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Abstract: One of the biggest challenges of activity data collection is the need to rely on users and keep
them engaged to continually provide labels. Recent breakthroughs in mobile platforms have proven
effective in bringing deep neural networks powered intelligence into mobile devices. This study
proposes a novel on-device personalization for data labeling for an activity recognition system using
mobile sensing. The key idea behind this system is that estimated activities personalized for a specific
individual user can be used as feedback to motivate user contribution and improve data labeling
quality. First, we exploited fine-tuning using a Deep Recurrent Neural Network to address the lack
of sufficient training data and minimize the need for training deep learning on mobile devices from
scratch. Second, we utilized a model pruning technique to reduce the computation cost of on-device
personalization without affecting the accuracy. Finally, we built a robust activity data labeling
system by integrating the two techniques outlined above, allowing the mobile application to create a
personalized experience for the user. To demonstrate the proposed model’s capability and feasibility,
we developed and deployed the proposed system to realistic settings. For our experimental setup,
we gathered more than 16,800 activity windows from 12 activity classes using smartphone sensors.
We empirically evaluated the proposed quality by comparing it with a baseline using machine
learning. Our results indicate that the proposed system effectively improved activity accuracy
recognition for individual users and reduced cost and latency for inference for mobile devices.
Based on our findings, we highlight critical and promising future research directions regarding the
design of efficient activity data collection with on-device personalization.

Keywords: activity recognition; data collection; on-device personalization; deep learning; fine-tuning;
smartphone sensors; user feedback

1. Introduction

Mobile activity recognition is mostly implemented using supervised learning algo-
rithms. The training of these supervised algorithms challenges labeled data or “ground
truth.” Incorrect or unfinished labeling may result in classification failures that lead to
inaccurate systems; hence, achieving high-quality labels is crucial. Data labeling using
smartphone sensors can be done in several ways, depending on the nature of data being
labeled. Both ways impose challenges [1,2]. In this study, we challenge the online and
self-labeling scenarios using inertial sensors, such as accelerometers. Data labeling is
labeled when the individual is performing the activity of concern. Human labelers must
start and stop the data capture process manually to label describing the on-going activ-
ity that needs to be assessed to avoid inaccurate timestamps, which requires high effort.
Although participants show initial enthusiasm, they may lose interest and drop out over
time. This situation leads to low-quality data collection and biased data. Indeed, it is hard
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to overcome the lack of motivation and sustained engagement without any artifice [3–6].
Thus, our motivation is to create a strategy to keep the participants engaged with the
labeling task to obtain high-quality labels.

This challenge is well-motivated in user feedback studies. [3,7,8]. Prior work [8]
utilized inference results as feedback to improve the quality and quantity of participant
contributions. However, the datasets’ models from different users lose accuracy when
applied to a new user due to the diversity of users’ behavior. This limitation can be
addressed either by training a personal model on a cloud or a device. On-cloud training
has the disadvantage of high computational cost and inability to scale when training the
per-user model for millions of users. Contrarily, on-device training might give model
training’s inefficiency because of resource-constrained devices and insufficient user data
on-device.

This study bridges this gap by introducing the proposed system, allowing activity
recognition applications for smartphone sensor systems to achieve highly accurate training
datasets based on three features. First, we employ Fine-tuning deep neural networks [9]: the
technique widely used in transfer learning in the context of deep learning to overcome the
lack of sufficient training data. We implement fine-tuning instead of full-training, called
on-device personalization, helping models stay relevant to user behavior. Second, we
propose Magnitude-based weight pruning [10]: an optimization technique to minimize the
complexity of optimizing deep learning inference for on-device personalization. Finally, we
integrate the abovementioned two features to build an efficient on-device personalization
system. We utilize the inference results obtained from the on-device model as feedback to
motivate user engagement and improve data labeling quality.

In short, the proposed system focuses on the accuracy of human contributions in
achieving high-quality and consistent ground-truth labeling and, particularly, on the
impact of the “on-device personalization system” and feedback under different conditions
(See Table 1). To be entirely sure, the experimental setup was a within-subject design; the
same person tests all the conditions where each participant receives both with- and without
feedback. An overview of the proposed system is shown in Figure 1. The contributions of
this work to the field are the following:

1. We introduce a system design of integrating on-device personalization and activity
recognition, which allows activity recognition applications for smartphone sensor
systems to achieve highly accurate training datasets. We developed the proposed
system based on three essential features: on-device fine-tuning, model optimization,
and personalized feedback.

2. We deployed the proposed system to a realistic scenario demonstrating its capability
and feasibility. We gathered more than 16,800 activity windows, each labeled with
their corresponding activity class from 12 activity classes using smartphone sensors.
We reviewed, analyzed, and used the obtained data for evaluations.

3. We empirically evaluated the proposed system’s quality by comparing the proposed
condition with the baseline condition (see Table 1) using machine learning. The results
indicate that the proposed system can achieve accurate and consistent labeling in
activity datasets.

We discuss the results, challenges, limitations, and implications of this research on the
design of efficient activity data collection methods with on-device personalization.

Table 1. Experimental design summary.

Method Conditional detail

Proposed Receive estimated-feedback notifications using on-device personalization.
Baseline Receive estimated-feedback notifications using on-device inference [8].
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2. Related Work

This section discusses existing literature studies that relate to our work in this study.
We first review the background and challenges of label collection for activity recognition.
We then introduce two key ideas that drive our research: (1) on-device deep learning;
(2) decentralized machine learning.

• Challenges of data labeling for activity recognition: Presently, the principal activity
recognition models produced require manually labeled data by a human in a way
that allows them to learn how to build correct decisions. Label collection for activity
recognition with smartphone sensors has various challenges concerning four differ-
ent criteria. First, either data labeling was done by online [11,12] or by offline [13];
they must achieve highly accurate timestamps and overcome extended memoriza-
tion. Second, either data labeling was done by self-labeling or by an observer; they
impose several challenges such as missing labels, inaccurate timestamps, and high
cost [12,14,15]. Third, either data labeling was done in a laboratory scenario or a real-
istic scenario; they present specific challenges. For example, the models produced in
laboratory settings lose accuracy when applied in real circumstances due to the variety
of users’ behavior. In comparison, the models produced in practical environments
tend to be more generic but complicated [15–19]. Finally, there are many challenges to
all data labeling mechanisms undertaken. For instance, the use of domain experts’ to
manually label data typically results in more truthful labeling, but it can be high-priced
and time-consuming. In contrast, the use of fully automated labeling mechanisms can
reduce time but may not be as precise as those delivered by a domain expert [20–22].
This study challenges the online and self-labeling scenarios in a realistic setting.

• On-device deep learning: Deep learning with ubiquitous technologies is increasingly
considered by researchers, particularly for mobile devices [23,24]. With the powerful
mobile devices’ hardware, it is possible to exploit deep learning to solve a problem
using a mobile device and its sensors to collect data without cloud support. The cloud-
based approach can reach almost infinite resources, but there is a long delay between
data collection and model updates. Contrarily, the mobile-based approach can answer
the drawbacks of the cloud model by running some or all model training to the
device itself. Consequently, the use of deep learning on mobile devices has been
researched in many works [25–29]. The use of knowledge transfer for on-device
deep learning has been the subject of study of some works [30]. However, there are
some critical drawbacks concerning deep learning methods on resource-constrained
devices [31]. Some present works have been proposed to build deep learning that is
effective on resource-constrained devices, such as model compression [26,29,32–34]
and customized hardware design assistance [35–37]. Some of these works are utilized
in our work (e.g., layer compression), but they mostly target only the inference phase
of deep learning algorithms. Contrarily, we introduce a technique to minimize the
complexity of optimizing on-device deep learning inference.

• Decentralized machine learning: With the advent of connected devices with com-
putation and storage capabilities, running machine learning workflows on-device
is possible. Unlike standard machine learning solutions, decentralized machine
learning [38–41] distributes the learning phase over distributed networks of devices.
For instance, Konečnỳ et al. [39] explored federated learning in which users do not
send the data they generate to a data center at all, but rather provide part of their
computational power to solve optimization problems. Our study exploits fine-tuning
training where the locally trained models or parameter updates will not be uploaded
to the cloud as we already trained and generalized the global model. This solution
improves upon the traditional approaches by working better in bandwidth and power-
constrained environments and provides a straightforward and effective mechanism
for personalization at scale.
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3. Preliminaries

This section provides a brief overview of multiple learning paradigms, including mo-
bile activity recognition with deep learning, transfer learning and fine-tuning, and, impor-
tantly, on-device personalization.

3.1. Mobile Activity Recognition with Deep Learning

This study relies on state-of-the-art mobile activity recognition using supervised
learning, the input x is sensor data (regularly represented as a set of sensor input values
around time t). We typically describe an example as a vector x ∈ Rn, where each xi
of the vectors is a different feature. The output y is a numeric value classifying the
activity class k in the given sensor data. The learning algorithm must produce a function
f : Rn → {1, . . . , k}. When y = f (x), the model assigns an input defined by vector x to a
category k defined by numeric value y, where f can output a probability distribution over
classes. Recent activity recognition is well-developed with deep learning [42] to overcome
traditional algorithms’ failure on such recognition tasks. The deep learning strategy is
to learn φ, where φ can be used as a provided set of features characterizing x or a new
representation for x. In this strategy, we have a model y = f (x; θ, ω) = φ(x; θ)Tω. We have
parameters θ that we apply to learn φ from a broad class of functions, and parameters ω
that map from φω to the desired output. This is an instance of a common deep learning,
where φ defining a hidden layer. We parametrize the representation as φ(x; θ) and utilize
the optimization algorithm to find the value of the parameters θ that result in the most
useful function approximation.

The use of Convolutional neural networks (CNNs) and Recurrent neural networks
(RNNs) have been the subject of study of many activity recognition applications [43].
Both kinds impose challenges when applied to practical applications owing to the com-
plexity of their architecture. In this study, we deeply explore RNNs due to the suitability of
temporal data for building the proposed system blocks. We describe a detailed RNN of the
proposed system in Section 4.3.

3.2. Transfer Learning and Fine-Tuning

Transfer learning intends to apply earlier acquired knowledge to accelerate the learn-
ing of new tasks [44]. In this study, let D0 and D1 be domains with learning tasks T0 and
T1, respectively. The fundamental concept is to help enhance the learning of a predictive
function f (·) in T1 applying the learned knowledge extracted from D0 and T0, where D0
6= D0, and/or T0 6= T1, suggesting that domains or tasks can be different. A pre-trained
model is an accumulated network earlier trained on a massive dataset. We either adopt the
pre-trained model or apply transfer learning to customize this model to a given task T1.
In this paradigm, we classify the actions of humans employing transfer learning from a
pre-trained network. There have been many proposed ways of customizing a pre-trained
model, such as feature extraction and fine-tuning. The major variation between feature
extraction and fine-tuning is that the former is done by instantiating the pre-trained model
and supplementing a fully-connected classifier on top. In contrast, fine-tuning has a signifi-
cant step to incrementally increase performance by repurposing the pre-trained models’
top-level layers to the new dataset. In turn, it could also possibly lead to prompt overfitting.
This study employs fine-tuning to build the proposed system. We refer an interested reader
to [45] for a detailed review of transfer learning.

3.3. On-Device Personalization

In this learning setting, we employed a fine-tuning with deep learning technique
to retrain an already trained model on the cloud (that carefully trained on high-quality
datasets to be as generic and unbiased as possible) to adapt to a similar mobile activity
recognition problem. We only focused on two disjoint datasets that are given and the
task changed, i.e., D0 ∩ D1 = ∅ and Y0 ∩Y1 = ∅. The target model (on-device fine-tuned
model) replicates all model designs and their parameters on the source model (on-cloud
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pre-trained model), except the output layer, and fine-tunes these parameters based on D1.
Contrarily, the output layer of the target model needs to be trained from scratch. In some
exceptional cases, when fine-tuning is performed for D1, it can cover a part of the original
one D0. However, to simplify notations, we ignore that parts of D1 can already be included
in D0. Using this technique, we can create a personalized experience for the user on the
device while overcoming limited training data and computational resources. For example,
returning personalize estimation activities as feedback to individual devices.

4. Method

This section introduces the proposed system and its learning procedure. First, we in-
troduce an overview of the methodology. Next, we describe the dataset used to train our
pre-trained model. We then provide a detailed description of the network architecture and
its implementation and classification performance. Finally, we discuss an optimization
process for the model.

4.1. Overview

The objective of our work is to apply fine-tuning using RNNs to migrate the knowledge
learned from the source dataset Dsrc on the cloud to the target dataset Dtar on the device for
mobile activity recognition to deliver better personalized feedback to the user, as reflected
in Figure 1.
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Figure 1. High-level overview of the proposed system. We train RNNs for activity recognition on an extensive labeled
dataset Step (a). The learned features are transferred to the below activity recognition model on a device Step (b) to
personalize individual devices’ prediction with a small labeled dataset. Next, the predicted activities are continuously
returned as feedback for data labeling.

Although the activities in Dsrc are mostly unrelated to “walking”, models trained on
this dataset can extract more general sensor features that can help identify acceleration and
the rate of rotation of the device along the three sensor axes. These similar features may be
equally effective for recognizing a “walking” class. Moreover, it takes less time and requires
less data than training a model from scratch. We simply selected a single fully-connected
layer with softmax activation as Mtar in this experiment based on our preliminary study’s
promising results [4]. However, we recommend researchers perform several experiments
to see the effect of the number of layers to freeze and the number of layers to fine-tune
before adopting. To build the proposed system, we implemented six steps:
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1. Let Msrc be the source model pretrained on the cloud; Let Dsrc be a source dataset
(i.e., large-generic activity datasets); Let Mtar be the target model trained on individual
devices; Let Dtar be the target dataset (i.e, small-personal activity datasets);

2. Build an input pipeline for Msrc using RNNs. Then, pretrain Msrc on Dsrc.
3. Create Mtar. This model replicates all model designs and their parameters on Mscr,

except the output layer. Assume that these Mscr’s parameters hold the knowledge
learned from Dscr; this knowledge will be equally applicable to Dtar. Additionally,
suppose that Mscr’s output layer closely resembles the labels of Dscr and is conse-
quently not used in Mtar.

4. Add an output layer with a specific output size (which is equal to the number of Dtar
categories) to Mtar. Then, randomly initialize Mtar’s parameters of this layer.

5. Train the output layer of Mtar on Dtar from scratch. The parameters of all remaining
layers are fine-tuned based on Mscr’s parameters.

6. Execute Mtar to make predictions based on user’s input data (i.e., smartphone sen-
sors and user-labeled data) to recognize activities and return estimated activities as
feedback to the user.

4.2. Dataset

Large-scale datasets are prerequisites for the successful application of fine-tuning
deep neural networks in a supervised learning manner. This study employed the dataset
gathered from the real-world deployment on Amazon Mechanical Turk (MTurk) (https:
//www.mturk.com/) as Dsrc to build Msrc. The procedure of labeling tasks of the dataset
was similar to prior work [5]. The dataset has assessed the crowdsourced data’s validity
to verify that the accuracy level is sufficiently high for application to real-world data.
The experiments were carried out in January and February 2020 with 120 subjects (52 female,
68 male) between the ages of 22 and 57 years old (37.64 ± 9.37). Each person performed
19 activity classes carrying an application developed for an Android smartphone in their
pockets. The dataset contains the readings of two embedded sensors commonly found
in smartphones: accelerometer and gyroscope, sampled at a constant frequency rate of
20 Hz. We selected 12 activity classes from the entire categories: lying down, sitting,
walking, standing, handwashing, cycling, eating, using a toilet, cleaning, in a vehicle,
computer work, and cooking. Given this data, it is possible to create general-model
representations based on RNNs used as an initial model in the application.

4.3. Network Architecture and Implementation

Following our prior works [4,8], we optimally decided on the network architecture.
Our preliminary findings found that RNN is incredibly well suited for sequential data
because of handling arbitrary input/output lengths and the advantage of being less feature
compatible when compared to other architectures such as CNN. Therefore, we employ
RNNs to build the proposed system. This study explores two sequential feature models: a
simple LSTM and CNN-LSTM model for performance reference.

4.3.1. Simple LSTM Model

We built RNNs as the source model Msrc and prepared the sequence of vectors using
a Long Short-Term Memory (LSTM) [46] layer to perform activity recognition using 3-
axis acceleration sensor data available in the smartphone application as the direct input.
An LSTM network is a developed RNN to solve input/output weight conflicts and avoid
the vanishing gradient problem [47]. The key design of an LSTM network is to produce
ways where the gradient can flow for long durations so that the time scale of combination
can be modified dynamically based on the input sequence. Hence, this network has been
observed remarkably successful in various activity recognition applications. Figure 2 shows
our LSTM model architecture.

https://www.mturk.com/
https://www.mturk.com/
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Figure 2. LSTM model for activity classification, where l is the input for each layer.

We created RNNs. The 3-axis acceleration and gyroscope data of each time corre-
sponded to the dimensional input layer’s size. The number of activity classes corresponded
to the dimensional output layer’s size. Each unit of each internal layer was an LSTM
unit. We preprocessed the input signals since deep neural networks can learn to repre-
sent data directly from time-series data. We performed segmentation on the signals into
fixed-size windows with 512 samples with a 1-second overlap. Instead of reading raw data
immediately, we manually extracted valuable data from the raw sensor data. For each
axis, the average and maximum and minimum values were selected as features. In sum,
one representation of data had 512 time-steps × 18 features, or 9216 elements. A Rectified
Linear Unit (ReLU) defined the activation function of whole layers, excluding the last
fully-connected layer. A softmax function and a cross-entropy function defined the output
layer’s activation function and the error function. We set Msrc holding a stacked-LSTM
network that consists of two LSTM layers. This method potentially provides the hidden
state at each level to perform at different timescales. They were followed by a dropout
layer dedicated to reducing the model’s overfitting to the training data. The hidden layer
dimension was assigned to 100. The neural network’s weight was learned using Adam [48]
by setting cross-entropy as the loss function. The network was optimized by a batch size
of 64 for a maximum of 15 epochs and a learning rate of 0.0001. Lastly, a fully-connected
layer was adopted to describe the LSTM hidden layer’s features before a terminal output
layer was employed to make predictions. The model’s output was a twelve-element vector
including the probability of a given window belonging to each of the twelve activity classes.

4.3.2. CNN-LSTM Model

Convolutional layers can extract valuable knowledge and discover time-series data’s
internal representation, while LSTM networks efficiently recognize short-term and long-
term dependencies. Our proposed CNN-LSTM model’s approach is to consolidate the
benefits of these deep learning techniques efficiently to achieve a remarkably accurate
classification. To this end, we designed the CNN–LSTM architecture, consisting of two main
components: the CNN architecture for feature extraction and the LSTM architecture for
reading the features across time steps. Figure 3 shows our CNN-LSTM model architecture.

l1 l2 l3

 Fully-connected
layer In a vehicle

Eating

Computer work

Use a tolite

h1 h2 h3

w w

conv filter

Figure 3. CNN-LSTM model. The input is first convolved, and fed to LSTM part.
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We set the number of output, features, and window size using a similar parameter of
the simple-LSTM model. We created the LSTM-CNN model that reads subsequences of
the main sequence as blocks and selected features from an individual block, enabling the
LSTM to understand the features extracted from each block. We divided each window of
512-time steps into four subsequences for the CNN model. As a result, the CNN model was
defined to read in sequences with a length of 32-time steps and 18 features. We designed
Msrc as having two consecutive CNN layers followed by dropout and a max-pooling
layer. The whole CNN model was wrapped in a TimeDistributed (TimeDistributed layer
class of Keras API; this wrapper allows us to apply a layer to every temporal slice of an
input) layer to enable the same CNN model to read in each of the four subsequences in the
window. The extracted features were then flattened and provided to the LSTM model to
read, removing its features before a final mapping to activity was constructed. The number
of filters was set to 32, and kernel size was set to 3. Similar to the simple-LSTM model,
the ReLU was used as an activation function for the CNN layer. The fully connected layer
beside the softmax activation function was employed to classify the activity. The network
was optimized with a learning rate of 0.0001 and a batch size of 64 for a maximum of
25 epochs. The weight of the neural network was learned using Adam by setting cross-
entropy as the loss function.

The simple-LSTM and CNN-LSTM model were implemented in Python using Keras
v2.4.0 (https://keras.io/) with TensorFlow Core v2.0.0-rc0 (https://www.tensorflow.org/
versions/r2.0/api_docs/python/tf). Then, it was converted to work with TensorFlow
Lite (https://www.tensorflow.org/lite) and was ready to use in our application. Model
training was run with Tesla K80 GPU in Google Colab (https://colab.research.google.com/
notebooks/gpu.ipynb).

4.4. Classification Performance

We carried out an analysis to quantify the performance of Msrc to measure its gen-
erality before giving it to on-device. With the data prepared, we built a training and test
dataset. The datasets contained different users to evaluate the robustness of the classifier to
new users. We adopted the training dataset to build and validate the model and treated
the test dataset as the unseen new data as if the model was in production. We used 80% for
training and the remaining 20% of the data for validation. We used F-measure as a metric
of accuracy.

Figure 4a presents the learning curves of recognition accuracy and loss by F-measure
of the training and validation datasets over training epochs for the simple-LSTM model.
The final epoch results show that the validation accuracy reached over 0.975 at the expense
of only 0.075 validation loss. The test accuracy achieved an F-measure of 98.27%. Contrarily,
Figure 4b presents the learning curves of recognition accuracy and loss by F-measure of the
training and validation datasets over training epochs for the CNN-LSTM model. The final
epoch results show the validation accuracy reached over 0.988 at a validation loss of only
0.046. The test accuracy achieved an F-measure of 98.78%. As a result, we can see that both
models consistently perform well on the problem of accuracy, achieving an accuracy of
about 98%. Overall, the results indicate that the recognition accuracy of the CNN-LSTM
model was slightly higher than the simple-LSTM, with a difference of only 0.51% in F-
measure for test accuracy. Additionally, Figure 4c summarizes each classifier’s performance
on a set of test data using a confusion matrix with normalization by class to support the size
of training for the simple-LSTM and CNN-LSTM model. Both matrices demonstrated better
overall performance and could identify the movement type on a smartphone correctly.
Note that we show one confusion matrix since the matrix results for the simple-LSTM are
similar to that of the CNN-LSTM model.

https://keras.io/
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf
https://www.tensorflow.org/lite
https://colab.research.google.com/notebooks/gpu.ipynb
https://colab.research.google.com/notebooks/gpu.ipynb


Sensors 2021, 21, 41 9 of 22

(c)

(a) (b)

Figure 4. (a) A plot of accuracy and loss of the simple-LSTM model; (b) A plot of accuracy and loss of the CNN-LSTM
model; (c) Normalized confusion matrix for the simple-LSTM and CNN-LSTM model.

4.5. Performance on a Smartphone

In real-world use, the training and inference time must be fast because our application
requires immediate feedback to present to users who perform data labeling. The turned
feedback should be personalized and given immediately after the task is completed.
In this process, data labeling is more efficient because users’ mistakes can be corrected
more quickly. Thus, we estimated the inference and training time on the smartphone.
Additionally, we assume the smartphone’s resource usage such as battery damage, CPU,
and memory usage is high. In that situation, it cannot be satisfactory for commercial
service if its inference and training time is quick. Consequently, we examined the resources
managed as inference and training performance on the smartphone.

We used Huawei P10 (Android 9.0, EMUI 9.1) for reference. The smartphone usage log
was stored in the Android database. Each inference was performed at an interval of 5 min,
and the total number of executions was 10 if there is no detected change in user activity.
Contrarily, if there is a detected change in user activity, the inference was performed
immediately. Each training was performed at an interval of 15 min, and the total number
of executions was 10. Note that the standard training time depended on several factors,
such as the difficulty and complexity of models, the number of samples and parameters,
and the task’s design. However, typically, the model can be trained from a few seconds
to a few minutes. Our analysis trained the model until the validation loss decreased well,
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as expected. We estimated the time for preprocessing (feature generation), training time,
and inference time using a machine learning model. The average preprocessing time was
0.054 s. Table 2 presents the mean inference and training time for each model. Because the
simple-LSTM model is more simple than the CNN-LSTM model, the inference and training
time of the simple-LSTM model was shorter than for the CNN-LSTM model. The training
time was around 54 s and 126 s for the simple-LSTM model and the CNN-LSTM model
respectively. The inference time was around 0.0106 s and 0.3941 s for the simple-LSTM
model and the CNN-LSTM model. Consequently, the simple-LSTM model is acceptable in
real-world applications, compared to the CNN-LSTM model.

Table 2. Measurement results of inference and training time.

Model Inference Time (second) Training Time (second)

Simple-LSTM 0.0106 54
CNN-LSTM 0.3941 126

We estimated the resource usage concerning battery consumption, CPU, and memory
usage of the simple-LSTM for reference. Table 3 presents the estimation results. The full
battery of the Huawei P10 is 3200 milliampere-hour (mAh). The average battery consump-
tion for each inference was 0.02300 mAh. If our application uses 10% of the total battery,
the total execution number is 3200 × 0.1/0.02300 = 13,913.04. Hence, if the inference is
executed every 60 s, we can use the smartphone for 13,913.04 × 60 = 834,782.4 s = 231.884 h.
The average battery consumption for each training was 0.05100 mAh. If our application
uses 10% of the total battery, the total execution number is 3200 × 0.1/ 0.05100 = 6274.50.
Hence, if the training is performed every 60 s, we can use the smartphone for 6274.50 × 60
= 6189.3 s = 104.575 h. The average CPU usage was 5.53%, and the average memory usage
was 1.03 megabytes (MB) for model inference. The average CPU usage was 22.20%, and the
average memory usage was 1752.45 MB for model training. Note that we estimated the
performance when only our application was performed. Consequently, a variation of the
corresponding performance in real-world practice is reasonable. Still, our results indicate
that resource usage is inexpensive.

Table 3. Measurement results of inference and training time.

Condition Battery Consumption
(%/times)

CPU Usage Rate
(%)

Memory Usage
(MB)

Inference 0.7 5.53 1.03
Training 1.6 22.20 1752.45

In summary, the simple-LSTM model was much faster than the CNN-LSTM model,
regarding the inference and training time. Moreover, the smartphone’s resource usage of the
simple-LSTM model, such as battery consumption, CPU, and memory usage, is inexpensive
and acceptable in real-world use. Consequently, we mainly considered the simple-LSTM
model for model optimization and evaluation, as described in the following subsections.

4.6. Performance Optimization with Model Pruning

Deep learning model inference can be considerably computation-intensive for mobile
devices, even for small input data. This section describes a model pruning technique
to reduce such computation overhead, delivering the proposed system feasibly on mo-
bile devices. Model compression is an advised approach to decrease the model size
and inference computations [49]. The proposed system attempts to apply the conven-
tional compression algorithm to minimize the complexity of optimizing on-device deep
learning inference. Various optimizations have been proposed to reduce complex layers,
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such as pruning [10], quantization [50], and clustering [51]. We selected the magnitude-
based weight pruning that performs well on mobile devices based on a collection of
experiments. Figure 5 overviews the compression pipeline of a weight pruning technique.
Magnitude-based weight pruning works by extracting parameters within a model that
have only an insignificant impact on its predictions. Pruning gradually diminishes the
number of nonzero-valued parameters in the model throughout the training process to
obtain model sparsity in a deep neural network’s different connection matrices. Thereby,
sparse models are sufficient at compressing, and we can ignore the zeroes during inference
for latency enhancements.

Train Connectivity Prune Connections Train Weights

Figure 5. An overview of weight pruning. The compression processes the original network by
pruning synapses and neurons and sharing weights back to prune connections to eliminate redundant
connections to make fewer weights in its model, resulting in a minimal loss in accuracy with a 10×
reduction in model size.

This study extends the TensorFlow framework to prune the network’s connections
throughout training for the simple-LSTM. We followed a gradual pruning algorithm
utilized in [10] in which sparsity is grown from an initial sparsity state si to a final sparsity
state s f during n pruning steps, beginning at training step t0 and with pruning frequency ∆t:

st = s f + (si − s f )

(
1− t− t0

n∆t

)3
for t ∈ {t0, t0 + ∆t, . . . , t0 + n∆t} (1)

The paired weight masks are updated each ∆t steps as the network is trained to
continuously enhance the network’s sparsity while allowing the network training steps to
retrieve from any loss in accuracy after pruning. In our experiment, we started the model
with 50% si (50% zeros in weights) and end with 80% s f . Once the model reaches the target
sparsity s f , the weight masks are no longer updated. We computed the end step to finish
pruning after 15 epochs. The network was optimized with a learning rate of 0.0001 and a
batch size of 64. We split 10% of the training set for the validation set. We applied pruning
to the whole model and see this in the model summary. Additionally, we created a helper
function to compress the models via a standard compression algorithm using gzip (gzip is
a file format and a software application used for file compression and decompression) and
measured the zipped size after pruning.

As a result, there was a minimal loss in test accuracy after pruning compared to
the baseline. Table 4 shows the baseline test accuracy and pruned test accuracy of our
simple-LSTM model. We observed that by fully pruning a model with 80% sparsity,
the pruned accuracy achieved the closest performance to the baseline accuracy with a
difference of approximately 0.18% in test accuracy (an accuracy of 98.27% and 98.09% for
the baseline accuracy and the pruned accuracy, respectively). On the other hand, the model
size was significantly decreased up to 327,212.00 bytes from pruning. The model size was
520,224.00 bytes and 193,012.00 bytes for the gzipped baseline and gzipped pruned model,
respectively.

Table 4. Loss in test accuracy and a smaller model after pruning, compared to the baseline.

Condition Test Accuracy (%) Model Size (byte)

Baseline test accuracy 98 520,224
Pruned test accuracy 98 193,012
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5. Systems Implementation

In this section, we describe the system implementation and study design to evaluate
the differences between the two conditions in Table 1. The simplified input–process–output
model, including data labeling, model training, and model inference for our proposed
system, is summarized in Algorithm 1. The algorithm’s key component concerning the
design of returning personalized feedback using on-device personalization is found in
line 27. Note that each process is independent and can run simultaneously. In the following
subsections, we detail the design rationale of each process.

Algorithm 1: The simplified input–process–output model for the proposed system.
Input : activity classification model with learned weights M, sensor data S,

activity labels l, input size I, batch size B
Output : personalized estimated activity feedback O

1 sensorBuffer← allocateMinutesLongBuffer()
2 repeat
3 S← sensorReading()
4 sensorBuffer.insert(S)
5 if S ≥ I then
6 processInput(sensorBuffer)

7 while i < I do
8 inputSignal.insert(sensorBuffer)

/* Adds a new sample for training. */
9 if Mode.dataLabeling then

10 M.insert(inputSignal, l)
11 classInstance += 1

/* Fine-tunes the model on the previously added data samples. */
12 if Mode.training then
13 if classInstance ≥ B then
14 while isTraining do

// Gradient-based update using Adam
15 M.enableTraining((epoch, loss) -> {
16 M.evaluate()
17 M.save()
18 M.disableTraining()
19 })

/* Runs model inference on a given data. */
20 if Mode.inference then
21 M.get()
22 predictions← M.predict(inputSignal)
23 for i = 0 to predictions.length do
24 if predictions[i].getConfidence() > max then
25 idx← i
26 max← predictions[i].getConfidence()

// Returns feedback
27 O← predictions[idx].getClassName()
28 return O

29 sensorBuffer.empty()
30 until exit;

To recognize activities on the device with fine-tuning, we need to collect supervised in-
formation on sensor data activities. We implemented the FahLog (https://play.google.com/
store/apps/details?id=jp.sozolab.fahlog): an Android application, written in Java with
AndroidX (AndroidX is a major improvement to the original Android Support Library),

https://play.google.com/store/apps/details?id=jp.sozolab.fahlog
https://play.google.com/store/apps/details?id=jp.sozolab.fahlog
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which is an improvement of [25]. This application can be used for the generated models in
the previous section for data collection, fine-tune training, and inference. Furthermore, we
implemented a cloud server (https://fahact.sozolab.jp/), which is an improvement of [5].
It enables us to manage large-scale data from the participants and use them for evaluations.
In this work, we focus on implementing the application with the required functionality for
performing the proposed system. For a detailed review of the cloud-server implementation,
we refer an interested reader to the abovementioned paper. Software requirement analysis
of the application includes the following:

• To efficiently collect smartphone sensor data and activity labels from user’s input for
activity recognition.

• To automatically fine-tune the pre-trained model with small data on individual de-
vices.

• To deliver estimated activities gained from on-device personalization as real-time
feedback through notifications.

• To support offline-first to ensure that the application functionality is unaffected by
intermittent lack of a network connection.

We itemize the requirement analysis resolution and software design as follows:

• Data labeling and smartphone sensors: Activities are temporal data with a specific
duration; it is crucial to record both the start time and the end time. For this reason, we
provided the labeling screen (Figure 6), which enables a user to perform activity data
labeling tasks. We detailed a written guide and associated images of the application
in a user manual (https://github.com/nattafahhm/supporting-materials-sensors2
0/blob/master/user-manual-fahlog.pdf). The application can automatically collect
smartphone sensors available on the mobile device. The sampling frequency is set
at a 20-Hz, which is the standard and lowest setting. Since the participants in this
study are using their smartphones, we cannot drain their battery. This configuration
helped us optimize the sensing process to coordinate data generated and battery
consumption, even if it had less frequent sensor readings.

Figure 6. Data labeling screen.

• Model fine-tuning: Data instances keep adding their corresponding class IDs to the
model cache if the data labeling is performed. Once training data is ready for use,
it can be loaded into mini-batches, and the training can be initiated. In this state,
data will not be immediately used for training. Instead, it will be buffered and used
when the input samples’ size reaches a pre-defined batch size of the on-device model.

https://fahact.sozolab.jp/
https://github.com/nattafahhm/supporting-materials-sensors20/blob/master/user-manual-fahlog.pdf
https://github.com/nattafahhm/supporting-materials-sensors20/blob/master/user-manual-fahlog.pdf
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Fine-tuning is automatically executed only every 15 min to avoid heavy computational
workloads. Since the training is a simple indicator of model quality, it does not catch
overfitting problems. We divided the dataset into development and test datasets
and split 10% of the development set for the validation set. We then computed the
loss over the validation set to ensure the model is learning what we want it to learn.
Training is stopped when the validation accuracy no longer improves; the updated
model overwrites the previous model. Only in this case, does it reach an accuracy
percentage of over 70%. During the training process, the model is trained for a few
minutes or seconds until loss decreases. The updated model is then used for inference
before the next training is activated. We added functionality to show the training
execution, as shown in Figure 6e. The © symbol is green if training is running;
otherwise, it is gray. The loss values in the panel can be observed fluctuating as the
network is trained.

• Model inference: We reused the saved model stored in the internal device for the
inference process by considering the estimates’ confidence bands. We observed the
output probability of each class in a real-time manner. However, to prevent excessive
interruptibility, the application stops notifying if the current activity is notified once.
It resumes after 5 min or reports immediately if it detects changes in the user’s action
(e.g., users in the transition from “activity a” to “activity b”). By default, all sounds
and vibrations are turned on and set as a high-priority notification to ensure that the
application’s notifications are notified to the user’s smartphone. Figure 7 shows an
example of estimated activities on a smartphone notification.

• Offline first: With an offline-first approach, data are written locally on the end user’s
device in the JSON format for model training and periodically uploaded to the cloud
when the smartphone is connected via WiFi or mobile data for evaluations. Sensor
data and activity labels are uploaded to the server by the HTTPS protocol immediately
if the on-device training is successfully executed to free up space on the device
due to resource constraints. Additionally, data will be deleted from the phone’s
internal memory when the transmission is complete. This approach ensures that the
application’s core functionality will still work in the absence of a reliable network
connection.

Figure 7. Notification displaying estimated activities.

6. Experiments

To verify the proper function of the protocol and data collection process and to assess
the effect of the proposed method on data labeling, we performed a verification experiment.
We recruited 8 volunteers who are students or alumni of a university in Thailand via social
recruiting. Our post’s objective directed participants to perform an activity labeling task for
four days using the provided smartphone application. Participants were required to own
an Android-based smartphone with at least 5.0 or more API levels. The device was placed
in a trouser’s pocket freely selected by the subject in any random orientation to simulate
every phone usage. We employed a within-subject design in which all participants were
exposed to every condition to help reduce errors associated with individual differences.
Half of the participants were assigned to the proposed condition before they were assigned
to the baseline condition. In contrast, the other half were assigned to the baseline condition
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before they were assigned to the proposed condition. They were asked to assign activities
from the classes predefined in Figure 8 and spend 8 h per day at least (2 days per condition)
on the application. The design choices and related user interface are detailed in Table 1.
Additionally, we requested participants to complete a pre-study questionnaire, focusing
on demographic information and smartphone usage. We controlled for this variable by
balancing participants across the two experimental conditions based on their response to
minimize the learning effects across conditions. The study was conducted in early July
2020. Eight people (4 female, 4 male) between the ages of 24 and 27 years old participated
in the study. A Welch’s unequal variances t-test indicated no significant difference between
conditions (t = 0.65465, df = 5.069, p = 0.5412).

7. Activity Recognition: Evaluation and Results

This section evaluates the proposed system in depth to verify whether it can improve
data labeling. We applied the simple-LSTM algorithm using the labels and sensor data
collected in Section 6 for activity recognition and compared the recognition accuracy results
between two conditions using the F-measure. We followed a standard activity recognition
chain using a supervised learning approach—data preprocessing, segmentation, feature
extraction, training, and testing. The following research questions have been defined for
this study:

• RQ1: Can the proposed system improve data labeling in each user?
• RQ2: Can the proposed system improve data labeling in each activity class?

7.1. Data Preprocessing

We accumulated three-dimensional periodic data that incorporate acceleration and
gyroscope sensors on the smartphone, recording data every 1/20 s. The axes’ norm for each
row dropping in the time slot was computed to aggregate the data. Therefore, discrepancies
originating from various smartphone positions/orientations at the time of the reading
decreased. We later combined the periodic sensor data and activity labels without time
synchronization because both are positioned on the same device. Because deep neural
networks are excellent at learning representations of data directly from time-series data,
we only had to perform minimal preprocessing of the input signals for the system to work
properly. The data kept only the activities that correspond to each subject to avoid any
unexpected or invalid activity data from affecting results. The data were then linearly
interpolated to account for missing data in some of the rows. We also discarded the first
and last 10 s of each activity instance for each user to account for possible transient data
that were incorrectly labeled as found in practice.

Next, we transformed the raw time-series data into examples. The resulting dataset
after cleanup is quite unwieldy, and it is challenging to perform a feasible analysis directly.
Consequently, we segmented the data using a sliding window of 5.12 s, which has been
found to be an approrpiate window of time to capture movement sequences. We then
applied a 1 s displacement between consecutive windows and manually useful features
from the raw sensor data to create a predictive model. For the accelerometer and gyroscope
data, the average, maximum, and minimum values were extracted as features for each
device’s axis. We also included the participants’ IDs for user-dependent training, as de-
scribed in the next section. In total, one sample of data has (512 time-steps × 19 features),
or 9728 elements. The whole dataset is composed of 16,819 activity windows, each labeled
with their corresponding activity id. Figure 8 shows the distributions of collected data.
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Figure 8. The distributions of collected data.

7.2. Evaluation Method

We developed and evaluated neural network models for multi-class classification
problems. For the training algorithm, we divided the dataset into training and test sets.
We used the training dataset to build and validate the model and treated the test dataset
as the unseen new data. We used 20–30% of each user’s data from the beginning of the
time-series and applied it for testing, and the next parts for training and validation. The
training set users’ data was split into 80% for training the model and 20% for validation
and hyper-parameter tuning.

Rather than applying the model to new users by comparing it with other users’ labels,
we focused on the accuracy of human contributions in each condition (e.g., personal
context and activities to be used by the user themself) by comparing it with the machine’s
knowledge. Hence, we applied user-dependent training to show accuracy improvements
for each participant in each condition without considering side effects such as different
sensor positions. We utilized the F-measure as a metric of accuracy. However, the real data
are highly imbalanced, as shown in Figure 8. To address this issue, we handled imbalanced
classes with upsampling using the SMOTE algorithm [52] by oversampling only on the
training data; none of the information in the validation data was used to create synthetic
observations to make them generalizable. We then utilized the F-measure after resampling
to avoid the adverse effects of class imbalances to focus on true positive samples.

The models were trained using our simple-LSTM algorithm, as described in Section 4.3.
Here, we utilized the same model configuration and window size based on an earlier
investigation to keep experimental evaluation unbiased due to this hyper-parameters
effect. Since neural networks are stochastic, while it gives the model its adaptive ability,
it is impossible to assess the model’s skill from a single evaluation. To do so, we did a
slightly more detailed assessment of the model. We repeated the model’s evaluation a
total of 10 times, then summarized the model’s performance across each of those runs.
Additionally, we applied early-stopping during training to avoid over-fitting if the network
fully converged on the training set.

7.3. Results

From the abovementioned research questions, we present the activity recognition ac-
curacy results by F-measure of test data with user-independent training for two conditions
from the viewpoints of (RQ1) activity recognition accuracy improvements in each user;
(RQ2) activity recognition accuracy improvements in each activity class.
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7.3.1. RQ1: Recognition Accuracy Improvements in Each User

Figure 9 shows the activity recognition accuracy by F-measure of user-dependent
training for the test data. Overall, the data indicate that all participants’ recognition
accuracy in the proposed condition was improved—the average recognition accuracy
increased from 82% to 90% (+16%). When looking at the performance of individual users,
we observed the use of the proposed method increased the average recognition accuracy of
F-measure by +3% (from 84% to 87%) to +24% (from 80% to 56%). All participants in the
proposed condition had improved recognition accuracy, sorting by descending order as
follows: The participant ID (PID) 103 had recognition accuracy improvement of +24% in
the F-measure.

Figures 10 and 11 summarizes the performance of each participant’s classifier on
a set of test data using a confusion matrix with non-normalization of user-dependent
training for the proposed and baseline condition, respectively. As a result, the proposed
matrices were quite thick and demonstrated the overall results’ high accuracy score. In con-
trast, the baseline matrices were relatively sparse and explained the overall results’ low
accuracy score.

7.3.2. RQ2: Recognition Accuracy Improvements in Each Activity Class

Figure 12 shows the activity recognition accuracy by F-measure of each activity for the
test data. Overall, the data indicate that all activities’ recognition accuracy in the proposed
condition was higher than the baseline. Regarding the test data’s activity recognition
accuracy with user-dependent training, we observed that the proposed condition had
the highest recognition accuracy improvement of +28% of the F-measure in the “walking”
class. The proposed condition had the next-highest recognition accuracy improvement
of +23% in the F-measure in the “handwashing” class, followed with the improvement
of +19% in F-measure in the “in a vehicle” and “standing” class. The remaining activities
had reasonable improvement of recognition accuracy in the proposed condition as follows:
the “cooking” and “eating” class had a recognition accuracy improvement of +18% in
the F-measure; the “cleaning” class had a recognition accuracy improvement of +15% in
the F-measure; the “computer work” class had a recognition accuracy improvement of
+13% in the F-measure; the “use a toilet” class had a recognition accuracy improvement of
+12% in the F-measure; the “lying down” class had a recognition accuracy improvement of
+7% in the F-measure; the “cycling” class had a recognition accuracy improvement of +6%
in the F-measure; the “sitting” class had a recognition accuracy improvement of +4% in
the F-measure.
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Figure 9. Recognition accuracy improvements in F-measure in each user.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Non-normalized confusion matrices of each user for the proposed condition.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Non-normalized confusion matrices of each user for the baseline condition.
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Figure 12. Recognition accuracy improvements in F-measure in each activity class.

8. Discussion and Future Directions

In this study, we introduced a method for activity data collection utilizing on-device
personalization. Although our user research is carried out on a moderate scale and for a
short-term duration, the trial results have already given promising evidence that RQ1 and
RQ2 were fully supported. According to the current investigation of on-device machine
learning inference [24] and the official web page of TensorFlow Lite, the current utilization
mainly concentrates on imaging classification, object detection, speed recognition, and nat-
ural language processing such as text classification, question answering, and smart reply.
Contrarily, this research presents the application of activity recognition. We are confident
that our study opens the door to an innovative application domain for on-device machine
learning. Although the results are promising, there are still some weaknesses in our system.
We outline remarkable limitations and discuss them below.

We assumed that the application is static or resource available for a given algorithm.
However, budget resources for a specific application at runtime are not adjusted based on
a predetermined estimate and can be dynamic on mobile operating systems, i.e., software
platforms [53]. Thus, there is a need for research on algorithms incorporating resource-
accuracy trade-off under a dynamic resource budget to choose the optimal algorithm
that fits resource constraints. For instance, applying a greedy heuristic algorithm [54] to
make the locally optimal choice at each stage with the intent of finding the best models
or hyperparameters for multiple applications at runtime to maximize their performance
jointly. This investigation can be explored in future work.

We predefined activity classes containing a fixed number of <activity, id> pairs. If the
action that a user wants to input is out of the predefined list, it cannot be correctly predicted.
Following prior work [15], the customizable activity class function developed is designed
to be performed on the cloud and dynamically customized depending on the site server
(e.g., an experimental group/facility) rather than individual users. The weak support
of personalization can have a significant impact on model performance. Consequently,
a customizable activity class function via the smartphone application remains to be carefully
developed. However, the trade-off is the difficulty and complexity of the model design,
which should be carefully considered. For example, suppose if the number of classes can
change at runtime, we already need to thoroughly consider when we design the neural
net’s architecture and make its classification layer large enough.
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The use of transfer learning may reduce the need for massive labeled data. However,
the model’s quality can be compromised if the device’s acquired data is still insufficient,
such as overfitting. Several preprocessing techniques can be considered to overcome when
data are sparse, such as data augmentation [55]. Data augmentation is commonly used
in deep learning, where the sample size is critical for model generalization. This process
stimulates new data instances that maintain the correct labels to increase the sample size
when limited labeled data are available. Data augmentation usually relies on linear trans-
formations in the spatial domain and has mainly been implemented for image recognition.
However, label-preserving augmentation for time-series is much more challenging since
any transformation is complicated to determine without profound domain knowledge.
We are confident that the impact of data augmentation on the performance deep neuron
network will introduce new challenges to be explored in future research.

Additionally, we utilized on-device fine-tuning for personalization. However, this
concept can be generalized to support many other activity recognition applications. Future
work should attempt to explore the impact of generalization and the tradeoffs therein.
Similarly, while we employed a specific network for the two networks and achieved good
training results, we may lose the optimal information if the parameter and meta parameter
values are not appropriately selected. We believe that capturing several different network
sizes and drawing conclusions will help achieve the greatest improvement. We intend to
investigate this in future work. Further, while the accuracy level of the deployed model
is sufficiently high for application to real-world data, the participants might still assign
the wrong label if the model has made a few mistakes. Therefore, future research should
further examine user errors that occur in such a scenario. For example, providing an
accuracy percentage for participants to reduce user errors, but we need to avoid redundant
information that may discourage participants. The other remaining limitations and chal-
lenges stimulate our future research; for example, we intend to attempt large-scale data
collection, explore other types of optimization techniques, and further assess the usability
of the proposed method with user studies.

Despite these limitations, we believe that our study is representative of a solution for
the lack of accurate labels in data labeling and is an essential first step towards understand-
ing on-device personalization in activity recognition.
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