
Software Log Anomaly Detection Through One
Class Clustering of Transformer Encoder
Representation

著者 Hirakawa Rin, Tominaga Keitaro, Nakatoh
Yoshihisa

journal or
publication title

Communications in Computer and Information
Science

volume 1224
page range 655-661
year 2020-07-10
URL http://hdl.handle.net/10228/00008403

doi: https://doi.org/10.1007/978-3-030-50726-8_85

Software Log Anomaly Detection through One Class

Clustering of Transformer Encoder Representation

Rin Hirakawa1, Keitaro Tominaga2 and Yoshihisa Nakatoh1

1 Kyushu Institute of Technology, 1-1 Sensuicho, Tobata Ward,

Kitakyushu City, Fukuoka Prefecture, Japan
2 Panasonic System Design Co., Ltd., 3-1-9, Shinyokohama, Kohoku-ku,

Yokohama City, 222-0033, Japan

nakatoh@ecs.kyutech.ac.jp

tominaga.keitaro@jp.panasonic.com

Abstract. For smart devices such as smartphones and tablets, developing new

software using open source software (OSS) is becoming mainstream. While OSS-

based development can greatly increase project productivity, it is more difficult

to identify the cause of software defects. In this paper, we propose a deep learn-

ing model that performs unsupervised learning based on the log data accumulated

in the project and calculates the degree of abnormality per line for newly given

logs. The proposed method is evaluated using open supercomputer system log

data, Blue Gene / L, and the accuracy of the proposed method is compared with

the conventional log anomaly detection method using LSTM AutoEncoder. As a

result of the comparative experiment, it was found that the proposed method per-

formed better than the conventional method in the two scores of AUROC and F1

Score at the cutoff point.

Keywords: Anomaly Detection, Software Log, Transformer, Unsupervised

Learning.

1 Introduction

In software development for smart devices such as smartphones and tablets, it is nec-

essary to implement abundant functions in a short period of time and release / update

them to meet the needs of consumers. Since Open Source Software (OSS) can signifi-

cantly reduce the time required for development and increase the reusability of pro-

grams, software development using these is becoming a global trend. On the other hand,

the scale of software development using OSS is enormous, making it more difficult to

identify the cause when a problem occurs. Engineers analyzing such complex bugs

check a huge log of mixed output from various applications, however, the level of pro-

ficiency can make a huge difference in the speed of analysis.

Our ultimate goal is to create a GUI tool that visualizes statistical information on log

data and possible causes of defects, so that anyone can analyze bugs smoothly. In this

paper, we propose a method to calculate the degree of abnormality for each row of

newly given log data based on the log data accumulated in the project. As a result, when

mailto:LNCS@Springer.com

2

performing defect analysis, it is possible to prioritize checking from the line that shows

a high degree of abnormality, and it is expected that the analysis time will be shortened.

2 Proposed Method

Our debugging support tool is intended to provide users with two levels of anomaly

scores for the current log data. In the first method, a single log data is input in a stream-

ing format, and the time series abnormalities of each row are calculated. In the second

method, we treat each line of the log message as a separate input and calculates the

degree of anomalies when compared to the entire log data accumulated so far in the

project. The first method has been discussed in our past paper [1], and this paper elab-

orates on the second method.

2.1 Related Works

When detecting abnormalities in log data, it is common to treat log messages as time-

series data. Because it is difficult to handle log messages in the same way as natural

language, messages can be divided into fixed phrase parts (keys) and embedded values

(parameters) so that time series models such as LSTM can learn them [2]. This method

may not be able to determine anomaly score efficiently if the training data does not

cover all possible normal execution patterns. Our proposed method detects anomalies

based on the meaning of sentences by converting log messages into features (distributed

expressions) instead of using log key time-series patterns.

2.2 Model Structure

In the proposed model, each line of the log is input to a trained Transformer [3] with

fixed weights to obtain the encoder representation (Fig.1). Before being input to Trans-

former, log messages are broken down into units called subwords by the morphological

analyzer WordPiece [4] for neural language models. The subwords are transformed into

contextual distributed representations by the Transformer encoder, and we use mean of

them as features representing the entire sentence.

Fig. 1. Structure of proposed log anomaly calculation model.

3

The method for calculating the anomaly score in our model is inspired by One Class

Neural Networks [5]. The distributed representation combined in the previous block is

input to the three-layer Feed Forward Neural Networks (FFNN), which is finally con-

verted to a scalar value that represents the distance from the origin. One-class clustering

is performed based on the distance, and abnormal lines are detected by thresholding the

score of each data as an abnormal score.

3 Experiment

In this chapter, we will use open log datasets to measure performance in anomaly de-

tection and verify the effectiveness of the proposed method.

3.1 Datasets and Setup

BGL Datasets. BGL [6] is an open dataset of logs collected from the BlueGene / L

supercomputer system at Lawrence Livermore National Labs (LLNL) in Livermore,

California. The log contains alert and non-alert messages identified by tags. This dataset

is provided by the Loghub repository [7], a large collection of system log datasets for

AI-powered log analysis.

Setup. Only the message part of the log about KERNEL of the data is extracted and

formatted into a form suitable for the proposed method. Duplicate messages are re-

moved and the entire data set is split for training, testing and validation in a 6: 2: 2 ratio.

Details of the data are shown in Table 1.

3.2 Model Condition

The anomaly detection accuracy of the proposed method is compared with the conven-

tional anomaly detection method using LSTM AutoEncoder. This section details the

experimental conditions for each model.

Proposed Method. We use BERT-Base (L = 12, H = 768, published by Google [8]) as

a Transformer encoder. Table 2 shows the configuration of each layer of FFNN. The

loss function of FFNN is shown below (Equation 1).

 r +
1

𝜈
∙
1

𝑁
∑ max⁡(0, 𝑦𝑛̂(𝑤, 𝑉) ⁡− 𝑟)𝑁
𝑛=1 (1)

Table 1. Breakdown of the number of normal / abnormal data.

 Training Test Validation

Normal 170549 56833 57361

Anomaly 1534 529 508

Table 2. Architecture of Feed Forward Neural Networks (Proposed Method).

Input (feature dimension) Hidden layer Output layer

768 72 1

4

Table 3. Hyperparameters of Proposed Method

Parameter Value Optimized by Optuna

𝜈 2.58e-03 ✓

Learning rate 3.19e-05 ✓

Epoch 20 ✓

Batch size 32

Max sequence length 128

 where, w and V are the weights between the hidden layer and the output layer and

between the input layer and the hidden layer of the FFNN, respectively. Also, 𝑦𝑛̂(𝑤, 𝑉)
indicates the final output of FFNN obtained by applying the sigmoid activation func-

tion. The values of w and V are updated repeatedly using a backpropagation algorithm

on a mini-batch of training data (batch size N). The value of r is updated as 𝜈th quantile

of 𝑦𝑛̂(𝑤, 𝑉) when all training data is input to FFNN whose weight is frozen at the end

of the epoch. The optimal value of 𝜈 is determined using the open source hyperparam-

eter auto-optimization framework Optuna [9]. Table 3 shows the details of the hyperpa-

rameters determined using Optuna.

LSTM AutoEncoder. To compare the accuracy, we use a conventional LSTM Auto-

Encoder in this experiment. The AutoEncoder implementation is based on the text-au-

toencoder repository [10] and its original paper [11]. WordPiece is used for the mor-

phological analyzer as in the proposed method, and the model is trained using only the

normal training data in Table 1. The actual anomaly detection uses exactly the same

test data as the proposed method. We use the cross-entropy error obtained in entering

the log message as a scalar value equivalent to the anomaly score of our proposed

method. Table 4 shows the parameters used when training text-autoencoder models.

3.3 Evaluation

In the evaluation stage, the accuracy of anomaly detection on test data is verified using

each model after training.

Table 4. Hyperparameters of LSTM AutoEncoder.

Parameter Value

Model type Denoising Auto-Encoder

Learning rate 5e-4

Epoch 2

Batch size 32

Max sequence length 128

Embedding dimension 512

Hidden state dimension 128

Number of layer 1

5

Each model is compared using two types of scores: AUROC and F1 scores. AUROC

is an evaluation score that indicates how good the accuracy of the classification model

is across the entire threshold. When determining the F1 score, we use a threshold at the

cut-off point where the point at which the sensitivity – (1 – specificity) value is highest

in the ROC curve.

4 Results & Discussion

Table 5 shows the AUROC value of each model calculated using the test data. Tables

6 and 7 show the F1 score and the other scores used when calculating it for the proposed

method and LSTM AutoEncoder, respectively.

These results are the scores for the parameters that each model performs best, and

show that the proposed method outperforms the LSTM AutoEncoder in both AUROC

and F1 scores. Note that the performance of the proposed method is very sensitive to

one of the hyperparameters, v, and the learning rate, and the same conditions may not

be optimal when the size of the dataset changes. As a future task, it is necessary to

investigate strategies for stable learning on the updated data set.

Table 5. AUROC of Each Models.

Proposed Method LSTM AutoEncoder

0.823 0.786

Table 6. F1-score of Proposed Method.

 Precision Recall F1-score Support

Class
Normal 1.00 0.82 0.90 56833

Anomaly 0.04 0.82 0.08 529

Accuracy 0.82

57362 Macro Avg. 0.52 0.82 0.49

Weighted Avg. 0.99 0.82 0.89

Table 7. F1-score of LSTM AutoEncoder.

 Precision Recall F1-score Support

Class
Normal 1.00 0.76 0.86 56833

Anomaly 0.03 0.75 0.05 529

Accuracy 0.76

57362 Macro Avg. 0.51 0.75 0.46

Weighted Avg. 0.99 0.76 0.85

6

5 Conclusion

In this paper, we proposed a deep learning model that calculates an abnormal score for

each line of log data by unsupervised learning. In the evaluation of anomaly detection

accuracy using the open log data set BGL, it was found that the proposed method can

detect anomalous rows more efficiently than the conventional LSTM AutoEncoder.

The degree of abnormality calculated by the proposed method indicates the abnor-

mality in the accumulated log. This can be applied to construction for GUI that helps

developers to easily find abnormal lines in the large amount of logs in a short time.

In the future, we will evaluate how much more efficient the debugging work will be

when the developer uses a debugging support tool that reflects the anomaly score cal-

culated by the proposed method.

References

1. Rin Hirakawa, Keitaro Tominaga, Yoshihisa Nakatoh: “Study on Real-time Log Anomaly

Detection Method using HTM algorithm, Proceedings of the Institute of Electronics,” Infor-

mation and Communication Engineers, vol.2019 Society Conference, pp.74 (2019).

2. Du, Min & Li, Feifei & Zheng, Guineng & Srikumar, Vivek. “DeepLog: Anomaly Detection

and Diagnosis from System Logs through Deep Learning,” pp.1285-1298.

10.1145/3133956.3134015. (2017).

3. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova: “BERT: Pre-training

of deep bidirectional transformers for language understanding,” In NAACL-HLT (2018).

4. Wu, Yonghui & Schuster, Mike & Chen, Zhifeng & V. Le, Quoc & Norouzi, Mohammad

& Macherey, Wolfgang & Krikun, Maxim & Cao, Yuan & Gao, Qin & Macherey, Klaus &

Klingner, Jeff & Shah, Apurva & Johnson, Melvin & Liu, Xiaobing & Kaiser, ukasz &

Gouws, Stephan & Kato, Yoshikiyo & Kudo, Taku & Kazawa, Hideto & Dean, Jeffrey:

“Google's Neural Machine Translation System: Bridging the Gap between Human and Ma-

chine Translation,” (2016).

5. Chalapathy, Raghavendra & Menon, Aditya & Chawla, Sanjay: “Anomaly Detection using

One-Class Neural Networks,” (2018).

6. Adam J. Oliner, Jon Stearley: “What Supercomputers Say: A Study of Five System Logs,”

in Proc. of IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), (2007).

7. Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, Michael R. Lyu:

“Tools and Benchmarks for Automated Log Parsing,” International Conference on Software

Engineering (ICSE), (2019).

8. Bert (Github), https://github.com/google-research/bert, last accessed 2020/03/14.

9. Optuna (Github), https://github.com/optuna/optuna, last accessed 2020/03/15.

10. text-autoencoders (Github), https://github.com/shentianxiao/text-autoencoders, last ac-

cessed 2020/03/15.

11. Tianxiao Shen, Jonas Mueller, Regina Barzilay, Tommi Jaakkola: “Educating Text Autoen-

coders: Latent Representation Guidance via Denoising,” arXiv preprint

 arXiv:1905.12777, (2019).

https://github.com/google-research/bert
https://github.com/optuna/optuna

