practice, since it
will reduce the effort to consider the types of demonstrated trajectories. Prior
work such as [4] considered the combination of movement primitives by intro-
ducing the activation factor. In contrast, ATP can deal with the blending of
multiple types of behaviors through the continuous latent variable, which does
not require learning multiple models. This property is also useful in practice
when the user need to plan a trajectory which is similar to input trajectories
but different from them.

Neural networks are often considered to be incomprehensible due to their
complexity. However, our work shows that neural networks can provide a way
to interpret and manipulate incomprehensible high-dimensional data by find-
ing low-dimensional latent representations. Although trajectory planning in
robotic systems often require expert knowledge, the low-dimensional repre-
sentation found by our framework can be used to tune the trajectory shape
without expert knowledge.

We think that the proposed framework can be used for task-level motion
planning. The task-level motion planning is often built on pre-fixed motion
planner, and it is not trivial to tune each lower-level planner. However, by using
our framework, lower-level trajectories can be represented by low-dimensional
information and the tuning of such a low-dimensional vector should be much
easier compared to the raw representations of trajectories.

Title Suppressed Due to Excessive Length 15

6 Conclusions

We proposed the autoencoder trajectory primitive (ATP), which is a frame-
work for modeling demonstrated trajectories with a neural network. In the
proposed framework, the latent variables that encodes the multiple types of
trajectories are learned in an unsupervised manner. The trajectory augmen-
tation trick was proposed to address the issue of the size of the training data.
The learned decoder can be used as a motion planner in which the user can
specify the goal position and the trajectory types by setting the latent vari-
ables. Our experimental results show that a neural network can be trained
with a handful of demonstrated trajectories and that the ATP successfully
learns discrete and continuous low-dimensional latent variables.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters, “An algo-
rithmic perspective on imitation learning,” Foundations and Trends R© in Robotics, vol. 7,
no. 1-2, pp. 1–179, 2018.

2. A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes for learning
motor primitives,” in Advances in Neural Information Processing Systems (NIPS), 2002.

3. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor and S. Schaal, “Dynamical movement
primitives: learning attractor models for motor behaviors,” in Neural computation, vol. 25,
no. 2, 328–373, 2013.

4. A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic movement prim-
itives,” in Proceedings of Advances in Neural Information Processing Systems (NIPS).
mit press, 2013.

5. Y. Huang, L. Rozo, and J. S. andand D.G. Caldwell, “Kernelized movement primitives,”
International Journal of Robotics Research, 2019.

6. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proceedings of the
International Conference on Learning Representations (ICLR), 2014.

7. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural In-
formation Processing Systems (NIPS), 2014.

8. E. Dupont, “Learning disentangled joint continuous and discrete representations,” in
Advances in Neural Information Processing Systems 31 (NIPS 2018)), 2018.

9. M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin, J. A. Bag-
nell, and S. Srinivasa, “Chomp: Covariant hamiltonian optimization for motion planning,”
The International Journal of Robotics Research, vol. 32, pp. 1164–1193, 2013.

10. J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Gold-
berg, and P. Abbeel, “Motion planning with sequential convex optimization and convex
collision checking,” The International Journal of Robotics Research, vol. 33, no. 9, pp.
1251–1270, 2014.

11. L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars., “Probabilistic
roadmaps for path planning in high-dimensional conguration spaces,” IEEE Transactions
on Robotics and Automation, vol. 12, no. 4, 1996.

12. S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” International
Journal of Robotics Research, 2001.

16 Takayuki Osa*, Shuehi Ikemoto

13. T. Osa, N. Sugita, and M. Mitsuishi, “Online trajectory planning and force control for
automation of surgical tasks,” IEEE Transactions on Automation Science and Engineer-
ing, vol. 15, no. 2, pp. 675–691, April 2018.

14. A. Shon, K. Grochow, A. Hertzmann, and R. P. Rao, “Learning shared latent structure
for image synthesis and robotic imitation,” in Advances in Neural Information Processing
Systems (NIPS), 2005.

15. D. B. Grimes and R. P. Rao, “Learning nonparametric policies by imitation,” in Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2008.

16. N. Lawrence, “Probabilistic non-linear principal component analysis with gaussian pro-
cess latent variable models,” Journal of Machine Learning Research, vol. 6, pp. 1783–1816,
2005.

17. S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor
policies,” Journal of Machine Learning Research, vol. 17, no. 39, pp. 1–40, 2016.

18. T. Haarnoja, V. H. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine, “Compos-
able deep reinforcement learning for robotic manipulation,” in Proceedings of the IEEE
Conference on Robotics and Automation (ICRA), 2018.

19. J. Merel, L. Hasenclever, A. Galashov, A. Ahuja, V. Pham, Y. W. T. G. Wayne and, and
N. Heess, “Neural probabilistic motor primitives for humanoid control,” in Proceedings of
the International Conference on Learning Representations (ICLR), 2019.

20. S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial and
review,” arXiv, 2018.

21. S. Arnold and K. Yamazaki, “Fast and flexible multi-step cloth manipulation planning
using an encode-manipulate-decode network (em*d net),” Frontiers Neurorobotics, vol. 13.

22. I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner, “beta-vae: Learning basic visual concepts with a constrained variational
framework,” in Proceedings of the International Conference on Learning Representations
(ICLR), 2016.

23. D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised learning
with deep generative models,” in Advances in Neural Information Processing Systems
(NIPS), 2014.

24. C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A continuous
relaxation of discrete random variables,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2017.

25. M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “Stomp: Stochastic
trajectory optimization for motion planning,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), May 2011, pp. 4569–4574.

26. A. D. Dragan, K. Muelling, J. A. Bagnell, and S. S. Srinivasa, “Movement primitives
via optimization,” in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), May 2015, pp. 2339–2346.

27. E. Rohmer, S. P. N. Signgh, and M. Freese, “V-rep: a versatile and scalable robot simu-
lation framework,” in Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013.

28. C. Cremer, X. Li, and D. Duvenaud, “Inference Suboptimality in Variational Autoen-
coders” in Proceedings of the International Conference on Machine Learning (ICML),
2018.

