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Abstract: Parkinson’s disease (PD) patients experience varying symptoms related to their illness.
Therefore, each patient needs a tailored treatment program from their doctors. One approach is the
use of anti-PD medicines. However, a “wearing-off” phenomenon occurs when these medicines lose
their effect. As a result, patients start to experience the symptoms again until their next medicine
intake. In the long term, the duration of “wearing-off” begins to shorten. Thus, patients and doctors
have to work together to manage PD symptoms effectively. This study aims to develop a prediction
model that can determine the “wearing-off” of anti-PD medicine. We used fitness tracker data
and self-reported symptoms from a smartphone application in a real-world environment. Two
participants wore the fitness tracker for a month while reporting any symptoms using the Wearing-
Off Questionnaire (WoQ-9) on a smartphone application. Then, we processed and combined the
datasets for each participant’s models. Our analysis produced prediction models for each participant.
The average balanced accuracy with the best hyperparameters was at 70.0–71.7% for participant
1 and 76.1–76.9% for participant 2, suggesting that our approach would be helpful to manage the
“wearing-off” of anti-PD medicine, motor fluctuations of PD patients, and customized treatment for
PD patients.

Keywords: prediction; statistical model; wearing-off phenomenon

1. Introduction

Parkinson’s disease (PD) patients experience difficulties in managing the symptoms of
their illness. Each PD patient experiences symptoms differently and with varying severity.
Doctors and medical practitioners customize the treatment of PD for every patient depending
on their experienced symptoms. In order to do that, patients have to monitor their symptoms
actively and report to their doctor. Then, doctors provide different doses of the anti-PD drug
depending on the reported symptoms. The “wearing-off” phenomenon [1–4] occurs when
the anti-PD medicine loses its effect. Patients start to experience the symptoms again until
their next intake. In the long term, the duration of wearing-off begins to shorten. Thus,
patients and doctors have to work together to manage PD symptoms effectively. Patients
have to track their symptoms and the wearing-off period. Meanwhile, doctors need to
have this information to give a customized approach to the patients’ treatment.

Previous works have used different wearable data to detect PD symptoms. They
mainly worked with accelerometer, electromyography (EMG), and gyroscope data to
detect tremors, freezing of gait (FoG), and “wearing-off” periods [5–7]. Some of these
previous works collected data in a closed and controlled environment. In contrast, other
studies showed the feasibility of medium to large-scale data collection using different
wearable sensors [8,9]. The Parkinson’s KinetiGraph (PKG) has been used in some of
these studies [9,10]. Statistical analysis [11] and machine learning-based analysis have
been conducted on gait features; in one of these studies, machine learning algorithms were
applied to wearable accelerometer-based sensor data to detect “on” and “off” states for PD
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patients [12]. In another study, machine learning classifiers were applied to PKG data to
estimate the levodopa response from the Unified Parkinson’s Disease Rating Scale Part III
(UPDRS III) [10]. Smartwatches have also been employed to monitor motor fluctuations
based on accelerometer data in a real-world environment [8,13]. Studies have usually
employed either PKG or other medical-grade wearable sensors. The medium to large-scale
data collection approach has yet to apply automated analysis using the machine learning
approach to analyze and predict the wearing-off phenomenon. Data collection in a real-life
environment has shown promise for further analysis and thus could help PD patients.

There is still untapped potential in the use of commercially available fitness trackers
and smartwatches for PD management and for predicting the wearing-off phenomenon.
Fitness trackers and smartwatches can now report a user’s heart rate, sleep quality, stress,
and even blood pressure, among many other data types. Although the reliability of
fitness trackers and smartwatches is contestable [14], these data can be used to verify
earlier studies. For example, the blood pressure and heart rate of PD patients have been
investigated for the wearing-off phenomenon, and vlood pressure change was statistically
significant among PD patients experiencing wearing-off [15].

PD patients have also reported effects on their sleep patterns. The associated risk
factors of rapid eye movement (REM) sleep behavior disorder (RBD) in PD patients were
examined [16,17]. Aside from RBD as a form of sleep disturbance, light, fragmented
sleep due to increased muscle activity, disruption of biological rhythms during sleep,
breathing difficulties, insomnia, and excessive daytime sleepiness were sleep disturbances
that manifested in PD patients [18,19]. A study with 3075 PD patients showed an increase
of PD symptoms during sleep disturbances for 32% of the patients, while depressive moods
were found for 20% of the patients. This study reported that each PD patient had varying
degrees of symptoms and a differing psychological stress structure [20].

Moreover, in a recent study, PD patients were shown with clinical evidence to be
highly sensitive to the effects of stress. The prevalence of stress-related symptoms in PD
patients was 30% to 40% for depression and 25% to 30% for anxiety. Furthermore, stress
worsened tremors, FoG, and dyskinesia. Thus, the authors suggested further investigation
using wearable sensors [21].

As more people are adopting wearable technologies, this study explores the use of
other wearable datasets to predict the “wearing-off” of PD patients. This research aims
to develop a prediction model to determine the “wearing-off” of anti-PD drugs from
fitness tracker data in a real-world environment. This study seeks to answer the following
research questions:

1. How do we collect and combine a fitness tracker dataset and wearing-off dataset?
2. Can we develop a prediction model to determine the wearing-off of PD patients?

This paper is organized as follows: Section 2 describes the participants, the data col-
lection tools, and the collected datasets. It also presents the data collection, data processing,
and model development. Then, Section 3 presents the summary of collected and combined
datasets. The performance and the best configuration of the prediction models are also
reported. Next, Section 4 elaborates the results of our analysis and prediction models.
Finally, Section 5 concludes this paper.

2. Materials and Methods

This section describes the data collection, data processing, and model development,
as summarized in Figure 1.
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Figure 1. An overview of the study, describing the process from data collection to model development.
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2.1. Data Collection
2.1.1. Data and Data Collection Tools

This study used two data collection tools that were distributed to the participants.
First, a fitness tracker collected the participants’ heart rate, step count, stress score, and sleep
data. Second, a smartphone application enabled the participants to record wearing-off
periods, drug intake time, and other one-time basic information such as age and gender.

2.1.2. Garmin Vivosmart4 Fitness Tracker

The Garmin vivosmart4 fitness tracker was chosen for this study. The partici-
pants preferred the vivosmart4 over smartwatches because it was sleek, lightweight,
and waterproof. It weighs 16.5 g up to 17.1 g, with dimensions of 15 × 10.5 × 197 mm
(https://buy.garmin.com/en-US/US/p/605739, accessed on 1 May 2021 ). The Garmin
vivosmart4 contains an optical photoplethysmography (PPG) sensor and accelerome-
ter sensor. Using light emitted into the skin, PPG estimates heart rate by monitoring
the changes in the intensity of the reflected light due to the contraction and swelling
of the arteries and arterioles caused by pulsating blood pressure [22,23]. Then, the
Garmin vivosmart4 uses heart rate variability to estimate stress levels [24,25]. The com-
bination of the heart rate, heart rate variability, and accelerometer reading is used to
estimate sleep stages [23,26]. Finally, the Garmin vivosmart4 uses the accelerometer
sensor to assess the number of steps taken [27].

End-users can monitor their data using the Garmin Connect smartphone applica-
tion. On the other hand, developers can access heart rate, sleep, steps, and stress level
data using the Garmin Health Application Programming Interface (Garmin Health API)
(https://developer.garmin.com/gc-developer-program/health-api/, accessed on 1 May
2021). Upon gaining access, the Garmin Health API expected a web application server to
receive the data via HTTP POST. We deployed the web application server with Amazon
Web Services (AWS), and the acquired data were stored on that server. The data flow from
the fitness tracker to data storage is described in Figure 1, while the data available via the
Garmin Health API are summarized in Table 1.

Table 1. The Garmin vivosmart 4 fitness tracker datasets available via the Garmin Health API. This shows the initial time
interval for each dataset, as well as the range of possible values reported by Garmin.

Data Type Granularity Description

Heart rate 15 s interval Beats per minute

Steps 15 min interval Cumulative count per interval, with a lowest value of 0

Stress score 3 min interval Estimated stress score from 0 to 100 [28]
• 100: the highest score,
• −1: not enough data to detect stress,
• −2: too much motion

Sleep classification and
sleep period

Varying interval,
with specific calendar date

Start and end time for each sleep classification [29]
• Light sleep
• Rapid eye movement (REM) sleep
• Deep sleep

2.1.3. FonLog Smartphone Application

A smartphone application, called FonLog, was used as a data collection tool for human
activity recognition in nursing services [30]. In this study, FonLog was customized specifically
to collect wearing-off periods and drug intake time. To collect the data, we adapted the
Wearing-Off Questionnaire (WoQ-9) using the Japanese translation [1,31]. The participants
answered the remaining components of FonLog one time; these included age, gender, the
Hoehn and Yahr Scale, and the Parkinson’s Disease Questionnaire (PDQ-8). The Hoehn and

https://buy.garmin.com/en-US/US/p/605739
https://developer.garmin.com/gc-developer-program/health-api/
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Yahr scale was used to determine the patient’s PD stage [32,33]. Then, the PDQ-8 identified
the self-reported quality of life (QoL) among the PD patients [34]. Table 2 summarized all
the data recorded using FonLog.

Table 2. FonLog Data.

Data Type Description

WoQ-9 Symptoms onset and drug intake time

Basic Information Age and gender

Hoehn and Yahr Scale (H&Y) Participant’s PD stage
Japan Ministry of
Health, Labor, and Welfare’s
classification of
living dysfunction (JCLD)

PDQ-8 Participant’s QoL measurement specific to PD
0–100%, with 100% showing worst QoL

2.1.4. Participant Demographics

Two patients participated in this initial study with their informed consent. Both of
our participants were female and were in their late 30s to early 40s. According to their
Hoehn and Yahr Scale (H&Y) scores and the Japan Ministry of Health, Labor, and Welfare’s
classification of living dysfunction (JCLD), both participants were in a similar PD stage.
However, their views on their QoL were different from each other. Table 3 summarized the
demographics of the two participants.

Table 3. Participants’ demographics.

Participant 1 Participant 2

Age 43 38

Gender Female Female

H&Y 2: Bilateral or midline involvement
without impairment of balance

3: Bilateral disease:
mild to moderate disability
with impaired postural reflexes;
physically independent

JCLD 1: Little assistance is needed
in daily life and outpatient visits

2: Partial assistance is required
for daily life and outpatient visits

PDQ-8 37.5% 65.63%

The participants were subjected to the levodopa therapy, taking different medicines
such as levodopa and carbidopa, dopamine agonist for D2 receptors, and a selective
monoamine oxidase type B (MAO-B) inhibitor drug. Participant 1 was taking 400 mg
levodopa and carbidopa hydrate per day while participant 2 was taking 600 mg to 800 mg
per day. Both participants were taking 1 tablet of 8 mg dopamine agonist medicine to
stimulate D2 receptors. Finally, participant 1 was taking 1 tablet of 2.5 mg MAO-B inhibitor
while participant 2 was taking 0.5 mg per day.

2.1.5. Data Collection Method

The two PD patients received the data collection tools needed for our experiment.
The data collection lasted for 30 days, with an additional one-day setup for the PD patients.

Each participant created their own Garmin Connect account to start the Garmin vivos-
mart4 fitness tracker’s data collection process. Next, the participants signed into our web
application server using their Garmin Connect account. At this point, they had control
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over what information they would share with our web application server while reading
the privacy policy. After all the steps, the Garmin Health API automatically transmitted
available data to our AWS Web Application Server.

Throughout the 30-day data collection period, the participants were encouraged to
always wear the Garmin vivosmart4, even during sleep. However, there were still cases
when they forgot to wear it, such as after taking a shower or when doing household chores.
In the worst case, they could not wear it due to some PD symptoms. These conditions were
accepted to capture data that were as close as possible to the real-world scenario.

Using FonLog, the participants answered questions regarding (1) basic information,
(2) the Hoehn and Yahr Scale, and (3) the PDQ-8 once. Then, they reported any of the
following nine symptoms: tremors, slowing down of movement, change in mood or
depression, rigidity of muscles, sharp pain or prolonged dull pain, impairment of complex
movements of the hand and fingers, difficulty integrating thoughts or slowing down of
thought, anxiety or panic attacks, and muscle spasms [1]. However, this study simplified
the wearing-off label to either wearing-off (1) or not (0). Any recorded symptoms were
considered to represent a wearing-off label.

The participants recorded the onset of any symptoms as accurately as possible.
From the home screen presented in Figure 2a, the participants could click on the activity on
the left side; i.e., activity enclosed in the red box. The home screen showed every recording
on the right side. However, if a recording was difficult for the participants due to their
symptoms, they could retroactively record data with their best estimation of the time. They
could correct and review the onset of the symptoms, as shown in the top part of Figure 2b.
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classification, as listed in Table 1. The original sleep data (Table 4) were transformed into
aggregated sleep data (Table 5). Furthermore, additional sleep features were calculated.

Figure 2. The customized FonLog smartphone application. (a) The home screen shows each ques-
tionnaire: WoQ-9 step 1 for symptoms onset, WoQ-9 step 2 for drug intake time, basic information,
H&Y, and PDQ-8, as discussed in Section 2.1.3. (b) A sample FonLog form presents the WoQ-9 step 1,
asking if each symptom described in Section 2.1.5 has been experienced.

2.2. Data Processing

This subsection describes how we processed and combined the fitness tracker dataset
and the wearing-off dataset.

First, the sleep dataset was aggregated according to each calendar date and the sleep
classification, as listed in Table 1. The original sleep data (Table 4) were transformed into
aggregated sleep data (Table 5). Furthermore, additional sleep features were calculated.
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Table 4. The original sleep dataset provided by Garmin Health API. Each row shows the start and
end time of each sleep stage.

Calendar Date Start Time End Time Sleep Type

2021-02-23 2021-02-23 02:24:00 2021-02-23 02:32:00 Light
2021-02-23 2021-02-23 02:32:00 2021-02-23 02:33:00 Awake
2021-02-23 2021-02-23 02:33:00 2021-02-23 02:36:00 Light

Table 5. The sleep dataset aggregated by calendar date. Each sleep stage was converted as a feature, while the sleep duration
for each sleep stage was calculated in minutes. Other sleep features were calculated.

Calendar Date Awake Deep Light REM Total
Non-REM Total Sleep Total Non-REM

(% of Total Sleep)
Sleep

Efficiency

2021-02-23 2.0 0.0 150.0 27.0 150.0 177.0 0.847 0.989
2021-02-25 0.0 150.0 66.0 54.0 216.0 270.0 0.800 1.000
2021-02-26 0.0 83.0 55.0 0.0 138.0 138.0 1.000 1.000

The total non-REM sleep duration was the sum of deep and light sleep duration
(Equation (1)). Next, the total sleep duration was the sum of total non-REM sleep duration
and REM sleep duration (Equation (2)). Then, the percentage of non-REM sleep was the
ratio of the non-REM sleep duration to the total sleep duration (Equation (3)) [35]. Finally,
we estimated the sleep efficiency as the ratio of the total sleep duration to the sum of the
total sleep and total waking duration (Equation (3)) [36].

Total non-REM duration = Deep sleep duration + Light sleep duration (1)

Total sleep duration = Total non-REM duration + REM sleep duration (2)

Total non-REM percentage =
Total non-REM duration

Total sleep duration
(3)

Sleep efficiency =
Total sleep duration

Total sleep duration + Total awake duration
(4)

Second, the missing values were filled with “−1” before re-sampling. This was in
accordance with how Garmin Health API reported stress scores when they could not
estimate the stress level [28]. Replacing missing values with “−1” would also indicate that
the participant was not wearing the fitness tracker.

Third, the fitness tracker datasets were re-sampled due to their varying granularity.
We chose 15 s and 15 min intervals to represent the minimum and maximum granularity in
the fitness tracker datasets, respectively. The resulting missing values due to re-sampling
were filled by copying the last available data. This was the chosen fill method to replicate
the streaming behavior of the fitness tracker dataset, as the future values would not
be available.

Finally, the wearing-off dataset was cleaned by removing overlapping wearing-off
data. Then, the wearing-off and the drug intake datasets were combined with the fitness
tracker dataset. Each record was checked if it fell within the timestamp. If so, a value
of “1” was assigned for the “y” or wearing-off variable; otherwise, a value of “0” was
set. Similarly, if each drug intake record fell within the timestamp, the time that elapsed
from the start of each drug intake record was computed. The time that elapsed for the
succeeding drug intake record was set back to “0”.

The raw available datasets from Garmin and the FonLog smartphone application
and the combined dataset are provided in the Supplementary Materials.
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2.3. Model Development

The prediction models for wearing-off were developed using the 15 s and 15 min
datasets for each participant. For this initial case study, we built individual-level models
because each participant experienced PD differently. Thus, we wanted to discover and
optimize a prediction model for each individual to understand their PD situation fully.

In this subsection, the features and the different prediction models are discussed in
detail (1) to understand how each model estimates the wearing-off phenomenon, and (2) to
interpret how they use different features in the prediction. We also explain how we trained,
evaluated, and optimized the models using the nested cross-validation approach. We
used the Python programming language with PhotonAI [37] and Scikit-Learn [38] as the
main libraries.

The following features extracted from the processed dataset were used to develop the
prediction model:

• x1: Heart rate (HR);
• x2: Step count (Steps);
• x3: Stress score (Steps);
• x4: Awake duration during the estimated sleep period (Awake);
• x5: Deep sleep duration (Deep);
• x6: Light sleep duration (Light);
• x7: REM sleep duration (REM);
• x8: Total non-REM sleep duration (NonREMTotal);
• x9: Total sleep duration (Total);
• x10: Total non-REM sleep percentage (NonREMPercentage);
• x11: Sleep efficiency (SleepEfficiency);
• x12: Time elapsed from the last drug taken (DrugElapsed);
• y: Wearing-off.

In this study, five machine learning algorithms were applied to develop the prediction
models. These algorithms were Logistic Regression (LR), Linear Support Vector Machine
(L. SVM), Decision Tree (DT), Random Forest (RF), and Gradient Boosting (GB) classifiers.
We used these machine learning models to interpret the importance of each feature to the
wearing-off prediction.

2.3.1. Logistic Regression (LR)

In this study, the Logistic Regression model p(X) was used to approximate the prob-
ability of wearing-off using the different data from the fitness tracker and drug intake
data. During the training of a Logistic Regression model, it estimates the weights for each
feature in relation to wearing-off. A larger weight for a feature shows that it contributes
more to the probability of wearing-off than smaller weights. Mathematically, the Logistic
Regression model is a sigmoid function of f (X) such that

f (X) = w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 + w7x7 + w8x8 + w9 x9

+ w10x10 + w11x11 + w12x12 + b, (5)

where x1 . . . x12 are the defined features, b refers to a bias, and w1 . . . w12 are the weights
for each feature.

2.3.2. Linear Support Vector Machine (L. SVM)

The Linear Support Vector Machine’s key task is to find a hyperplane w ∈ Rp which
has the largest distance (by minw,b

1
2 wTw ) to the nearest training data xi ∈ Rp. It is

defined as
min
w,b

1
2

wTw + C ∑
i=1

max(0, yi(wTφ(xi) + b)) (6)
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where y ∈ {1,−1}n is the target, φ(xi) is an identity function, b refers to a bias, and C refers
to the strength of the penalty [38–40].

2.3.3. Decision Tree (DT)

The Decision Tree model finds the best split of data multiple times based on thresholds
for each feature. Each subset of the data is assigned to a node of the tree with specific
feature thresholds. Equation (7) encapsulates the Decision Tree model [41].

y = f (x) =
M

∑
m=1

cm I{x ∈ Rm} (7)

where Rm is the subset of the data and I{x ∈ Rm} is an identity function which returns “1”
if x is in subset Rm—otherwise, the identity function returns “0”—and y is the predicted
value, which is equal to the average of all training instances cm.

2.3.4. Random Forest (RF)

Built using Decision Tress, the Random Forest model is an ensemble of smaller Deci-
sion Trees that produces a predictive model [38]. A Random Forest classification model
follows these steps [42]:

1. Dataset D is bootstrapped b to produce samples of size n such that Db = {(x1b, y1b),
. . . , (xnb, ynb)};

2. A Decision Tree fb is trained with Db to get f̂b;
3. The tree is grown to the largest extent;
4. Steps 1 to 3 are repeated to build bootstrapped Decision Trees ( f̂b . . . f̂B);
5. The different Decision Trees are combined using majority voting f̂ = mode( f̂1 . . . f̂B).

2.3.5. Gradient Boosting (GB)

Unlike the Random Forest model, in which a majority vote occurs among Decision
Trees, the Gradient Boosting model is an additive model that proceeds in a forward stage-
wise fashion. The goal is to improve a weak classifier that starts from initialization. Then,
the negative gradient is calculated and the error is minimized. The next step size is
determined until the final model is achieved [38,40,43,44].

2.3.6. Analysis Pipeline

This section describes the nested cross-fold (Nested CV) approach for model selection,
hyperparameter optimization, and performance evaluation using PhotonAI. PhotonAI
is a high-level machine learning library for designing and optimizing machine learning
models using pipelines [37]. PhotonAI wraps around other machine learning libraries such
as Scikit-Learn for general machine learning tools [38], Scikit-Optimize for hyperparameter
optimization [45], and Imbalanced-Learn for handling class imbalance [46].

Nested CV Approach

Furthermore, PhotonAI allows the implementation of the nested CV approach, which
was used for small to medium datasets. The dataset was divided into training, validation,
and test splits in this approach, depending on the outer and the inner fold data split tech-
nique. The outer fold handled the model evaluation while the inner fold chose the best
model with the optimized hyperparameters. Over-fitting would be avoided because the
hyperparameter optimization was only exposed to the subset of each outer fold. The ex-
pected output of a nested CV approach was a set of optimized best models [37,42,47–49].
The model development in Figure 1 showed the nested CV approach.

Stratified Validation Technique

A non-shuffled stratified validation technique was used to divide the dataset to pre-
serve the time-based dependency and the wearing-off distribution percentage of the dataset.
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Similar to k-fold cross-validation, the dataset was divided by k folds while maintaining
the distribution of each class. The non-shuffled stratified validation split was used in this
study due to the imbalanced nature of wearing-off reports. The dataset was divided into
5 outer folds, where each fold had approximately 24 days of training data and 6 days of
test data. Then, each outer fold’s training data were divided into 3 inner folds, with ap-
proximately 16 days of training data and 8 days of validation data. The depiction of the
outer fold and inner fold of the model development in Figure 1 illustrates the stratified
validation technique.

Hyperparameter Optimization Using Scikit-Optimize

The hyperparameter optimization was conducted using the Scikit-optimize Python
library within the PhotonAI library. Given a hyperparameter search space, the balanced ac-
curacy metric in our study was maximized. Then, the next hyperparameter was suggested
until 30 configurations were generated and tested. This optimization search occurred in
the nested CV’s inner fold.

Pipelines for Model Selection and Hyperparameter Optimization

With PhotonAI, we compared different learning algorithms while each learning al-
gorithm was optimized (initial pipeline). Next, the recursive feature elimination (RFE)
algorithm was added for the feature selection pipeline (FS). The goal of RFE was to choose
the features by repeatedly removing the least important feature for each iteration until the
desired number of features was reached [38,41]. Then, a class imbalance pipeline (CI) han-
dled the few wearing-off labels in our dataset by adding ImbalanceDataTrans f ormer. This
transformer was part of the Imbalanced-Learn [46] library in PhotonAI. The CI pipeline
chose the best over and under-sampling technique that improved the model’s performance.
Finally, we combined FS and CI elements into one pipeline (CI + FS) for comparison with
the previous pipelines. Table 6 summarizes the hyperparameter search space used in
these pipelines.

Table 6. Hyperparameter search space for each learning algorithm and other pipeline elements specific to each pipeline.

Learning Algorithms and
Other Pipeline Elements Hyperparameter Range

Logistic Regression (LR)
C = Float([1,. . .,10])

class_weight = ‘balanced’

Decision Tree (TR)

min_samples_split = Integer([2,. . .,30])

min_samples_leaf = Integer([2,. . .,30])

criterion = ‘gini’

Linear SVM (L. SVM)
C = Float([1,. . .,10])

class_weight = ‘balanced’

Random Forest (RF)

min_samples_split = Integer([2,. . .,30])

max_features = [‘auto’, ‘sqrt’, ‘log2’]

criterion = ‘gini’

bootstrap = True

Gradient Boosting (GB)
loss = [‘deviance’, ‘exponential’]

learning_rate = Float([0.001,. . ., 1], ‘logspace’)

Recursive Feature Elimination (RFE) n_features_to_select = Integer([2,. . .,12])

Imbalance Data Transformer method_name = [‘RandomUnderSampler’, ‘RandomOverSampler’,
‘SMOTE’, ‘BorderlineSMOTE’]



Appl. Sci. 2021, 11, 7354 11 of 22

Performance Metrics

In this study, the balanced accuracy was the chosen primary metric to handle the
prediction model’s bias towards the more frequent class in our dataset (“on” or “0”).
The balanced accuracy was also chosen so that both a high true positive rate (or sensitivity,
Sn) and a high true negative rate (or specificity, Sp) were achieved. The balanced accu-
racy was defined as the arithmetic mean of the sensitivity and specificity, as defined in
Equations (8) and (9) [38,50].

Sn =
TP

TP + FN
, Sp =

TN
TN + FP

, (8)

Bal. Acc. =
1
2
(Sn + Sp), (9)

where TP is the true positive value, FN is the false negative value, FP is the false positive
value, and TN is the true negative value, according to the confusion matrix in Table 7.

Table 7. Confusion matrix for wearing-off and on of anti-PD medicine.

Predicted Wearing-Off (1) Predicted On (0)

Actual Wearing-Off (1) True positive (TP) False negative (FN)

Actual On (0) False positive (FP) True negative (TN)

In this study, the precision and f1-score were also calculated, as shown in Equations (10)
and (11). The precision and F1-score were considered because we wanted to avoid an
“on” state being predicted as wearing-off. Using the balanced accuracy and F1-score gave
further importance to false negative and false positive errors in our prediction model.

Precision =
TP

TP + FP
, (10)

F1 Score = 2 ·
(

Precision · Sn
Precision + Sn

)
(11)

3. Results
3.1. Wearing-Off Data Collection

Fitness tracker data and wearing-off data were collected for 30 days from 23 February
until 24 March 2021. The participants recorded their wearing-off periods using a customized
FonLog application. Participant 1 collected a total of 227 wearing-off periods, while
participant 2 reported 44 wearing-off periods. The average duration of wearing-off for
participant 1 was 87.432 min (σ = 77.943 min); on the other hand, participant 2 had an
average duration of wearing-off of 25.295 min (σ = 34.512 min). Over the 30-day collection
period, participant 1 reported at least one wearing-off every day. Meanwhile, participant
2’s reporting was more sparse than participant 1; there was even no report on the third
week from participant 2. Figures 3 and 4 present the distribution of wearing-off data for
both participants.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Participant 1 50 47 48 27 20 45 40 42 46 39 36 60 67 53 57 64 57 44 56 60 59 51 40 51 43 34 39 51 49 52
Participant 2 0 0 0 0 14 30 7 26 2 0 0 9 0 0 0 0 0 0 0 0 0 0 3 0 0 8 0 0 0 0

Figure 3. Distribution of reported wearing-off over the 30-day collection period.
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Figure 4. The collected wearing-off histogram. The x-axis represents the wearing-off duration in minutes, and the y-axis
represents the number of records for a specific wearing-off duration.

3.2. Fitness Tracker Data Collection

Each participant was given a Garmin vivosmart4 fitness tracker. We asked the partici-
pants to wear the fitness tracker during the 30-day collection period. The collected data are
summarized in Table 8.

Table 8. Summary of collected fitness tracker data . The expected n records is the number of records for 30 days specific to
each dataset’s time interval. The reported statistics were for the whole 30 days.

Heart Rate Steps Stress Score Sleep

Expected n records 172,800.00 2880.00 14,400.00 30.00

Participant 1

n records 152,804.00 2880.00 14,400.00 29.00

x± σ 85.792± 15.927 34.116± 109.190 29.667± 32.514 265.793± 93.681

[min, max] [50, 168] [0, 1549] [−2, 98] [85, 469]

Participant 2

n records 148,193.00 2654.00 13,135.00 25.00

x± σ 69.962± 15.880 109.275± 195.430 11.230± 20.752 237.48± 67.430

[min, max] [43, 186] [0, 1392] [−2, 94] [138, 404]

Both participants missed at least one day of wearing the fitness tracker over 30 days.
Still, participant 1 wore the fitness tracker for longer than participant 2, as shown by the
lower number of n records in Table 8. Moreover, participant 1 had a higher average heart
rate than participant 2 over 30 days, as shown in Figure 5.

Figure 6 shows the distribution of 15 min records for the number of steps. Both
participants’ distributions of step records presented a positively skewed distribution, where
most records were under 100 steps. Specifically, for every 15 min record, the collected
number of steps was mainly under 100 steps.

In terms of the reported stress score from the Garmin Health API, participant 1 had an
average stress score (n = 14,400 of 3 min records) of 29.67± 32.51 over the 30-day collection
period, or a low-stress classification based on Garmin’s stress level classification [28].
On the other hand, participant 2 had an average stress score (n = 13,135 of 3 min records)
of 11.23± 20.75 over the 30-day collection period, or a resting state classification. Figure 7
shows the stress scores for each participant.
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Figure 5. Participants’ heart rate record distribution. The x-axis represents the heart rate (in bpm) for every 15 s record.
The y-axis represents the number of 15 s records collected during the 30-day period.
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Finally, the duration of sleep was computed from the provided Garmin data. Partic-
ipant 1 had an average sleep duration of 265.793± 93.681 min, or 4 h and 25 min, over
29 days. Meanwhile, participant 2 had an average sleep duration of 237.48± 67.430 min, or
3 h and 57 min, over a smaller number of days (n = 25). Figure 8 shows that participant 1
had longer light and REM sleep than participant 2. On the other hand, participant 2 had
longer deep sleep than participant 1.
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Finally, the duration of sleep was computed from the provided Garmin data. Partic-
ipant 1 had an average sleep duration of 265.793± 93.681 min, or 4 h and 25 min, over
29 days. Meanwhile, participant 2 had an average sleep duration of 237.48± 67.430 min, or
3 h and 57 min, over a smaller number of days (n = 25). Figure 8 shows that participant 1
had longer light and REM sleep than participant 2. On the other hand, participant 2 had
longer deep sleep than participant 1.

Figure 7. Participants’ stress count record distribution. The x-axis represents the 3 min stress score reported by Garmin
Health API. The y-axis represents the number of 3 min records collected during the 30-day period.

Finally, the duration of sleep was computed from the provided Garmin data. Partic-
ipant 1 had an average sleep duration of 265.793± 93.681 min, or 4 h and 25 min, over
29 days. Meanwhile, participant 2 had an average sleep duration of 237.48± 67.430 min, or
3 h and 57 min, over a smaller number of days (n = 25). Figure 8 shows that participant 1
had longer light and REM sleep than participant 2. On the other hand, participant 2 had
longer deep sleep than participant 1.
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Figure 8. Participants’ amount of sleep by sleep classification. The x-axis represents each sleep classification (awake, deep,
light, and REM sleep) and aggregated sleep feature (total non-REM and total sleep). The y-axis represents the sleep duration
in hours.

3.3. Difference between the Participants’ PD Experience

We also investigated our initial hypothesis that each patient would experience PD
differently using a two-sample t-test with unequal variances, and effect sizes were reported
using Cohen’s d. There were significant differences between the participants’ heart rates
(t(300,765) = 1.96, p < 0.001, d = 0.995), stress scores (t(17,043) = 1.96, p < 0.001, d = 0.688),
and numbers of steps (t(1606) = 1.96, p < 0.001, d = 0.486), where all three p values
were below 0.001. However, there was no significant difference between the participants’
daily amount of sleep, t(52) = 2.01, p = 0.23, d = 0.328.

3.4. Combined Datasets

The fitness tracker datasets, the wearing-off dataset, and the drug intake dataset were
combined according to the method explained in Section 2.2. To recap, we prepared 15 s and
15 min datasets based on the 15 s heart rate interval and 15 min step interval, respectively.
Then, these 15 s and 15 min datasets were used for each participant in our prediction model.

3.5. Wearing-Off Prediction Model

A series of pipelines for developing the wearing-off prediction model was applied
to each participant’s 15-s and 15-min datasets. We observed a class imbalance for the
wearing-off y variable of participant 2 in both time frames. On the other hand, participant
1’s dataset did not have a substantial class imbalance. Figure 9 presents the disparity in the
classes for each participant.
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Figure 9. Wearing-Off ratio among participants.
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3.5.1. Participant 1 Prediction Model

For participant 1, we analyzed the performance of each pipeline on the validation set.
The CI pipeline produced the best balanced accuracy of 74.7% for the 15 min time frame
and 73.5% for the 15 s time frame, as shown in Table 9.

Table 9. Best hyperparameter configuration performance on the validation set for participant 1. CI
pipeline resulted as the best pipeline for both time frames, as shown in bold.

15 min Interval 15 s Interval

Metrics Initial FS CI CI + FS Initial FS CI CI + FS

Bal. Acc. 0.742 0.744 0.747 0.743 0.730 0.729 0.735 0.728
F1 Score 0.735 0.732 0.745 0.731 0.686 0.682 0.704 0.691
Acc. 0.742 0.744 0.747 0.743 0.738 0.738 0.739 0.734
Precision 0.749 0.761 0.746 0.760 0.764 0.768 0.739 0.743
Recall/Sn 0.722 0.706 0.747 0.713 0.633 0.624 0.687 0.656
Sp 0.761 0.781 0.746 0.773 0.827 0.833 0.784 0.800

Next, we used the CI pipeline to compare the performance of each learning algorithms
using the validation set. In the 15 min time frame, the GB algorithm produced the best
balanced accuracy of 74.3% and and an f1-score of 74.0% over other algorithms. The next
best learning algorithm was DT, with a 73.9% balanced accuracy and a 74.4% f1-score.
Similarly, the GB algorithm had the best balanced accuracy of 72.7% and an f1-score of
69.7% on the 15 s time frame. However, the L. SVM had the second best performance, with
71.4% balanced accuracy and an f1-score of 63.3%. Table 10 shows the performance of the
other learning algorithms.

Table 10. Comparison of learning algorithm performance on the validation set using the CI pipeline
for participant 1. DT, L. SVM, and GB learning algorithms produced the best results in 15 min and
15 s interval, as shown in bold.

15 min Interval 15 s Interval

Metrics LR DT L. SVM RF GB LR DT L. SVM RF GB

Bal. Acc. 0.712 0.739 0.655 0.691 0.743 0.698 0.659 0.714 0.668 0.727
F1 Score 0.713 0.744 0.563 0.671 0.740 0.682 0.617 0.633 0.609 0.697
Acc. 0.712 0.739 0.655 0.691 0.742 0.697 0.664 0.731 0.678 0.731
Precision 0.704 0.723 0.757 0.709 0.744 0.655 0.645 0.839 0.684 0.720
Recall/Sn 0.725 0.771 0.597 0.642 0.739 0.715 0.598 0.519 0.552 0.679
Sp 0.699 0.707 0.712 0.740 0.746 0.682 0.720 0.909 0.784 0.775

Thus, we evaluated the GB, DT, and L. SVM algorithms using the CI pipeline for
model evaluation. In the end, the CI pipeline with the GB learning algorithm had the best
balanced accuracy and f1-score in both time frames. The prediction model had an average
balanced accuracy of 71.7%± 0.035 for the 15 min time frame and 70.0%± 0.032 for the 15 s
time frame, as shown in Table 11. In addition, the permutation feature importance for the
prediction models were computed to identify which feature contributed to the prediction
model. The permutation feature importance measured the prediction model error after a
feature was permuted [41]. DrugElapsed, Stress, and HR were the top features in both time
frames for participant 1 (Table 12).
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Table 11. Average performance of best models on the test set using the CI pipeline for participant 1.
GB learning algorithm produced the best results in both intervals, as shown in bold.

15 min Interval 15 s Interval

Metrics GB DT GB L. SVM

Bal. Acc. 0.717 ± 0.04 0.675 ± 0.04 0.700 ± 0.03 0.563 ± 0.09
F1 Score 0.700 ± 0.04 0.664 ± 0.03 0.676 ± 0.03 0.633 ± 0.04
Acc. 0.718 ± 0.03 0.676 ± 0.04 0.701 ± 0.04 0.538 ± 0.10
Precision 0.740 ± 0.05 0.685 ± 0.04 0.683 ± 0.07 0.513 ± 0.08
Recall/Sn 0.669 ± 0.07 0.647 ± 0.05 0.685 ± 0.09 0.860 ± 0.12
Sp 0.765 ± 0.07 0.704 ± 0.07 0.714 ± 0.13 0.266 ± 0.26

Table 12. The permutation feature importance for the best models for participant 1 using the CI
pipeline with GB. Values were balanced accuracy error when a feature was permuted. The larger the
error value, the more important the feature was for the model.

15 min 15 s

Features Feature Importance Feature Feature Importance

DrugElapsed 0.190 ± 0.018 DrugElapsed 0.168 ± 0.002
Stress 0.023 ± 0.009 Stress 0.048 ± 0.002
HR 0.012 ± 0.009 HR 0.009 ± 0.001
Awake 0.008 ± 0.004 Steps 0.007 ± 0.001
Steps 0.006 ± 0.003 Deep 0.002 ± 0.000
SleepEfficiency 0.004 ± 0.002 Awake 0.000 ± 0.000
Total 0.003 ± 0.005 Total 0.000 ± 0.000
NonREMTotal 0.002 ± 0.001 NonREMPercentage −0.000 ± 0.000
Light −0.000 ± 0.002 NonREMTotal −0.001 ± 0.000
Deep −0.002 ± 0.003 SleepEfficiency −0.001 ± 0.000
REM −0.004 ± 0.003 Light −0.002 ± 0.000
NonREMPercentage −0.008 ± 0.002 REM −0.002 ± 0.000

3.5.2. Participant 2 Prediction Model

The same process was conducted for participant 2’s prediction model. First, we com-
pared the performance of each pipeline on the validation set in both time frames. The best
balanced accuracy for both time frame was the initial pipeline. However, upon further
testing with the pipelines, and due to the lack of wearing-off reports from participant 2, we
opted to use the CI pipeline to handle the class imbalance. The 15 min time frame had a
balanced accuracy of 75.6%, while the 15 s time frame had a balanced accuracy of 74.8%.
The other pipelines’ performances on the validation set are presented in Table 13.

Table 13. Best hyperparameter configuration performance on the validation set for participant 2. CI
pipeline was the chosen pipeline, as shown in bold.

15 min Interval 15 s Interval

Metrics Initial FS CI CI + FS Initial FS CI CI + FS

Bal. Acc. 0.770 0.763 0.756 0.758 0.745 0.734 0.748 0.754
F1 Score 0.265 0.233 0.304 0.235 0.242 0.174 0.183 0.183
Acc. 0.658 0.597 0.573 0.562 0.776 0.711 0.567 0.555
Precision 0.273 0.191 0.275 0.182 0.236 0.132 0.147 0.147
Recall/Sn 0.889 0.941 0.953 0.967 0.713 0.758 0.938 0.964
Sp 0.650 0.585 0.560 0.548 0.778 0.710 0.558 0.544

Second, the learning algorithms were compared using the CI pipeline for both time
frames. For the 15 min time frame, the LR learning algorithm had the best balanced
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accuracy of 73.4% on the validation set. On the other hand, GB had the best balanced
accuracy of 70.7% for the 15 s time frame. In both time frames, the second best algorithm
was L. SVM. The results of the other learning algorithms, as well as other metrics, are
shown in Table 14.

Table 14. Comparison of learning algorithm performance on the validation set using the CI for
participant 2. The learning algorithms (LR, L. SVM, and GB) with the best results for each interval
were shown in bold.

15 min Interval 15 s Interval

Metrics LR DT L. SVM RF GB LR DT L. SVM RF GB

Bal. Acc. 0.734 0.695 0.724 0.649 0.697 0.672 0.665 0.678 0.682 0.707
F1 Score 0.310 0.204 0.226 0.195 0.202 0.141 0.093 0.165 0.092 0.172
Acc. 0.541 0.448 0.485 0.438 0.431 0.434 0.479 0.415 0.582 0.475
Precision 0.295 0.159 0.186 0.159 0.157 0.113 0.050 0.135 0.049 0.141
Recall/Sn 0.940 0.959 0.980 0.875 0.982 0.923 0.860 0.956 0.788 0.952
Sp 0.527 0.430 0.468 0.422 0.411 0.421 0.469 0.400 0.576 0.462

Third, the LR, GB, and L. SVM algorithms were evaluated on the test sets using the CI
pipeline. In the 15 min time frame, LR had an average balanced accuracy of 76.9% ± 0.176.
Meanwhile, GB had an average balanced accuracy of 76.1% ± 0.120 in the 15 s time frame
(Table 15). The evaluated prediction models for participant 2 only showed DrugElapsed as
the common top feature, while other features’ importances varied, as shown in Table 16.

Table 15. Average performance of best models on the test set using the CI pipeline for partici-
pant 2. LR and GB learning algorithm produced the best result in 15 min interval and 15 s interval,
respectively.

15 min Interval 15 s Interval

Metrics LR L. SVM GB L. SVM

Bal. Acc. 0.769 ± 0.176 0.571 ± 0.255 0.761 ± 0.120 0.493 ± 0.048
F1 Score 0.486 ± 0.350 0.272 ± 0.314 0.425 ± 0.264 0.066 ± 0.039
Acc. 0.768 ± 0.344 0.674 ± 0.329 0.783 ± 0.324 0.358 ± 0.405
Precision 0.635 ± 0.449 0.354 ± 0.423 0.461 ± 0.367 0.049 ± 0.050
Recall/Sn 0.770 ± 0.316 0.460 ± 0.413 0.739 ± 0.227 0.636 ± 0.380
Sp 0.769 ± 0.361 0.682 ± 0.341 0.784 ± 0.337 0.351 ± 0.425

Table 16. The permutation feature importance for the best models for participant 2 using the CI
pipeline with LR and GB. Values were balanced accuracy error when a feature was permuted.
The larger the error value, the more important the feature was for the model.

15 min 15 s

Features Feature Importance Feature Feature Importance

DrugElapsed 0.255 ± 0.025 DrugElapsed 0.254 ± 0.003
NonREMTotal 0.108 ± 0.023 Steps 0.039 ± 0.005
Total 0.079 ± 0.024 NonREMPercentage 0.013 ± 0.002
Awake 0.064 ± 0.028 REM 0.006 ± 0.001
Steps 0.013 ± 0.011 Light 0.003 ± 0.002
Light 0.008 ± 0.026 Awake 0.002 ± 0.000
HR 0.003 ± 0.011 Stress 0.001 ± 0.002
Stress 0.002 ± 0.007 Deep −0.003 ± 0.001
Deep −0.018 ± 0.022 SleepEfficiency −0.006 ± 0.001
NonREMPercentage −0.028 ± 0.006 Total −0.008 ± 0.002
SleepEfficiency −0.029 ± 0.005 HR −0.019 ± 0.002
REM −0.029 ± 0.022 NonREMTotal −0.023 ± 0.001
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4. Discussion

This study aimed to develop an individual-level prediction model for the wearing-off
of anti-PD medicine using a readily available fitness tracker in a real-world environment.
Our first goal was to collect and combine the related datasets needed for this study. Second,
prediction models were built to predict the wearing-off period. Lastly, we analyzed the
produced results to assess our primary goal.

In response to our first research question, there were two main challenges in data
collection and processing. First, various datasets from different tools were collected in
different time intervals. There were some significant gaps without available data. Before re-
sampling, the datasets were filled with values of “−1”, based on Garmin’s data handling
protocol for stress scores. After re-sampling the datasets, the last known values were
copied to missing values. It would be convenient to have a uniform interval rather than
to re-sample the data for future studies. The use of smartwatches can also be beneficial
to read and record raw sensor data, without sacrificing the comfort of the participants.
Second, there were few wearing-off reports for participant 2. The sparsity and the low
number of reports affected the performance of the prediction models. Participant 1 had
sufficient reports, while participant 2 did not have very many reports.

In this study, we have shown the feasibility of using a fitness tracker to predict the
wearing-off phenomenon. Based on the feature importance from the models, the elapsed
time since the last drug intake affected both participants’ models regardless of the sampling
interval. For participant 1, the stress score and heart rate were indicators of the wearing-
off phenomenon.

For both participants, the 15 min time frame produced better results than the 15 s time
frame. The difference in the time frame affected the prediction model due to the presence
of large amounts of missing data. In the future, the sampling interval can be optimized
since the differences between the two time frames were substantial.

In response to the second research question, our case study showed the possibility of
utilizing the fitness tracker dataset to estimate wearing-off. The individual-level prediction
models were built to personalize the estimation based on the participants’ experiences of
PD. It was highlighted in a previous study that each PD patient had varying degrees of
symptoms [20]. In this study’s analysis, the participants’ heart rate, number of steps, and
stress score were also shown have significant differences. Thus, this study was able to
produce a prediction model with an accuracy of 70.0–71.7% for participant 1 and 76.1–76.9%
for participant 2 with the use of a non-motor dataset; i.e., in contrast with the accelerometer
and gyroscope datasets, which were based on motor functions (Table 17).

Table 17. Comparison of previous studies on predicting wearing-off and the current study.

Study Aim Data Used Method Result

Keijsers, 2006 [51]

Determine between

Accelerometer

Unsupervised method Sensitivity: 97%
“On” and “Off” using Specificity: 97%
based on daily activities frequency-based
using wearable data method

Hssayeni, 2019 [52] Detect “On” and“Off” states Gyroscope SVM with fuzzy labeling
Accuracy: 90.5%
Sensitivity: 94.2%
Specificity: 85.4%

Aich, 2020 [12] Detect “On” and “Off” Accelerometer Random forest, Accuracy: 96.72%
using gait signals SVM, kNN, Naive Bayes Sensitivity: 97.35%

Current study Predict “wearing-off”
on individual-level

Heart rate Random Forest, Accuracy
Stress score Gradient Boosting, P1: 70.0–71.7%
Sleep features Logistic Regression, P2: 76.1–76.9%
Step count Linear SVM,

Decision Tree
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The prediction models could also be improved by reducing false positive and false
negative predictions, as shown in Tables 18 and 19. It was possible that when the prediction
model learned and discovered the wearing-off event, the participant has not reported the
wearing-off. We learned this possibility from our short interview with the participants.
Participant 2 often experienced mild to severe symptoms which resulted in fewer self-
reports. Moreover, the participants forgot to replace their fitness tracker after doing
household chores. Then, their symptoms began to manifest again. These events were
backed up by the known information about the participants, such as fitness tracker usage
(Table 8), PDQ-8, and H&Y profile (Table 3). In future work, these information will be
helpful before data collection and would improve the study overall.

Table 18. Confusion matrix for participant 1’s best model on the 15 min test set.

Predicted Wearing-Off (1) Predicted Actual On (0)

Actual Wearing-Off (1) 955
True positive (TP)

472
False negative (FN)

Actual On (0) 341
False positive (FP)

1112
True negative (TN)

Table 19. Confusion matrix for participant 2’s best model on the 15 min test set.

Predicted Wearing-Off (1) Predicted Actual On (0)

Actual Wearing-Off (1) 76
True positive (TP)

23
False negative (FN)

Actual On (0) 644
False positive (FP)

2137
True negative (TN)

5. Conclusions

This study showed the development of prediction models to predict wearing-off for
PD patients. A commercially available fitness tracker (Garmin vivosmart4) was used to
collect data in a real-world environment. Moreover, the participants recorded their wearing-
off periods and drug intake with a customized smartphone application (FonLog). Then,
the datasets were combined to build our prediction models. Predictive models were built
for each participant as there were significant differences between the participants’ data,
except for one feature. Developing predictive models for each participant in a challenging
data collection environment resulted in a balanced accuracy of 70.0–71.7% for participant 1
and 76.1–76.9% for participant 2 on the test set. Both models utilized a class imbalanced
transformer in their model development pipeline. Finally, only the time that elapsed after
taking anti-PD medicine was a common predictor between the participants. Heart rates
and stress scores contributed to the prediction model of participant 1, who presented more
reports of wearing-off over the 30 days.

In the future, more participants will be part of the study to assess the differences
among demographic groups. Moreover, these baseline models will be deployed to an
early warning system for the participants. The reported feedback will be used to improve
the prediction models and develop a symptom-based prediction model. We envision the
utilization of these baseline models while collecting more data using a smartwatch.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11167354/s1: “data/garmin” contains the available raw Garmin dataset from Garmin
Health API, “data/fonlog/records.xlsx” contains the raw FonLog dataset, “data/combined_data/
combined_ data_participant*.xlsx” contains data for the processed and combined dataset for each
participant in different re-sampled time interval, “Data Processing.ipynb” contains the data process-
ing source code, “Model Development” contains the source code for model pipelines, and the “About
Supplementary Files” contains the guide to the Supplementary Materials.

https://www.mdpi.com/article/10.3390/app11167354/s1
https://www.mdpi.com/article/10.3390/app11167354/s1


Appl. Sci. 2021, 11, 7354 20 of 22

Author Contributions: Conceptualization, T.S. and S.I.; Data curation, J.N.V. and S.I.; Formal analysis,
J.N.V.; Funding acquisition, T.S.; Investigation, J.N.V. and Y.S.; Methodology, J.N.V., T.S. and S.I.;
Project administration, T.S. and J.N.V.; Resources, T.S. and S.I.; Software, J.N.V. and S.I.; Supervision,
T.S. and S.I.; Validation, T.S. and Y.S.; Visualization, J.N.V.; Writing—original draft, J.N.V.; Writing—
review and editing, Y.S., S.I. and T.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the JSPS KAKENHI Grant Number JP16H06534.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data are made available in the Supplementary Materials.

Acknowledgments: The authors would like to thank the Japanese Ministry of Education, Culture,
Sports, Science, and Technology (MEXT) and the participants of our study.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the data and the analysis can be obtained with the corresponding author.

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
AWS Amazon Web Services
Bal. Acc. Balanced accuracy
bpm Beats per minute
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