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Abstract. The NIS-Apriori algorithm, which is extended from the Apri-
ori algorithm, was proposed for rule generation from non-deterministic
information systems and implemented in SQL. The realized system han-
dles the concept of certainty, possibility, and three-way decisions. This
paper newly focuses on such a characteristic of table data sets that there
is usually a �xed decision attribute. Therefore, it is enough for us to han-
dle itemsets with one decision attribute, and we can see that one frequent
itemset de�nes one implication. We make use of these characteristics and
reduce the unnecessary itemsets for improving the performance of exe-
cution. Some experiments by the implemented software tool in Python
clarify the improved performance.

Keywords: rule generation, the Apriori algorithm, frequent itemset, in-
complete information, three-way decisions.

1 Introduction

We are following rough set based rule generation from table data sets [10, 14,
22] and Apriori based rule generation from transaction data sets [1, 2, 9], and we
are investigating a new framework of rule generation from table data sets with
information incompleteness [17�21].

Table 1 is a standard table. We term such a table as a Deterministic Informa-
tion System (DIS). In DISs, several rough set based rule generation methods are
proposed [3, 5, 10, 14, 16, 22, 23]. Furthermore, missing values `?' [6, 7, 11] (Table
2) and a Non-deterministic Information System (NIS) [12, 13, 15] (Table 3) were
also investigated to cope with information incompleteness. In [12], question-
answering based on possible world semantics was investigated, and an axiom
system was given for query translation to one equivalent normal form [12].
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Table 1. An exemplary DIS ψ.

Object P Q R S Dec
x1 3 1 2 2 a
x2 2 2 2 1 a
x3 1 2 2 1 b
x4 1 3 3 2 b
x5 3 2 3 1 c

Table 2. An exemplary NIS Φ with
missing value `?', whose value is one
of 1, 2, 3.

Object P Q R S Dec
x1 3 ? 2 2 a
x2 2 {2, 3} 2 ? a
x3 ? 2 2 {1, 2} b
x4 1 3 3 2 b
x5 3 2 3 ? c

Table 3. An exemplary NIS Φ. Each `?'
is replaced with a set {1, 2, 3} of possible
attribute values.

Object P Q R S Dec
x1 3 {1, 2, 3} 2 2 a
x2 2 {2, 3} 2 {1, 2, 3} a
x3 {1, 2, 3} 2 2 {1, 2} b
x4 1 3 3 2 b
x5 3 2 3 {1, 2, 3} c

In NIS, some attribute values are given as a set of possible attribute values
due to information incompleteness. In Tables 2, {2, 3} in x2 implies `either 2 or
3 is the actual value, but there is no information to decide it ', and `?' does there
is no information. We replace each `?' with all possible attribute values and have
Table 3. Thus, we can handle `?' in NIS (some discretization may be necessary
for continuous attribute values). Formerly in NISs, question-answering and in-
formation retrieval were investigated, and we are coping with rule generation
from NISs.

The Apriori algorithm [1] was proposed by Agrawal for handling transaction
data sets. We adjust this algorithm to DIS and NIS by using the characteristics
of table data sets. The highlight of this paper is the following.
(1) A brief survey of Apriori based rule generation and a rule generator,
(2) Some improvements of the Apriori based algorithm and a rule generator,
(3) Experiment by the improved rule generator in Python.

This paper is organized as follows: Section 2 surveys our framework on NISs
and the Apriori algorithm [1, 2, 9]. Section 3 connects table data sets to trans-
action data sets and copes with the manipulation of candidates of rules. Then,
more e�ective manipulation is proposed in DISs and NISs. Section 4 describes
a new NIS-Apriori based system in Python and presents the improved results.
Section 5 concludes this paper.

2 Preliminary: An Overview of Rule Generation and

Examples

This section brie�y reviews rule generation from DISs and NISs.
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2.1 Rules and Rule Generation from DISs

In Table 1, we consider implications like [P, 3] ⇒ [Dec, a] from x1 and [R, 2] ∧
[S, 1] ⇒ [Dec, b] from x3. Generally, a rule is de�ned as an implication satisfying
some constraint. The following is one standard de�nition of rules [1, 2, 9, 14, 22].
We follow this de�nition and consider the following rule generation from DIS.

(A rule from DIS) A rule is an implication τ satisfying support(τ) ≥ α and
accuracy(τ) ≥ β (0 < α, β ≤ 1.0) for given threshold values α and β.
(Rule generation from DIS) If we �x α and β in DIS, the set of all rules is also
�xed, but we generally do not know them. Rule generation is to generate all
minimal rules (we term a rule with minimal condition part a minimal rule).

Here, support(τ) is an occurrence ratio of an implication τ for the total
objects and accuracy(τ) is a consistency ratio of τ for the condition part of τ .
For example, let us consider τ : [R, 2] ∧ [S, 1] ⇒ [Dec, b] from x3. Since τ occurs
one time for �ve objects, we have support(τ)=1/5. Since [R, 2] ∧ [S, 1] occurs
two times, we have accuracy(τ)=1/2. Fig. 1 shows all minimal rules (redundant
rules are not generated) from Table 1.

Fig. 1. The obtained all minimal rules (support(τ) ≥ 0.2, accuracy(τ) ≥ 0.9) from
Table 1. Our system ensures that there is no other rule except them. In the table
rule1, the �rst rule is τ : [P, 1] ⇒ [Dec, b]. Even though τ ′ : [P, 1] ∧ [Q, 2] ⇒ [Dec, b]
satis�es the constraint of rules, τ ′ is a redundant implication of τ and τ ′ is not minimal.
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2.2 Rules and Rule Generation from NISs

From now, we employ the symbols Φ and ψ for expressing NIS and DIS, respec-
tively. In NIS Φ, we replace a set of all possible values with an element of this
set, and then we have one DIS. We term such a DIS a derived DIS from NIS,
and let DD(Φ) denote a set of all derived DISs from NIS. Table 1 is a derived
DIS from Table 3. In NISs like Table 3, we consider the following two types of
rules,
(1) A rule which we certainly conclude from NIS (a certain rule),
(2) A rule which we may conclude from NIS (a possible rule).
These two types of rules seem to be natural for rule generation with information
incompleteness. Yao recalls three-valued logic in rough sets and proposes three-
way decisions [23, 24]. These types of rules concerning missing values were also
investigated in [6, 11], and we coped with the following two types of rules based
on possible world semantics [18, 20]. The de�nition in [6, 11] and the following
de�nition are semantically di�erent [18].

(A certain rule from NIS) An implication τ is a certain rule, if τ is a rule in each
of derived DIS from NIS,
(A possible rule from NIS) An implication τ is a possible rule, if τ is a rule in at
least one derived DIS from NIS.
(Rule generation from NIS) If we �x α and β in NIS, the set of all certain rules
and the set of all possible rules are also �xed. Rule generation is to generate all
minimal certain rules and all minimal possible rules.

Two types of rules depend on all derived DISs from NIS, and the number of
them increases exponentially. For Table 3, the number is 324 (=22 × 34), and
the number is more than 10100 for the Mammographic data set [4]. Thus, the
realization of a system to handle two types of rules was seemed to be hard, how-
ever, we gave one solution to this problem.

(Proved Property) For each implication τ , we developed some formulas to cal-
culate the following,
(1) minsupp(τ)=minψ∈DD(Φ){support(τ) in ψ},
(2) minacc(τ)=minψ∈DD(Φ){accuracy(τ) in ψ},
(3) maxsupp(τ)=maxψ∈DD(Φ){support(τ) in ψ},
(4) maxacc(τ)=maxψ∈DD(Φ){accuracy(τ) in ψ}.
This calculation employs the rough sets based concept and is independent of
the number of derived DISs [18, 20, 21]. By using these formulas, we proved a
method to examine `τ is a certain rule or not' and `τ is a possible rule or not'.
This method is also independent of the number of all derived DISs [18, 20, 21].

We apply this property to the Apriori algorithm for realizing a rule generation
system. The Apriori algorithm e�ectively enumerates itemsets (candidates of
rules), and the support and accuracy values of every candidate are calculated
by the Proved Property. Figs. 2-3 show the obtained minimal certain rules and
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Fig. 2. The obtained all minimal certain rules (support(τ) ≥ 0.2, accuracy(τ) ≥ 0.9)
from Table 3. There is no rule except them.

Fig. 3. The obtained all minimal possible rules (support(τ) ≥ 0.2, accuracy(τ) ≥ 0.9)
from Table 3. There is no rule except them.

minimal possible rules from Table 3. As for the execution time, we discuss it in
Section 4.

2.3 A Relation between Rules in DISs and Rules in NISs

Let ψactual be a derived DIS with actual information from NIS Φ (we cannot
decide ψactual from Φ, but we suppose there is an actual ψactual for Φ), then we
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can easily have the next inclusion relation.

{τ | τ is a certain rule in Φ} ⊆ {τ | τ is a rule in ψactual}
⊆ {τ | τ is a possible rule in Φ}

Due to information incompleteness, we know lower and upper approximations
of a set of rules in ψactual. This property follows the concept of rough sets based
approximations.

2.4 The Apriori Algorithm for Transaction Data Sets

Let us consider Table 4, which shows four persons' purchase of items. Such
structured data is termed a transaction data set. In this data set, let us fo-

Table 4. An exemplary transaction data set

Transaction Items
1 bread, milk, ham, beer, corn
2 cheese, ham, beer
3 ham, beer, apple, potato, corn
4 cheese, cake, beer

　

cus on a set {ham, beer}. Such a set is generally termed an itemset. For this
itemset, we consider two implications τ1 : ham ⇒ beer and τ2 : beer ⇒
ham. In τ1, support(τ1)=3/4 and accuracy(τ1)=3/3. In τ2, support(τ2)=3/4
and accuracy(τ2)=3/4. For an itemset {ham, beer, corn}, we consider six im-
plications, ham ∧ beer ⇒ corn, · · ·, beer ⇒ corn ∧ ham. Like this, Agrawal
proposed a method to obtain rules from transaction data sets, which is known
as the Apriori algorithm [1, 2, 9]. This algorithm makes use of the following.

(Monotonicity of support) For two itemsets P and Q, if P⊆Q, support(Q) ≤
support(P ) holds.

By using this property, the Apriori algorithm enumerates all itemsets, which
satisfy support ≥ α. Each of such itemsets is termed a frequent itemset. Let us
consider the manipulation of itemsets in Table 4 under support ≥ 0.5. Since
there are four transactions, each itemset must occur more than two times. Let
CANi and FIi (i ≥ 0) denote a set of all candidates of itemsets and a set of all
frequent itemsets consisting of (i+1)-items, respectively. We have the following.

CAN0={{bread}(Occurrence=1), {milk}(1), {ham}(3), {beer}(4), {corn}(2),
{cheese}(2), {apple}(1), {potato}(1), {cake}(1)},

FI0={{ham}(3), {beer}(4), {corn}(2), {cheese}(2)},
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CAN1={{ham, beer}, {ham, corn}, {ham, cheese}, {beer, corn},
{beer, cheese}, {corn, cheese}},

FI1={{ham, beer}(3), {ham, corn}(2), {beer, corn}(2), {beer, cheese}(2)},
CAN2={{ham, beer, corn}, {ham, beer, cheese}, {ham, corn, cheese},

{beer, corn, cheese}},
FI2={{ham, beer, corn}(2)}.

Each element in CANi (i ≥ 1) is generated by the combination of two itemsets
in FIi−1 [1, 2]. Then, every itemset satisfying the support condition becomes
the element of FIi. For example, for A : {ham, corn}, B : {beer, cheese} ∈
FI1, we add one element of B to A and have {ham, corn, beer}, {ham, corn,
cheese} ∈ CAN2. We also do the converse and have {beer, cheese, ham}, {beer,
cheese, corn} ∈ CAN2. Only one itemset {ham, corn, beer} satis�es the support
condition and becomes an element of FI2. Like this, FI1, FI2, · · ·, FIn are ob-
tained at �rst, then the accuracy value of each implication de�ned by a frequent
itemset is evaluated. In the subsequent sections, we change the above manipu-
lation by using the characteristics of table data sets.

3 Some Improvements of the NIS-Apriori based Rule

Generator

We describe the improvements in our framework based on Section 2.

3.1 From Transaction Data Sets to Table Data Sets

We translate Table 1 to Table 5 and identify each descriptor with an item. Then,
we can see that Table 5 is a transaction data set. Thus, we can apply the Apriori
algorithm to rule generation.

Table 5. A transaction data set for DIS ψ in Table 1.

Object Descriptors as items
x1 [P,3], [Q,1], [R,2], [S,2], [Dec,a]
x2 [P,2], [Q,2], [R,2], [S,1], [Dec,a]
x3 [P,1], [Q,2], [R,2], [S,1], [Dec,b]
x4 [P,1], [Q,3], [R,3], [S,2], [Dec,b]
x5 [P,3], [Q,2], [R,3], [S,1], [Dec,c]

We de�ne the next sets IMP1, IMP2, · · ·, IMPn.
IMP1 = {[A, valA] ⇒ [Dec, val]},
IMP2 = {[A, valA] ∧ [B, valB ] ⇒ [Dec, val]},
IMP3 = {[A, valA] ∧ [B, valB ] ∧ [C, valC ] ⇒ [Dec, val]},

: : : :
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Fig. 4. The manipulation I for itemsets.

Here, IMPi means a set of implications which consist of i-condition attributes.
A minimal rule is an implication τ ∈ ∪iIMPi, and we may examine each
τ ∈ ∪iIMPi. However, in the subsequent sections, we consider some e�ective
manipulations to generate minimal rules in IMP1, IMP2, · · ·, sequentially.

3.2 The Manipulation I for Frequent Itemsets by the Characteristics

of Table Data Sets

Here, we make use of the characteristics of table data sets below.
(TA1) The decision attribute Dec is �xed. So, it is enough to consider each
itemset including one descriptor whose attribute is Dec. For example, we do not
handle any itemset like {[P, 3], [Q, 2]} nor {[P, 3], [Dec, a], [Dec, b]} in Table 5.
(TA2) An attribute is related to each descriptor. So, we handle itemsets with
di�erent attributes. For example, we do not handle any itemset like {[P, 3], [P, 1],
[Q, 2], [Dec, b]} in Table 5.
(TA3) To consider implications, we handle CAN1, FI1 (⊆ IMP1), CAN2, FI2
(⊆ IMP2), · · ·, which are de�ned in Section 2.4.

Based on the above characteristics, we can consider Fig. 4. In Fig. 4, itemsets
satisfying (TA1) and (TA2) are enumerated. Generally, in the Apriori algorithm,
the accuracy value is examined after obtaining all FIi, because the decision at-
tribute is not �xed. For each set in FIi, there are plural implications. However,
in a table data set, one implication corresponds to a frequent itemset. We em-
ployed this property and proposed the Apriori algorithm adjusted to table data
sets [20, 21] in Fig. 5. We term this algorithm the DIS-Apriori algorithm. Here,
we calculate the accuracy value of every frequent itemset in each while loop
(the rectangle area circled by the dotted line in Fig. 4 and lines 5-7 in Fig. 5).
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Input: Table data set DIS ψ, decision attribute Dec, threshold values α, β.
Output: A set Rule(ψ) of minimal rules.
1: Rule(ψ)← {}; i← 1;
2: create FI1={{[A, a], [Dec, v]}|support([A, a]⇒ [Dec, v]) ≥ α} from CAN1;
3: while (|FIi| ≥ 1) do

4: Resti ← {}; Rulei ← {};
5: for all τi,j ∈ FIi do
6: if accuracy(τi,j) ≥ β then add τi,j to Rulei; else add τi,j to Resti;
7: end if

8: end for

9: remove redundant implications from Rulei;
10: i← i+ 1; create FIi;
11: end while

12: return Rule(ψ)=∪k<iRulek

Fig. 5. The Apriori algorithm adjusted to table data set DIS ψ. We can examine the
accuracy value in each while loop (the rectangle area circled by the dotted line in Fig.
4). This examination is not done in the Apriori algorithm for transaction data sets.

We can easily handle certain rules and possible rules in NISs by extending the
DIS-Apriori algorithm.

Proposition 1. [20, 21]
(1) We replace DIS ψ with NIS Φ, support and accuracy with minsupp and
minacc, respectively. Then, this algorithm generates all minimal certain rules.
(2) We replace DIS ψ with NIS Φ, support and accuracy with maxsupp and
maxacc, respectively. Then, this algorithm generates all minimal possible rules.
(3) We term the algorithm consisting of (1) and (2) the NIS-Apriori algorithm.
Both DIS-Apriori and NIS-Apriori algorithms are logically sound and complete
for rules. They generate rules without excess and de�ciency.

Figs. 1-3 by the rule generator in SQL are based on the algorithm in Fig. 5
and Proposition 1.

3.3 The Manipulation II for Frequent Itemsets by the

Characteristics of Table Data Sets

Now, we advance the manipulation I to the manipulation II. We focus on the
statement `create FIi' in lines 2 and 10 in Fig. 5. In every while loop, we examine
each τ ∈ FIi ⊆ CANi ⊆ IMPi, so to reduce sets CANi and FIi will in�uence
the performance of execution. In Fig. 5, we at �rst need to remark the following.

(Rule generation) The purpose of rule generation is to generate each minimal
implication τ ∈ ∪iIMPi satisfying support(τ) ≥ α and accuracy(τ) ≥ β. We
obtain Rule1, Rest1 ⊆ IMP1 in the 1st while loop, Rule2, Rest2 ⊆ IMP2 in the
2nd while loop, and Rule3, Rest3 in the 3rd while loop, · · ·.
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(Relation between sets in Fig. 5) We clarify the relation and the de�nition of
NOrulei below.
(1) Rulei={τ ∈ IMPi | support(τ) ≥ α, accuracy(τ) ≥ β},
(2) Resti={τ ∈ IMPi | support(τ) ≥ α, accuracy(τ) < β},
(3) FIi={τ ∈ IMPi | support(τ) ≥ α},
(4) NOrulei={τ ∈ IMPi | support(τ) < α},
(5) IMPi=FIi ∪NOrulei=(Rulei ∪Resti) ∪NOrulei.
(A case of τ ∈ Rulei) If τ : ∧j [Aj , valj ] ⇒ [Dec, val] ∈ Rulei, we do not deal with
any redundant implication τ ′ : (∧j [Aj , valj ])∧ [B, b] ⇒ [Dec, val] ∈ IMPi+1, be-
cause τ ′ cannot be a minimal rule.
(A case of τ ∈ NOrulei) If τ : ∧j [Aj , valj ] ⇒ [Dec, val] ∈ NOrulei, any redun-
dant implication τ ′ : (∧j [Aj , valj ])∧[B, b] ⇒ [Dec, val] satis�es support(τ ′) < α.
So, τ ′ ∈ IMPi+1 cannot be a rule. Thus, we do not deal with any redundant
implication τ ′.
(A case of τ ∈ Resti) In the accuracy value, the monotonicity like support does
not hold (an example is in [20]). Thus, if τ : ∧j [Aj , valj ] ⇒ [Dec, val] ∈ Resti,
accuracy(τ ′) ≥ β may hold for a redundant implication τ ′ : (∧j [Aj , valj ]) ∧
[B, b] ⇒ [Dec, val] ∈ FIi+1.

Proposition 2. Let us suppose that we had Rulei and Resti (IMPi=Rulei ∪
Resti ∪NOrulei) in the i-th while loop in Fig. 5. Every candidate of a minimal
rule in IMPi+1 is a redundant implication of τ ∈ Resti.
(Proof)
For every implication τ ̸∈ FIi ⊆ IMPi, its redundant implication τ ′ satis�es
support(τ ′) ≤ support(τ) < α. Thus, τ ′ cannot be a minimal rule in IMPi+1.
Based on the Apriori algorithm, we need to combine two frequent itemsets in
FIi=Rulei ∪Resti (an example of this combination is described in Section 2.4).
However, for the minimality condition of rules, we do not handle any redundant
implication of τ ∈ Rulei. Thus, we conclude that every candidate of a minimal
rule in IMPi+1 is a redundant implication of τ ∈ Resti.

De�nition 1. We de�ne a set RCANi (⊆ CANi), whose element is a candidate
of a minimal rule in IMPi w.r.t. rules ∪j=1,···,(i−1)Rulej and a set RFIi={τ ∈
RCANi | support(τ) ≥ α} (⊆ FIi ⊆ IMPi).

In the Apriori algorithm, the concept of redundancy is not introduced, so
that some redundant rules may be generated. The sets CANi and FIi in Fig.
4 are generated from FIi−1 (=Rulei−1 ∪ Resti−1). However, we can generate
RCANi(⊆ CANi) and RFIi(⊆ FIi) from Resti−1. Furthermore, we previously
generated itemsets {[A, a], [B, b], [Dec, v1]}, {[A, a], [B, b], [Dec, v2]} ∈ RCAN2

from {[A, a], [Dec, v1]}, {[B, b], [Dec, v2]} ∈ Rest1, and we removed this combi-
nation, because there is no object satisfying both [Dec, v1] and [Dec, v2]. This
combination formerly generated meaningless itemsets. This revision is another
improvement in the manipulation of itemsets.

Proposition 3. The set RCANi and RFIi are given as follows:
(i = 1) RCAN1=CAN1 and RFI1=FI1,



An Adjusted Apriori Algorithm to Itemsets De�ned by Tables 11

Fig. 6. New manipulation II of itemsets. We can handle RCANi ⊆ CANi and
RFIi ⊆ FIi for generating minimal rules. In the Apriori algorithm, CANi and FIi
are employed, so redundant rules may be generated. By using RCANi and RFIi, the
candidates of rules are reduced, and the performance of execution is improved.

(i ≥ 2) RCANi={τ : (∧j [Aj , valj ]) ∧ [B, b] ⇒ [Dec, val] |
∧j [Aj , valj ] ⇒ [Dec, val] ∈ Resti−1, [B, b] ⇒ [Dec, val] ∈ Rest1},
RFIi={τ ∈ RCANi | support(τ) ≥ α}.

(Proof)
(In case of i=1) RCAN1=CAN1 and RFI1=FI1 hold, because redundant rules
occur after 2nd while loop.
(In case of i ≥ 2) We add one descriptor [B, b] to ∧j [Aj , valj ] ⇒ [Dec, val] ∈
Resti−1 and have a redundant implication τ : (∧j [Aj , valj ])∧[B, b] ⇒ [Dec, val] ∈
IMPi due to Proposition 2.
(1) In order to handle the same decision, [B, b] must be the condition part of
τ ′ : [B, b] ⇒ [Dec, val] ∈ RFI1=FI1. (If τ

′ ̸∈ FI1, support(τ) < α holds and τ
cannot be a rule, because τ is a redundant implication of τ ′).
(2) FI1=Rule1∪Rest1 holds. If τ ′ ∈ Rule1, τ cannot be a minimal rule, because
τ ′ is a minimal rule.
Based on the above discussion, we conclude τ ′ ∈ Rest1.

We propose the manipulation II in Fig. 6 due to the above propositions. In the
Apriori algorithm, CANi is generated by FIi−1, but we can remove redundant
implications of τ ∈ Rulei−1. Thus, we can handle RCANi, which is a subset of
CANi. If the number of elements in Rulei−1 is large, the number of elements in
RCANi will be much smaller than that of CANi.

Proposition 4. The DIS-Apriori algorithm with the manipulation II is sound
and complete for minimal rules in DIS, and the NIS-Apriori algorithm with the
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manipulation II is also sound and complete for minimal certain rules and min-
imal possible rules in NIS. They do not miss any rule de�ned in DIS ψ or NIS
Φ.
(Sketch of Proof) We have proved that the DIS-Apriori and NIS-Apriori algo-
rithms are sound and complete [20, 21]. We newly introduced sets RCANi ⊆
CANi and RFIi ⊆ FIi by using the redundancy of rules, and we extended the
previous two algorithms to those with the manipulation II. The proposed algo-
rithm does not examine each τ ∈ ∪jIMPj, but examines each τ ∈ ∪jRCANj.
As a result, this algorithm generates the same rules de�ned by the procedure `to
examine each τ ∈ ∪jIMPj'.

4 An Improved Apriori based Rule Generator and Some

Experiments

This section compares the NIS-Apriori algorithm and the NIS-Apriori algorithm
with the manipulation II. Of course, two algorithms generate the same rules due
to Propositions 1 and 4, and the latter algorithm makes use of the redundancy

Table 6. The Car Evaluation data set (Objects: 1728, condition attributes: 6).
A:|Rule1|, B:|CAN2| or |RCAN2|, C:|Rule2|, D:|CAN3| or |RCAN3|, E:|Rule3|,
F:|CAN4| or |RCAN4|, G:|Rule4|.

CASE manipulation time(sec) A B C D E F G
support ≥ 0.2 I 0.037 5 24 0 0 0 0 0
accuracy ≥ 0.7 II 0.027 5 2 0 0 0 0 0
support ≥ 0.1 I 0.096 8 366 0 27 0 0 0
accuracy ≥ 0.7 II 0.059 8 74 0 0 0 0 0
support ≥ 0.05 I 0.189 8 366 0 1694 0 0 0
accuracy ≥ 0.7 II 0.123 8 176 0 572 0 0 0
support ≥ 0.01 I 0.621 8 732 0 3388 1 6588 0
accuracy ≥ 0.7 II 0.329 8 349 0 1172 1 1840 0

Table 7. The Phishing data set (Objects: 1353, condition attributes: 9). Here, A, B,
· · ·, G are the same as Table 6.

CASE manipulation time(sec) A B C D E F G
support ≥ 0.2 I 0.139 3 148 2 276 0 15 0
accuracy ≥ 0.7 II 0.083 3 25 2 30 0 0 0
support ≥ 0.1 I 0.847 6 426 13 2380 1 5774 0
accuracy ≥ 0.7 II 0.291 6 167 13 552 1 1101 0
support ≥ 0.05 I 1.409 7 831 23 5355 9 12438 2
accuracy ≥ 0.7 II 0.647 7 285 23 1259 9 3508 2
support ≥ 0.01 I 2.532 7 831 30 5355 25 22113 11
accuracy ≥ 0.7 II 1.522 7 583 30 3118 25 10611 11
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Table 8. The Congressional Voting data set (Objects: 435, condition attributes: 16).
There are 392 missing values, thus |DD(Φ)|=2392 ≥ 10100 (the number of derived DISs
exceeds 10100). A certain rule is a rule in each of more than 10100 derived DISs. A
possible rule is a rule in at least one derived DISs. Here, A, B, · · ·, G are the same as
Table 6.

CASE manipulation time(sec) A B C D E F G
I (certain rule) 23.73 23 900 6 8120 0 50960 0

support ≥ 0.2 II (certain rule) 0.12 23 50 6 77 0 0 0
accuracy ≥ 0.6 I (possible rule) 23.56 28 960 3 8120 0 50960 0

II (possible rule) 0.12 28 41 3 30 0 0 0
I (certain rule) 26.35 23 960 6 8960 0 58240 0

support ≥ 0.1 II (certain rule) 0.81 23 132 6 448 0 1064 0
accuracy ≥ 0.6 I (possible rule) 26.72 29 960 7 8960 2 58240 0

II (possible rule) 0.52 29 100 7 290 2 580 0
I (certain rule) 26.59 23 960 6 8960 0 58240 0

support ≥ 0.05 II (certain rule) 1.79 23 220 6 949 0 2788 0
accuracy ≥ 0.6 I (possible rule) 27.29 29 960 7 8960 2 58240 0

II (possible rule) 1.84 29 223 7 984 2 2967 0
I (certain rule) 27.46 23 960 6 8960 0 58240 0

support ≥ 0.01 II (certain rule) 4.28 23 354 6 1981 0 7630 0
accuracy ≥ 0.6 I (possible rule) 28.71 29 960 7 8960 2 58240 0

II (possible rule) 3.59 29 296 7 1599 2 6141 0

Table 9. The Lithology data set (Objects: 1923, condition attributes: 10). There are
519 missing values, therefore there are more than 10100 (2519 ≒ (210)50 > (103)50 >
10100) derived DISs. Here, A, B, · · ·, G are the same as Table 6.

CASE manipulation time(sec) A B C D E F G
I (certain rule) 0.18 11 54 0 120 0 210 0

support ≥ 0.2 II (certain rule) 0.06 11 0 0 0 0 0 0
accuracy ≥ 0.5 I (possible rule) 0.2 11 54 0 156 0 210 0

II (possible rule) 0.07 11 0 0 0 0 0 0
I (certain rule) 0.43 17 127 0 464 0 985 0

support ≥ 0.1 II (certain rule) 0.06 17 0 0 0 0 0 0
accuracy ≥ 0.5 I (possible rule) 0.51 17 127 0 549 0 1521 0

II (possible rule) 0.06 17 0 0 0 0 0 0
I (certain rule) 0.84 18 900 0 1228 0 3657 0

support ≥ 0.05 II (certain rule) 0.06 18 36 0 4 0 0 0
accuracy ≥ 0.5 I (possible rule) 1.26 19 1122 0 4128 0 4535 0

II (possible rule) 0.08 19 76 0 97 0 0 0
I (certain rule) 17.05 23 6055 7 44940 21 222420 14

support ≥ 0.01 II (certain rule) 4.18 23 1185 7 7772 21 36799 14
accuracy ≥ 0.5 I (possible rule) 48.87 39 8806 27 116466 37 755202 34

II (possible rule) 6.45 39 1413 27 9804 37 48932 34



14 Zhiwen Jian, Hiroshi Sakai, Takuya Ohwa, Kao-Yi Shen, Michinori Nakata

concept. We newly implemented two systems in Python (Windows PC, CPU:
Intel i7-4600U, 2.7GHz). Table 6 shows the results on the Car Evaluation data
set [4], and Table 7 does the results on the Phishing data set [4]. They are the
cases of DISs, and the characteristic of RCANi ⊆ CANi is e�ectively employed.

Now, we show two examples by the NIS-Apriori algorithm. The one is the
Congressional Voting data set [4], and the other is the Lithology data set [8]. As
we described in Proposition 1, the NIS-Apriori algorithm (certain rule genera-
tion) is the DIS-Apriori algorithm with criterion values minsupp and minacc.
Thus, the number of candidates of itemsets is also reduced by the manipula-
tion II. The experiments easily examine the advancement of the manipulation II
(Tables 8-9).

5 Concluding Remarks

We recently adjusted the Apriori algorithm to table data sets and proposed the
DIS-Apriori and NIS-Apriori algorithms. This paper makes use of the character-
istics of table data sets (one decision attribute Dec is �xed) and improved these
algorithms. If we do not handle table data sets, there was no necessity for con-
sidering Fig. 6. The framework of the manipulation II (Fig. 6) is an improvement
of Apriori based rule generation by using the characteristics of table data sets.
We can generate minimal rules by using RCANi ⊆ CANi and RFIi ⊆ FIi. This
reduction causes to reduce the candidates of itemsets. We newly implemented
the proposed algorithm in Python and examined the improvement of the perfor-
mance of execution by experiments.
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