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ABSTRACT 

The shock loading on satellite components during any of the separation events (of 

rocket boosters, rocket stages, and the payload fairing) leading to the eventual separation 

of a satellite at its destination orbit may be detrimental to satellite components. Generally, 

the shock response spectrum (SRS) describes the shock severity level in a Qualification 

Testing (QT). In QT, a component is subjected to an extreme (simulated) environmental 

condition, such as shock, as a means of guaranteeing its performance when used in an 

environment of similar severity. Shock simulation by a mechanical impact is one of 

several shock qualification test methods. 

The problem in QT, especially when using a mechanical impact simulator, is that the 

shock tests show a huge variability from test to test and generating repeatable SRS profiles 

that satisfy the target shock level involves a lot of trial-and-error (up to 85 have been 

reported in the literature). Moreover, fully characterizing a mechanical impact involves 

understanding the interaction of several parameters, such as the impact velocity, impact 

angle, and absorber materials between impacting bodies. To reduce the number of trial-

and-error and facilitate rapid testing, testing facilities match a target SRS to a database 

shock and retrieve its associated testing conditions. This process relies on the similarity 

between the target SRS and the database SRS.  

The purpose of this research is to investigate the SRS variation in tests simulated using 

an air gun shock testing machine and reduce the trial and error before satisfying a QT 

requirement. In particular, this research contributes a new similarity metric, the weighted 

RMSE, that can be used by commercial testing facilities to retrieve an SRS similar to a 

target SRS from a database of previous shock tests. In an SRS database retrieval task, the 

weighted RMSE outperformed other known SRS similarity measures in that it not only 
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retrieves the SRS most similar to the target SRS, but also an SRS that satisfies the 

requirement that at least 50% of the measured SRS shall exceed the target SRS. Moreover, 

the SRS response of impact shocks using the air gun shock machine were characterized 

experimentally. This research shows that with careful data acquisition, at a given driving 

pressure, the knee frequency of the measured SRS is influenced by the mass and material 

of the projectile. The heavier, metallic projectile tends to excite a higher knee frequency, 

than the lighter, non-metallic projectile. 
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1. Introduction 

This chapter introduces the concept of qualification testing of satellite components in 

the context of the shock environment. It presents background information about the shock 

environment during a rocket launch, the various qualification testing approaches, and the 

problem with qualification testing by metal-metal impact using an air-gun shock machine. 

1.1 Background 

Small satellite components may experience a range of static and dynamic loading 

conditions during a rocket launch, including quasi-static accelerations, sinusoidal 

vibrations, random vibrations, and shock[1]. Component failure may be induced by 

catastrophic vibration and shock-loading if the satellite’s design (or its components) is 

not robust enough to support the loading environments adequately. A shock is a dynamic 

load whose duration is short relative to the excited system’s natural frequency [2]. Small 

electronic components in a satellite’s functional subsystems may fail when resonating in 

response to an input shock. The purpose of qualification testing (QT) is to verify a 

system’s performance in a representative environment by testing the load-bearing 

components to design loads above the predicted flight conditions [1].  

The need for QT has increased globally as the number of rocket launches increase. The 

small satellite industry’s explosive growth has facilitated increased access to space for 

new space industry players. Small launch vehicles are rapidly expanding to meet the 

launch demand for small satellites. In total, there were 103 rocket (orbital) launches in 

2019[3]. Figure 1-1 shows the launch vehicles that were active in 2019. 
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Figure 1-1 Summary of orbital launches in 2019[3] 
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There are three major shock events during a rocket launch. The first shock loading 

occurs during the separation of the solid rocket boosters (SRB). Shock loading also occurs 

in separating the different rocket stages and the payload fairing. The spacecraft is 

separated from the last rocket stage by a separation mechanism on reaching the target 

orbit. Figure 1-2 shows a typical launch sequence for an H-II launch vehicle[4] from lift-

off to payload delivery to its destination orbit. 

Satellites may be separated from a rocket body using a range of explosive 

(pyrotechnic) and non-explosive separation mechanisms. Pyrotechnic products are fast-

acting. When used with auxiliary separation elements like springs, they provide the torque 

to initiate a spin and the compression to effect a separation [5]. Non-pyrotechnic small 

satellite separation adapters are also commercially available. Figure 1-3 shows a 

lightband™ adapter manufactured by RUAG Space. The separation adapters are available 

in various configurations, and it is possible to choose a configuration that delivers a 

predetermined separation velocity [6]. 

The structural response to shocks induced during pyrotechnic separation (pyroshock) 

is characterized by very high accelerations (> 1000 g), very high frequencies (~10 kHz), 

and the release of very high strain energy[7,8]. According to the pyroshock test criteria 

[8], a pyroshock may be near-field, mid-field, or far-field. Table 1-1 summarizes the 

definitions for the acceleration and frequency content of the three levels of pyroshock.  

Davie and Bateman[7] identified six QT methods depending on the level of pyroshock: 

shock simulation on an electrodynamic shaker, the use of live ordnance with system 

structure, the use of live ordnance with mock structure, the use of live ordnance with a 

resonant plate fixture, a mechanical impact with mock structure, and a mechanical impact 

with a resonant fixture [4]. The simulation of near field pyroshock typically involves 
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using the actual pyrotechnic devices. Pyrotechnic products include linear-shaped charges, 

explosive bolts, nuts, and clamps. Near field pyroshock may also be simulated by laser 

excitation. Lee et. al.[9] demonstrated the use of Q switched laser for near field pyroshock 

simulation. The shock response in a near-field pyroshock excitation using an actual 

pyrotechnic device shows significant variation from test-to-test [10]. A metal-metal 

impact (with a mock structure or resonant plate) may generate a near-field pyroshock 

response when little material deformation is allowed at the impact point [11].  

Table 1-1 Pyroshock classification 

 Near-field Mid-field Far-field 
Dominant spectral 

content (Hz) 
>10,000 Hz 3 – 10 kHz <3 kHz 

Peak acceleration >10,000 g 1,000 – 10,000 g <1000 g 
 

Typically, fair-field shock simulation involves using an electrodynamic shaker[12]. 

The response to an input shock simulated on an electrodynamic shaker is easy to predict. 

However, frequency control beyond 3 kHz is challenging because of the shaker’s 

displacement and frequency limits. Bateman and Davie [13] demonstrated the use of a 

tunable resonant fixture for mid and far-field shock simulation on satellite components. 

Some impact shock machines may also produce mid and far-field pyroshock [7]. 

At the Kyushu Institute of Technology’s (Kyutech) Center for Nanosatellite 

Testing, the annual demand for QT depends on  Japan’s H2A piggyback program [14]. 

In 2015, a metal-metal impact shock test method suitable for nanosatellites was 

developed at Kyutech in response to this substantial local QT need. [15]. According to 

[14], the machine could successfully simulate the H2A and DNEPR rockets’ shock 

environment. An air gun shock machine was developed in 2017 in an effort to improve 

the performance of the previous machine.  
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Figure 1-2 A typical launch sequence for a multi-stage H-II rocket launch to GTO[4] 
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Figure 1-3 RUAG microsatellite separation system PAS 381[6] 

1.2 Shock Response Spectrum (SRS) 

A system under shock may comprise many subsystems, each having its natural 

frequency. Suppose each subsystem is modeled mathematically as a single-degree-of-

freedom system (sdof); the system becomes a series of sdof systems. The SRS is the peak 

acceleration (or velocity or displacement) response to a shock input measured at each sdof 

system, assuming a critical damping factor (typically Q = 10). The natural frequencies 

are logarithmically-spaced across the entire frequency bandwidth [16]. In a shock test, the 

input to each sdof system is the acceleration response measured on the test article. Figure 

1-4 illustrates the formulation of the SRS. 

The specifications for a shock test for qualifying a space component are usually in 

terms of the SRS. The specifications describe the acceleration at a lower frequency limit 

and the slope of the acceleration ramp between the lower limit of the frequency bandwidth 

and a knee frequency (𝑘 ). Above the knee frequency, the acceleration has a nearly 

constant amplitude. The test specification describes the acceleration at 𝑘  and at the upper 

limit of the frequency bandwidth. Figure 1-5 shows the specifications for recent shock 

tests at CENT. 
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Figure 1-4 Peak response of a series of sdof systems to an acceleration time history input[16] 

 

Figure 1-5 Shock specifications for recent tests at CENT 

 

Knee frequency 
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1.3 Qualification testing by mechanical impact 

A typical mechanical impact simulation setup comprises a test article (mock or actual 

component) attached to an interface fixture and a data acquisition system. The impacting 

material (hammer, projectile, or actuator) excites the fixture, inducing a pyroshock 

response in the test article attached to the resonating fixture. Placing materials between 

impacting surfaces or clamping of plate edges alter a mechanical fixture’s boundary 

conditions and may affect the measured shock response in that configuration [17,18]. The 

measured shock response on the mock or dummy test article should be similar to the 

measured shock on the actual flight component.  

There are four stages in QT using an impact machine. First, a series of fine-tuning tests 

(with or without a mock structure) determine the initial input parameters (pressure, 

projectile, materials, impact angle, position, etc.). The second stage involves fixing the 

initial parameters after assessing the measured response’s similarity to the target shock 

response. The third stage involves repeating the tests on the actual test item with the 

already fixed input settings. Finally, fine-tuning the shock response on the actual test item 

may be necessary. Summarily, in QT, the measured response should be similar to the 

target shock specification and repeatable under controlled conditions. 

Figure 1-6 shows an air gun shock machine. The machine generates shock by the 

quick-release action of a valve [19] that allows propelling a projectile to a shock table 

base using compressed air stored in a cylinder. The impact excites a test item mounted on 

the shock table’s top, opposite to the impact. Besides adjusting the driving pressure, 

optionally placing a plate material between the impacting surfaces modifies the shock 

input. The measured shock on the test item attains a predetermined shock level. 
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Figure 1-6 Air gun shock machine 
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1.4 Research Problem 

The central problem here is that determining the initial parameters to achieve a 

target SRS in shock simulation on an air gun shock machine currently involves many 

trial-and-errors. Moreover, repeated tests using fixed input parameters show high SRS 

variation, making it challenging to predict the tuning parameters and extending the 

tuning process unnecessarily.  

1.5 Research Objectives 

This research aims to minimize the number of trial-and-error and improve the 

predictability of the initial tuning conditions in the shock simulation using an air gun 

shock machine. The specific objectives of this research are: 

1. To maintain a searchable digital database of previous shock experiments and 

corresponding tuning parameters 

2. To characterize the impact generated in a shock test on an air pressure-based shock 

testing machine 

3. To predict the optimum tuning parameters (pressure, damper /cushion, damper 

thickness) for a given shock described by a specified SRS 

1.6 Thesis overview 

Chapter two reviews the impact simulation of mechanical shock and discusses methods of 

reducing trial-and-error in qualification testing of satellite components. The chapter reviews 

different types of mechanical impact machines and considers different approaches to predict the 

shock response in a shock test. The use of artificial neural networks and transfer learning was 

examined. The chapter concludes by reviewing five different metrics for shock response similarity 
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estimation. The five metrics are the SRS difference, mean acceleration difference, average SRS 

ratio, dimensionless SRS coefficients, and the mean square goodness-of-fit method. 

Chapter three introduces the concept of case-based reasoning (CBR). CBR solves a problem 

by retrieving a solution to a similar problem from a database. This chapter proposes a similarity 

metric for retrieving shock response tuning parameters from an SRS database. First, it evaluates 

five different quantitative methods reviewed in chapter two for estimating SRS similarity. None 

of the similarity metrics account for the sign of the deviation between the target SRS and database 

SRS, making it challenging to satisfy the criteria for a good shock test.  

Chapter four covers shock response variation. Shock simulation using the air gun shock 

machine was discussed in detail. The system design limits the actual tunable parameters to the 

driving pressure, the material of the absorber between impacting surfaces, the thickness of the 

absorber material, the material, and the mass of the projectile. Chapter four characterizes the 

influence of these parameters and also discusses the data acquisition system. The chapter shows 

that reducing external variations in the measurement system improves SRS repeatability on the 

shock machine. The shock response (SRS) measured using the machine showed significant 

variability (± 9 dB on average) below 1,000 Hz. Increasing the sampling rate and using a low-

pass filter improved the repeatability of the SRS measurements. The SRS’ variation reduced from 

an average of ± 9 dB to ± 2 dB below 1 kHz and ± 4.5 dB above 1 kHz. The chapter also shows 

that when a low-pass filter is set at a 10 kHz cutoff frequency, and the sampling rate is increased 

to 500 kSa/s, reducing the projectile mass will excite a knee frequency lower than 10 kHz. The 

high frequency response too approaches the target SRS. 

Chapter five illustrates the application of the weighted distance in SRS retrieval and shock 

tuning and discusses policies for determining the initial tuning conditions for a shock test. Chapter 

five shows that the measured SRS (and retrieved) SRS are significantly higher than the target SRS 

because the target SRS is a far-field pyroshock, but the equipment simulates a near-field 

pyroshock.  
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Chapter six concludes this research and presents recommendations for future work. This 

research stresses the importance of performing a shock measurement system evaluation before 

using the machine for shock testing. When the variation in a measurement system exceeds the 

tolerance in the test specification, the system parameters cannot be predicted with any accuracy. 

In retrieving tuning parameters for a shock test from an SRS database, the weighted distance 

outperforms the mean square goodness-of-fit and other metrics.  

  



 

20 
 

2. Literature Review 

This chapter reviews the existing literature regarding the laboratory simulation of 

small satellite separation tests. This review includes the shock environment during a 

rocket launch, a description of the shock response spectrum, and a review of the different 

laboratory shock simulation methods; the trend in the shock level at the spacecraft-launch 

vehicle interface, the best practices for pyroshock simulation and data acquisition, and 

the air gun shock machine central to this study.  

2.1 Pyroshock response 

The structural response to shocks induced during satellite separation may contain very 

high accelerations (> 1000 g) and very high frequencies (~10 kHz)[5,7]. Figure 2-1 shows 

acceleration-time history with a peak acceleration of 2,500 G.  

 

Figure 2-1 A typical pyroshock acceleration time history  
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A pyroshock does not usually last longer than 30 ms. The main structural components 

are rarely adversely affected by the induced shock. However, small MEMS devices may 

resonate at very high frequencies and experience failure[20]. This failure occurs in the 

form of cracks, dislodging of contaminants, the chattering of switches and relays, and 

may jeopardize the mission’s success [8]. The location of MEMS components that 

constitute the essential elements for most subsystems within the satellite structure 

depends on the susceptibility to shock amplification.  

Unlike traditional satellites, small satellites have a smaller volume, compact form, and 

rely on piggyback opportunities or rideshare missions where the small satellites are 

secondary payloads. The shock environment depends on the adapter selection[21]. The 

standard adapters at the SC/LV interface are usually interchangeable with smaller low-

shock commercial adapters and dispensers. As the satellites become smaller in size, it 

becomes inevitable to place sensitive components near the separation shock source. 

Usually, a test article (dummy/mock) of similar build as the flight item or component is 

dedicated for QT. Under controlled conditions, the measured SRS should be repeatable 

regardless of the article under test. 

Recently, there is a trend towards lightweight, non-explosive, low-shock separation 

systems. Even when the induced separation shock is low, there is still a risk of component 

failure. In the simulation of the shock environment during satellite separation, the 

assumption is that an SRS measurement greater than or equal to a specified target SRS 

has the same shock severity. The acceptable tolerance limits are usually specified along 

with the target SRS specification. The test article (satellite/component) undergoes a shock 

excitation at least twice along three axes [8,20].  
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Table 2-1 shows the SRS specifications at the spacecraft-launch vehicle (SC/LV) 

interface for recently active (2019) launch vehicles. Gunter’s space[3] maintains a 

database of annual rocket launches. At the SC/LV interface, the slope of the acceleration 

ramp varies between 7 – 12 dB/octave and 𝑘  has a typical value of 1,000 Hz.  The 

acceleration at the upper-frequency limit (4,000 to 10,000 Hz) varies from 505 g for 

Epsilon to 4,000 g (1 𝑔 = 9.81 𝑚/𝑠 ) for the Long March rocket. The SRS specifications 

in Table 2-1 come from many experiments and analyses and represent the maximum 

expected flight (shock) environment (MEFE). A shock test specification also indicates 

the test’s tolerance limits. The SRS from a  shock test must match the MEFE or surpass 

it within statistical lower and upper tolerance limits to successfully reproduce the shock 

severity on a small satellite assembly[8].  

Table 2-2 shows a list of popular commercial small satellite adapters. Some non-

explosive separation adapters may be reset in a matter of hours and used for several tests. 

Nowadays, the shock test requirements for small satellites have become less severe. The 

peak acceleration is typically less than 1,000 g. Figure 1-5 shows specifications for five 

recent tests requested at Kyutech’s Center for nanosatellite testing (CENT). 

Table 2-1 Shock level at SC/LV interface for recently active launch vehicles 

  Year 
[source] 

Slope 
(dB/octave) 

𝑘   
(Hz) 

Upper-frequency 
limit (Hz) 

Acceleration 
(g) 

1. Long March (CZ) 2011 [22] 10.5 1,000 4,000 4,000 
2. Falcon-9 2020 [21] 9.2 1,000 10,000 1,000 
3. Soyuz 2 (R-7) 2018 [23] 10.2 1,000 10,000 700 – 1,000 
4. Electron 2020 [24] 7.2 900 10,000 700 
5. Proton 2009 [25] 12 1,000 10,000 2,000 
6. Kuaizhou-1 2016 [26] 10.7 1,000 10,000 3,000 
7. H-II A 2015 [4] 10.2 1500 3000 4100 
8. Epsilon 2018 [27] 10 1,000 4,000 1,000 

7.8 1,000 4,000 505 
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Table 2-2.  Common Separation Adapters for Small Satellites 

 Separation Device Separation 
Mechanism 

Developer Shock 
level 

Pyrotechnic Heritage1 

1. Mk II MLB Motorized 
separation 

Planetary 
Systems 
Corporation 

< 300 g’s 
@ 1 kHz 

No2 >200 
 Advanced Light 

band (8″ – 38″) 
2. QwkSep® 15/24 

Low profile 
Separation system 

Low shock 
Clamp-band 
opening Device + 
kick-off springs 

Sierra Nevada 
Corporation 

1000 g’s 
(1k – 
2kHz, 
pyro) 
100 g’s 
max (10 
Hz – 10 
kHz, non-
pyro) 

Optional >100 

3. PAS381S 
(15″standard) 

Low shock clamp 
band + separation 
springs  

RUAG < 100 g’s 
@ 1 kHz 

No > 6003 

4. CarboNIX Spring pusher 
system 

Exolaunch Zero4 No Yes 

 

2.2 Examples of impact shock machine 

The MIPS, THOR, Alcatel Etca, and Maeno-Oguchi machines are all examples of 

mechanical impact simulators.  

2.2.1 The Mechanical Impact Pyroshock Simulator (MIPS) 

MIPS is a popular machine used in QT. The MIPS creates shock by the action of a 

pneumatic actuator on an aluminum plate. The actuator is mounted on a movable bridge, 

allowing flexibility in the impact location (Figure 2-2). The generated SRS profile is a 

function of the driving pressure, damping, impact position, impactor head material, and 

the acceleration measurement position[7,18,29]. Figure 2-3 shows the effects of some 

parameters on the measured SRS. 

                                                 
1 Cumulative numbers for a range of products provided by the company (if more than one product is 
offered). 

2  Planetary Systems Corporation’s light band separation devices are compatible with a pyrotechnic 
pulse[28]. 

3 RUAG has a variety of separation devices with a cumulative heritage of over 600 flights (including flights 
where PAS381S was used). 

4 Exolaunch services claim that the payload (satellite) is separated before shock is generated. CarboNIX 
was demonstrated in a July 2019 Soyuz launch. 
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According to Dwyer and Moul [18], fine-tuning the MIPS to achieve the required SRS 

sometimes required up to 80 trials involving modifying the force input and plate and 

test item boundary conditions. The number of trial-and-error involved inspired several 

characterization experiments. The authors concluded that the test article’s weight and the 

mounting style had the most significant influence on the measured shock response. After 

successful characterization, the SRS profile generated on the MIPS is repeatable to 

within 2 dB of the shock specification. The SRS variation between successive tests under 

controlled conditions was within 10% in the majority of instances. 

2.2.2 Testing Hammer for extra Ordinary Rough environments (THOR) 

THOR is a midfield pyroshock simulator that creates shock by hammer impact on a 

tunable resonant plate [30]. SRS measurements using the THOR were repeatable within 

1 dB for three consecutive shocks and showed a slight variation as the number of impacts 

increased. The author characterized several parameters influencing the SRS 

measurements, including the hammer mass, anvil material, impact location, hammer 

material, impact velocity, and boundary conditions on the SRS measurements. Achieving 

a goal shock on the THOR involved significant tuning tests. IEPE sensors were used for 

data acquisition. 

2.2.3 Alcatel Etca Test Facility 

This facility has various pyroshock simulators, including a resonant plate. Single plates, 

double plates, and more complex configurations are possible. The shock excitation is by 

detonating explosives, although mechanical impact excitation is also possible. The 

facility maintains a database of past shock tests. A simple least-squares program retrieves 

the turning conditions for a new shock test and speeds up the trial-and-error involved. 

Data acquisition uses various IEPE accelerometers and piezoresistive accelerometers, 
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analog anti-alias filters, and signal conditioners [31]. The authors define repeatability as 

consecutive SRS within the test tolerance limits.  

 

Figure 2-2 General configuration of a MIPS simulator [18] 

 

Figure 2-3 MIPS Characterization[18] 
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2.2.4 Maeno-Oguchi Impact Simulator 

 Hatamura [15,19] developed a shock machine that simulates small satellites’ 

separation shock environment using a rectangular plate. The author showed that changing 

the boundary conditions (frictional coefficient) can control low-frequency SRS 

measurements. 

2.3 Reducing trial-and error: predicting the shock response 

Since the measured shock response on a resonant plate depends on the measurement 

position [32], there is a need for a method to predict the response at any point on the 

resonant fixture. Shock response prediction can either be by empirical or analytic 

techniques or a combination of both methods. Empirical techniques involve measuring 

the SRS accelerations at various positions and finding empirical relationships between 

the input parameters that influence the measured SRS.  

2.3.1 Empirical prediction 

Newell [29] attempted to develop an empirical relationship between the various 

parameters influencing the MIPS’s SRS profile using Buckingham-pi analysis, response 

surface techniques, Levenberg-Marquardt non-linear regression, and TableCurve 3D data 

fitting. The research concluded that a simple program that retrieved an SRS profile similar 

to the test specification was more efficient than the other techniques. The Alcatel Etca 

[31] and the THOR facilities agree that a simple program for SRS similarity estimation 

improved shock tuning with their test facilities. 

2.3.2 Tunable resonant fixtures 

Bateman and Davie [13] designed a resonant fixture with a plate and bar geometry for 

QT of small satellite components. They found that the SRS’s knee frequency corresponds 

to the first bending mode in a free-free (or fixed-fixed) boundary condition in the plate. 
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In the bar, the knee frequency corresponds to the first longitudinal mode. [13]. After initial 

characterization efforts, a resonating fixture can reproduce a similar far-field pyroshock 

response for the same experimental conditions with little trial-and-error[7]. Equations 2.1 

calculates the resonant frequency (𝑓) in a resonant bar, length (𝐿), where c is the speed of 

sound in the material. Equation 2.2 calculates the knee frequency of a plate, thickness (𝑡), 

and elastic modulus (E), with a free-free boundary condition. The dominant mode is a 

function of the bending stiffness of the plate (𝐴  is a constant depending on the 𝑛𝑡ℎ mode 

of the plate). 

 

Figure 2-4 Mode shapes in a free-free vibration of a 38 mm thick aluminum plate 

 

Qualification testing by mechanical impact with a resonant fixture can simulate far-

field shock simulation with knee frequencies below 10 kHz. However, because the plate 

has a fixed resonant frequency, every SRS test specification with a different resonant 

frequency requires a new resonant fixture design. Figure 2-4 shows the first two modes 

in the modal analysis of a 500 mm square aluminum plate of 38 mm thickness. The plate’s 

first bending mode is at 748 Hz ( 𝐴 = 13.39, 19.79, 24.43 …     𝑛 = 1, 2, 3, … ). The 
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values of 𝐴  are determined numerically or by analytically solving the differential 

equations of plate vibration [33].  

 𝐿 =
𝑐

2𝑓
 (2.1) 

 

 𝐿 =
𝐴

2𝜋𝑓

𝐸𝑡

12𝜌
     (2.2) 

 

Equation 2.2 assumes that the plate has a square geometry. The resonant plate may be 

used with a projectile [34] or explosives [35]. There appears to be a preference for 

resonant plates with a rectangular geometry [13,30,34,35] regardless of the excitation 

method. A rectangular plate offers a large surface area for mounting test items and has 

easy to clamp edges, although circular plates [32] and cylindrical resonant fixture designs 

[35] also exist. With some modification, Equation 2.2 applies to any thin plate of arbitrary 

shape undergoing free transverse vibration for various boundary conditions [33]. 

Table 2-3 compares the drop table, MIPS simulator, and tunable resonant fixture as 

examples of mechanical impact shock simulators. Besides changing the impact force 

(pressure or velocity), various materials, such as felt [34], papers [18], metals, and natural 

rubber [36], between the impacting surfaces, can raise or lower the SRS about specific 

frequencies. The measured shock response along the direction of impact depends on the 

test article and resonant fixture’s geometry and boundary conditions.  

Measuring the SRS accelerations in the lateral directions involves changing from a 

planar impact to impacting the resonant plate’s edge or using a mounting fixture to change 

the test item’s orientation. In other instances, the planar impact is strong enough to cause 

a significant response in the lateral directions. Consequently, the SRS accelerations in a 
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single impact measured using a tri-axial accelerometer may satisfy the shock specification 

in the X, Y and Z axes simultaneously. Typically, the measured response is higher in the 

impact direction than in the lateral directions [31]. 

  



 

30 
 

 

Table 2-3.  Comparison of various Mechanical impact shock simulators 

  Drop-Table Resonant Plate (MIPS) Tunable bar/beam 
1. Acceleration 

pulse 
Single-sided pulses with 
significant velocity 
change as compared to a 
typical pyrotechnic 
pulse with zero net 
velocity change. 

This method can 
simulate a complex 
acceleration time-
history similar to the 
time-history 
measurements in a 
pyroshock environment 

It matches the dominant 
fixture response 
frequency (first bending 
mode in plates and first 
longitudinal mode in 
bars) to the target SRS’s 
knee frequency. 

2. Simultaneous 
measurement 

It requires a 
configuration change to 
measure the shock 
generated in the lateral 
axes. 

A simultaneous 
measurement may be 
possible but may require 
several trial-and-error 
trials. 

Simultaneous 
measurement of the 
response across three 
axes may be possible,  

3. Test 
configuration 

Separate configuration 
per axis 

It involves much trial-
and-error. A separate 
configuration may be 
required to satisfy the 
test requirements. 

It does not require 
significant configuration 
changes for different test 
items. However, since 
shock transmission is 
axial, a separate 
configuration may be 
required per axis. 

4. Response A function of the drop 
height and 
“programming” 
materials between the 
impacting surfaces 

A function of geometry, 
material, impact mass, 
speed, impact duration, 
impact location, external 
clamps 

The attached test item 
does not significantly 
influence the response of 
a thick resonant fixture. 

5. Over/under 
testing 

Possible over-test at low 
frequencies (except 
when the fundamental 
frequency is higher than 
the frequencies where 
over-test occurs) 

Considerable over-test is 
possible, especially in 
the high frequencies of 
the near-field shock 
environment. 

The absence of 
significant frequency 
content above the knee 
frequency may cause the 
response to be lower in 
this range 

6. Repeatability It is easy to create 
simple pulses repeatedly 

It requires a proper 
characterization of the 
machine. Once 
understood, generated 
shocks are repeatable 

This method allows 
reasonable control and 
repeatability of the SRS, 
especially below the 
knee frequency 

7. Modeling It is easy to model the 
simple pulse shapes 
mathematically 

Empirical and analytic 
models are possible 

A modal survey (or 
frequency analysis) may 
be required to determine 
the dominant vibration 
modes of the tunable 
bar/beam 
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2.3.3 Finite element analysis 

Analytic techniques for predicting shock response include finite element modeling 

(FEM/FEA)[37], statistical energy analysis (SEA)[38], numerical modeling[39,40], and 

other methods [41]. Empirical methods cannot be extrapolated to another dataset [42]. A 

finite element program determines the plate’s mode shapes and natural frequencies in 

characterizing a resonant plate to determine the appropriate position for mounting a test 

item for a future test. It uses any of the implicit or explicit integration techniques, such as 

the Newmark integration. After determining the natural frequencies, the modal 

participation extraction shows which modes dominate the SRS [32,42]. This process is as 

time-consuming as an actual experiment. The results are unique for each test item, and 

several configurations must be explored to determine the most suitable impact and test 

article mounting position. 

Recent research interest in rubber waveform generators focused on determining 

parameters suitable for predicting a shock pulse’s shape and duration using genetic 

algorithms [43]. Instead of modeling the shock response, the authors modeled the input 

to the sdof systems as a simple half-sine pulse. Previous research already showed that 

placing rubber of predefined shape between impact surfaces could simulate half-sine 

shock pulses [17]. The prediction relied on constitutive models that account for rubber’s 

hyperplastic and viscoelastic properties. This kind of analysis is limited to acceleration 

shock inputs with a simple pulse. 

2.3.4 Pyroshock data validation 

Bateman et al. [44] have attributed common errors in pyroshock data acquisition to 

aliasing and inadequate slew rate of the signal conditioner. The authors insist that 

unisolated piezoelectric (PE) accelerometers must not be used in pyroshock data 
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acquisition because they are susceptible to zero-shift. The sensing element in the 

accelerometer also experiences resonance, making the SRS measurements about the 

resonant frequency of the accelerometer unreliable and unrepeatable[11]. The resonant 

response of the accelerometer’s sensing element may cause saturation and DC offsets in 

the signal conditioner, making the data unusable [45]. The telltale sign of aliasing is a 

velocity time history that slopes (upward) or downward. The study also stated the 

importance of anti-alias filters and higher sampling rates. The authors stated the 

recommended practices for valid data acquisition: 

 Accelerometers. Only piezoresistive accelerometers should be used for near-

field shock measurement. Isolated PE (IEPE) accelerometers may be used for 

far-field shock. 

 Signal conditioner. DC to 100 kHz or wider 

 Sampling rate. 1 MHz or more 

 Analog anti-alias filter cutoff. 1 octave below Nyquist frequency or lower with 

at least 60 dB roll-off for 12-bit systems. 

2.3.5 Artificial neural networks (ANN) 

Zhang et al. [43] recently used finite element modeling, numerical analysis, and a feed-

forward back propagation neural network (BPNN) to predict underwater shock loading 

on a hypothetical structure. The research examined the effects of structural stiffness and 

damping on shock attenuation, cavitation time, and momentum transfer. At the time of 

writing this thesis, there are no known publications on artificial neural network for 

qualification testing are scarce. 
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2.4 A neural network for tuning? 

2.4.1 Artificial neural network approach 

Figure 2-5 shows the concept of tuning with a feed-forward back-propagation neural 

network with a single input layer, single hidden layer (middle) and single output layer. In 

reality ANNs use multiple interconnected layers and nodes[46]. The challenge in this 

concept is in determining the values of the weights (𝑤) in the hidden layer. Assuming that 

random weights are assigned in the hidden layer in the forward-pass of the network, the 

algorithm computes the error between the final score at the output (𝑦) and an expected 

score. In the backward pass, the error at 𝑦 is used to update the weights in the hidden 

layer. The algorithm iterates, cycling through the input combinations until it reaches 

convergence. The challenge then becomes how to define the expected value of 𝑦 from a 

shock specification. 

Figure 2-6 shows the single output node (𝑦) replaced with the input layer in Figure 2-5 

and the new input is the frequency and acceleration specifications of the SRS. A neural 

network can predict multiple outputs as long as the activation function in the final layer 

is linear. However, when the activation function in the last layer is linear, the network 

cannot be trained by back propagation since the differential of the error will give a 

constant value [47].  
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Figure 2-5 Concept of feed forward artificial neural network 

 

 

Figure 2-6 ANN with four output nodes 

 

Figure 2-7 Transfer learning concept 
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2.4.2 Transfer learning approach 

In an attempt to bye-pass the tuning phase of qualification testing, we explored the 

concept of transfer learning. Considering only one output (for example, pressure) in the 

network in Figure 2-6, a pretrained network can select the class of driving pressure 

depending on the training data. The SRS can be converted to a scalogram by wavelet 

synthesis [12]. The scalogram can then be resized for a pretrained network, such as 

GoogLeNet, and retrained. There are a few demerits of this concept. 

 Insufficient training data. Machine learning methods require lots of data. It is 

not feasible to conduct as many experiments as the data needed. 

 Synthesized input. An acceleration time-history synthesized by wavelet 

synthesis may have different temporal features when compared to an actual 

measurement. One of the demerits of the SRS is that it does not have a unique 

acceleration time history [48]. 

 Labeling difficulties. A convolution neural network is a supervised learning 

scheme. Significant overlap between two classes (say at 0.04 MPa and 0.08 

MPa) mean that the training data cannot be correctly labeled. 

2.5 Similarity based tuning 

Rapid QT requires a generic approach easily applicable without excessive computation 

requirements and independent of the test article. Therefore, this research adopted 

Newell’s approach – using a simple program to SRS similarity estimation. Applying the 

requirements for successive QT helps to structure the nature of the program. The program 

should be able to retrieve a database SRS that is most similar to the target SRS. Besides, 

the retrieved SRS shall have at least 50% of its datapoints above the target SRS [8]. There 
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is a need for a similarity metric that can sort the database SRS according to these 

requirements and retrieve the tuning parameters of the most similar SRSs.  

The tasks required to implement this program are the essential components of a Case-

based approximate reasoning system (CBR). CBR is an old machine learning technique 

used in problem-solving where solutions to previous problems, known as cases, are stored 

in a database (case-based) and are adapted to fit a new problem by establishing a feature-

based similarity between the case base and the new problem [49–51]. This method is 

suitable for establishing a database for separation shock experiments and the experimental 

conditions associated with the measured SRS. The tasks involve the following: 

1. Setting up a database where each entry is a case (it may be a feature matrix) 

2. Definition of a similarity metric 

3. Retrieval of similar cases from the database 

4. Updating the database 

The following section surveys some quantitative similarity measures used in aerospace 

applications.  

2.5.1 Visual Evaluation 

The SRS specification with a given lower and upper limit is a type of control chart 

where acceptable measurement values fall within tolerance limits derived empirically. 

The data that lies outside the tolerance limits are out-of-control and are therefore of 

unacceptable quality. Typically, the upper and lower limits for an SRS specification are 

± 6 𝑑𝐵 for natural frequencies below 3 kHz, and +9/−6 𝑑𝐵 when the natural frequency 

is above 3 kHz[8]. Figure 2-8 shows the SRS from 3 shock measurements for a shock test 

specification. A visual distinction of 2 SRS is sufficient in some applications to explain 
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the two shocks’ differences. However, a quantitative description of the similarity or 

difference between two SRS may be necessary for other applications.  

 

Figure 2-8 Three SRS measurements within NASA recommended lower and upper limits 

 

2.5.2 SRS Difference 

The simplest method to evaluate the similarity (or difference) between two SRS is 

subtracting one from the other. The SRS difference (diff) is the absolute value of the 

difference in acceleration of the 2 SRS (in dB) at each natural frequency (Equation 2.3). 

For example, in Figure 2-8, the difference between the upper limit and the SRS 

specification is 6 dB at all points below 3 kHz and 9 dB otherwise. Park et al.[52] used 

this method to show SRS attenuation for different kinds of absorber materials. Equation 

2.3 shows how to calculate the SRS difference. 

 𝐷𝑖𝑓𝑓(𝑓) = 𝑆𝑅𝑆 (𝑓) − 𝑆𝑅𝑆 (𝑓)  (2.3) 
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2.5.3 Mean Acceleration Difference 

 Equation (2.4) shows the Mean Acceleration Difference (MAD). The MAD is a ratio 

of the absolute difference between a reference SRS and a measured (or modeled) SRS for  

𝒏 natural frequencies in the measurement bandwidth. The MAD gives a single scalar 

value to measure the similarity (or difference) between two SRS. In contrast, the SRS 

difference method shows a pointwise comparison. When the reference SRS is the same 

as the measured SRS, the MAD is 0 and tends to positive infinity as the SRS difference 

becomes more pronounced. Generally, there is an assumption that an SRS is repeatable 

if the MAD in subsequent measurements under controlled conditions is less than or equal 

to 10 % [9,53].  

 𝑀𝐴𝐷 =
1

𝑛

𝑆𝑅𝑆 − 𝑆𝑅𝑆

𝑆𝑅𝑆
 (2.4) 

2.5.4 Average SRS ratio 

Some applications use the average SRS ratio (ASR) for repeatability analysis [54]. 

ASR (Equation 2.5) is a ratio of a summed SRS measurements over a bandwidth to the 

summed reference SRS over the same bandwidth. In Equation 2.5, 𝒎 is the number of 

successive measurements or simulation trials.  

 𝐴𝑆𝑅 =  
1

𝑚

𝑆𝑅𝑆

𝑆𝑅𝑆

 

 

 (2.5) 
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2.5.5 Dimensionless SRS coefficients 

Besides the ASR, recent publications express the similarity between two or more SRS 

in terms of two dimensionless coefficients [39,40,53,55,56]. The two dimensionless 

coefficients used frequently are the mean SRS coefficient (𝐸 ), and, the maximum SRS 

coefficient, 𝑀 . Ding et. al described the SRS coefficients as attenuation rates [40]. The 

two SRS coefficients are calculated using equations (2.6) and (2.7). 

 𝐸 =
∑ 𝑆𝑅𝑆

∑ 𝑆𝑅𝑆
 (2.6) 

 

 𝑀 =
𝑀𝑎𝑥 (𝑆𝑅𝑆 )

𝑀𝑎𝑥 𝑆𝑅𝑆
 (2.7) 

 

2.5.6 Mean squared goodness-of-fit (RMSE) 

Equation (2.8) shows the mean squared goodness-of-fit method. It involves calculating 

the root-mean-squared-error between a measured SRS and a reference SRS. The RMSE 

is similar to the SRS difference calculation. Filippi et al. [31] compared a target SRS to 

an SRS database in the least squares sense, adding weights to account for direction and 

frequency.  

 𝑅𝑀𝑆𝐸 =
∑ 20 × 𝑙𝑜𝑔𝑆𝑅𝑆 −𝑙𝑜𝑔𝑆𝑅𝑆

𝑛
 (2.8) 

In the RMSE, a single scalar quantity (in dB) represents the difference between the 

two SRS. In contrast, the SRS difference can only be shown visually as a pointwise 

difference between two SRS. 𝑛  is the number of natural frequencies in the SRS’s 

computation. Table 2-4 summarizes the quantitative measures described in this section.
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Table 2-4 Summary of quantitative SRS similarity metrics 

Metric Formula Best SRS 
similarity 

Worst SRS 
similarity 

Remark 

DIFF(f) 𝑆𝑅𝑆 (𝑓) − 𝑆𝑅𝑆 (𝑓)  0 dB 
Tends to positive 

infinity 
Pointwise calculation; may show 
attenuation at specific frequencies 

MAD 
1

𝑛

𝑆𝑅𝑆 − 𝑆𝑅𝑆

𝑆𝑅𝑆
 0 

Tends to positive 
infinity 

Single scalar representation of 
similarity; suitable for repeatability 

calculations (for minimal differences) 

ASR 
1

𝑚

𝑆𝑅𝑆

𝑆𝑅𝑆

 

 

 1 

The SRS profile 
may be dissimilar 

for all values 

It ignores lower frequencies (< 1 kHz) 
Suitable for evaluating reproducibility 
(making the same measurement with 

different equipment or different 
personnel) 

𝐸  
∑ 𝑆𝑅𝑆

∑ 𝑆𝑅𝑆
 1 May show overall attenuation 

𝑀  
𝑀𝑎𝑥 (𝑆𝑅𝑆 )

𝑀𝑎𝑥 𝑆𝑅𝑆
 1 

Considers only the peak acceleration 
value; it may demonstrate attenuation 

for applications where the peak 
acceleration is the critical parameter 

RMSE ∑ 20 × 𝑙𝑜𝑔𝑆𝑅𝑆 −𝑙𝑜𝑔𝑆𝑅𝑆

𝑛
 0 dB 

Tends to positive 
infinity 

Single scalar representation: It cannot 
distinguish the sign of the deviation 

from the target SRS. 

 
f:  Natural frequency 
n:  Number of natural frequencies in SRS computation 
m:  Number of trials in repetitive measurements 
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3. Retrieving an SRS from a database of shocks: Case-based Rapid 
Shock Qualification Testing of Spacecraft Components 

The purpose of this chapter is to compare the effectiveness of the similarity metrics 

discussed in section 2.5 for retrieving a similar SRS from a database of previous shock 

tests as part of a Case-Based Reasoning (CBR) approach for determining the initial tuning 

parameters in a separation shock simulation. CBR is a problem-solving approach that 

utilizes accumulated knowledge from previous experience in solving new and similar 

problems. It is clear from Chapter 3 that successive shock impacts under the same 

experimental conditions produce similar SRS. The CBR method enables rapid QT by 

forming an SRS database comprising acceleration measurements and experimental setup 

parameters for previous shock tests. Determining the setup parameters in a future QT or 

acceptance testing is a matter of retrieving the SRS that is most similar to the target SRS 

(and its corresponding setup parameters). A CBR system has four elements: case 

definition, similarity measure, information retrieval, and update scheme. 

3.1 Database Structure and selection criteria 

In total, the database comprises SRS measurements from 108 different shock tests. 

Each database SRS has a test number (TN) and channel number. The channel number 

assignment is 1, 2, and 3 for the X, Y, and Z-axis. For each measurement, the SRS is 

computed between 10 Hz and 10,000 Hz at a 1/48 octave spacing and at a damping of 

0.05 (Q = 10). There were 480 natural frequencies in total for each measurement. The 

shock tests included tuning tests using only the interface jig, tuning tests using a dedicated 

test article (dummy), and acceptance shock tests performed on actual payloads 
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(components and satellites). The total number of independent measurements (N) in the 

database is 324. Figure 3-1 shows the database structure. Each new SRS entry is subject 

to the validity checks described in Chapter 2.  

 

 

Figure 3-1 SRS Database Structure 
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Each database entry stores information on the driving pressure, absorber, and the 

projectile. After setting up the database, the next task was implementing a method to 

select an SRS similar to the target SRS in a QT from the database based on the NASA 

criteria. The first criterion is the 95/50 upper limit rule; 95 % of the data points shall 

exceed the target SRS specification with a 50 % confidence[8,57]. The second criterion is 

that 100 % of the data points shall exceed the lower limit.  

3.2 Establishing a similarity metric  

The similarity between a shock response spectrum (SRS) and a target shock 

specification is essential in evaluating the success of a qualification test of a space 

component. The similarity function is a metric that minimizes the distance between the 

target SRS and the database SRS. Here, the use of “similarity” connotes distance between 

a database SRS and a target SRS. The properties of a similarity function (𝜎) depend on 

the kind of application it is used for. Two of the more popular properties are reflexivity 

(𝜎|𝑥, 𝑥 = 1 ) and symmetry ( 𝜎|𝑥, 𝑦 = 𝜎|𝑦, 𝑥 ). Reflexivity means that the similarity 

function should have a value of 1 when comparing an SRS to itself.  However, the 

similarity function has a value of zero if two SRS are dissimilar. Symmetry in similarity 

implies that the value of the similarity function between two SRS, y and x, should be the 

same if either SRS is the reference SRS.  

A simple visual evaluation of SRS similarity is insufficient when comparing more than 

two SRS. There is a need for a quantitative measure of SRS similarity. This section 

compares the suitability of the five metrics discussed in section 2.5 for an SRS retrieval 

task.  
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3.3 Retrieving a similar SRS from the database 

First, the SRS accelerations and tuning parameters associated with 108 shock tests 

(324 channels) were compiled as described in section 3.1. Using the ISO 19683[58] shock 

level (Table 3-1) as a reference, the three most similar SRS to the target SRS were 

retrieved using each of the quantitative methods in section 3.2. For each method, the upper 

natural frequency limit in the SRS retrieval was 5,000 Hz.  

Table 3-1 ISO 19683 recommended shock specification 

Frequency (𝑓), Hz 100  2600 5000 

Acceleration, m/s2 545  4145 4145 

Table 3-2 Comparison of different methods for SRS database retrieval 

SRS no Data above Spec (%) MAD (%) ASR 𝐸  𝑀  RMSE (dB) 
101 81 33.3 1.5 1.4 4.0 3.0 
73 60 19.3 1.0 1.1 1.9 2.0 
14 54 29.1 1.4 1.3 3.8 3.0 
100 30 23.0 1.3 1.3 4.2 2.6 
71 27 41.9 1.0 0.9 1.4 5.7 
79 18 32.2 1.1 1.0 1.9 4.2 
76 17 49.3 1.0 0.8 2.2 8.0 
110 16 44.0 1.2 1.0 2.7 4.9 
323 11 48.3 0.7 0.6 1.3 6.4 
218 4 58.4 0.6 0.5 1.2 9.8 
203 2 68.8 0.5 0.4 1.0 13.1 

 

Table 3-2 compares the quantitative methods for database SRS retrieval sorted from 

top to bottom by the percentage positive SRS deviation from the target SRS.  These results 

are calculated using the formulas summarized in Table 2-4. It is clear from Table 3-2 and 

Figure 3-2 that: 

i. The ASR and 𝑀  are not good estimators of SRS similarity for the task of 

retrieving an SRS similar to a target SRS from a database. Even when both 

quantities have an approximate value equal to 1, the SRS significantly falls 
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below the target SRS specification. The reason is that the ASR excludes the 

SRS’s low-frequency portion (<1000 Hz) from the computation.  

ii. The 𝑀  considers only the peak SRS magnitude (without considering the 

frequency at which it occurs). Shock transients typically have instantaneous high 

magnitude accelerations. Even when the peak amplitude is the same (SRS2), the 

two SRS profiles may be entirely different. A useful metric should account for 

all the SRS magnitudes at all the natural frequencies. The  𝑀  has the worst 

performance of the metrics compared. 

iii. Similarly, for the 𝐸 , the SRS magnitudes at the high-frequency portion (> 1000 

Hz) are several orders of magnitude higher than in the lower frequencies. 

Therefore, the sum of the measured SRS magnitudes may exceed the target SRS 

magnitudes. 

iv. The MAD and RMSE have similar results. However, the percentage of data 

points below the target SRS for some of the retrieved SRS fall below the 50 % 

threshold. 

v. The MAD and RMSE are based on the absolute difference between the SRS 

magnitudes of the target SRS and the measured SRS. The drawback here is that 

the absolute difference does not account for the sign of the deviation between 

the 2 SRS. Two dissimilar SRS can have the same RMSE. 

3.4 Improved (weighted) Root-Mean-Square Error (wRMSE) 

Section 3.3 showed that the MAD and RMSE could not distinguish the sign of the 

deviation from the target SRS. This section introduces the weighted RMSE as a way to 



 

46 
 

select an SRS within a database. Equation 3.1 defines the weighted RMSE for a target 

SRS specification (subsequently referred to as the weighted distance, ∆ ). 

∆ = 𝑎 𝑤 + 𝑐 𝑏,  0 ≤ 𝑤 ≤ 1 

Where 

𝑎′ = 𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑅𝑀𝑆𝐸 − 𝑅𝑀𝑆𝐸
 

𝑐 =
𝑅𝑀𝑆𝐸

∑ 𝑅𝑀𝑆𝐸
× 100%. 

𝑏 = 0.01 

(3.1) 

 

The weighted distance fulfills the following conditions: 

i. Prioritize the SRS with more positive deviations from the target SRS if two or 

more SRS have equal RMSE 

ii. If two SRS have an equal-weighted distance, prioritize the SRS with the lower 

RMSE. 

First, the product of the normalized RMSE (𝑎 ) and weights (𝑤 ) ensure that it is easy 

to distinguish two SRS within the database with equal RMSE. Reintroducing the positive 

and negative deviations from the target SRS into the value of the RMSE is critical in 

selecting 𝒘𝒋 . Making  𝑤  the percentage of negative deviations from the target SRS 

maximizes the difference in the RMSE between the two SRS. Within an SRS database, it 

is possible to have two or more SRS where the product ( 𝑎 𝑤 ) is equal. In that case, we 

need a second term to separate the SRS further, prioritizing the SRS with more positive 

deviations from the target SRS.  

In equation 3.1, the relative RMSE (𝑐 ) gives the magnitude of the RMSE for 

individual SRS in the database relative to the RMSE sum for the entire database. The 
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second term in calculating ∆  is a product of the relative RMSE and a sorting coefficient 

(𝑏). The sorting coefficient prioritizes selecting an SRS in the database with more positive 

deviations from the target SRS. If 𝒘𝒋 = 𝟎, then the weighted distance is determined by 

𝑐 . In evaluating the SRS database, ∆𝒋≅ 𝟎 indicates strong similarity. Similarity decreases 

as the weighted distance tend to 1. Table 3-3 and Figure 3-3 shows the results of 

comparing the database SRS described in section 3.3 using ∆  when 𝒃 = 𝟏𝟎 𝟐. 

Table 3-3 Weighted distance for 100 Hz – 5000 Hz 

SRS TN no RMSE(dB) 𝑎′  𝑤  𝑐  ∆  
35-2 4.52 0.138 0 0.131 0.0013 
51-2 4.77 0.146 0 0.138 0.0014 

101-2 4.99 0.153 0 0.145 0.0014 
 Max RMSE(dB)= 

34.7 
    

 

In Figure 3-3, 100 % of the retrieved SRS data lies above the target SRS, and the SRS 

with the least RMSE has the least weighted distance. Appendix 7.3 shows there is no 

significant difference in the percentage of data points above the specification when the 

octave spacing increases from 1/48 to 1/12. 
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Figure 3-2 a Top three SRS retrieved using different similarity metrics (Database size = 324 channels).  

 



 

49 
 

 
Figure 3-2b Top three SRS retrieved using different similarity metrics  

 
Figure 3-3 Top three SRS retrieved using the weighted distance 
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4. Characterization of the Shock simulation on an air gun shock 
machine 

This chapter describes the shock testing process on the air gun machine. It investigates 

shock repeatability and describes experiments to characterize different parameters’ 

influence on the SRS profile generated on the machine. These parameters include the 

impact velocity (as a function of applied pressure), absorber material (between impacting 

surfaces), and the projectile mass and material. Understanding the system behavior will 

help ascertain the possibility of establishing a sequence of actions to achieve the target 

SRS with minimum trial-and-error. 

4.1 Characterizing and tuning a shock machine 

 

Figure 4-1 Transitioning between SRS specifications in QT 

Figure 4-1 shows two shock responses, SRS specifications 1 and 2, having a different 

knee frequency (1,000 Hz and 2,400 Hz, respectively), different lower frequency limits, 

and a different slope between the lower frequency limit and the knee frequency. 

Assuming that srs2 is the target SRS, transitioning from srs1 to srs2 involves making 

∆

∆
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changes (∆ − ∆ ) to the knee frequency, acceleration amplitude, and low-frequency 

slope (acceleration ramp).  

The first step in characterizing a shock machine is identifying all the parameters that 

affect the measured SRS. The second step involves experimenting to see the effect of 

individual parameter changes on the measured SRS. The subsequent characterization 

experiments involve combining some of the identified parameters and monitoring the 

changes in the measured SRS. Characterization helps the machine operator accumulate 

empirical knowledge about how to manipulate the parameters to achieve a target SRS 

(Tuning). Therefore, successfully operating the machine relies on operator knowledge. 

Figure 4-2 shows the qualification testing process on an air gun shock machine. The 

process assumes that the actual flight component has a replica item used for tuning 

purposes. After testing the replica item and fixing the input parameters, the main test item 

is tested. The machine (Figure 1-6) generates a mechanical shock by impacting a 

projectile on a hexagonal aluminum shock table.  The test article is fixed rigidly to the 

shock table through an interface (IF) jig. Using a quick-release MO valve[19], compressed 

air at a preset pressure propels the projectile through a barrel until it impacts the shock 

table. The projectile’s motion is constrained to impact the shock table at 90° . The 

projectile may be changed depending on the target shock level. Currently, there are three 

types of projectile in use: Stainless steel (SUS430), Aluminum (A1050P), and Nylon. A 

stack of one or more absorbers on the push plate beneath the shock table can modify the 

projectile impact. The material of the absorbers may be the same or different. 

Table 4-1 shows some of the parameters that can be combined to achieve the desired 

SRS. A manual test log maintains the record of the parameters associated with a shock 

test. Assuming that the shock tests are repeatable, the test log serves as a reference for 
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setting the appropriate parameters for a future shock test with a similar SRS. We can 

assume that the shock table’s mass, stiffness, and damping characteristics are equal for 

test articles with similar mass and geometry. If this assumption holds, the shock response 

on a mock (or representative) test article can be tailored to an actual test article of similar 

mass and geometry.  

Table 4-1.  Shock machine tuning parameters 

Items Values 
Shock Table mass 220 kg (including the mass of supporting beams) 
Dimension (mm) 990 x 770 x 770 
  
Tuning parameters  
Pressure, P 0.35 MPa max 
Absorber (C) Aluminum (A1050P), Stainless steel (SUS430), Natural rubber 

(NR), Felt 
Impact angle 90 degree to impact plane 
Absorber thickness 
(t)* 

0.3 mm , 0.5 mm, 1 mm 

Test article mass Up to 50 kg 
Projectile Stainless steel (SUS304), Aluminum (A6061), Nylon (PN)  
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Figure 4-2 Qualification testing on an air-gun shock machine 

 



 

54 
 

4.2 The interface (IF) jig 

Different IF jigs are available to simulate the SC/LV or component mounting interface. 

Figure 4-3 shows the IF jigs used in this thesis. The interface (IF) jig is mounted on an 80 

mm thick hexagonal shock table. The projectile’s impact diameter is 50 mm. We can 

assume that the shock response measured near the IF jig will be a function of the coupled 

response of the shock table and the IF jig since the distance from the impact area is less 

than 2 – 3 times the impact diameter. The size of the test article is also limited by the 

interface fixture size.  

B-1 C-3 

C-2 

 
Figure 4-3 Some interface Jigs used on the shock machine 
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Table 4-2 Data Collection Specification 

Items Specifications  
Charge Amplifier (AMP) SHOWA 4035-52 (large input type) 

Sensitivity: 10～99.9 𝑝𝐶 or mV/g 

Range:1, 3.16, 10, 31.6, 100, 316, 1000 
Maximum output: ±10V 

DAQ NI, 9222 module 
Sampling rate 500,000 samples/s 
Accelerometer ENDEVCO 2225 (Mounting stud 2981-12)  

 

 

Figure 4-4 COTs component shock test showing the accelerometer positions on an IF jig. 
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4.3 Data Acquisition 

Figure 4-4 shows a typical QT test setup. Piezoelectric accelerometers attached to the 

IF jig (Endevco 2225) are used to measure the shock response. In actual testing, additional 

accelerometers are attached near the test article. The accelerometers are connected to a 

large-input SHOWA 4035-52 charge amplifier. The signal conditioner converts the 

charge to voltage and may optionally filter high-frequency response from the signal. The 

data from the signal conditioner passes through a NI 9222 digitizer that samples the signal. 

The maximum sampling frequency of the NI 9222 module is 500 kSa/s/ch. Typically, the 

sampling frequency setting is at 100 kS/s. A LabView program analyzes and displays the 

acceleration data and the SRS in the same interface used for control PC. The analyzed 

SRS for each channel (axis) ranges from 10 to 10,000 Hz at a 1/48 octave spacing. Table 

4-2 summarizes the specifications of the data collection system. 

4.4 Preprocessing Data: Removing Zero Shift 

Piezoelectric accelerometers typically exhibit zero (baseline) shift. Zero shift is a 

phenomenon where the measured accelerometer signal does not return to zero after a 

shock test. A zero shift may be identified in the SRS plot by a constant acceleration 

response in the low-frequency region instead of a 6 – 12 dB/octave slope(for a 

pyroshock)[44]. The baseline shift correction is necessary when there is a discrepancy in 

the positive and negative SRS slope in the low-frequency region.[44,59]. For a valid 

pyroshock, the velocity-time history should show a net zero velocity. If the velocity-time 

history exhibits a non-zero-mean, zero shift correction is necessary. Some air gun shock 

machines generate velocity shocks which characteristically do not have a mean zero 

velocity. Therefore, in this thesis, the decision to perform zero shift correction does not 
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depend on the velocity-time history. Figure 3-3 illustrates zero shift correction by wavelet 

decomposition. Shi and Shigemasa [3] developed the wavelet correction method used in 

this thesis. 

 

Figure 4-5 Illustration of zero shift correction wavelet decomposition[59]
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4.5 Experimentation 

Table 4-3 shows the initial sequence of the characterization experiments in this chapter. 

The experimental setup is shown in  

Figure 4-4. The SRS acceleration measurements at different positions on an interface 

jig are different. The measurements may be affected by various factors such as the impact 

velocity, mass and material of projectile, nature of absorber between impacting surfaces, 

impact position, and so on. However, the accelerometers were fixed at the same point 

along the X, Y, and Z axes of the interface jig for all characterization experiments in this 

chapter. Moreover, the impact point is the same for all tests. 

 The measured SRS accelerations were generated using a 2.9 kg aluminum projectile 

(unless otherwise stated). The B-1 IF jig weighs 22 kg. At least 13 trials were conducted 

for each of the conditions listed in Table 4-3. Appendix 7.1 shows the formulas for 

calculating the statistical upper and lower tolerance limits for each characterization test. 

At least 13 trials are needed to obtain an upper limit that exceeds 95 % (β) of measured 

SRS values with a confidence of 50% (γ). First, the effect of increasing the driving 

pressure (velocity) is investigated with no material between the impacting surfaces and 

no test article mounted on the IF jig. Absorbers of different materials were added between 

the impacting surfaces in subsequent tests to investigate the effect on the measured SRS. 

Lastly, a test article was mounted to investigate the influence of the mass loading on the 

measured SRS.  
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Table 4-3 Characterization Experiments (B-1) 

 Pressure 
(MPa) 

Absorber Test article 
mass (kg) 

Remark 

1. 0.040 None None To characterize the 
effect of increasing the 

driving pressure 
2. 0.065 
3. 0.080 
4. 0.100 
5. 0.150 
6. 0.150 1 mm Natural Rubber None To characterize the 

effect of different 
absorbers between 
impacting surfaces 

7. 0.150 0.3 mm Aluminum None 
8. 0.150 0.3 mm Aluminum + 

1 mm Natural Rubber 
None 

9. 0.150 - 5 To characterize the 
effect of the mass of the 

test article 

4.6 Increasing the Driving pressure (Velocity) 

Equation 4.1 shows the relationship between the driving pressure and the muzzle 

(projectile exit) velocity of an air gun. The driving pressure (𝑃 )  varies with the impact 

velocity (barrel exit velocity) under the following assumptions. 

i.  the pressure chamber has infinite barrel length,  

ii. the gas is thermodynamically ideal,  

iii. the pressure chamber has a constant diameter, and that there is no loss of energy 

in the system [60]. 

 

𝑃 =
𝑎 𝑚

𝐴𝐿
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4.1 

(where 𝑢 =  , 𝐿 = barrel length, 𝐴 = projectile base area, 𝑚 = mass of projectile, 𝛾 

= heat capacity ratio,  𝑣 = barrel exit velocity, 𝑎  = speed of sound in gas (air), and 𝑃  = 

driving pressure). 
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Figure 4-6 shows theoretically that at the same driving pressure and barrel length, the 

impact velocity of a projectile decreases as the projectile mass increases. It also shows 

that increasing the driving pressure increases the impact velocity for any projectile mass.  

It is easy to understand the projectile’s effect on the SRS by examining the relationship 

between the driving pressure and exit velocity in an air gun shock machine. .Figure 4-7 

shows a variation in the measured SRS for15 successive impacts at an driving pressure 

of 0.04 MPa. The response converges at the higher frequencies. There appears to be a 

knee frequency at 500 Hz, but the SRS increased again as the frequency approached 10 

kHz. Below 500 Hz, there is a significant variation in the measured SRS. Figure 4-8 

compares the SRS when the driving pressure is increased from 0.040 to 0.065 MPa. 

Instead of plotting the 15 SRS measurements which are cumbersome to understand, we 

can represent the measured SRS with the statistical lower and upper tolerance limits 

(Appendix 7.1).  

Similarly, there is an overlap in the lower frequencies when the driving pressure is 

increased from 0.040 MPa to 0.080 MPa. Consequently, it is probable that at 0.080 MPa, 

an SRS similar to 0.040 MPa impact can be produced. The variation in the measured SRS 

at the same driving pressure is too wide and needs to be controlled. 
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Figure 4-6 Projectile exit velocity as a function of the driving pressure in an air gun barrel 

 

Figure 4-7 Fifteen successive shocks at 0.04 MPa driving pressure (Z-axis) 
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Figure 4-8 Increasing driving pressure shows overlapping upper and lower tolerance limits. 

 

Figure 4-9 Increasing driving pressure to 0.08 MPa 
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4.7 Investigating SRS variation 

In a QT, the SRS must satisfy the shock test SRS specifications at least twice per axis. 

However, the SRS from successive shocks may have significant variation as shown in 

Figure 4-7 to Figure 4-9. An SRS is repeatable if the SRS difference from test to test 

under controlled conditions is within the test tolerances. The repeatability must be 

maintained when the test item (dummy) is swapped for an identical test fixture and when 

the test item is removed[31]. In other words, the test-to-test variation must be within a 

controlled tolerance limit. 

We can take the shock machine as a system where the output is the final SRS and the 

inputs to the system are the test personnel, equipment, materials, methods, and 

environmental conditions. All the system inputs are potential sources of variation in the 

SRS measurements the total variation in successive measurements under controlled 

conditions is the sum of the input variations.  

Figure 4-11 shows a test article undergoing a shock test. The pod is mounted on an 

interface fig rigidly fixed to the shock table. The accelerometers measure the SRS 

accelerations along the X, Y, and Z axes. Fifteen successive measurements were taken 

using an driving pressure of 0.04 MPa from a 2.9 kg aluminum projectile without the test 

article. Figure 4-11 shows the SRS measurements for the 15 successive tests along the 

impact direction (Z-axis). Figure 4-12 and 4-13 show the out-of-plane response measured 

simultaneously as the response in Figure 4-11. All three measurements show significant 

variation between successive measurements below 1 kHz. 
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Figure 4-10 Experimental set up for repeatability evaluation 

 
Figure 4-11 SRS of fifteen (successive)in-plane impacts at 0.04 MPa 
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Figure 4-12 X-axis SRS to a 0.04 MPa shock 

 
Figure 4-13 Y-axis SRS to a 0.04 MPa impact shock
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Figure 4-14 shows the statistical (95/50) upper and lower limits of the X-axis shock 

shown in Figure 4-12. Appendix 7.1 shows how to determine the statistical upper and 

lower tolerance limits. The limits are tighter at the higher frequencies (above 1500 

Hz) at ± 3 dB and widen significantly to ± 6 dB below 1000 Hz. The tolerance limits 

are wider than ± 6 dB at 500 Hz.  

The wider tolerance around 500 Hz could be due to a local system response (Figure 

4-14). It has been proven that the dipping of shock spectrum values (SRS dip) occur in 

structures mounted on non-rigid foundations at the normal modes of the equipment under 

test [16]. Figure 4-15 shows a modal survey of the shock machine. Four of the dominant 

normal modes occur at 475 Hz, 488 Hz, 524 Hz and 651 Hz. The dip in the upper limit in 

Figure 4-14 may be because the spectrum dipped randomly about the dominant modes 

and this can explain the wide tolerance limit about 500 Hz. 

After increasing the driving pressure to 0.15 MPa, the variation at 500 Hz was well 

within ± 6 dB as the frequency increased from 500 Hz to 10,000 Hz. However, below 500 

Hz, the variation widened. Figure 4-16 shows the symmetrical SRS tolerance limits 

increase from ± 6 dB at 0.04 MPa to ± 8 dB at 0.15 MPa driving pressure between 30 and 

300 Hz. An 8 dB tolerance limit is unacceptable because shock test specifications have 

an even tighter tolerance limit, usually 3 dB or 6 dB. Although increasing the driving 

pressure solved the SRS’s flattening around the lower resonant frequencies, the wider 

tolerance limits indicate another problem. This finding led to the second hypothesis that 

the SRS variation could be because the measured data is corrupted.  
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Figure 4-14 SRS Variations for successive shocks at 0.04 MPa (top). The middle figure zooms in on the 
response between 30 and 300 Hz, and the bottom figure zooms in on the response between 300 Hz and 

10,000 Hz to get a sense of the variation in the SRS across the frequency bandwidth. The tolerance limit 
is wider below 1000 Hz and widest at 500 Hz 
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Figure 4-15 Vibration modes of shock machine (table). There were six modes between 475 and 651 Hz. Each of the modes shown above (19,21,24 and 36) have 
more than 10% effective mass participation 
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Figure 4-16 SRS variations for successive shocks at 0.15 MPa. Above 300 Hz (bottom plot), the spectrum 
was well within 6 dB tolerance limits. The middle plot shows that the tolerance limit widens to ± 8 dB 

just below 300 Hz. 

4.8 Investigating SRS data corruption 

Bateman et al. [44] identified four sources of data corruption – the accelerometer, 

inadequate sampling (aliasing), inadequate slew rate of the signal conditioner, and 

electromagnetic noise. Only piezoelectric accelerometers were available for measurement 
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during this research. Fortunately, the large input signal conditioner has a built-in 10 kHz 

low-pass filter (LPF). A method to reduce or prevent aliasing is by using an analog anti-

alias filter (AAF) with a sharp roll-off. Another method is to use an AAF with a gradual 

roll-off while oversampling the data at a sampling rate much higher than twice the highest 

frequency of interest. This method is the so-called delta-sigma architecture.[61].  

An experiment to investigate the effect of the sampling rate showed that the SRS 

measurements were more repeatable at a higher sampling rate (500 kSa/s) than at 100 

kSa/s. Figure 4-17 and Figure 4-18 show the effect of the sampling rate for repeated 

impacts at 0.07 MPa. Figure 4-17 shows the SRS for five tests sampled at 100 kSa/s.  The 

results show huge variation in the lower frequencies although the SRS results appear to 

converge above 2,000 Hz. At a sampling speed of 500 kSa/s, the SRS measurements were 

extremely repeatable in the low frequencies (Figure 4-18). The variation in the SRS above 

the knee frequency is due to the use of a low-pass filter in some measurements. 
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Figure 4-17 Sampling at 100 kSa/s (0.07 MPa, Aluminum projectile) show significant variation below 
2,000 Hz although the SRS appear to converge as the frequency approaches 10 kHz. 

 

Figure 4-18 Sampling at 500 kSa/s for eight measurements (0.07 MPa, Aluminum Projectile) shows 
extremely repeatable SRS. The variation in the high frequency region is due to the use of a 10 kHz low-

pass filter in some of the measurements. 
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Figure 4-19 shows the SRS from four successive impacts at 0.05 MPa, using a 2.9 kg 

aluminum projectile and a 3.5 mm felt material between the impacting surfaces at a 

maximum sampling rate of 500 kSa/s. The result shows a close tolerance (± 2 dB from 

30 Hz to the 𝑘 , 2000 Hz) that widens to ± 4.5 dB above the knee frequency. The wider 

margin in the upper frequencies is expected. Figure 4-19 suggests that the delta-sigma 

architecture implemented contributed to reducing the SRS variation, and if this is the case, 

the nominal data acquisition method may involve the acquisition of corrupted signals that 

invalidate the SRS acceleration measurements.  

Figure 4-20 shows the data validation using a velocity-time history and wideband 

discrete Fourier transform (DFT). In the work on validation of pyroshock data, Bateman 

et. al [44] suggested that the velocity time history and the wideband discrete Fourier 

transform (DFT) can be used to validate acquired pyroshock signal. The velocity-time 

history of the acquired acceleration signal corrupted by aliasing will show a linear slope, 

instead of oscillating about the zero velocity. Initially, this behavior was used to describe 

a signal corrupted by baseline (zero) shift. Figure 4-20 shows that sampling at 500 kSa/s 

gives a net zero velocity compared to the rising slope of the velocity-time history when 

sampling at 100 kSa/s.  

The wideband DFT shows the effect of the low pass filter [44]. It is recommended for 

pyroshock data acquisition systems to have at least a 60 dB attenuation (for 12-bit 

systems) at the Nyquist frequency, and 80 dB or more attenuation for higher resolution 

systems. The DFT plots (top) in Figure 4-20 show that at the Nyquist frequency, the 

power attenuation was barely -40 dB when sampling at 100 kSa/s and more than 80 dB 

when sampling at 500 kSa/s. 
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Figure 4-19 Lower and upper tolerance limits for four shocks (0.05 MPa, 3.5mm felt, 2.9 kg Al bullet). 
The middle plot shows that the variation of the measured data was fully contained within a 2 dB tolerance 

below 2,000 Hz. The bottom plot shows that the variation increased to 4.5 dB above 2,000 Hz 
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Figure 4-20 Validation of test data with the velocity-time history and the wideband DFT. The top left figure is the wideband DFT when sampling at 100 kSa/s 
while the top left figure is the DFT for sampling at 500 kSa/s. At the Nyquist frequency, the power should be -80 dB or greater for high resolution systems. The 

bottom plot shows that when sampling at 500 kSa/s, the velocity-time history has a net zero velocity compared to sampling at 100 kSa/s. In both results, a 10 kHz 
LPF was used.   
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4.9 Changing the material (absorber) between impacting surfaces 

A material placed between two impacting surfaces (a projectile and a target) can affect 

the shock response measured on the target. Vigness and Clements [62] showed that 

placing a well-shaped elastic or plastic material between two impacting surfaces may 

produce sawtooth or half-sine shock pulses. They also showed that the pulse duration of 

the sawtooth or half-sine pulse may be controlled by stacking the absorbers . Figure 4-21 

shows some of the absorber materials frequently used in shock simulation using the air 

gun shock machine. 

 

Figure 4-21 Absorbers frequently used in shock simulation (a) Natural rubber (b) Natural rubber type 2 
(c) Aluminum (d) Stainless steel. The top figures show the absorber before impact. The bottom figures 
show the absorbers after impact. The circular pattern is the indentation of the projectile as a result of 

compression during impact. 

Apart from shaping the input shock, elastic and semi-elastic materials (like cork, 

rubber, and felt) are often used in resilient mounts for vibration isolation [63]. Typically, 

a shock test may be conducted without using absorbers. However, when absorbers are 

used (individually or stacked), the goal is to raise or lower the measured SRS. Figure 4-22 

shows the effect of using a felt absorber in a test at an driving pressure of 0.05 MPa using 

a nylon projectile. The SRS amplitude reduces across the spectrum. The SRS 



 

76 
 

accelerations reduced in magnitude beyond the knee frequency when a 3.5 mm felt 

material is placed between the impacting surfaces. The amplitude reduction is more 

pronounced above the knee frequency (2000 Hz). 

 

Figure 4-22 Effect of absorber on SRS in an impact with a Nylon (1.3 kg) projectile 

 

The shock amplitude reduction can be explained roughly with the concept of vibration 

transmissibility. The acceleration transmissibility function (equation 4.1) defines the 

steady state response of a single-degree-of-freedom system to sinusoidal base excitation.  

  𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓ 1 + 2𝜉

𝑓
𝑓

1 −
𝑓
𝑓

+ 2𝜉
𝑓
𝑓

 (4.1) 

Where 𝜉 = damping ratio, 𝑓 = base excitation frequency, and 𝑓  = natural frequency. Q is 

the quality factor, and it is defined mathematically as 𝑄 =   . The peak transmissibility 
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occurs when Q ≥ 2 and the base excitation frequency is equal to the system resonance 

frequency. Vibration isolation is achieved when 𝑓 ≫ 𝑓 . 

The knee frequency is the dominant response mode (resonant frequency) in a shock 

environment. Beyond the knee frequency, the shock amplitude attenuates. The damping 

loss (1/Q) of a felt material increases with vibration amplitude[63]. At the knee frequency 

(resonance), the vibration amplitude increases, and so does the damping. The region 

immediately after the resonant frequency (knee frequency) experiences lower 

acceleration amplitude because the damping loss of felt increases at resonance.  

In Figure 4-22, the higher magnitude of the acceleration response beyond 10 kHz is 

due to the resonance of the accelerometer’s sensing element. The resonance of an 

accelerometer’s sensing element can compromise the measurement’s accuracy. 5  An 

analog low-pass (anti-alias) filter with a sharp roll-off at least once octave below the 

sensor’s resonant frequency can remove the unwanted signal (above 10 kHz) prior to 

digitization [44]. Figure 4-23 shows the experimental setup to verify the influence of the 

in-built 10 kHz low pass filter in the signal conditioner described in section 4.5. Figure 

4-24 shows the SRS of a 0.05 MPa impact using a 4.1 kg stainless (SUS) projectile on 

the interface jig in Figure 4-23. First, the shock is measured without a low-pass filter. In 

a second impact, the signal conditioner’s 10kHz low-pass filter (LPF) was used to set the 

cutoff frequency at 10 kHz, and the sampling rate was 500 kSa/s. It is immediately 

apparent that the LPF reduced the acceleration magnitude between 10 kHz and 50 kHz. 

                                                 
5 The usable range of a resonating accelerometer’s measurement is 1/3 of the resonant frequency, and 

conservatively 1/5 of the resonant frequency when using an unisolated PE accelerometer [11]. 
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Figure 4-23 Measurement positions on IF Jig C-2 

 

Figure 4-24 Effect of low pass filter on SRS measurement. A 10 kHz low pass filter attenuates the 
resonance of the accelerometer at 30 kHz. 
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4.10 Adjusting the knee frequency 

Section 4.8 showed the relationship between the driving pressure and a projectile’s 

exit velocity for an air gun. At the same pressure level, two projectiles of different masses 

will have different exit velocity (Figure 4-6). For example, at 0.05 MPa, the exit velocity 

for a 4 kg projectile is about 8 m/s and 14.5 m/s for a 1.25 kg projectile. Assuming that 

the acceleration pulse at impact has a simple saw-tooth profile, the peak acceleration of 

the of the input pulse is proportional to the impact velocity and inversely proportional to 

the pulse duration, as shown in equation 4.2 [62].6 

𝐺 =  
2𝑀 𝑉

𝑀 + 𝑀 𝑔𝜏
 4.2 

Where G is the peak acceleration of the input pulse expressed in units of gravity, 𝑀  

is the mass of the projectile, 𝑉  is the impact velocity, 𝑀  is the mass of the shock table, 

𝑔 is the acceleration due to gravity, and 𝜏 is the pulse duration. The duration in non-

penetrating impacts can range from 10  𝑡𝑜 10  seconds [42]. To excite a natural 

frequency, the duration of a shock pulse should be at least half the period of the target 

natural frequency [7]. A soft material impacting a rigid target (such as nylon on steel or 

aluminum) will have a longer duration than an impact between two aluminum bars. The 

momentum of the projectile (𝑀 𝑉 ) determines the peak acceleration of the input pulse. 

The pseudo velocity shock response in Figure 4-25 shows that the peak velocity change 

occurs at a frequency that corresponds to the knee frequency on the SRS. 

Figure 4-25 also shows that varying the projectile’s mass (and material) could lower 

the measured SRS’s knee frequency when the SRS measurement is along the impact 

                                                 
6 Equation 4.2 gives the relationship between the peak acceleration of a shock table under a hammer 

impact based on the principle of conservation of momentum and holds for very small impacts. At very high 
impacts, the relationship is non-linear, and the acceleration is greater than can be derived using this equation. 
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direction. Considering that the usable bandwidth of an unisolated PE accelerometer is 1/5 

to 1/3 times the mounted resonant frequency [11], we ignore the SRS above 10 kHz. In 

Figure 4-25 (a), the two SRS measurements using two different projectiles of different 

materials have a different knee frequency. The knee frequency corresponds to the 

frequency with the peak velocity on a pseudo velocity shock response plot as shown in 

Figure 4-25 (b). An average SRS profile showing a straight acceleration ramp and 

constant peak acceleration value above the knee frequency can be drawn by curve fitting 

the linear portion of the ramp and making the acceleration magnitude above the knee 

frequency equal to the acceleration at the knee frequency Figure 4-25 (c). This peak 

pseudo velocity value occurs at the same frequency within the data acquisition bandwidth 

even after filtering out the spectral response above 10 kHz (Figure 4-25 (d)).
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Figure 4-25 Shift in Knee frequency with projectile mass and material using C-3 IF jig (a). The knee frequency was identified as the frequency with the peak 
pseudo velocity (b). If we ignore the spectral response above 10 kHz, the acceleration magnitude above the knee frequency is approximately constant. The peak 

pseudo velocity was the same with or without a low pass filter, assuming there is no significant sensor resonance in the bandwidth of interest (d) 
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5. Retrieving an SRS from a database for Rapid Qualification Testing 

The complete set of SRS measurements for a shock test comprises measurements in 

the X, Y, and Z axes when the shock impact is along the Z-axis. This chapter discusses 

the result of using the wRMSE to retrieve the most similar SRS to the target SRS for each 

axis. The purpose of this section is to show the potential time savings possible by using 

the wRMSE for database SRS retrieval. 

When, we split the database into SRS accelerations measured in the X, Y, and Z axes. 

Three-axis acceleration measurements may be taken using a triaxial accelerometer (that 

measures the three acceleration components at a single point) or three independent single-

axis accelerometers. This section refers to the latter case where three independent single-

axis accelerometers are used. If an SRS database comprises 108 shocks (N) and each 

shock has SRS three measurements corresponding to X, Y, and Z axes (324 channels), 

the weighted RMSE for each test is the average weighted RMSE over the three axes. 

Equation 5.1 calculates the average weighted distance for each test in an SRS database 

with 𝑁 shocks. 

∆ =  
1

3
∆ ,      𝑗 = 1,2 … 𝑁 

5.1 

Table 5-1 shows the shock test requirements in a spacecraft qualification test. Using 

the test specifications as reference, the top three conditions matching the SRS 

specification were retrieved using the wRMSE (Equation 5.1) and shown in Table 5-2. 

The SRS corresponding to TN48 (the most similar SRS to the shock specification) is 
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shown in Figure 5-1. Only the shock absorber was different in the actual test result 

(determined after 18 trials without using the wRMSE).  

Table 5-1 SRS test specification 

Frequency (Hz) SRS spec (m/s2) 
Lower spec 

limit 
100 260.8 130.4 
1000 5227.3 2613.7 
10000 5227.3 2613.7 

 

Table 5-2 Tuning parameters for retrieved SRS  

TN Pressure (MPa) Absorber Thickness (mm) Projectile 
48 0.150 Aluminum 

N. rubber 
0.3 
1 

Aluminum (2.9 kg) 

28 0.090 Aluminum 
Aluminum 

0.3 
0.3 

Aluminum (2.9 kg) 

29 0.100 Aluminum 0.3 Aluminum (2.9 kg) 
Actual 0.150 N. rubber 1 Aluminum (2.9 kg) 

 

Figure 5-1 Database SRS most similar to the shock specification (TN48) 
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The tuning conditions retrieved using the wRMSE were used in conducting a shock 

test for the specifications in Table 5-3. The top two most similar SRS to the specification 

is the same as in Table 5-2 (TN48 and TN28). Figure 5-2 shows the SRS from a shock 

test using the retrieved conditions. After testing with the retrieved conditions, the SRS 

did not satisfy the SRS specifications, especially in Ch2 (lateral axis). The measured SRS 

in the impact direction just falls below the specification for the top two retrieved 

conditions. The SRS conditions stored in the database were for tests sampled at 100 kSa/s. 

As discussed in section 4.7 and 4.8, SRS measurements sampled at 100 kSa/s vary from 

test-to-test under the same experimental setup by as much as ± 6 to ± 8 dB. 

Figure 5-3 shows selected SRS from the results in Figure 4-17 and Figure 4-18. SRS3 

(sampled at 100 kSa/s) has a similar profile to SRS 4 -6 sampled at 500 kSa/s. However, 

SRS1 and SRS2 differ from the rest of the data, especially below 2000 Hz. If the results 

of SRS1 are stored in a database, for the same set of conditions, the results in SRS4 to 6 

are plausible. Therefore, we can conclude that the current database should not be used for 

SRS retrieval since it is based on data sampled at 100 kSa/s that has wide tolerance limits 

not suitable for experiments based on similarity.  

Moreover, considering that the SRS for TN48 and TN28 are nearly overlapping in 

Figure 5-2, we can assume that there is an equivalence in the conditions (that is, an impact 

of 0.15 MPa using a 0.3 mm aluminum plate and 1 mm natural rubber as absorber is 

equivalent to an impact of 0.09 MPa using two 0.3 mm aluminum plates as absorbers) 

when the same projectile is used. This equivalence can be used to select alternate absorber 

and pressure conditions if the regularly used absorber is not in stock. 
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Table 5-3 Shock test specifications 2 

Frequency (Hz) SRS specifications (m/s2) Lower Spec limit 
100 250.84 125.42 
1000 4954.1 2477.01 
4000 4954.1 2477.01 

 

Figure 5-2 Shock test using retrieved conditions (Sampling speed = 500 kSa/s). Ch1 data is not shown 
because it is corrupted. 

 

 

Figure 5-3 SRS at different sampling rates. This figure shows that sometimes when sampling at 100 
kSa/s, the SRS may be similar to the SRS when sampling at 500 kSa/s. 
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The lateral axis (Ch 2 of Figure 5-2) is much lower than the shock test specification. 

Since the measurement point is on the edge (side) of the interface jig, it is clear that the 

shock will take more time to propagate compared to the impact direction, and the farther 

from the shock source, the lower the shock level. The lateral shock will be higher if a jig 

with a smaller width is used, or if the shock propagation is faster. Changing the projectile 

to a stainless projectile (mass 4.1 kg) will increase the impact momentum, raise the SRS 

amplitude, and cause the lateral shock to propagate faster (section 4.10).  

Figure 5-4 shows that changing the aluminum projectile (2.9 kg) to stainless steel (4.1 

kg) raises the SRS level in the impact direction as well as in the lateral direction compared 

to the SRS shown in Figure 5-2. Also, after changing the interface jig to another interface 

jig (from B-1 to C-3, see section 4.2) of smaller width and thickness, and raising the 

driving pressure, the impact direction shock level increased as expected. This result is 

shown in Figure 5-5. However, the lateral axis shock level did not increase as expected. 

This could be due to the similarity in clamping conditions for both jigs. 

Moreover, there is an uncertainty regarding the actual IF jig used in acquiring the 

database SRS retrieved as the most similar SRS to the shock test specification. The 

information regarding the IF jig could not be captured in the database because it is not 

usually logged during testing. However, the shock response in the impact direction could 

be predicted reasonably. In all instances, the measured SRS and retrieved SRS both 

exceed the target SRS, and the deviation increases as the frequency tend to 10,000 Hz.  
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Figure 5-4 Increasing the projectile mass and maintaining other conditions (TN28) raises the SRS level. 

 

Figure 5-5 Using a smaller interface jig and an aluminum projectile, the impact direction shock is higher, 
but lower in the lateral axis. 

 

The reason is that in the test configuration, the shock machine simulates a near-field 

pyroshock. As explained in section 4.10, at the peak velocity of the pseudo velocity 

response spectrum occurs at the dominant (knee) frequency of the shock environment. 
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The spectrum response reduces in magnitude only after the knee frequency. Figure 5-6 

shows the pseudo velocity response of the Ch2 SRS in Figure 5-4. The peak pseudo 

velocity occurs at 5400 Hz. In this case, the knee frequency of the shock is above the 

upper frequency limit of the test specification Table 5-3, meaning that the shock 

amplitude below the knee frequency will continue to rise. Changing the projectile to a 

soft projectile (like nylon) may lower the knee frequency, however, the acceleration 

amplitude below the knee frequency will be lower. It is difficult to raise the acceleration 

amplitude and lower the knee frequency at the same time. 

 

Figure 5-6 Pseudo velocity spectrum showing peak velocity at the knee frequency of Ch2 SRS shown in 
Figure 5-4. 
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6. Conclusion and Future Work 

This thesis researched on the problem of too many trial-and-errors in the qualification 

tests of spacecrafts (components) for the mechanical shock environment. The shock tests 

were done on an air gun shock machine. The shock response spectrum measured on the 

machine under successive tests were evaluated for repeatability. A novel method to 

quantify SRS similarity was introduced to facilitate rapid qualification testing by 

retrieving the experimental conditions for a test from a database of previous test 

conditions. In the build up to developing the similarity metric, five SRS similarity metrics 

were evaluated for suitability in retrieving an SRS with a similar profile to a target SRS 

specification from a shock test database. All evaluated metrics are calculated from the 

absolute deviation between the SRS magnitudes. The SRS’s absolute deviation does not 

account for the sign of the deviations of the database SRS from the target SRS.  

The weighted RMSE proposed as a metric in this work solves the limitation of the 

RMSE in retrieving a similar SRS to a shock specification from a database. The 

conditions of the SRS retrieved from the database in one instance matches the final tuning 

conditions of an actual shock test determined after 18 trials. In an experiment to 

demonstrate the SRS retrieval using the wRMSE, the SRS measured in a test using the 

retrieved conditions was below the required shock level. The reason is because the SRS 

database comprises data acquired with a wide variation in the measured SRS (± 8 dB). 

When applying the methods learned in the characterization experiments to modify the 

SRS, the behavior of the measured SRS in the shock impact direction could be predicted 

easily. However, the lateral shock response did not behave as expected. The difficulty in 
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predicting the lateral shock response can be attributed to the uncertainty in determining 

the actual interface jig on which the database SRS was measured. Moreover, the database 

retrieval method depends highly on the quality of the SRS data in the database. If 

corrupted data is stored in the database, the quality of future SRS retrievals will be bad. 

Generally, this method is appropriate for retrieving shocks in the impact direction. 

The SRS repeatability analysis revealed that successive SRS measurements under 

controlled condition varied by as much as 16 dB between the two limits of plausible 

measurement values (mean ± 8 dB) when resonant frequencies above 1000 Hz are excited. 

This variation is too wide and impractical for QTs that require only a variation of ± 6 dB 

from the shock test specification on average. In order to reduce the variations in the 

measured SRS especially in the lower resonant frequencies (below 500 Hz), the sampling 

rate of the data acquisition system was increased. Using the maximum sampling speed of 

the DAQ system reduced the SRS variations two within ± 2 dB. This result suggests the 

presence of aliased signals in the data acquired due to inadequate sampling. To further 

reduce aliasing and filter out-of-band resonance noise from the acquired signal, an in-

built low pass filter was used to implement a delta-sigma DAQ architecture, as 

recommended in data acquisition literature. The measured SRS data were subsequently 

validated using a wideband discrete Fourier transform and the velocity-time history.  

The effect of changing various tuning parameters on the measured SRS were also 

investigated and the following observations were made. 

1. A felt absorber is effective for damping out excessive vibration in the high 

frequencies of the SRS. 
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2. More consistent and repeatable SRS measurements were obtained at a sampling 

rate of 500 kSa/s compared to 100 kSa/s while using a felt absorber and a low-

pass filter. 

3. The knee frequency corresponds to the peak velocity of the pseudo velocity 

response spectrum. 

4. The knee frequency occurred reduced when changing between a more massive 

projectile (aluminum) to a less massive projectile of different material (nylon).  

5. Shock amplitude increased with an increase in the driving pressure. Variation in 

the measured SRS was most pronounced below 500 Hz. 

Trying to simultaneously satisfy the shock test requirements on the lateral axis 

contributes to the high level of trial-and-error in shock testing. As a future work, the SRS 

database should be expanded to include data sampled at a minimum sampling rate of 500 

kSa/s. Moreover, changing the mounting of the test item so that the impact can be 

delivered directly to each axis will significantly reduce the number of trials. The reason 

is because shocks in the impact direction can be predicted with more accuracy. Also, it 

may be possible in the future to utilize a deep learning framework to extract features for 

similarity estimation between two or more shock transients. In the current database 

retrieval scheme, the acceleration time history, SRS, and experimental conditions of past 

shock tests are always available ahead of time. Deep learning algorithms have been 

demonstrated for similarity estimation in other fields such as facial recognition and 

fingerprint matching. Similar techniques may be useful in the future for shock response 

similarity estimation utilizing unique features such as the slope or knee frequency of the 
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SRS.  A deep learning method could help determine the experimental conditions for a 

given shock transient if the experimental conditions are unknown or if the record is lost.  
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7. Appendices 

7.1 Statistical SRS limits 

SRS estimates at a single location on a test article (or interface jig) obtained from 

repeated testing under identical experimental conditions have an unknown probabilistic 

structure [57,64]. We can establish statistical lower and upper SRS limits if we assume 

SRS similarity and insignificant individual SRS error.  Moreover, the individual estimates 

in the given measurements must be uncorrelated to the independent variable. We follow 

Piersol’s recommendation [64] establish statistical limits for 𝒏  estimates covering 𝒎 

natural frequencies: 

i. Logarithmic transformation of each SRS estimate; 

ii. Normality (Chi-square) test to see if the estimates fit a Normal (log-normal) 

distribution. The SRS acceleration values corresponding to a given natural 

frequency form a set of estimates; 

iii. Calculating the mean (𝒚𝒋) and standard deviation (𝒔𝒚𝒋
) for each set of estimates; 

iv. Calculating the Normal Tolerance Limit, 𝑵𝑻𝑳𝒚(𝒏, 𝜷, 𝜸), using equations (7-1). 

𝑵𝑻𝑳𝒚(𝒏, 𝜷, 𝜸) is the value of y that will exceed at least the 𝛽 portion of all 

possible values of 𝑦  with a confidence coefficient of 𝛾. 𝑘( , , )  is the normal 

tolerance factor 

v. Use equation (7-2) to transform the Normal Tolerance Limit back to its original 

engineering units. 

𝑁𝑇𝐿 (𝑛, 𝛽, 𝛾) = 𝑦 + 𝑘( , , )𝑠           𝑗 = 1.2,   .  .  .  , 𝑚 (7-1) 

𝑁𝑇𝐿 (𝑛, 𝛽, 𝛾) = 10 ( , , ) (7-2) 
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7.2 Normal Tolerance Factor for different confidence intervals 

N 
γ = 0.50 γ = 0.90 γ = 0.95 

β = 
0.90 

β = 
0.95 

β = 
0.99 

β = 
0.90 

β = 
0.95 

β = 
0.99 

β = 
0.90 

β = 
0.95 

β = 
0.99 

3 1.50 1.94 2.76 4.26 5.31 7.34 6.16 7.66 10.55 
4 1.42 1.83 2.60 3.19 3.96 5.44 4.16 5.14 7.04 
5 1.38 1.78 2.53 2.74 3.40 4.67 3.41 4.20 5.74 
6 1.36 1.75 2.48 2.49 3.09 4.24 3.01 3.71 5.06 
7 1.35 1.73 2.46 2.33 2.89 3.97 2.76 3.40 4.64 
8 1.34 1.72 2.44 2.22 2.75 3.78 2.58 3.19 4.35 
9 1.33 1.71 2.42 2.13 2.65 3.64 2.45 3.03 4.14 
10 1.32 1.70 2.41 2.07 2.57 3.53 2.35 2.91 3.98 
11 1.32 1.70 2.40 2.01 2.50 3.44 2.28 2.82 3.85 
12 1.32 1.69 2.39 1.97 2.45 3.37 2.21 2.74 3.75 
13 1.31 1.69 2.39 1.93 2.40 3.31 2.16 2.67 3.66 
14 1.31 1.68 2.38 1.90 2.36 3.26 2.11 2.61 3.58 
15 1.31 1.68 2.38 1.87 2.33 3.21 2.07 2.57 3.52 
16 1.31 1.68 2.38 1.84 2.30 3.17 2.03 2.52 3.46 
17 1.31 1.68 2.37 1.82 2.27 3.14 2.00 2.49 3.41 
18 1.30 1.67 2.37 1.80 2.25 3.11 1.97 2.45 3.37 
19 1.30 1.67 2.37 1.78 2.23 3.08 1.95 2.42 3.33 
20 1.30 1.67 2.37 1.77 2.21 3.05 1.93 2.40 3.30 
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7.3 Comparison of different SRS retrieval methods (octave spacing = 1/12) 

SRS 
no 

Data above 
Spec (%) 

MAD 
(%) 

ASR 𝐸  𝑀  RMSE(dB) ∆  

 3 100 159.7   2.6 2.7  6.4  8.3  0.093 

 5 91  83.0 2.7  
 

2.3 
 

3.8 
5.8  0.088 

 8 68 50.0  1.8  1.7  3.3  4.1  0.103 
 1 51 40.3  1.7  1.5  3.7  3.6  0.120 
 6 33 45.6  1.5  1.3  4.1  5.0  0.201 
 4 32 52.9  1.7  1.5  4.5   4.7 0.195 
7 6 66.6 0.6 0.5 1.5 11.6 0.615 
2 0 55.6 0.5 0.5 0.9 7.4 0.411 
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7.4 Code: Retrieving similar SRS from an SRS database 

%%% RMSE ALGORITHM DECEMBER 1 2019 
%%% COMPILED BY IBUKUN O. ADEBOLU 
 
%%% This program computes the weighted RMSE between a target SRS and 
%%% database SRS. The computation is in the logarithmic space, to scale 
the 
%%% distance between the SRS below and under the target as a metric for 
%%% selecting most similar data from the database. 
 

INPUT THE TARGET SRS FREQUENCY AND ACCELERATION VALUES 

 
 
clc 
% clearvars 
close all 
 
out1 = sprintf('Input the number of breakpoints (>2) target SRS'); 
disp (out1) 
n = 0; 
while (n<2) 
    %input number of frequency and acceleration combinations 
    n = input (' '); 
    if (n<=2) 
        n=3; 
    end 
end 
 
f=zeros(n,1); 
a=zeros(n,1); 
for i  = 1:n 
    out2 = sprintf(' input frequency(Hz) %d:' ,i ); 
    disp(out2) 
    f(i) = input (' '); 
    out3 = sprintf(' input acceleration(m/s^2) %d: ',i ); 
    disp (out3) 
    a(i) = input (' '); 
end 
%calculate the slope(s) of the input SRS 
num = size(f); 
freq = f; 
r= a; 
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for j = 1:num-1 
    x = log10(f(j+1))-log10(f(j)); 
    y = log10(a(j+1))- log10(a(j)); 
    s(j)= y/x; 
end 
tic 

EXTRAPOLATE THE DATA TO AN INDICATED LOWER FREQUENCY, 

RECOMMEND 10 HZ 

out4 = sprintf(‘Do you want to extrapolate to a lower frequency?’); 
disp(out4) 
disp('1. Yes 2. No'); 

1. Yes 2. No 

fmore = input(' '); 
if (fmore ==1) 
    out5 = sprintf('input the lowest frequency'); 
    disp(out5) 
    f(4) = input(' '); 
    %% calculate a(4) for f(4) and re-sort the data in ascending order 
    % recall the formula for slope 
    ja = log10(f(2))-log10(f(4)) 
    p = log10(a(2))-(s(1)*ja) 
    a(4) = 10.^p; 
    a= sort(a); 
    f = sort (f); 
else 
end 
if (f(end) <=10000) 
    f(end) = 10000; 
else 
    f(end)= f(end); 
end 
a(2)= []; 
f(2)=[]; 
n = length(f); 
 
srs = [f,a]; 
%% recalculate slope? 
for j = 1:n-1 
    x = log10(f(j+1))-log10(f(j)); 
    y = log10(a(j+1))- log10(a(j)); 
    s(j)= y/x; 
end 
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%% create same number of points (480) as recorded SRS as the input SRS 
using the slope equation from Taylor’s series. 
%% oct = octave spacing, spec = acceleration 
 
fb = f(1); 
spec(1) = a(1); 
% oct = 1.01455; 
oct = 2^(1/48); 
ff(1) = f(1); 
fr= f; 
i = 2; 
num = length(fr); 
 
clear f 
clear spec 
f(1) = fr(1); 
while (1) 
    ff = oct * fb; 
    fb = ff; 
    if (ff> fr(num)) 
        break; 
    end 
    if ( ff >= fr(1)) 
        for j = 1: num 
             
            if (ff == fr(j)) 
                f(i) = ff; 
                spec (i) = r(j); 
                nspec =i; 
                i = i+1; 
                break; 
            end 
             
            if (ff < fr(j) && j>1) 
                f(1) = fr(1); 
                spec(1)= a(1); 
                f(i) = ff; 
                az = log10(a(j-1)); 
                az = az +(s(j-1)*(log10(ff)-log10(fr(j-1)))); 
                spec (i) = 10.^az; 
                nspec = i; 
                 
                while (f(i)<freq(1)) 
                    k1 = i; 
                    break 
                    if (f(k1)< freq(1)) 
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                        k1 = k1+1; 
                    end 
                end 
                while (f(i)<freq(3)) 
                    k3 = i; 
                    break 
                    if (f(k3)< freq(3)) 
                        k3 = k3+1; 
                    end 
                end 
                while (f(i)<1000) 
                    k1k = i; 
                    break 
                    if (f(k1k)< 1000) 
                        k1k = k1k+1; 
                    end 
                end 
                 
                while (f(i)<fr(2)) 
                    kn = i; 
                    break 
                    if (f(kn)< fr(2)) 
                        kn = kn+1; 
                    end 
                end 
                i = i+1; 
                break 
            end 
        end 
    end 
end 
 
if (f(nspec) < fr(end)) 
    nspec = nspec +1; 
    f(nspec)= fr(end); 
    spec(nspec)=a(end); 
end 
srss = [f;spec]'; 
 
 

LOAD THE DATABASE (FOR EXAMPLE ACC) 

sspec = spec'; 
load 'ACCLSMLPR2.mat' 
% ACC = ACCLPRLSMTune1{:,:}; 
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% load 'one12.mat'                %axel.mat is reduced database having 
10 elements 
% load 'ACCLSMLPRZ.mat' 
 
ACC = ACCLSMLPR{:,:}; 
% ACC = ex; 
 
% clear ACC 
% ACC = one12; 
 
[h,q]=size(ACC); 
ACCe = ACC; 
ACCe(:,1)=[]; 
err1 = zeros(h,q-1); 
 
err2 = zeros(kn,q-1); 
% 

APPLY WEIGHTS, W_I TO ALL FREQUENCIES AND CALCULATE THE 

WEIGHTED RMSE FOR ALL DATA 

% Weights for frequencies from 10 Hz to original test f1, c 
% Weights for frequencies from f1 to kf (f2), g 
% Weights for frequencies from kf to (Kf+3000), e 
% Weights for frequencies from (Kf+3000) to f2, 
 
 
 
w = zeros(length(f),1); 
fw = freq(2) + 3000; % originally plus 1000 
% up to the knee frequency, the weight = 1 and decreases afterwards to 
% minimize the big deviations of the upper frequencies. 
% find all freq less than first frequency of srs(g), 
% find all extrapolated spectrum(c), then find all f greater than set 
threshold 
% fw as (e) 
g = find (f(freq(1)>=f)); 
c = find (f(fr(2)>=f)); 
e = find (f>fw); 
% Double alphabeth correspond to index positions in the 
% range g c and e 
 
cc = c(end); 
ee = e(1); 
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for d = 1:g(end) % from 10 Hz to f1 
    w(d) = 1; 
 
    %                     w(d) = 0.05;     default for w(d) = 5 
end 
 
 
for d = (g(end)+1:cc+1) % from f1(100 Hz) to 1 index before knee 
frequency, f(2) 
    w(d) = 1; 
end 
 
 
for (d = cc+2:ee-1) % from knee frequency to certain value before zero  
weighting starts 
 
    w(d) = 0.5; 
end 
 
 
for d = (e(1):e(end)) % beyond knee frequency + X 
    w(d) = 0.05; 
end 
 
 

CALCULATE THE DEVIATION (ERROR), Q IS THE NUMBER OF COLUMNS 

(INCLUDING THE COLUMN FOR FREQUENCY%  

% ... and the acceleration data for each XYZ channel per test 
% The number of tests = (q-1)/3, err = error, S_err = squared error. 
% Resolve error computation in vector space to solve scaling problem. 
% weight at all frequencies w_i = 1 
 
for i = 1:(q-1) 
% %     mad(:,i) = (abs(ACCe(:,i)-sspec(:,1))./sspec(:,1))*100; 
% %     mad2(:,i) = (abs(ACCe(k1:k3,i)-
sspec(k1:k3,1))./sspec(k1:k3,1))*100; 
% %     mad3 = mean(mad2); 
% %     SRS_ratio(:,i) = (ACCe(:,i)./sspec(:,1)); 
% %     SRS_ratio2 = mean(SRS_ratio(k1k:k3,:)); 
% %     %asr = SRS_ratio2; 
%     %Asr = find(asr>1); 
%     %Asr(:,2) = SRS_ratio2(Asr); 
%     %ASr = sortrows(Asr,2); 
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%     Er(:,i) = (sum(ACCe(:,i))/(sum(sspec(:,1)))); 
%     for k = 1:(q-1) 
 
%         Er2(:,k) = (sum(ACCe(k1:k3,k))/(sum(sspec(k1:k3,1)))); 
%         if k==k3 
 
%         end 
%     end 
    %her = Er2; 
    %Her = find(her>1); 
    %Her(:,2) = Er2(Her); 
 
    %HEr = sortrows(Her,2, 'ascend'); 
    Mr(:,i) = max(ACCe(:,i))/max(sspec(:,1)); 
 
    Mr2(:,i) = max(ACCe(k1:k3,i))/max(sspec(k1:k3,1)); 
%     mer = Mr2'; 
%     Mer = find(mer>=1); 
%     Mer(:,2) = Mr2(Mer); 
%     MEr = sortrows(Mer,2,'ascend'); 
    err(:,i)= ((20*(log10(ACCe(:,i))-log10(sspec(:,1))))); 
    err1(:,i)= ((20*(log10(ACCe(:,i))-log10(sspec(:,1)))).^2); % whole 
spectrum 
 
    %                         err2 = err1 
    %                         err2(kn+1:end,:)=[]%knee frequency only 
 
    %                         err3(:,i)=w'*(20*((log10(ACCe(:,i))-
log10(sspec(:,1)))).^2); %weighted root mean square error 
     
    % calculate the mean square error and the root mean square error for 
all the data 
    MSE1 = mean(err1); 
    RMSE = sqrt(mean(err1)); 
     
    % calculate the mean of the square error (MSE) and root mean square 
error up to the knee frequency 
    
    err3(:,i) = w .* err1(:,i); 
    err2 = err3; 
    err2(kn+1:end,:)=[]; 
    err4 = err1(k1:k3,:); 
    MSE2 = sqrt(mean(err1(k1:k3,:))); 
    % calculate the mean of the square error (MSE) and root mean square 
error up to the knee frequency 
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    %                         MSE2 = mean(err2); 
    RMSE_star = sqrt(mean(err2)); 
end 

 

wMSE= (sum(err3)); 
que = sum(w); 
wRMSE = wMSE/que; 

FIND THE CUMULATIVE RMSE THAT ADDS THE RESULTS FOR ALL THREE 

CHANNELS 

% find the cumulative wRMSE that adds the results for the channels ; one 
reason to not use RMSE as an index is that it is heavily 
% biased by frequency deviations in the high frequency(0 slope) srs 
region, so it is better to use only the straight portion of the graph 
 
clear n 
 
while (1) 
    [b m]= size(RMSE); 
     
%     n = m/3 
 
    if rem(m,3)==0 
         n = m/3 
    else 
 
         n = (m-1)/3 
    end 
     qq = n;                   
     
     
    CH = zeros(1,n) 
    g = numel(CH); 
    k = numel(CH); 
    j = 1 
    alpha = 1.0 
     
    for v = 1:n 
         
        k(v) = (RMSE(j)) + RMSE(j+1) + ((alpha).*RMSE(j+2)); 
        t(v) = (RMSE_star(j)) + RMSE_star(j+1) + 
(alpha.*RMSE_star(j+2)); 
        z(v) = (wRMSE(j)) + wRMSE(j+1) + (0.05*wRMSE(j+2)); 
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        ty(v)= (MSE2(j)) + MSE2(j+1) + ((alpha).*MSE2(j+2)); 
        j = j+3; 
    end 
    if j >=q-3 
        break 
    end 
 
     
end 
%  CH = g; 

SORT THE RESULT 

 [pp kk] = sort (k); 
 [pp tt] = sort (t); 
 [pp gg] = sort (z); 
 [pp yy] = sort (ty); 

FIND THE PERCENTAGE POSITIVE ERROR 

clear y 
 
[x l] = size (ACCe); 
percposit = zeros(1,l); 
percplus = zeros(1,l); 
for i = 1:l 
    u = find(err(err(k1:k3,i)>0)); 
    y = find(err(err(:,i)>0)); 
    percposit(i)= 100.*(length(y)/(480)); %percentage positive error 
    percplus(i)= 100.*(length(u)/(k3-k1+1)); 
    i = i+1 
    if i>l 
    end 
end 
[i pec]=sort(percposit','descend'); 
[i peck]=sort(percplus','descend'); 
 
clear jo 
jo = 0.01; % scalar multiplier 
 
me = [pec i]; 
me(:,3 )= RMSE (pec);%(to undo sort before assigning RMSE) 
% sort before doing (be careful to check raw code) 
me(:,4) = 0.01.*(100-me(:,2));%percentage negative error 
me(:,5) = me(:,3)/(max(RMSE)-min(RMSE)) 
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me(:,6) = 100*(me(:,3)/sum(RMSE)) 
me(:,7)= me(:,5).*me(:,4); 
% me(:,7)= 1-(me(:,3)/max(RMSE)) 
% me(:,7)=me(:,6).*me(:,5) 
 
% me(:,7)=0.2*((4.*me(:,6))+(1.*(me(:,5)))) 
me(:,8)=me(:,5).*(me(:,4)+ jo*me(:,6)) 
sortrows(me2,[8,6]); 
while(1) 
    rk_fact = sortrows (me); 
    rk_fact2 = rk_fact(:,8); 
    n = length(rk_fact2); 
%     aa= zeros(1,(n)/3); 
    aa= zeros(1,qq); 
    alpha = 1; 
    j = 1; 
    for v = 1:(n-1)/3 % for database size = 10, change n to n-1 
 
        aa(v) =(rk_fact2(j) + rk_fact2(j+1) + 
((alpha).*rk_fact2(j+2)))/3; 
        j = j+3; 
    end 
    if j >=n-3 
 
        break 
    end 
end 
 
[bb cc]=sort(aa); 
% me2 is wRMSE calculation between 100 Hz and upper frequeny limit of 
spec 
 
me2 = [peck i]; 
me3 = sortrows(me2); 
me2 = me3; 
clear me3 
% me2(:,3 )= 1-((MSE2/max(MSE2))); 
% me2(:,3 )= (MSE2/sum(MSE2))*100; 
me2(:,3)= MSE2/(max(MSE2))%-min(MSE2)); 
% me2(:,3)= MSE2/(max(MSE2)-min(MSE2)) 
me2(:,4) = (100-me2(:,2))*jo;%percentage negative error 
% me2(:,5) = ((me2(:,3)).*(me2(:,4).*4)+(1.*me2(:,3)))/5 
me2(:,5) = (me2(:,3)).*(me2(:,4)) 
me2(:,6)= MSE2(:,:); 
me2(:,7 )= (MSE2/sum(MSE2))*100; 
me2(:,8) = (me2(:,3).*me2(:,4))+jo*me2(:,7) 
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while(1) 
    r_fact = sortrows (me2); 
 
    r_fact2 = r_fact(:,8); 
    m = length(r_fact2); 
 
    dd= zeros(1,qq); %for database size = 10, change m to m-1 
    alpha = 1; 
    j = 1; 
    for v = 1:n/3 
        dd(v) =( r_fact2(j) + r_fact2(j+1) + ((alpha).*r_fact2(j+2)))/3; 
 
        j = j+3; 
    end 
 
    if j >=n-3 
        break 
 
    end 
 
end 
[ee, ff]= sort(dd,'ascend'); 
 
 

READ THE TUNING CONDITIONS 

dayta = readtable ('Tuning2.xlsx','ReadRowNames',true); 
dayta(ff(1:10),:) 
toc 
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7.4.1 Tuning conditions for all tests in the SRS database 

TN# Pressure C1 QC1 C2 QC2 Remark Projectile 

1 0.05 Al 1 NR 1 Natural 
rubber 

thickness = 
0.3 mm 

SUS2.9 

TN2 0.05 NONE 0 NONE 1 
 

SUS2.9 

TN3 0.05 NONE 0 NONE 1 
 

SUS2.9 

TN4 0.06 Al 1 NR 1 Natural 
rubber 

thickness = 
0.3 mm 

SUS2.9 

TN5 0.05 NONE 0 0 0 No Center 
Bolt 

SUS2.9 

TN6 0.05 NONE 0 0 0 Fixing 
torque 

change (20 
Nm) 

SUS2.9 

TN7 0.05 NONE 0 0 0 Fixing 
torque (20 

Nm) 

SUS2.9 

TN8 0.05 NONE 0 0 0 Fixing 
torque (20 

Nm) + 
center bolt 

SUS2.9 

TN9 0.05 NONE 0 0 0 Torque 
change (30 

Nm) 

SUS2.9 

TN10 0.05 NONE 0 0 0 
 

SUS2.9 

TN11 0.052 NONE 0 0 0 Torque 
change (15 
Nm), No 

center bolt 

SUS2.9 

TN12 0.052 NONE 0 0 0 
 

SUS2.9 

TN13 0.035 NONE 0 0 0 
 

SUS2.9 

TN14 0.035 Al 1 NR 1 
 

SUS2.9 

TN15 0.035 Al 1 NR 1 
 

SUS2.9 

TN16 0.035 Al 1 NR 2 
 

SUS2.9 

TN17 0.035 Al 1 NR 2 
 

SUS2.9 

TN18 0.04 Al 1 NR 2 
 

SUS2.9 

TN19 0.05 Al 1 NR 2 
 

SUS2.9 

TN20 0.05 Al 1 NR 2 Projectile is 
changed 

(from SUS 
to PL) 

PN 

TN21 0.05 Al 1 NR 2 
 

PN 
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TN22 0.04 Al 1 NR 2 
 

PN 

TN23 0.05 Al 1 NR 3 
 

PN 

TN24 0.045 Al 1 NR 3 
 

PN 

TN25 0.05 Al 1 NR 4 
 

PN 

TN26 0.05 Al 1 NR 4 
 

PN 

TN27 0.05 Al 1 NR 4 
 

PN 

TN28 0.09 Al 2 NONE 0 
 

Al2.5 

TN29 0.1 Al 1 NONE 0 
 

Al2.5 

TN30 0.1 Al 2 NONE 0 
 

Al2.5 

TN31 0.1 F 1 NONE 0 200123 Al2.5 

TN32 0.1 F 1 NONE 0 
 

Al2.5 

TN33 0.1 NR 1 NONE 0 
 

Al2.5 

TN34 0.12 NR 1 NONE 0 
 

Al2.5 

TN35 0.12 NR 1 NONE 0 
 

Al2.5 

TN36 0.123 NR 1 NONE 0 
 

Al2.5 

TN37 0.13 NR 1 NONE 0 
 

Al2.5 

TN38 0.08 NONE 0 NONE 0 
 

Al2.5 

TN39 0.075 NONE 0 NONE 0 
 

Al2.5 

TN40 0.075 NONE 0 NONE 0 
 

Al2.5 

TN41 0.08 NONE 0 NONE 0 
 

Al2.5 

TN42 0.09 NONE 0 NONE 0 
 

Al2.5 

TN43 0.1 NONE 0 NONE 0 
 

Al2.5 

TN44 0.11 NONE 0 NONE 0 
 

Al2.5 

TN45 0.145 Al 1 NR 1 200121 Al2.5 

TN46 0.145 Al 1 NR 1 
 

Al2.5 

TN47 0.145 Al 1 NR 1 
 

Al2.5 

TN48 0.15 Al 1 NR 1 
 

Al2.5 

TN49 0.15 Al 1 NR 1 
 

Al2.5 

TN50 0.155 Al 1 NR 1 
 

Al2.5 

TN51 0.175 Al 1 NR 1 
 

Al2.5 

TN52 0.185 Al 1 NR 1 
 

Al2.5 

TN53 0.2 Al 1 NR 1 
 

Al2.5 

TN54 0.2 Al 1 NR 1 
 

Al2.5 

TN55 0.2 Al 1 NR 1 Torque 
changed to 

25 Nm 

Al2.5 
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TN56 0.2 Al 1 NR 1 
 

Al2.5 

TN57 0.2 Al 1 NR 1 
 

Al2.5 

TN58 0.145 Al 1 NR 1 
 

Al2.5 

TN59 0.12 Al 1 NR 1 
 

Al2.5 

TN60 0.12 NONE 0 NONE 0 
 

Al2.5 

TN61 0.13 NONE 0 NONE 0 
 

Al2.5 

TN62 0.13 NONE 0 NONE 0 
 

Al2.5 

TN63 0.13 NONE 0 NONE 0 
 

Al2.5 

TN64 0.13 NONE 0 NONE 0 
 

Al2.5 

TN65 0.051 NONE 0 NONE 0 20191224 PN 

TN66 0.08 NONE 0 NONE 0 
 

PN 

TN67 0.08 NONE 0 NONE 0 
 

PN 

TN68 0.081 NONE 0 NONE 0 
 

PN 

TN69 0.08 NONE 0 NONE 0 
 

PN 

TN70 0.084 NONE 0 NONE 0 
 

PN 

TN71 0.084 Al 1 NONE 0 
 

PN 

TN72 0.09 NONE 0 NONE 0 
 

Al2.5 

TN73 0.12 NONE 0 NONE 0 
 

Al2.5 

TN74 0.09 NONE 0 NONE 0 
 

Al2.5 

TN75 0.08 NONE 0 NONE 0 
 

Al2.5 

TN76 0.08 NONE 0 NONE 0 
 

Al2.5 

TN77 0.08 NONE 0 NONE 0 
 

Al2.5 

TN78 0.075 NONE 0 NONE 0 
 

Al2.5 

TN79 0.083 Al 1 NR 1 
 

Al2.5 

TN80 0.066 Al 1 NR 1 
 

Al2.5 

TN81 0.065 Al 1 NR 1 
 

Al2.5 

TN82 0.065 Al 1 NR 1 
 

Al2.5 

TN83 0.065 Al 1 NR 1 
 

Al2.5 

TN84 0.065 Al 1 NR 1 
 

Al2.5 

TN85 0.065 Al 1 NR 1 
 

Al2.5 

TN86 0.1 SUS0.3 1 NR 1 20180503 SUS4.2 

TN87 0.2 SUS0.5 1 NR 1 
 

SUS4.2 

TN88 0.2 SUS0.5 1 NR 1 
 

SUS4.2 

TN89 0.23 SUS0.3 1 NR 1 
 

SUS4.2 

TN90 0.23 SUS0.3 1 NONE 0 
 

SUS4.2 
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TN91 0.23 Al 1 NONE 0 
 

SUS4.2 

TN92 0.232 Al 1 NR 1 
 

SUS4.2 

TN93 0.229 Al 2 NONE 0 
 

SUS4.2 

TN94 0.229 Al 2 NR 1 
 

SUS4.2 

TN95 0.229 Al 2 NONE 0 
 

SUS4.2 

TN96 0.23 Al 2 NONE 0 20180511 SUS4.2 

TN97 0.22 Al 2 NONE 0 
 

SUS4.2 

TN98 0.2 Al 2 NONE 0 
 

SUS4.2 

TN99 0.22 Al 2 NONE 0 
 

SUS4.2 

TN100 0.23 Al 2 NONE 0 
 

SUS4.2 

TN101 0.08 NONE 0 NONE 0 200129 Al2.5 

TN102 0.08 NONE 0 NONE 0 
 

Al2.5 

TN103 0.08 Al 1 NONE 0 
 

Al2.5 

TN104 0.08 Al 1 NONE 0 
 

Al2.5 

TN105 0.08 Al 2 NONE 0 
 

Al2.5 

TN106 0.08 Al 2 NONE 0 
 

Al2.5 

TN107 0.08 NR 1 NONE 0 
 

Al2.5 

TN108 0.08 NR 1 NONE 0 
 

Al2.5 

 

 


