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Abstract 
In this paper, a new solution is discussed for the stress intensity factor of an edge interface crack. The intensity of the 
singular stress field (ISSF) at the interface end before appearing the edge interface crack is distinguished from the stress 
intensity factor (SIF) of the interface crack itself. By considering those two distinct double singular stress fields, the ISSF 
and the SIF are discussed under arbitrary material combinations. By focusing on the crack tip stress without the interface 
crack σy(a), the SIF of the edge interface crack can be expressed conveniently. This is because the crack tip stress without 
the interface crack is reflecting the ISSF at the interface end. The SIFs based on the crack tip stress without the interface 
crack are indicated by varying the crack length and material combination. It is found that the normalized SIFs (F1,int and 
F2,int) based on σy(a) are independent of the geometrical condition for the wide range of the crack length. 
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Nomenclature 
a length of the edge interface crack 
b, c half the length of the major and minor axes of an elliptical hole 
C1(α,β), C2(α,β)  normalized factors for edge interface crack 
E Young’s modulus 
F1(α,β), F2(α,β) normalized stress intensity factors for edge interface crack based on applied stress 
F1,int(α,β), F2,int(α,β)  normalized stress intensity factors for edge interface crack based on σy(a) 
FI(0,0)  normalized stress intensity factor for edge crack in a homogeneous semi-infinite plate 
frθ, fθθ   angular functions 
G shear modulus 
h bond line thickness of sandwiched butt joint plate 
K1, K2  stress intensity factors of an edge interface crack in a bonded plate 
KI stress intensity factor of an crack in a homogeneous plate 
Kσ  intensity of singular stress field (ISSF) 
L  height of the bonded plate 
r distance from the interface end 
Ty, S  tensile and shear stresses applied to the reference problem 
W  width of the bonded plate 
α, β  Dundurs’ material composite parameters 
ε  oscillation singular index of an interface crack 
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ρ    radius of curvature of an elliptical hole 
σ0    applied remote stress 
σy, τxy    stress components along the bi-material interface 
σy(a)    singular stress along the interface at the crack tip point 
λ    order of the stress singularity at the interface end 
ν    Poisson’s ratio  

 
 

1. Introduction 
 
A number of studies are available regarding interface cracks. Different from ordinary cracks, the interface stress 

intensity factor SIF varies depending on the material combination as well as the geometries. They are useful for evaluating 
the interface strength of dissimilar materials [1-6]. Recently, the adhesive strength was discussed in terms of the SIF of 
the interface crack [7-8]. The butt joint strength can be expressed as a constant value of the intensity of singular stress 
field (ISSF) at the interface end [9-13]. Also, by assuming a fictitious edge interface crack at the interface end, the butt 
joint strength also can be expressed as a constant value of the SIF [14,15]. Those interface fracture mechanics approach 
shows the usefulness of the solution of the edge interface crack. 

However, great care should be taken for another singular stress field before appearing the edge interface crack as 
shown in Fig.1 (b). Since this singular stress field is totally different from the singular stress field due to the interface 
crack, double singular stress fields must be considered to clarify edge interface crack problems. Those double singular 
stress fields have not been focused in the previous studies. In this paper, therefore, the intensities of those double singular 
stress fields are denoted by the ISSF and the SIF and will be discussed independently as shown in Fig.1. Since the small 
edge interface crack appears within the region of the singular stress field in Fig.1, this approach will clarify the interface 
crack problem. This is because the SIF for the small edge interface cracks are controlled by the ISSF singular zone at the 
interface corner for the perfectly bonded strip without crack as shown in Fig. 1.  

 

 

 
(a)                              (b)                                   (c) 

 
Fig.1 Interface edge crack problems (a) and (c), whose stress intensity factors (SIFs) are controlled by the intensity of 
the singular stress field (ISSF) of bonded plate problem (b) at the interface end before appearing the interface cracks: (a) 
Bonded AB plate having an interface crack (b) Bonded AB plate whose singular index is 𝜆𝜆  before appearing the 
crack, (𝑐𝑐) Bonded ABC plate having an interface crack. 

𝜎𝜎𝑦𝑦 =
𝐾𝐾𝜎𝜎
𝑟𝑟1−𝜆𝜆

 

𝜏𝜏𝑥𝑥𝑦𝑦 =
𝑓𝑓𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟𝑟𝑟

𝐾𝐾𝜎𝜎
𝑟𝑟1−𝜆𝜆

 

 



 

 
 
In this paper, therefore, a new solution for the edge interface crack in the bonded AB plate in Fig.1 (a) will be shown 

by separating the double singular stress fields. Then, the usefulness of the new solution will be shown by applying to the 
stress intensity factor of a sandwiched ABC plate. Here, bonded AB plate contains two different materials and bonded 
ABC plate contains three different materials. Then, it will be shown that the new solution for the edge interface crack in 
the bonded AB plate in Fig.1 (a) can be used conveniently to evaluate the interface crack in bonded ABC plate. In this 
study, the interfacial crack will be analyzed by applying the finite element method (FEM). The FEM is one of the most 
used numerical modeling techniques, which can be used for many engineering applications conveniently [24]. To 
calculate the SIF accurately, the proportional method [16, 17] proposed previously will be applied. The detail will be 
indicated in Appendix A. 

 

 

2. Interface crack in bonded plates versus crack in homogeneous plates  
2.1 Expression of SIF of Small Edge Interface Crack 

Figure 2 shows an edge crack whose length is ‘a’ in a homogeneous semi-infinite plane under tension σ0. The stress 
intensity factor in Fig.2 (a) is known as 𝐾𝐾𝐼𝐼 = 1.1215𝜎𝜎0√𝜋𝜋𝜋𝜋.  This is equivalent to an internal crack whose crack length 
is ‘2a’ in an infinite plate under internal pressure as shown in Fig.2 (b) and under remote tension 1.1215σ0 as shown in 
Fig.2 (c). In Fig.2, one may think why the edge crack geometry is equivalent to a center crack in an infinite plate. The 
dimensionless stress intensity factor FI(0,0) can be defined as the stress intensity factor ratio of Fig.2(a) to Fig.2(b). The 
same stress intensity factor of the center crack as the edge crack can be created by adjusting the internal pressure or by 
applying the remote tensile stress to the infinite plate having the central crack. 

 

 
 

             (a)                        (b)                       (c) 
 

Fig.2 Equivalent crack problems: (a) an edge crack subjected to remote tensile stress, (b) an internal crack subjected to 
internal pressure and (c) an internal crack in an infinite plate under remote tensile stress  
 
 

In a similar way, Figure 3 shows equivalent interface cracks in bonded plates. Here, the stress intensity factor of a 
small edge interface crack in Fig.3 (a) is equivalent to an interface crack subjected to the normal and tangential tractions 
F1(α, β)σ0 and F2(α, β)σ0 along the crack surface as shown in Fig.3 (b). The normalized factors F1(α, β) and F2(α, β) 
are depending on the material combination (α, β) and they varies from 0 to ∞ as shown in Eq. (1). To express the SIF as 
finite values, 𝐶𝐶1(𝛼𝛼,𝛽𝛽), 𝐶𝐶2(𝛼𝛼,𝛽𝛽) can be used conveniently [21].  
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𝐹𝐹1(𝛼𝛼,𝛽𝛽) = 0~∞ = 𝐶𝐶1(𝛼𝛼,𝛽𝛽)(𝑊𝑊/𝜋𝜋)1−𝜆𝜆 ,     𝐶𝐶1(𝛼𝛼,𝛽𝛽) = 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 = 0.46~1.24 
                  𝐹𝐹2(𝛼𝛼,𝛽𝛽) = 0~∞ = 𝐶𝐶2(𝛼𝛼,𝛽𝛽)(𝑊𝑊/𝜋𝜋)1−𝜆𝜆,    𝐶𝐶2(𝛼𝛼,𝛽𝛽) = 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 = −0.379~0.031 

𝐾𝐾𝐼𝐼 = 𝐹𝐹𝐼𝐼(0,0)𝜎𝜎0√𝜋𝜋𝜋𝜋 
𝐹𝐹𝐼𝐼(0,0) = 1.1215 
 

(1) 



 

 
The material combinations (α, β) are Dundurs’ composite parameters defined as 
 

α =
𝐺𝐺𝐴𝐴(𝜅𝜅𝐵𝐵 + 1) − 𝐺𝐺𝐵𝐵(𝜅𝜅𝐴𝐴 + 1)
𝐺𝐺𝐴𝐴(𝜅𝜅𝐵𝐵 + 1) + 𝐺𝐺𝐵𝐵(𝜅𝜅𝐴𝐴 + 1)

, β =
𝐺𝐺𝐴𝐴(𝜅𝜅𝐵𝐵 − 1) − 𝐺𝐺𝐵𝐵(𝜅𝜅𝐴𝐴 − 1)
𝐺𝐺𝐴𝐴(𝜅𝜅𝐵𝐵 + 1) + 𝐺𝐺𝐵𝐵(𝜅𝜅𝐴𝐴 + 1)

 

 
In Eqs. (1) and (2), the subscript means the material A or B, Gi=Ei/2(1+νi) and the notation ε denotes the oscillation 
singular index, ii νκ 43 −=  for plane strain, )1/()3( ii νν +−  for plane stress. Ei, Gi and νi denote Young’s modulus, 
the shear modulus and Poisson’s ratio for material i, respectively.  
The definition of oscillation stress intensity factor of interface crack is based on the interface crack length 2a [3, 5].  
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The normalized SIFs F1(α, β) and F2(α, β) in Eq. (1) varies depending on the material combination and changes in wide 
ranges as 𝐹𝐹1(𝛼𝛼,𝛽𝛽) = 0~∞,𝐹𝐹2(𝛼𝛼,𝛽𝛽) = 0~∞.  This is because the SIFs are controlled by the intensity of the singular 
stress field (ISSF) at the interface end without crack. Previously, Noda et al [18-21] have provided the SIF of the small 
edge interface crack in bi-material bonded strip in the form F1,2(α, β)=C1,2(α, β)(W/a)1-λ by considering the ISSF at the 
interface end (see Appendix B).  
 

 
 
 
 
         (a)                            (b)                              (c) 
 
Fig. 3 Eauivalent problems: (a) an edge interface crack whose length is ‘a’, (b) an interface crack subjected to the normal 

and tangential tractions along the crack surface, and (c) an interface crack subjected to specified tensile stresses in 
the x- and y-directions. 

 
 
 
2.2 How to Separate Double Singular Stress Fields by Using Stress Value at the Crack Tip without Crack 

Figure 4 illustrates a fundamental idea how to separate double singular stress fields. In Fig.4, the most fundamental 
stress concentration is taken into account by considering an elliptical hole. In other words, the singular stress field due to 
the interface end in Fig.1 is replaced by the fundamental stress concentration field due to the elliptical hole whose shape 
ratio is b/c. In Fig.4, therefore, the crack emanating from a semi-elliptical notch is corresponding to the edge interface 
crack emanating from the interface end in Fig.1.  

As shown in Fig.4, the normalized stress intensity factor is defined by using the stress values σy(a) at the crack tip 
position. Since the crack tip stress is only one numerical value and not the stress distribution along the whole crack length, 
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(2) 
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one may think why the crack tip stress is useful. The stress intensity factor (SIF) in Fig.4(a) is equal to the SIF in Fig.4(c), 
since the SIF in Fig.4(b) is zero. The SIF in Fig.4(c) is approximated by the SIF in Fig.4(c)’ and finally the SIF in Fig.4(c). 
Therefore, the crack tip stress σy(a) expresses the magnitude of the uniform traction along the crack surface. 

Table 1 shows the stress intensity factors of the crack emanating from the elliptical hole in Fig.4. Since Table 1 shows 
that all values of the normalized SIF are nearly the same, they can be used very conveniently. This is because in Table 1 
the stress value σy(a) at the crack tip position is introduced when there is no crack [22]. Since the stress value σy(a) is 
already reflecting the elliptical hole’s stress concentration, 𝐹𝐹𝐼𝐼=𝐾𝐾𝐼𝐼 𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋⁄  is insensitive to the notch shape b/c as well 
as the x-coordinate as shown in Table 1. This is because the effect of the stress concentration due to the notch has been 
already eliminated. It should be noted that in Table 1 the crack tip stress 𝜎𝜎𝑦𝑦(𝜋𝜋)/𝜎𝜎 varies in a wide range depending on 
a/ρ and b/c but 𝐹𝐹𝐼𝐼=𝐾𝐾𝐼𝐼 𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋⁄  is almost constant as FI=1.12 for 0< a/ρ <0.1 and 𝐹𝐹𝐼𝐼 → 1.1215 as 𝜋𝜋/𝜌𝜌 → 0.  
 

 
 

Fig.4 Equivalent crack problems: The stress intensity factor (SIF) in (a) is exactly equal to the SIF in (c) independent of 
a/ρ. The SIF in (a) is equal to the SIF in (c)’ and in (c)’’ when 𝜋𝜋/𝜌𝜌 → 0. Here, 𝜎𝜎𝑦𝑦(𝑥𝑥) is the stress distribution due to the 
elliptical hole before appearing the crack and 𝜎𝜎𝑦𝑦(𝜋𝜋) is the stress value at the crack tip position [22]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Normalized SIF of the crack emanating from an elliptical hole in Fig.4(a) 

𝐹𝐹𝐼𝐼 = 𝐾𝐾𝐼𝐼/𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋 

a/ρ → 0 0.05 0.1 0.2 0.3 
b/c=1 1.122 1.130 1.137 1.147 1.149 
b/c=8 1.122 1.126 1.132 1.147 1.162 

𝜎𝜎𝑦𝑦(𝜋𝜋)/𝜎𝜎 
a/ρ → 0 0.05 0.1 0.2 0.3 

b/c=1 3.000 2.688 2.438 2.071 1.821 
b/c=8 17.00 15.43 14.15 12.20 10.77 

 

(a) 𝐾𝐾𝐼𝐼
(𝑎𝑎)                  (b) 𝐾𝐾𝐼𝐼

(𝑏𝑏) = 0          (c) 𝐾𝐾𝐼𝐼
(𝑐𝑐) = 𝐾𝐾𝐼𝐼

(𝑎𝑎) 

 
 

(b)’ 𝐾𝐾𝐼𝐼
(𝑏𝑏) = 0          (c)’ 𝐾𝐾𝐼𝐼

(𝑐𝑐)′ ≅ 𝐾𝐾𝐼𝐼
(𝑎𝑎)       (c)’’ 𝐾𝐾𝐼𝐼

(𝑐𝑐)′′ ≅ 𝐾𝐾𝐼𝐼
(𝑐𝑐)′ 

 
 
 



 

 
 
 
 
 
Fig. 5 Normalized stress intensity factor (SIF) defined by using the stress values σy(a) at the crack tip position (see Fig.6 

and Table 2). The red line expresses the stress distribution near the interface end without the crack. The SIF in (a) 
is exactly equal to the SIF in (b). The SIF in (a) is equal to the SIF in (b)’ when 𝜋𝜋/𝑊𝑊 → 0. 

 
 

Let’s go back to the double singular stress fields in Fig.1. Figure 1(b) illustrates the singular stress filed σy(r) at the 
interface end for the bonded AB plate when there is no crack. In this case, the stress 𝜎𝜎𝑦𝑦(𝑟𝑟) → ∞ as 𝑟𝑟 → 0. At the crack 
tip position r=a, therefore, the crack tip stress 𝜎𝜎𝑦𝑦(𝜋𝜋) → ∞ as 𝜋𝜋 → 0 when there is no crack. Therefore, the stress 
intensity factor of the small edge interface crack whose length is “a” is strongly affected by the singular stress field and 
the crack tip stress σy(a) when there is no crack. The singular stress field in bi-material strip was derived in closed form 
by Chen and Nisitani [23] as shown in Eqs. (4), (5). The singular stress field is controlled by the ISSF (Intensity of 
Singular Stress Field denoted by Kσ). The singular stress distribution along the interface can be written as 
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In Eqs. (4) and (5), Kσ denotes the ISSF controlling the singular interface stress field. Notations fθθ and frθ denote the 
angular functions where the interface position θ = π/2 is inserted. The singular index λ can be determined by solving 
the eigenequation (6) ,  
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sin2(𝜆𝜆𝜋𝜋)
4

= 0 

 
When there is no crack in Fig.1(b), interface stresses σy(r) and τxy(r) are controlled by the ISSF Kσ alone as shown in Eq. 
(4). In other words, the ratio σy(r)/τxy(r)=fθθ/frθ =constant as shown in Eq. (4) because they can be expressed by only the 
material combination as shown in Eq. (5). Since in Table 1 the SIF 𝐾𝐾𝐼𝐼  in Fig.4 is controlled by σy(a) independent of the 

(6) 

(4) 

(5) 

𝐾𝐾1 + 𝑖𝑖𝐾𝐾2 = {𝐹𝐹1,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽) + 𝑖𝑖𝐹𝐹2,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽)}𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋(1 + 2𝑖𝑖𝑖𝑖) 
𝐹𝐹1(𝛼𝛼,𝛽𝛽) = 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 = 0.808~1.50, 𝐹𝐹2(𝛼𝛼,𝛽𝛽) = 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 = −0.208~0.448 
 

(a) (b) 

(b)’ 



 

stress distribution, the SIFs K1, K2 of the interface crack in Fig.5 are also controlled by σy(a) and τxy(a) independent of 
the singular stress distribution. Because of the ratio σy(a)/τxy(a)=constant, the SIFs K1, K2 are controlled by σy(a) alone. 
Therefore, the SIFs of an interface edge crack can be expressed efficiently by using σy(a) controlled by the ISSF Kσ. 

 

𝐾𝐾1 + 𝑖𝑖𝐾𝐾2 = �𝐹𝐹1,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽) + 𝑖𝑖𝐹𝐹2,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽)�𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋(1 + 2𝑖𝑖𝑖𝑖) 

 
In Eq. (7), F1,int(α, β) and F2,int(α, β) are newly defined SIF for interface crack normalized by σy(a). Although both σy(a) 
and τxy(a) appear near the interface end, the ratio σy(a)/τxy(a) is constant near the interface end. Hence, only σy(a) can be 
used as shown in Eq. (7).  

In the previous study [18-21], the interface crack solution defined in Eq. (1) was proposed by using the expression 
𝐶𝐶1,2(𝛼𝛼,𝛽𝛽) = 𝐾𝐾1,2 {(𝜋𝜋/𝑊𝑊)1−𝜆𝜆𝜎𝜎0√𝜋𝜋𝜋𝜋}⁄  with Eq. (3). However, this expression includes the plate width 𝑊𝑊  and the 
singular index 𝜆𝜆 to show the stress intensity factors K1, K2 in Eq. (3). On the other hand, the new definition (7) only 
includes the singular stress at the crack tip σy(a). 

The advantage of this present solution can be explained in the following way 
(1) The new expression does not include singularity index 𝜆𝜆 of the corner singular stress field when there is no crack  
(2) The new expression include the crack tip stress value σy (a) instead when there is no crack. However, this value 

σy (a) can be determined easily and accurately by using the standard finite element method. 
(3) The new expression can be applied to other geometries. For example, it can be applied to the edge interface crack 

situated at the butt joint as shown in Fig.1 (c). This is because the effect of other geometry can be reflected by σy (a).  
One may think that the new definition (7) only considers the singular stress at the crack tip and does not includes the 

plate width W, therefore, it is not suitable for the finite width plate problem. However, the dimensionless SIFs proposed 
in this study are based on the crack tip stress σy(a). Since the singular stress field at the interface end in bi-material and 
butt joint without the crack is affected by the plate width W, the effect of a/W is included in σy(a). Therefore the present 
solution is useful for the problem of the finite plate. 
 
 
3. New stress intensity factor solution for edge interface crack based on the crack tip stress when there 
is no crack 

 
By applying the proportional method, the stress intensity factors in Fig.1(a) can be obtained systematically. Figure 6 

shows the SIFs F1,int(α, β) and F2,int(α, β) normalized by the crack tip stress σy(a) for the whole range of material 
combination. Tables 2(a), (b) show the normalized SIF values when α>0 on Dundurs’ parameters. The free-edge 
singularity in Fig.1(b) depends on the material combination. The singularity index λ<1 (bad pair) when α(α-2β)>0; λ>1 
(good pair) when α(α-2β)<0; and λ=1 (equal pair) when α(α-2β)=0 [9]. In Table 2, red figures indicate bad pair, blue 
figures indicate good pair and black figures indicate equal pair. Since Table 2 and Fig.6 show the results over the entire 
range of α - β, they can be applied to any material combinations. 

 
 

 

(7) 



 

 

 

 
Fig.6 Values of F1,int(α, β) and F2,int(α, β) as a function of α and β. 

 

  

𝐾𝐾1 + 𝑖𝑖𝐾𝐾2 = {𝐹𝐹1,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽) + 𝑖𝑖𝐹𝐹2,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽)}𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋(1 + 2𝑖𝑖𝑖𝑖) 

𝐾𝐾1 + 𝑖𝑖𝐾𝐾2 = {𝐹𝐹1,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽) + 𝑖𝑖𝐹𝐹2,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽)}𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋(1 + 2𝑖𝑖𝑖𝑖) 



 

 

 

Table 2(a) Values of F1,int as a function of α and β [𝐾𝐾1 + 𝑖𝑖𝐾𝐾2 = {𝐹𝐹1,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽) + 𝑖𝑖𝐹𝐹2,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽)}𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋(1 + 2𝑖𝑖𝑖𝑖)]. 

[Red figures indicate bad pair α(α−2β)>0, blue figures indicate good pair α(α−2β)<0, black figures indicate equal pair 
α(α−2β)=0] 

α β=-0.2 β=-0.1 β=0 β=0.1 β=0.2 β=0.3 β=0.4 
0 1.073  1.109  1.121  1.108  1.072      

0.1 1.271  1.163  1.146  1.102  1.058      
0.2   1.192  1.154  1.119  1.061  0.808    
0.3   1.274  1.182  1.146  1.078  0.909    
0.4   1.292  1.194  1.157  1.113  1.008    
0.5   1.325  1.228  1.186  1.176  1.044    
0.6   1.348  1.272  1.207  1.203  1.102    
0.7     1.337  1.244  1.226  1.147  0.929  
0.8     1.320  1.287  1.262  1.220  1.081  
0.9     1.423  1.373  1.321  1.246  1.121  
1.0     1.500  1.441  1.369  1.309  1.238  

 
 

Table 2(b) Values of F2,int as a function of α and β [𝐾𝐾1 + 𝑖𝑖𝐾𝐾2 = {𝐹𝐹1,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽) + 𝑖𝑖𝐹𝐹2,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽)}𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋(1 + 2𝑖𝑖𝑖𝑖)]. 

[Red figures indicate bad pair α(α−2β)>0, blue figures indicate good pair α(α−2β)<0, black figures indicate equal pair 
α(α−2β)=0] 
 

α β=-0.2 β=-0.1 β=0 β=0.1 β=0.2 β=0.3 β=0.4 
0 0.209  0.109  0.000  -0.109  -0.208      

0.1 0.288  0.163  0.054  -0.057  -0.165      
0.2   0.210  0.105  -0.004  -0.117  -0.177    
0.3   0.245  0.155  0.050  -0.064  -0.167    
0.4   0.301  0.196  0.101  -0.009  -0.131    
0.5   0.339  0.240  0.149  0.048  -0.075    
0.6   0.368  0.282  0.192  0.102  -0.014    
0.7     0.327  0.235  0.151  0.046  -0.083  
0.8     0.349  0.277  0.198  0.103  -0.019  
0.9     0.404  0.328  0.246  0.154  0.045  
1.0     0.448  0.371  0.288  0.202  0.103  

 
 
  



 

 
4. Usefulness of new stress intensity factor solution by applying to ABC sandwiched plate 
 

 
 

Fig. 7 ABC sandwiched butt joints with an interface edge crack subjected to tension. 
 
 

Table 3 Material properties used in the present analyses. 

Group 

Material A 
(lower) 

Material B 
(adhesion layer) 

Material C 
(upper) 

Edge singularity 

EA[GPa] νA EB[GPa] νB EC[GPa] νC 
Interface 

AB 
Interface 

BC 
1 1000.0  0.002  176.471  0.118  70.3 0.345 Bad pair Bad pair 
2 1000.0  0.002  176.471  0.118  238.3 0.35 Bad pair Good pair 
3 1000.0  0.409  333.333  0.003  15.34 0.15 Good pair Bad pair 
4 1000.0  0.409  333.333  0.003  466 0.26 Good pair Good pair 

 
Table 4 Dundurs’ parameters and the singularity index for material combination shown in Table 3. 

Group αAB  βAB αBC  βBC 1-λAB 1-λBC F1(α,β) F2(α,β) 
1 0.7 0.3 -0.430  -0.109 0.0652  0.0679  1.147 0.046 
2 0.7 0.3 0.149 0.115 0.0652  -0.0102  1.147 0.046 
3 0.5 0.3 0.912 -0.384 -0.0558  0.1317  1.044 -0.075 
4 0.5 0.3 0.167 0.134 -0.0558  -0.0151  1.044 -0.075 

 
 

To confirm the usefulness of the present solution, the analysis is performed for the edge interface crack in ABC 
sandwiched butt joint shown in Fig.7. The interface crack with length ‘a’ is assumed along the interface AB. Here, 
interface AB means the interface between the materials A and B. In this analysis, the effect of the different material C on 
the stress intensity factor of edge interface crack as well as the effect of the bond line thickness is considered. The butt 
joint FEM model is made by using 8 nodes quadrilateral elements. The remote tensile stress σ0=1 MPa and the interface 
crack length a=1 mm are assumed. A very refined mesh pattern is used to obtain the accurate stress value at the crack tip 
position, the smallest element size e near the crack tip is e/a=1/36. 



 

As shown in Table 3 and Table 4, four patterns of material combinations are selected from Group 1 to Group 4, which 
have different singularities at interface AB and interface BC. The details of material properties, Dundurs’ parameters and 
edge singularity indexes are indicated in Table 3 and Table 4. 

 Figure 8 (a), (b) and Table 5 show the effect of crack length a/h on the normalized SIF F1,int(α, β) and F2,int(α, β) 
defined in Eq. (7) in ABC sandwiched butt joint subjected to tension. FEM analysis is performed for Group1 ~ 4 in Table 
3 and Table 4 under the fixed bond line thickness h/W=0.01. In Fig. 8, constant values are obtained when a/h<0.01 in the 
new definition (7) of the SIFs F1,int(α, β) and F2,int(α, β) for Group 1 ~ 4 in Table 3 under fixed bond line thickness 
h/W=0.01. When a/h<0.01, the dimensionless factors F1,int(α, β) and F2,int(α, β) coincide with the results in Table 2 under 
the same αAB and βAB . Therefore, the normalized factors F1,int(α, β) and F2,int(α, β) can be determined by the material 
combination A and B when the relative crack length a/h<0.01.  

Figure 9 (a), (b) and Table 6 show the effect of the bond line thickness h/W on the normalized SIFs F1,int(α, β) and 
F2,int(α, β) defined in Eq. (7). FEM analysis is performed by varying the bond line thickness in the range 0.002 <h/W<1.0 
under the fixed crack length a/W=10-6. In Fig.9, the parenthesis value shows the ISSF Kσ when there is no crack. The 
ISSF Kσ varies depending on the bond line thickness although the values of normalized SIFs stay approximately constant 
in the wide range of h/W. As shown in Fig.9, constant values are obtained independent of h/W in the new definition (7) 
of the SIF F1, F2 for Group 1~Group 4 in Table 3 under fixed crack length a/W=10-6, that is, a/h<10-2 although the ISSF 
Kσ parenthesis varies widely. In Fig.9, the results of a/W=10-6 are indicated. One may think that the present solution can 
be applied to only very small crack like a/W=10-6. However, Fig.8 shows that the present solution is useful in the range 
a/h<0.1 less than 6 percent error as well as in the range a/h<0.01 less than 1 percent error. Fig.9 shows the case of h/W 
=10-3 ~ 1. It should be noted that since h<W, a/h should be considered to discuss the application range of the present 
solution. The dimensionless SIFs defined in this study are based on the crack tip stress σy(a). Since the intensity of 
singular stress field (ISSF) Kσ at the interface end is affected by the plate width W, the effect of a/W is included in σy (a). 
Therefore, the present solution is useful for the problem of the finite plate. 

From above numerical results, we concluded that the normalized SIFs of small edge interface crack defined by Eq.(7) 
are related only to Dundurs’ parameter of materials A and B independent of the material C, bond line thickness and plate 
length when the crack length a/W<0.01 and a/h<0.01.  

 

 

  
 

(a) F1,int(α,β) vs. a/h                                 (b) F2,int(α,β) vs. a/h 
 
Fig. 8 Constant values are obtained when a/h<0.01 in the new definition (7) of the SIF F1, F2 for Group 1~Group 4 in 

Table 3 under fixed bond line thickness h/W=0.01. (a) F1,int(α,β) vs. a/h (b) F2,int(α,β) vs. a/h  
 

 

Table 5 Values of the new definition of SIF for Group 1 – Group 4 under fixed bond line thickness h/W=0.01. 

a/h 
F1,int(0.7,0.3) F1,int(0.5,0.3) F2,int(0.7,0.3) F2,int(0.5,0.3) 

Group 1 Group 2 Group 3 Group 4 Group1 Group 2 Group 3 Group 4 
10 

1 
0.1 

1.036 
1.121 
1.140 

0.917 
0.985 
1.123 

1.567 
1.223 
0.976 

0.695 
0.825 
0.988 

0.0471 
0.0050 
0.0381 

0.1670 
0.0840 
0.0473 

-0.2447 
-0.1609 
-0.0587 

-0.0701 
-0.0131 
-0.0595 

ℎ/𝑊𝑊 = 0.01 
 

ℎ/𝑊𝑊 = 0.01 
 

𝐾𝐾1 + 𝑖𝑖𝐾𝐾2 = {𝐹𝐹1,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽) + 𝑖𝑖𝐹𝐹2,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽)}𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋(1 + 2𝑖𝑖𝑖𝑖) 𝐾𝐾1 + 𝑖𝑖𝐾𝐾2 = {𝐹𝐹1,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽) + 𝑖𝑖𝐹𝐹2,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽)}𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋(1 + 2𝑖𝑖𝑖𝑖) 



 

0.01 
0.001 

0.0001 
0.00001 

1.149 
1.148 
1.147 
1.147 

1.145 
1.147 
1.147 
1.147 

1.035 
1.042 
1.047 
1.044 

1.034 
1.044 
1.044 
1.044 

0.0442 
0.0454 
0.0455 
0.0455 

0.0454 
0.0455 
0.0455 
0.0455 

-0.0688 
-0.0731 
-0.0745 
-0.0753 

-0.0701 
-0.0736 
-0.0746 
-0.0750 

 
 

 

 

 

  
 

 

 

 

  (a) F1,int(α,β) vs. h/W                      (b) F2,int(α,β) vs. h/W 
 

Fig.9 Constant values are obtained independent of h/W in the new definition (7) of the SIFs F1,int(α,β), F2,int(α,β) for 
Group 1~Group 4 in Table 3 under fixed crack length a/W=10-6, although the ISSF Kσ parenthesis varies widely. 
(a) F1,int(α,β) vs. h/W (b) F2,int(α,β) vs. h/W 

 
 

Table 6 Values of the new definition of SIFs F1,int(α,β), F2,int(α,β) for Group 1 – Group 4 under fixed crack length 
a/W=10-6. 

h/W 
F1,int(0.7,0.3) F1,int(0.5,0.3) F2,int(0.7,0.3) F2,int(0.5,0.3) 

Group 1 Group 2 Group 3 Group 4 Group1 Group 2 Group 3 Group 4 
1 

0.5 
0.1 

0.01 
0.005 
0.002 

1.147 
1.147 
1.147 
1.147 
1.147 
1.148 

1.147 
1.147 
1.147 
1.147 
1.147 
1.147 

1.050 
1.050 
1.049 
1.047 
1.047 
1.044 

1.049 
1.050 
1.049 
1.048 
1.048 
1.046 

0.046 
0.046 
0.046 
0.046 
0.045 
0.045 

0.046 
0.046 
0.046 
0.046 
0.045 
0.045 

-0.075 
-0.075 
-0.075 
-0.074 
-0.074 
-0.074 

-0.075 
-0.075 
-0.075 
-0.075 
-0.074 
-0.074 

 
 

 
5. Conclusion 

 
In this study, the stress intensity factor solution of the interface edge crack in a bonded plate was examined. The 

stress intensity factor of the interface crack is strongly affected by the singular stress field at the interface edge without 
crack. To separate double singular stress fields, the expression of the stress intensity factors K1 and K2 was investigated 
by using the singular stress σy(a) at the crack tip point without the crack. The conclusions are summarized as follows. 

(1) The new stress intensity factor solution for edge interface crack in bi-material plate was presented. The stress 
intensity factor of the edge interface crack can be expressed as  

a/W=10-6 a/W=10-6 



 

 

𝐾𝐾1 + 𝑖𝑖𝐾𝐾2 = �𝐹𝐹1,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽) + 𝑖𝑖𝐹𝐹2,𝑖𝑖𝑖𝑖𝑖𝑖(𝛼𝛼,𝛽𝛽)�𝜎𝜎𝑦𝑦(𝜋𝜋)√𝜋𝜋𝜋𝜋(1 + 2𝑖𝑖𝑖𝑖), 𝑖𝑖 =
1
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The crack tips stress σy (a) can be determined easily and accurately by using the standard finite element method. 

(2) The normalized factors F1(α,β) and F2(α,β) in the whole range of material combination expressed by Dundurs’ 
parameters were presented in Fig.6 and tabulated in Table 2. By using these factors, it is possible to evaluate the 
stress intensity factors of the small interface crack for any material combination. 

(3) To confirm the usefulness of the present solution, the edge interface crack in ABC sandwiched butt joint was 
analyzed. FEM analysis was performed by varying the crack length, the bond line thickness and the material 
combination. It was found that the normalized SIFs F1,int(α, β) and F2,int(α, β) of small edge interface crack 
defined by Eq.(7) relate only to Dundurs’ parameter of materials A and B, regardless of the material C and the 
bond line thickness when the crack length a/W<0.01 and a/h<0.01. 
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Appendix A. Proportional Method 
In this study, the stress intensity factor of interface crack is calculated by the proportional method [16,17]. In the 

method, stress values at the crack tip node are used and a stress intensity factor is determined by the ratio of the crack tip 
stress values between an unknown problem and the reference problem as shown in Fig.A1. The method gives the singular 
stress field equal to the unknown problem by adjusting load stress Ty and S of the reference problem whose the stress 
intensity factor is already-known. The single interface crack in a bonded semi-infinite plate subjected to the tension Ty 
and shear S is selected as the reference problem because the interface crack tip is always mixed mode state. The stress 
values at the interface crack tip node calculated by FEM in the reference problem under the tensile stress Ty=1 (S=0) or 

shear stress S=1 (Ty=0) are written by 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑇𝑇𝑦𝑦=1  ∗ , 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑇𝑇𝑦𝑦=1    ∗  and 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑆𝑆=1    ∗ , 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑆𝑆=1      ∗ , respectively. The crack tip stress values 

of the unknown problem are also denoted by 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹, 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹. By using the same crack tip stress condition between 
the reference and the unknown problems, that is, 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹 = 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

 ∗  and 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹 = 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
 ∗ , the external loading stress 

Ty and S in the reference problem can be determined from the next expression.  
 

𝑇𝑇𝑦𝑦 =
𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑆𝑆=1      ∗ − 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑆𝑆=1    ∗ ∙ 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑇𝑇𝑦𝑦=1  ∗ ∙ 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑆𝑆=1      ∗ − 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑆𝑆=1    ∗ ∙ 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑇𝑇𝑦𝑦=1   ∗ , 𝑆𝑆 =
𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑇𝑇𝑦𝑦=1  ∗ ∙ 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹 − 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑇𝑇𝑦𝑦=1   ∗

𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑇𝑇𝑦𝑦=1  ∗ ∙ 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑆𝑆=1      ∗ − 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑆𝑆=1    ∗ ∙ 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑇𝑇𝑦𝑦=1   ∗  

 
From the loading stresses Ty and S obtained by Eq.(A1), the stress intensity factor of the interface crack in the 

reference problem can be evaluated by 
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The definition of stress intensity factor shown in Eq.(A2) is based on the interface crack length 2a*. 
 

𝜎𝜎𝑦𝑦 + 𝑖𝑖𝜏𝜏𝑥𝑥𝑦𝑦 =
𝐾𝐾1∗ + 𝑖𝑖𝐾𝐾2∗
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                (a) Given problem              (b) Reference problem 
 

Fig.A1 Demonstration of (a) the given problem and (b) the reference problem. The proportional method is based on 
the fact that the crack tip stress values obtained by FEM are controlled by the singular stress field near the interface 

crack tip. 

(A1) 

(A2) 

𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹 
𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹 
 

𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
∗ = 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑇𝑇𝑦𝑦=1  ∗ ∙ 𝑇𝑇𝑦𝑦 + 𝜎𝜎𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑆𝑆=1     ∗ ∙ 𝑆𝑆 

𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
∗ = 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑇𝑇𝑦𝑦=1  ∗ ∙ 𝑇𝑇𝑦𝑦 + 𝜏𝜏𝑥𝑥𝑦𝑦0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑆𝑆=1     ∗ ∙ 𝑆𝑆 

𝑇𝑇𝑥𝑥𝐴𝐴 =
1

1 + 𝜅𝜅𝐵𝐵
�
𝐺𝐺𝐵𝐵
𝐺𝐺𝐴𝐴

(1 + 𝜅𝜅𝐴𝐴)𝑇𝑇𝑥𝑥𝐵𝐵 + �3 − 𝜅𝜅𝐵𝐵 −
𝐺𝐺𝐵𝐵
𝐺𝐺𝐴𝐴

(3 − 𝜅𝜅𝐴𝐴)𝑇𝑇𝑦𝑦�� 

 

(A3) 



 

 
Here, ε is the oscillation singular index, ii νκ 43 −= (plane strain), )1/()3( ii νν +− (plane stress). Because the stress 
intensity factor of Eq. (A2) is equal to that of the unknown problem, the stress intensity factors of the unknown 
problem in Fig. A1(a) can be obtained as   
 

*
22

*
11 , KKKK == .                                              (A4) 

It is noted that in the proportional method the finite element models of the reference and the unknown problems 
have the same crack length and the same FEM mesh pattern near the interface crack tip [16, 17]. 
 
 
Appendix B. Previous definition of the edge interface crack in bi-material plate 

The one of authors has reported in the previous paper that an edge interface crack in a bonded strip were 
analyzed with varying the crack length and material combinations systematically [18-21]. Then, the limiting 
solutions were provided in a bonded dissimilar semi-infinite plate subjected to remote uniform tension under 
arbitrary material combinations [21].  
The stress intensity factors are expressed for an edge crack in bonded semi-infinite plate in the following form 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑲𝑲𝟏𝟏

𝝈𝝈√𝝅𝝅𝝅𝝅
,
𝑲𝑲𝟐𝟐

𝝈𝝈√𝝅𝝅𝝅𝝅
→  𝟎𝟎  𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰  𝜶𝜶(𝜶𝜶− 𝟐𝟐𝟐𝟐) < 𝟎𝟎 (𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩)

𝑲𝑲𝟏𝟏

𝝈𝝈√𝝅𝝅𝝅𝝅
= 𝟏𝟏.𝟏𝟏𝟐𝟐𝟏𝟏 + 𝟎𝟎.𝟎𝟎𝟏𝟏𝟎𝟎𝟎𝟎𝟐𝟐 − 𝟎𝟎.𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐𝟐𝟐,

𝑲𝑲𝟐𝟐

𝝈𝝈√𝝅𝝅𝝅𝝅
= −𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝟐𝟐 →  𝟎𝟎  𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰  𝜶𝜶(𝜶𝜶− 𝟐𝟐𝟐𝟐) = 𝟎𝟎

𝑲𝑲𝟏𝟏

𝝈𝝈√𝝅𝝅𝝅𝝅
,
𝑲𝑲𝟐𝟐

𝝈𝝈√𝝅𝝅𝝅𝝅
→  ∞  𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰  𝜶𝜶(𝜶𝜶 − 𝟐𝟐𝟐𝟐) > 𝟎𝟎 (𝐛𝐛𝐩𝐩𝐠𝐠 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩)

 (𝐰𝐰𝐞𝐞𝐞𝐞𝐩𝐩𝐞𝐞 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩) 

 
The stress intensity factors for the small interface edge crack in a bonded strip are controlled by the singular 
stress field at the interface end. It is found that the stress intensity factors can be expressed in following forms 
if the edge interface crack is small enough within the zone of free-edge singularity of a bonded strip. Those 
coefficients C1, C2 are computed and tabulated under all material combinations in the α-β space. 
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As indicated in Table A1, C1 and C2 always have finite values when a/W → 0.  
 
 

Table A1 Values of C1 and C2 in eqn (A6) [21] 
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