
Efficient and Flexible Checkpoint/Restore of
Split-memory Virtual Machines

著者 Murata Tokito, Kourai Kenichi
journal or
publication title

2020 International Conference on Computational
Intelligence (ICCI)

year 2020-11-09
URL http://hdl.handle.net/10228/00008375

doi: https://doi.org/10.1109/ICCI51257.2020.9247679

Efficient and Flexible Checkpoint/Restore of Split-memory Virtual Machines

Tokito Murata
Kyushu Institute of Technology

tokito@ksl.ci.kyutech.ac.jp

Kenichi Kourai
Kyushu Institute of Technology

kourai@ksl.ci.kyutech.ac.jp

Abstract—Recently, clouds provide virtual machines (VMs)
with a large amount of memory for big data analysis. For
easier migration of such VMs, split migration divides the
memory of a VM into several pieces and transfers them
to multiple hosts. Since the migrated VM called a split-
memory VM needs to exchange memory data between the
hosts, it is inherently subject to host and network failures.
As a countermeasure, a checkpoint/restore mechanism has
been used to periodically save the state of a VM, but the
traditional mechanism is not suitable for split-memory VMs.
It has to move a large amount of memory data between hosts
during checkpointing and can just restores a normal VM
on one host. This paper proposes D-CRES for efficient and
flexible checkpoint/restore of split-memory VMs. D-CRES
achieves fast checkpointing by saving the memory of a VM
in parallel at all the hosts without moving memory data.
For live checkpointing, it consistently saves the memory of a
running VM by considering memory data exchanged by the
VM itself. In addition, it enables a split-memory VM to be
restored in parallel at multiple hosts. We have implemented
checkpoint/restore of D-CRES in KVM and showed that the
performance was up to 5.4 times higher than that of using
the traditional mechanism.

1. Introduction

As Infrastructure-as-a-Service (IaaS) clouds are
widely used, they also provide VMs with a large amount
of memory. For example, Amazon EC2 provides VMs
with 24 TB of memory [1]. Such large-memory VMs
are used for big data analysis [2], [3] and in-memory
database [4], [5]. When host maintenance or load balanc-
ing is performed in clouds, it is necessary to migrate VMs
from a target host to other hosts and continue their exe-
cution. Since VM migration transfers the entire memory
of a VM, it requires a destination host with sufficient free
memory. However, it is neither cost-efficient nor flexible
to always preserve such large hosts as the destinations of
occasional VM migration.

To make the migration of such VMs easier, split
migration [6] has been proposed. It divides the memory of
a large-memory VM into several pieces and transfers them
to multiple smaller hosts. Specifically, it transfers the state
of the VM core and likely accessed memory to one main
host. The rest of the memory is transferred to sub-hosts.
After split migration, the main host runs the migrated VM,
while the sub-hosts provide the main host with part of the
memory of the VM. Such a VM running across multiple
hosts is called a split-memory VM. It exchanges memory

data between hosts using remote paging. When a split-
memory VM requires the memory existing in a sub-host,
the memory data is transferred to the main host. At the
same time, unlikely accessed memory data is transferred
to that sub-host.

Since a split-memory VM needs network communi-
cation among multiple hosts, it is inherently subject to
host and network failures, compared with a normal VM
running on one host. As a countermeasure against such
failures, a checkpoint/restore mechanism has been used.
It periodically saves the state of a VM as a checkpoint
and restores it from the latest checkpoint when a failure
occurs. However, two issues arise when the traditional
mechanism is applied to split-memory VMs. First, re-
mote paging is frequently caused by checkpointing and
degrades checkpointing performance. This is because the
memory existing in the sub-hosts is moved to the main
host and is saved. Second, a VM can be restored on
only one host. Therefore, a large host with sufficient free
memory is always required for restoring a VM.

To address these issues, this paper proposes D-CRES,
which enables efficient and flexible checkpoint/restore of
split-memory VMs. Upon checkpointing, D-CRES inde-
pendently saves the memory of a split-memory VM at
each host. It completely avoids remote paging between the
main host and sub-hosts for checkpointing. It also achieves
fast checkpointing by saving memory data in parallel at
all the hosts. In addition, it supports live checkpointing,
which saves the state of a VM without stopping it. It con-
siders remote paging caused by a running VM itself during
checkpointing and consistently saves the memory of the
VM. Upon restoring, D-CRES enables a split-memory
VM to be restored across multiple hosts. It restores the
state of a VM in parallel from the checkpoints taken at
multiple hosts. At this time, it is also possible to change
how to split the memory of a VM according to available
hosts.

We have implemented the checkpoint/restore mecha-
nism of D-CRES in KVM. D-CRES saves the memory
of a VM on the basis of the network page table and the
page sub-tables, both of which are used for running a
split-memory VM. Upon a failure, it restores not only the
memory but also these tables. For live checkpointing, it
minimizes the total size of checkpoint files by overwrit-
ing updated memory data, instead of appending them as
done in the traditional mechanism. Experimental results
show that the performance of checkpoint/restore in D-
CRES was significantly improved, compared with when
the traditional mechanism was applied to a split-memory
VM.

978-1-5386-5541-2/18/$31.00 ©2020 IEEE

VM core

source host

remote
paging

memory

migration VM core

main host

memory

sub-host

memory

Figure 1. Split migration and remote paging.

The rest of this paper is organized as follows. Section 2
describes issues of checkpoint/restore of a split-memory
VM. Section 3 proposes D-CRES for efficient and flexible
checkpoint/restore of a split-memory VM and Section 4
describes its implementation. Section 5 shows experi-
mental results of the performance of checkpoint/restore.
Section 6 describes related work and Section 7 concludes
this paper.

2. Checkpoint/Restore of Split-memory VMs

IaaS clouds migrate VMs in various reasons, e.g., host
maintenance and load balancing. To accommodate the
entire memory of a migrated VM, the destination host has
to have sufficient free memory. Since the memory size of
a VM is increasing recently [1], this constraint on VM
migration and the cost for always preserving such a des-
tination host are being concerns of cloud providers. Split
migration [6] enables a large-memory VM to be divided
into several pieces and be transferred to multiple small
hosts, as shown in Fig. 1. It transfers the state of the VM
core such as virtual CPUs and devices and the memory
likely accessed in the near future to one main host. It
transfers the memory that cannot be accommodated in the
main host to sub-hosts. The future memory access of a
migrated VM is predicted on the basis of LRU.

After split migration, the main host runs the migrated
VM, while the sub-hosts provide part of the memory of
the VM to the main host. Such a VM across multiple
hosts is called a split-memory VM. It exchanges memory
data between hosts by remote paging as needed. When it
requires the memory existing in a sub-host, the memory
is paged in to the main host via the network. At the same
time, unlikely accessed memory in the main host is paged
out to that sub-host to balance the amount of memory
between the two hosts. As such, remote paging enables a
large-memory VM to run on small hosts with insufficient
free memory.

Since a split-memory VM needs network communi-
cation among hosts, it is more likely to be affected by
host and network failures, compared with a normal VM
running on one host. For example, if one of the sub-
hosts suffers from a failure and stops, part of the memory
of a split-memory VM is lost and the execution of the
VM cannot continue. If a network failure occurs, a split-
memory VM cannot be executed until the network is
recovered because the memory data required by remote
paging cannot be transferred to the main host.

Traditionally, checkpoint/restore of VMs has been
used as a countermeasure against such failures. The check-
point mechanism periodically saves the state of a VM to

save

VM core

main host

memory

sub-host

memory
page-in

page-out

checkpoint file

Figure 2. Checkpointing a split-memory VM using the traditional mech-
anism.

a file as a backup called a checkpoint. The state of a VM
consists of those of virtual CPUs and devices, memory
data, disk data, and so on. When a failure occurs, the
restore mechanism creates a new VM on another host
and restores the saved state of a VM from the latest
checkpoint. Compared with booting a new VM from
scratch, this mechanism can shorten the recovery time and
minimize lost data due to failures.

However, two issues arise if this traditional check-
point/restore is applied to split-memory VMs as it is. The
first issue is that remote paging is frequently caused by
checkpointing and largely degrades checkpointing perfor-
mance. The memory existing in the main host is saved at
the main host as usual, but that existing in a sub-host is
first paged in to the main host and is then saved, as shown
in Fig. 2. This is because the state of a VM is saved only
at one host, where the checkpoint mechanism runs. At the
same time, unlikely accessed memory in the main host is
paged out to that sub-host to prepare free memory for the
paged-in memory. If the paged-out memory is saved later,
it is paged in to the main host again.

The second issue is that the traditional check-
point/restore cannot restore a VM as a split-memory VM.
It always restores a normal VM running on one host even
if a split-memory VM is checkpointed. As mentioned
above, the traditional checkpoint mechanism saves the
entire memory of a VM to one checkpoint file at the
main host. This means that the checkpoint file cannot be
distinguished from that for a normal VM. As a result, the
traditional restore mechanism requires one large host with
sufficient free memory to accommodate the entire memory
of a VM. This is often difficult for a large-memory VM.

3. D-CRES

This paper proposes D-CRES, which enables efficient
and flexible checkpoint/restore of split-memory VMs. For
checkpointing, D-CRES saves the memory of a split-
memory VM in parallel at multiple hosts, as shown in
Fig. 3. This prevents remote paging between the main
host and sub-hosts from being caused by checkpointing
and achieves fast checkpointing of a split-memory VM.
Upon a host or network failure, D-CRES restores a split-
memory VM from the latest checkpoint in parallel at
multiple hosts. For flexibility, it can use an arbitrary set
of hosts whose free memory is different from that on
checkpointing.

When D-CRES takes a checkpoint of a split-memory
VM, it saves part of the memory of the VM existing
in the main host to a checkpoint file at the main host.

restore

VM core

main host

remote
paging

memory

sub-host

memory

savesave restore

checkpoint file checkpoint file

Figure 3. Checkpoint/restore in D-CRES.

It also saves the state of the VM core such as virtual
CPUs and devices. In addition, the snapshot of the virtual
disk is taken like that of a normal VM. At each sub-
host, on the other hand, D-CRES saves only part of the
memory of the VM existing in that sub-host to a different
checkpoint file. Checkpointing is completed when all the
states are saved at the main host and all the sub-hosts.
In preparation for host or network failures, the saved
checkpoint is transferred to redundant network storage.

D-CRES consistently performs live checkpointing,
which can take a checkpoint of a split-memory VM
without stopping the VM. It saves the memory of a VM
while the VM is running. Then, it additionally saves the
memory updated by the VM itself during checkpointing.
When the amount of updated memory becomes small
enough, D-CRES temporarily stops the VM and saves the
remaining memory and the state of the VM core. During
live checkpointing, it saves the memory without excess or
deficiency by considering remote paging between hosts,
which is still caused by a running VM. It saves the
memory paged in to the main host at the main host. If
that memory has been already saved at a sub-host, it is
removed from the checkpoint file created at that host.
Similarly, D-CRES saves the memory paged out to a sub-
host at that sub-host. If that memory has been already
saved at the main host, it is removed from the checkpoint
file created at the main host.

When a failure occurs, D-CRES first finds new main
host and sub-hosts that have sufficient free memory for
a restored VM in total. Then, it creates a new VM on
the main host and restores a split-memory VM using the
latest checkpoint files. It restores part of the memory of
a VM at each host. At the main host, the states of the
VM core and the virtual disk are also restored. When D-
CRES completes the restoration of the state of a VM at all
the hosts, it establishes a network connection for remote
paging between the main host and each sub-host. Finally,
it restarts the execution of the split-memory VM.

Upon restoring a split-memory VM, D-CRES can
change how to split the memory of the VM into new hosts.
This makes it possible to restore a split-memory VM
flexibly even if there is no available set of hosts that have
exactly the same free memory as those on checkpointing.
As an extreme example, if there is one host with sufficient
free memory, D-CRES can restore a VM as a normal
VM running only on that host. In general, it re-splits the
memory of a VM on the basis of the saved memory access
history so that likely accessed memory is placed in the
main host as much as possible.

4. Implementation

We have implemented D-CRES in KVM with support
for split migration and remote paging.

4.1. Memory Management of a Split-memory VM

The memory of a split-memory VM is managed dif-
ferently at the main host and sub-hosts. At the main host,
QEMU-KVM runs and manages part of the memory of a
VM using the network page table. The network page table
is a table for searching for a host ID from a memory page
number. QEMU-KVM obtains information in which host
the specified memory page exists by looking up this table.
At each sub-host, a memory server runs and manages part
of the memory of a VM using the page sub-table. The
page sub-table is a table for searching for memory data
from a memory page number.

When QEMU-KVM in the main host performs a page-
in from a sub-host, it first searches the network page table
for the sub-host where the page exists and sends a page-in
request to that sub-host. The memory server in the sub-
host searches the page sub-table for the memory data of
the requested page and sends the data back to the main
host. At this time, it removes the found entry from the
page sub-table. When QEMU-KVM receives that data,
it inserts a new entry to the network page table. After
that, QEMU-KVM selects the least recently used page and
sends a page-out request to that sub-host. Then, it modifies
the corresponding entry in the network page table. The
memory server inserts a new entry for the received page
to the page sub-table.

4.2. Checkpointing at the Main Host

When QEMU-KVM in the main host receives the
checkpoint command, it first forwards that command to
all the sub-hosts. Then, it creates a checkpoint file for
saving the state of a VM and saves the memory data on
the basis of the network page table. For a page existing
in the main host, it saves the memory address, data, and
access history. For a page existing in a sub-host, it saves
only the memory address and the sub-host ID. When it
completes to save all the pages and the other states of the
VM, it waits for the completion of checkpointing at the
sub-hosts and then finishes checkpointing.

The original QEMU-KVM supports live checkpoint-
ing of normal VMs, which takes a checkpoint without
stopping a VM. However, that implementation is not
suitable for large split-memory VMs. First, the memory
data updated during checkpointing is appended to the end
of a checkpoint file. Since a large amount of memory tends
to be updated in a large-memory VM, this increases the
total size of checkpoint files. Second, a taken checkpoint
can be inconsistent because traditional live checkpointing
does not consider remote paging. When memory is paged
in to the main host during checkpointing, it may not be
saved at the main host correctly. Even when memory is
paged out and no longer exists in the main host, it is not
removed from a checkpoint file.

To address these issues, D-CRES saves the memory
of a VM to an independent sparse file called a memory
file, as shown in Fig. 4. Since the offset in a memory file

memory

sub-host (ID: 1)

memoryVM
core

main host (ID: 0)

network
page table

memory
access
history

page out

page in

QEMU-KVM

checkpoint file

memory file
memory-

location file

0 1 0 2
1 2 3 4

memory server

save 1 2 3 4

Figure 4. Live checkpointing at the main host.

corresponds to the memory address one-to-one, D-CRES
can easily overwrite memory data in this file by updated
one. Therefore, the maximum size of this file is limited
to the memory size of a VM even if updated memory is
saved. In a sparse file, the file block in which data is not
saved is empty, which is called a hole. As a result, the
total of the real sizes of the checkpoint files saved in all
the hosts is equal to the memory size of a VM.

When a page-in is caused by a split-memory VM
during checkpointing, QEMU-KVM sets the correspond-
ing bit to the dirty bitmap, which is used for identifying
memory to be saved. Later, it saves the paged-in page to
the corresponding block of the memory file. In contrast,
when a page-out is caused, QEMU-KVM makes the cor-
responding block of the memory file a hole and removes
memory data from the file. In addition, the information
on the host where each page exists is stored in a separate
file called a memory-location file. This file is also updated
whenever remote paging occurs.

When the number of remaining pages to be saved be-
comes small enough, QEMU-KVM sends synchronization
messages to the sub-host. Then, it waits until all the sub-
hosts reach the same state and send back the responses.
When all the hosts are synchronized, QEMU-KVM waits
for the completion of pending remote paging, sends a
finalization message to each sub-host, and pauses the VM.
After that, it saves the remaining memory and the memory
access history. In addition, it creates a snapshot of the
virtual disk efficiently using the feature of the QCOW2
disk format. Finally, it saves the states of virtual CPUs
and devices. Then, it waits for completion messages from
all the sub-hosts and restarts the VM.

4.3. Checkpointing at a Sub-host

When the memory server receives the checkpoint com-
mand from the main host, it creates a checkpoint file
for saving part of the memory of a VM. On the basis
of the page sub-table, it saves the address and data of
the memory existing in the sub-host. To support live
checkpointing, the memory server also uses a memory file,
as shown in Fig. 5. When it receives a page-out request
during checkpointing, it saves the paged-out page to the
corresponding block of the memory file. In contrast, when
it receives a page-in request, it makes the corresponding
block of the memory file a hole. Unlike at the main host, a
VM does not directly access the memory existing in sub-
hosts. Therefore, the memory server updates the memory

memory

sub-host (ID: 1)

memoryVM
core

main host (ID: 0)

checkpoint file

memory file
memory-

presence file

0 1 0 0

memory server

page sub-
table

QEMU-KVM

1 2 3 4 1 2 3 4

page out

page in

save

Figure 5. Live checkpointing at a sub-host.

file only when remote paging occurs. In addition, it saves
information on whether pages exist in the sub-host to a
separate file called a memory-presence file.

When the memory server receives a synchronization
message from the main host, it returns a response if the
remaining memory to be saved becomes small enough.
Then, it waits for a finalization message from the main
host and then saves the remaining memory. When it
completes to save all the memory, it returns a completion
message to the main host.

4.4. Restoring a Split-memory VM

D-CRES first transfers the obtained checkpoint files to
a new set of hosts and then sends the restore command to
QEMU-KVM at the new main host. When QEMU-KVM
receives this command, it forwards the command to all of
the new sub-hosts. Next, QEMU-KVM restores part of the
memory at the new main host from the memory file saved
at the old main host. In addition, it restores the network
page table from the memory-location file. Then, it restores
the memory access history, the states of virtual CPUs and
devices, and the state of the virtual disk. When it receives
completion messages from all the sub-hosts, it establishes
a network connection for remote paging between the new
main host and each new sub-host and restarts the restored
split-memory VM.

When the memory server at a new sub-host receives
the restore command from the main host, it restores part of
the memory that existed in one of the old sub-hosts from
the memory file saved at that old sub-host. In addition,
it restores the page sub-table from the memory-presence
file. Then, it sends a completion message to the main host.
After it establishes a network connection with the main
host, it waits for requests for remote paging.

If D-CRES relocates the memory of a split-memory
VM according to the amount of free memory of newly
available hosts, it moves memory data among the mem-
ory files before restoration. In addition, it modifies the
memory-location file and the memory-presence files. Cur-
rently, D-CRES supports only the relocation of the entire
memory from all the sub-hosts to the main host.

5. Experiments

We conducted several experiments to examine the
performance of checkpoint/restore of a split-memory VM
using D-CRES. For a main host and a sub-host, we used

0

20

40

60

80

100

checkpoint restore

tim
e

(s
)

traditional (normal VM)
traditional (split-memory VM)
D-CRES

Figure 6. The time for checkpoint/restore.

two PCs with an Intel Core i7-7700 processor, 8 GB of
DDR4 DRAM, and 1 TB of SATA HDD. These PCs were
connected with Gigabit Ethernet. We ran Linux 4.4.169
and QEMU-KVM 2.4.1. For a split-memory VM, we as-
signed one virtual CPU and 4 GB of memory and equally
split the memory into two. We measured the performance
5 times for each experiment.

5.1. Checkpoint/Restore Time

We first measured the time for checkpoint/restore of
the split-memory VM using D-CRES. For comparison,
we measured the time when we used traditional check-
point/restore for the split-memory VM. We also applied
the traditional mechanism to a normal VM running on
one host. In this experiment, we performed non-live
checkpointing and stopped a VM during checkpointing
to exclude the impact of memory updates by the VM.

Fig. 6 shows the time for checkpointing and restoring
a VM. When we took a checkpoint of the split-memory
VM, D-CRES was 5.4 times faster than the traditional
mechanism. This is because D-CRES could avoid remote
paging caused by checkpointing. Compared with tradi-
tional checkpointing of the normal VM, D-CRES was
even 77% faster thanks to parallel checkpointing at the
two hosts. However, the checkpoint time in D-CRES was
more than the half of that for the normal VM although
the amount of memory to be saved was reduced to the
half at each host. This is due to saving the other states as
well at the main host.

For restoring, D-CRES was 89% faster than the tradi-
tional mechanism. The restore time in D-CRES was also
not reduced to the half of that in the traditional mecha-
nism. The reason is the same as that for checkpointing.
Since the traditional mechanism always restores a normal
VM, the restore time was almost the same between when
we used a checkpoint taken from the normal VM and
when we used that from the split-memory VM.

Next, we measured the time for live checkpoint/restore
of a split-memory VM in D-CRES when the VM itself
caused remote paging during checkpointing. For compar-
ison, we performed traditional live checkpointing of a
normal VM. We ran a program that allocated 2 GB of
memory and modified it in the VM. As shown in Fig. 7,
live checkpointing in D-CRES was 51% faster than the
traditional mechanism, while restoring in D-CRES was
84% faster.

5.2. Impact of Checkpoint File Formats

To examine the impact of the format of checkpoint
files in live checkpointing, we first measured the total size

0

10

20

30

40

live checkpoint restore

tim
e

(s
)

traditional (normal VM) D-CRES

Figure 7. The time for live checkpoint/restore.

0

10

20

30

40

live checkpoint restore

tim
e

(s
)

overwrite
append

Figure 8. The checkpoint/restore time for different checkpoint file for-
mats.

of the checkpoint files in D-CRES. We ran a program that
allocated only 1 GB of memory and modified it in the VM.
D-CRES used memory files for saving memory data and
overwrote memory data in the files by updated one. For
comparison, we measured the total size when D-CRES
appended updated memory data to the end of checkpoint
files, as done in the traditional live checkpointing. The
total size in D-CRES was always 4.0 GB regardless of
the amount of updated memory data. In contrast, when
D-CRES appended the data to the checkpoint files, the
total size increased to 5.3 GB.

Next, we compared the time needed for live check-
point/restore between the two formats of checkpoint files.
When D-CRES used memory files, the checkpoint time
was 37% longer, as shown in Fig. 8. This is because many
seek operations occurred to overwrite specific blocks in
the files. In contrast, the restore time was 30% shorter.
As such, a trade-off exists among the size of checkpoint
files, the checkpoint time, and the restore time.

5.3. Impact of Memory-split Ratios

We measured the time for checkpoint/restore when we
changed the ratio of the amount of memory of a VM
allocated to the two hosts. Fig. 9 shows the time for each
memory-split ratio. Both the checkpoint and restore times
were minimized when we assigned 70% of the memory
of a VM to the sub-host. This is because QEMU-KVM
in the main host saved and restored not only the memory
but also the state of the VM core and a snapshot of the
virtual disk.

6. Related Work

To achieve high availability of VMs, Remus [7] pre-
pares an active VM and a backup VM at different hosts.
It transfers only the difference of the state of the active
VM to the backup VM. Network transmission and disk
writes are buffered until the synchronization is completed.
Even if the active VM stops due to a failure, the ex-
ecution can be transparently continued by switching to
the backup VM. Kemari [8] reduces the frequency of

0

5

10

15

20

25

20 30 40 50 60 70 80

tim
e

(s
)

memory ratio at the sub-host (%)

checkpoint restore

Figure 9. The checkpoint/restore time for different memory-split ratios.

the synchronization by synchronizing only when network
transmission and disk writes are performed by a VM.
COLO [9] transfers the request packet received by an
active VM to a backup VM as well and waits until the
response from both VMs matches. Since these methods
require two VMs, it is often difficult to apply them to a
large-memory VM.

For distributed checkpointing, Emulab [10] saves the
states of multiple VMs in a closed distributed system
together with that of the network. It modifies the OS
kernel in the VM to stop the execution and the clocks
on checkpointing. It synchronizes the clocks and then
stops all the VMs at the same time to avoid packet delay
and new in-flight packets due to some of the VMs being
stopped earlier. In addition, it takes the checkpoints of
delay nodes on the network to prevent in-flight packets
from being lost due to network delay. D-CRES can take
a checkpoint without in-flight packets by finally syn-
chronizing remote paging because remote paging is only
performed synchronously between hosts.

VM migration has a similarity to checkpoint/restore.
It takes a checkpoint of a VM at the source host, transfers
it to the destination host, and restores the VM from
the checkpoint. In particular, the implementation of subst
migration [11] is similar to checkpoint/restore of D-CRES.
Subst migration moves the entire state of a split-memory
VM in either the main host or one of the sub-hosts to a
new host. However, D-CRES requires large modification
to the implementation of subst migration. For example,
it uses a sparse file to reduce the total size of checkpoint
files. It needs a custom mechanism for preserving integrity
when remote paging is caused during checkpointing.

VM co-migration requires synchronization between
two dependent VMs. VMCoupler [12] migrates a VM
to be monitored with a VM running intrusion detection
systems at the same time. It synchronizes the pause and
termination of the two VMs at the source host and the cre-
ation and restart of the VMs at the destination host so that
monitoring can continue. D-MORE [13] migrates a VM
to be managed with a VM used for remote management
together. It synchronizes the migration of the two VMs at
more points. D-CRES needs less synchronization points
because it synchronizes checkpointing only between a VM
and memory servers, not between VMs.

For parallel VM migration, PMigrate [14] uses data
parallel and pipeline parallel with surplus CPUs and NICs.
To improve the scalability of the mmap and munmap
system calls executed in parallel, a method called range
lock has been proposed. Even though D-CRES currently
parallelizes checkpoint/restore at a host granularity, it is
more effective for a large-memory VM to use parallelism

within a host together.

7. Conclusion
This paper proposed D-CRES for efficient and flexible

checkpoint/restore of split-memory VMs across multiple
hosts. D-CRES saves the memory of a VM in parallel at
multiple hosts and avoids remote paging caused by check-
pointing. For live checkpointing, it consistently saves the
memory of a running VM by considering remote paging
caused by the VM itself. Upon a host or network failure, it
restores a split-memory VM in parallel at multiple hosts.
At this time, it can relocate the memory of a split-memory
VM among hosts to use an arbitrary set of hosts. We have
implemented D-CRES in KVM and conducted several
experiments to show the efficiency of checkpoint/restore
of a split-memory VM in D-CRES.

Our future work is supporting incremental checkpoint-
ing of split-memory VMs to reduce the overhead of
checkpointing. Since remote paging always changes how
the memory is split in a split-memory VM, it is necessary
to efficiently detect memory differences across multiple
hosts.

Acknowledgements
The research results have been achieved by the “Re-

silient Edge Cloud Designed Network (19304),” the Com-
missioned Research of National Institute of Information
and Communications Technology (NICT), Japan.

References

[1] Amazon Web Services, Inc. Amazon EC2 High Memory Instances.
https://aws.amazon.com/ec2/instance-types/high-memory/, 2019.

[2] Apache Software Foundation. Apache Spark – Lightning-Fast
Cluster Computing. http://spark.apache.org/.

[3] Facebook, Inc. Presto: Distributed SQL Query Engine for Big
Data. https://prestodb.io/.

[4] SAP SE. What is SAP HANA? An Unrivaled Data Platform for
the Digital Age. https://www.sap.com/products/hana.html.

[5] Microsoft Corporation. SQL Server 2017 on Windows and Linux.
https://www.microsoft.com/en-us/sql-server/sql-server-2017.

[6] M. Suetake, T. Kashiwagi, H. Kizu, and K. Kourai. S-memV: Split
Migration of Large-Memory Virtual Machines in IaaS Clouds. In
Proc. Int. Conf. Cloud Computing, pages 285–293, 2018.

[7] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High Availability via Asynchronous Virtual
Machine Replication. In Proc. Symp. Networked Systems Design
& Implementation, pages 161–174, 2008.

[8] Y. Tamura. Kemari: Virtual Machine Synchronization for Fault
Tolerance using DomT. In Xen Summit Boston 2008, 2008.

[9] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and H. Guan.
COLO: COarse-grained LOck-stepping Virtual Machines for Non-
stop Service. In Proc. Annual Symp. Cloud Computing, 2013.

[10] A. Burtsev, P. Radhakrishnan, M. Hibler, and J. Lepreau. Trans-
parent Checkpoints of Closed Distributed Systems in Emulab. In
Proc. European Conf. Computer Systems, 2009.

[11] T. Kashiwagi and K. Kourai. Flexible and Efficient Partial Migra-
tion of Split-memory VMs. In Proc. Int. Conf. Cloud Computing,
2020.

[12] K. Kourai and H. Utsunomiya. Synchronized Comigration of
Virtual Machines for IDS Offloading in Clouds. In Proc. Int. Conf.
Cloud Computing Technology and Science, pages 120–129, 2013.

[13] S. Kawahara and K. Kourai. The Continuity of Out-of-band
Remote Management across Virtual Machine Migration in Clouds.
In Proc. Int. Conf. Utility and Cloud Computing, pages 176–185,
2014.

[14] X. Song, J. Shi, R. Liu, J.Yang, and H. Chen. Parallelizing
Live Migration of Virtual Machines. In Proc. Int. Conf. Virtual
Execution Environments, pages 85–96, 2013.

