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ABSTRACT 

 

Cellulose nanofibre (CNF), which is produced from lignocelluloses, has been growing 

exponentially as a low-carbon material because of its relative ease of high specific surface area, 

high strength and stiffness, lighter in weight and biodegradability. This cellulosic fibre has been 

studied intensively for fibre reinforced polymer composites as outstanding reinforcing potential 

instead of glass or carbon fibre. Due to hydrophilicity derived from hydroxyl groups in the 

structure and inherent tendency to form a strong network held through hydrogen-bonding, CNF is 

difficult to disperse in almost of the hydrophobic polymer matrix. Therefore, this study focused on 

surface modification strategies to expand the applications. The present work aimed to investigate 

the surface modification of CNF by new greener strategies and prepare environmentally friendly 

next-generation fibre reinforced plastics. The surface modification of CNF was easily performed 

by optimizing the modification method with acid.  Surface modification using an acid treatment 

such as acetic acid, phosphoric acid, and sulfuric acid successfully converted from the hydroxyl 

group to the ester group in the CNF, confirmed by FT-IR and SEM-EDS. Moreover, the XRD 

analysis revealed that this treated CNF was the cellulose type I even after acid treatments.  The 

acid treatment method could improve interface adhesion between CNF and polymer matrix. The 

dispersibility of CNF in the silicone elastomer as a polymer matrix could not see agglomerated 

CNF compare to unmodified CNF in the matrix, respectively. The mechanical properties of the 

silicone composite also improved. Therefore, acid treatments have the potential to be an effective 

method as a surface modification of CNF. In order to compare the performance of CNF 

dispersibility in the polymer matrix and mechanical properties, acetyl cellulose as a commercial 

product was investigated to prepare fibre reinforced plastics with polyurethanes (PUs). 

Thermoplastic resin as a polymer matrix for fibre reinforced plastics is major activities in this 
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research field. On the other hand, CNF can be worked as a network agent for thermoset resin such 

as PUs, polyurea, and epoxy resin. Therefore, acetyl cellulose was adopted due to less hydroxyl 

group as reactive sites to the isocyanate group in PUs because of suppression of networking. 

Though some remained hydroxyl groups in acetyl cellulose were reacted with isocyanate group in 

PUs monomer to make a network, molecular weight of PUs was hardly grown by networking. 

However, this issue could overcome after modification reaction conditions.  These composites 

showed enhancement of mechanical properties and transparent film after hot-pressed moulding. 

Mechanical performance of PUs and transparency of moulding film to proof dispersibility of fibre 

in the PUs matrix was investigated by CNF, and phosphoric acid-treated CNF to compare with the 

acetyl cellulose PUs. Since agglomeration has occurred through hydrogen bonding between 

hydroxyl groups in cellulose structure, another material as an intercalator was mixed due to 

preventing hydrogen bonds between celluloses. Silica/CNF as a filler was successfully prepared 

using ethanol/water mixed solvents at room temperature without a catalyst. This method prevented 

the CNF from agglomeration when drying and enhanced the dispersion of CNF in the hydrophobic 

polymer. Polypropylene (PP) as a polymer matrix was melt blending with silica/CNF filler. It 

significantly increased the mechanical properties of the composite. In conclusion, this study 

provided to overcome in greater depth bothersome of CNF to prepare fibre reinforced plastics 

which can be shown to enhance mechanical performance due to prevent agglomeration of CNF 

from a hydrophobic matrix. The resulting products and method can expand and contribute to an 

application to replace existing materials. 
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CHAPTER 1 

Introduction and Literature Review 

 

1.0 Introduction 

The growing demand for environmental sustainability has led to research on various cellulose-

based materials to minimize the environmental impact of conventional hazardous materials. 

Cellulose fibre has unique properties such as renewability, biocompatibility, excellent mechanical 

properties, and tailorable surface chemistry. By comparing to cellulose, cellulose nanofibre (CNF) 

is lighter in weight with high surface area to volume ratio, higher strength, stiffness and it can act 

as a superb reinforcing agent for developing green bio-nano composites. CNF can be used in many 

different applications, including energy production, polymer composite, environmental 

improvement, food, pharmaceuticals, and tissue engineering. However, CNF is naturally poor-

dispersed in low-polar materials due to its hydrogen bonding. To overcome the agglomeration of 

CNF in low-polar materials, the surface modification for CNF is the main step to interfere with 

the hydrogen bond between CNFs. It has a reactive surface of hydroxyl groups which can be 

functionalized to various surface properties. 

 

In this study, we focus on surface modification treatment on the CNF and develop a simple method 

with a greener process for fabrication polymer composite with CNF. The Treated CNF can be used 

as a filler and expected enhanced mechanical properties of the polymer.  Surface modification 

strategies on CNF specifically using carboxymethylation, TEMPO oxidation, acetylation, 

isocyanate grafting and silylation has been studied extensively. These techniques were 

successfully developed and introduce different functional group on the CNF surface. However, 
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some of this method is not environmentally friendly, as they usually require a catalyst, high energy 

and harsh chemical, besides complicated reaction processes. Therefore we introduce a simple and 

greener method as a surface modification.  

 

The second part of this study investigates the performance of treated CNF dispersibility in the 

polyurethanes (PUs) matrix by understanding the PUs mechanism by using cellulose derivatives, 

which is cellulose acetate as a chain extender in PUs polymerization. The PUs was prepared by 

pre-polymer methods and are formed by a chemical reaction between an isocyanate and a hydroxyl 

group. Throughout the study, cellulose derivatives as chain extender are discussed.   

 

Without surface modification and high CNF content in the PUs polymer will cause a slightly poor 

adhesion between the fibre and matrix interface.  The PUs/cellulose composites are usually 

prepared by solvent casting and in situ polymerization technique using dimethylformamide (DMF) 

as a solvent. However, due to the high boiling point (153℃), nanocomposite entails difficulties 

for solvent removal later, time-consuming and hazardous effects of DMF solvent. Therefore, we 

improve the process by using acetone as a polymerization solvent. The treated CNF was used to 

develop high mechanical and thermal properties PUs with good biocompatibility by introducing a 

much stronger chemical bond between CNF and PUs. The enhancement of the physical and 

mechanical properties from incorporating CNF in aliphatic isocyanates-based PUs has been 

thoroughly investigated. 

 

Last part of this study is to control hydrogen bonding between cellulose chains through physical 

interaction with another material for polymer composites. Generally, surface modification was 
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done to improve the CNF dispersibility. However, the chemical modification method involves 

many processes and chemicals involved, time-consuming and not eco-friendly. Therefore, we 

attempted a new approach using ethanol/water mixed solvent applied to fine particles and CNF to 

prevent the agglomeration of CNF when drying. This hybrid filler can obtain nanocomposite 

materials by an accessible, without chemical modification, fast, and low-cost method. 

 

1.1 Objectives 

Cellulose nanofibre (CNF) has a high number of hydroxyl groups, which lead to inter-intra-

interaction through hydrogen bonding between cellulose chains and high hydrophilicity which 

limits its uses in several applications. Each CNF unit monomer contains three hydroxyl functions 

which enable to chemical modification. This study provides an overview of surface modification 

of CNF as a nanofiller in the composite polymer. 

The objectives of this study include: 

1. To control hydrogen bonding between cellulose chains through modification of functional 

groups based on greener process. 

2. To investigate performance of CNF as filler and/or chain-extender in polyurethane. 

3. To control hydrogen bonding between cellulose chains through physical control with 

another materials for polymer composites. 

 

1.2 Cellulose  

Cellulose is the most abundant biopolymer available in nature, and it is one of the major 

components in the plants. Cell wall of plant cell is attributed their mechanical performances to 

cellulose.   This polymeric material synthesised by a wide variety of living species such as plants, 
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animals, bacteria, and some amoebas.  Structural properties of cellulose can retain a semi-

crystalline state of aggregation even in an aqueous environment.  Cellulose is a natural linear 

polymer of anhydroglucose units linked at the one and four carbon atoms by ß-glycosidic bonds 

[1]. It consists of repeating monomer units of β-D- anhydroglucopyranose rings linked by β-1, 4-

linkages forming a linear chain [2][3]. Each monomer unit contains three hydroxyl functions which 

allow for chemical modification.  The microfibrils of cellulose are particularly harsh and inflexible 

due to the presence of hydrogen bonds.  Figure 1.1 shows a single cellulose macro fibril is 

composed of tiny bands of cellulose microfibrils and generate cellulose filaments, which imparts 

intrinsic strength to plant-based materials [4]. 

 

While cellulose is a fundamental structural material of most plants, bacterial cellulose (BC) is also 

known as microbial cellulose.  It is biodegradable and also natural cellulose which is produced by 

bacteria.   The diameter of the BC fibres is 20–100 nm. The high purity in the structure gives the 

material high water-holding capacity, high tensile strength and flexibility [5].  Moreover, BC 

formed a strong gel film of crystalline microfibrils and also free of lignin, hemicelluloses, and 

pectin, which are typically present in plant-derived celluloses.  Therefore, making the BC 

purification easy, low energy process, whereas purification of plant celluloses usually requires 

harsh chemicals [6][7].   

 

Cellulose is a polysaccharide compound and the homopolymer of glucose.  A large number of 

glucose units combines to form a cellulose polymer molecule, which depends on their chain length 

and rate of polymerisation [8].  The degree of polymerisation (DP) is a measure of how many D-

anhydroglucopyranose units there is in the polymer. Since no polymer is homogenous in length, 
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the molecular weight distribution will have an important influence on the properties of the fibres 

[9]. 

 

Figure 1.1: Schematic of the hierarchical structure of cellulose filaments [4] 

 

The DP of cellulose is varying between 10,000 and 15,000, where DP is dependent on the 

cellulosic source material. The hydrogen bonding between hydroxyl groups and oxygen atoms of 

the adjoining ring molecules stabilises the linkage, resulting in the linear configuration of the 

cellulose chain [10]. 

 

1.2.1 Types of Cellulose  

Polymorphs of cellulose are based on a wide variety of molecular orientation and hydrogen 

bonding network in the crystalline region [11] which can characterised as cellulose І, cellulose ІІ, 

cellulose ІІІ and cellulose IV.  Figure 1.2 shows the transformation of cellulose into its various 

polymorphs.  Cellulose I is a crystalline biopolymer naturally produced by a variety of organisms 

such as trees, plants, tunicates, algae, and bacteria. Furthermore, cellulose I comprise two slightly 
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different forms which are cellulose Iα and cellulose Iβ.  The crystal phase forms of cellulose І 

depends on sample origins. Although Cellulose Iα has been found in the cell wall of some algae 

and bacterial cellulose, cellulose  Iβ is associated with cotton, plant and ramie fibres [12].  

Cellulose І have been widely used in several applications such as preparing hydrogel for wound 

dressing and reinforcer as nanofiller into other polymers to improve mechanical properties [11].  

Cellulose II is a crystalline form that is formed from cellulose I, and it has structural changes in 

the molecule and the most stable structure. Cellulose II can be produced by two processes which 

are from regeneration (solubilisation and recrystallisation) and mercerisation (aqueous alkali 

treatment, followed by washing) [13]. However, it has been found that cellulose II cannot be 

converted back to cellulose I [14].  Cellophane and rayon are regenerated cellulose product which 

are cellulose II [15].  Cellulose III is formed when cellulose I or cellulose II is treated with amines 

or liquid ammonia, followed by the removal of these reagents. Cellulose III is a reversible reaction; 

it can be achieved by thermal treatment and restored to cellulose I and II [16]. 

 

 

Figure 1.2: Possible interconversions of cellulose polymorphs [14] 

 

Additionally, cellulose  III is much easier for celullase to digest due to its significantly high 

amorphous content [17][18].  Polymorph cellulose IV can be obtained by heating cellulose III up 

to 260ºC in glycerol and cellulose I cannot be directly transformed into cellulose IV. According to 
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a study reported by Wada et al. [19] , cellulose IV also detectable in the primary cell wall and 

similar structure to cellulose I. This cellulose І is referring to low crystalline cellulose which can 

be found in fungal cell walls. 

 

1.2.2 Nanocellulose  

Nanocellulose (NC) is a term referring to nano-structured cellulose, is a natural nanofiber that can 

be obtained via fibrillated by cellulose extracted from biomass resources such as wood, herbs, 

plants, and organisms. It is biodegradable, lightweight, and holds reactive hydroxyl groups which 

makes it suitable for surface functionalisation for use in a variety of applications [20]. There are 

different techniques used to produce NC (Figure 1.3), including acid hydrolysis, mechanical 

process, and enzymatic hydrolysis. The acid hydrolysis method is considered to be the simpler and 

fast process for processing NC.  Furthermore, NC is roughly classified into cellulose nanocrystals 

(CNC), cellulose nanofiber (CNF), also called nano-fibrillated cellulose (NFC), and bacterial 

cellulose (BC).   

 

Figure 1.3: Schematic representation of the extraction of NC from cellulose [20] 
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Acid hydrolysis is commonly used for prepared CNC, where H2SO4 and HCl the most used acid. 

These strong acids used to break the glycoside bond in cellulose and remove amorphous regions 

leaving highly crystalline particles that vary in size, but it depending on cellulose source.  This 

acid hydrolysis usually produces CNC a rod-like structure with about 90% crystallinity.  Besides, 

acid hydrolysis by H2SO4 has negatively charged half-ester sulphate groups onto the CNC surface, 

allowing the CNC particles to repel each other through electrostatic repulsion and preventing 

aggregation in aqueous suspensions[21]. 

 

Different methods of the mechanical process have been developed to produce CNF from cellulose 

such as high-pressure homogenisation, ball milling, microfluidization, ultrasonication, and water 

jet system [22][23].  In general, this mechanical process preserves both the crystalline and 

amorphous phases. CNF has not high crystallinity comparing with CNC but consists of both 

crystalline and more amorphous domains instead. This method also produces long-entangled 

fibrils of CNF, which may be micrometres long. Comparing to CNC, CNF has a large surface to 

volume ratio, high tensile strength and stiffness, high flexibility, good electrical and thermal 

properties [9].    

 

Moreover, NC derivatives are a promising material and have broad applications as functional paper, 

optoelectronics, catalysis, energy storage, environmental remediation and packaging. Recent 

developments in biomedicine and biotechnology, NC derivatives also uses as tissue scaffolds, drug 

delivery, antibacterial coatings and biosensors application.  Phosphorylated NC derivatives are a 

particularly interesting material, covering most of the applications in various dimensions, 

including bone scaffolds, adsorbents, and as flame retardants because of high thermal properties 
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[24][25].  Polymer nanocomposites using NC derivatives has a great interest due to the unique 

characteristics of those nanomaterials.  Current problematic of NC derivatives is the hydrophilicity, 

making it incompatible with the hydrophobic polymer matrix. Therefore, surface modification of 

NC derivatives has to be performed to improve its dispersibility in the polymer matrix [26]. 

 

1.3 Surface modification of nanocellulose 

One of the challenges in preparing composites with NC and a hydrophobic polymer matrix is the 

low compatibility. Besides, NC possesses a high hydrogen bond that makes it have hydrophilic 

properties in nature [27].  Without surface modification on NC surface, NC tendency to 

agglomeration in a polymer matrix and decreases the mechanical properties of composites material.  

The surface modification of NC is an effective method for improving the interface compatibility 

between composites material [28].  Surface modification of NC can be divide into introduced 

functional group and generation of hydrophobic into NC surface. 

 

1.3.1 Functional group 

Carboxymethylation, oxidation, phosphorylation, and sulfonation is a process introduced a 

functional group on the NC surface (Figure 1.4). The carboxymethylation process introduces 

carboxymethyl groups onto the NC  surface, making the surface negatively charged [29][30]. This 

process is conducted by etherification of the hydroxyl groups with monochloroacetic acid (MCA) 

in the presence of alkali, which increases the water retention value and significantly decreases the 

ratio of crystalline to amorphous cellulose [31].  Oxidation mediated by 2,2,6,6‐

Tetramethylpiperidine‐1‐oxyl (TEMPO) can be used as a pre-treatment to promote NC separation.  

Surface treatment by  TEMPO oxidation can selectively oxidise hydroxyl groups at the C6 position 
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on the NC surface and create carboxylate groups, which promote dispersion of NC in an aqueous 

environment [32]. Moreover, this treatment maintained the crystallinity of NC [33]. The phosphate 

groups were introduced onto the NC surface by phosphorylation using phosphoric acid. This 

chemical modification also introduces negatively charged groups to the NC surface in different 

forms such as phosphate, or phosphite esters. These groups stabilise nanoparticle suspensions 

through electrostatic interactions [24]. Sulfonation is a technique for imparting a low anionic 

charge and introduce a sulphate group to the surface of NC materials and provides a stable colloidal 

suspension [34][35]. Furthermore, the introduction of sulphate groups into the NC surface 

compromises the thermo-stability of NC [30].  

 

 

Figure 1.4: Different surface modification techniques through which ionic charges are 

introduced to the NC surface [24] 
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1.3.2 Generation of hydrophobic on NC surfaces 

Presence of three hydroxyl groups per anhydroglucose unit within cellulose chains and on the 

surface of NC, allowing the chemical modifications to introduce functional groups using various 

techniques [36]. Chemical modification techniques such as acetylation, silylation, and 

urethanization, making the NC surface hydrophobic. Acetylation method reduces the number of 

hydroxyl groups in NC, which increases hydrophobicity and weakens hydrogen bonding [37].  

Acetic anhydride is commonly used as an acetylating agent reacting with free hydroxyl groups in 

NC. Silylation introduces hydrophobic alkyl moieties onto the NC surface; this technique is a 

simple way to increase the hydrophobicity on the NC surface. Various silylating reagents can be 

used, such as chlorosilanes and hexamethyldisilazane [38]. Zhang et al. [39] demonstrated surface 

silylation on NFC surface using methyltrimethoxysilane and polydimethylsiloxane (PDMS) as a 

model network (Figure 1.5).  Resulting, highly hydrophobic NFC was obtained and improvement 

in both the static and dynamic mechanical properties in polydimethylsiloxane polymer. 

 

Figure 1.5: Surface silylation on NFC and polydimethylsiloxane as a model network [39]. 

 

1.4 Hydrophobic Polymer 

Hydrophobic polymers included materials such as polypropylene, polystyrene, polyvinylchloride, 

polytetrafluoroethylene, polydimethylsiloxane, polyesters, and polyurethanes. Some of these 
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polymers are frequently poor in mechanical properties, and fillers can provide overcoming of this 

limitation. An example, silica nanoparticles were introduced into polypropylene polymer to 

enhance the mechanical properties and thermal stability [40]. Furthermore, incorporation of 

hydrophilic cellulose suspension to a nonpolar hydrophobic polymer matrix can be improved by 

interacting cellulose with a surfactant or surface-active agents [41].  

 

1.5 Nanofiller in Nanocomposites 

Polymer nanocomposites are comprised of a polymer or copolymer with nanoparticles or 

nanofillers mixed or dispersed in the polymer matrix [42].  The reinforcement of nanofiller in 

polymeric systems depends on the filler type, the type of functional group on the filler, the aspect 

ratio of the filler, the amount of filler, the type of polymer, and the method of processing. 

Homogeneous dispersion of the nanofiller in the polymeric matrix and interaction between the 

filler and the polymer is necessary for good reinforcement [43]. Reinforcement of nanofillers into 

the polymer can lead to improvements in their mechanical strength, thermal stability, barrier and 

flammability properties, without affecting their processability [44].  The reinforcing effect of 

nanofiller is attributed to several factors, such as polymer matrix properties, type of nanofiller, the 

concentration of polymer and filler, particle aspect ratio, particle size, particle orientation and 

particle distribution [45]. There is various type of nanofillers has been studied recently such as 

silica [46][47], carbon nanotubes [43][48], graphene [49][50][51], and nanocellulose 

[52][53][54][55], to obtain a nanocomposite polymers and with different application.  

 

Incorporation of nanofiller into polymer nanocomposites can be done by in situ polymerisations, 

solution method and melt extrusion [56]. These method is depending on the type of polymeric 
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matrix, nanofiller and desired properties for the final products.  In polymer chemistry, in situ 

polymerisation methods is a mixing of nanomaterial in a solution monomer, followed by 

polymerisation in the presence of the dispersed nanomaterial [57]. This polymerisation requires 

the utilisation of monomers, an initiator, and a high-temperature reactor.  Rueda et al. [58] prepared 

PUs/CNC nanocomposites using in situ polymerisation method and  CNCs as precursors of 

polyurethane chains. Moreover, polymer nanocomposite and nanofiller can be prepared by 

dispersed in an appropriate solvent by ultrasonication, magnetic stirring and high-speed shear 

mixing. After the evaporation process through dispersion of nanofiller in a polymer solution after 

homogenisation even though polymer chains may reassemble, the composite polymer can be 

produced.   This method has been extensively used due to its efficiency in dispersing nanofillers 

regardless of the polymer polarity. Nevertheless, it depends on the solvent compatibility between 

the polymer and the fillers [59].    

 

The melt extrusion process consists of melting the polymer pellets through a combination of 

applied heat and friction. This molten polymer then forced under high pressure through a small 

outlet [60].  Figure 1.6 shows the twin-screw extruder and hot melt processing.  It is one of the 

most widely applied processing technologies used to prepare plastic products, including bags, 

films, sheets, tubes, fibres, and pipes [61].  Reinforcement of CNF as nanofiller in polypropylene 

(PP) could be done using a twin-screw extruder to achieve uniform dispersion in the polymer 

matrix.  This extruder method allows for the processing and fibrillation of cellulose at solid content 

[62]. Combination of different types of nanofiller and polymer to produce polymer 

nanocomposites show the unique design possibilities and creating functional materials with desired 
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properties for specific applications. The possibility of using natural resources and environmentally 

friendly offered new opportunities for future applications.  

 

Figure 1.6: Schematic representation of twin-screw extruder and processing of hot melt extrusion 

 

1.6 Polyurethanes  

Polyurethanes (PUs) are versatile material and most popular type of polymers in nowadays because 

of their physicochemical properties based on the chemical composition. This material was 

discovered by Otto Bayer and co-workers while searching for alternatives to natural rubber. This 

unique material was patented in Germany in 1937.  The chemistry of PUs is synthesised from 

polyisocyanate (OCN-R-NCO) and polyhydroxy compound (HO-R-OH) and chain extender, 

which is  -NHCOO- repeating macromolecular compounds [63].  The versatility of PUs chemistry 

enables the chemist to engineer polyurethane ingredients to achieve the desired properties. 

 

Furthermore, synthesis of PUs using pre-polymer technique also has been studied intensively 

[64][65].  This pre-polymer technique mechanism is as shown in Figure 1.7. The synthesis involves 

two main steps.  First step synthesis, polyol will react with a diisocyanate generate a PUs pre-
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polymer, and the pre-polymer still has open diisocyanate group, which will be reacted with a chain 

extender to complete the polymerisation. This pre-polymer technique allows the modification of 

PUs using cellulose as a chain extender.  

 

 

Figure 1.7: Schematic representation of the PUs synthesis mechanism [65] 

 

The broad applicability of polyurethane is due to functionality in a selection of monomeric 

materials from a wide variety of macro diols, diisocyanates and chain extender.  Nowadays, PUs 

is used in multipurpose applications such as coatings, paints, elastomers, textiles, insulators, elastic 

fibre, foams, and footwear.  During the early stages of discovery, most of the PUs were synthesis 

by using toxic solvents and monomers.  Recently, monomers from natural sources were introduced, 

making the PUs attractive in the industry due to the green nature of PUs materials [66].  
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1.6.1 Polyol 

One of the significant monomers in PU synthesis is a polyol, which usually termed as a soft 

segment. They can be categorised as polyether, polyester, or polycarbonate-based polyols. 

Polyether polyols are made by the reaction of epoxides with compounds having an active hydrogen 

atom. Moreover,  polyester polyols are made by the polycondensation reaction of multifunctional 

carboxylic acids and polyhydroxyl compounds [67].  Polycarbonate-based polyols are produced 

on the ground of alkylene oxides and CO2 [68].   Polycarbonate-based polyol provides significantly 

enhanced hydrolytic stability, chemical resistance, high modulus and strength [69].  It is crucial to 

choose suitable polyol as the properties highly depend on polyol and its contents. Low molecular 

weight polyol controls rigidity, whereas high molecular weight polyol contributes to elastomeric 

properties. 

 

Common polyether polyols include poly(tetramethylene) glycol (PTMO), poly(propylene oxide) 

glycol (PPG), and poly(ethylene) glycol (PEG). The PTMO is one of the most industrially 

important class of materials, which are widely being studied in recent years. The PTMO or 

poly(tetramethylene ether) glycol (PTMG) is prepared through polymerisation of tetrahydrofuran 

with different molecular weights [70].  Besides, PPG and PEG can be prepared using a different 

weight of ethylene oxide/propylene oxide. By changing the total hydroxyl group and polymer 

chain, the polyol properties such as reactivity, compatibility, and solubility also can be changed. 

 

1.6.2 Isocyanate 

Isocyanate is the functional group with the formula R−N=C=O, which are reactive towards active 

hydrogen groups such as an amine (-NH), hydroxyl (-OH), the carboxylic acid (-COOH), urea, and 
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amide [71]. This chemical reacts with active hydrogen groups to produce urethane (carbamate) 

linkages. The isocyanates building block can be either aromatic isocyanates or aliphatic isocyanates 

in segmented polyurethane elastomers. Figure 1.8 shows the chemical structure of 

aromatic isocyanate and aliphatic isocyanates. The aromatic isocyanates are more reactive than the 

aliphatic isocyanates and generally develop better mechanical strength, thermal and flame retardant 

properties and also give more rigid PUs [72][71].  Toluene diisocyanate (TDI) and methylene 

diphenyl diisocyanate (MDI) are some of the common aromatic isocyanates used in the industry 

[73]. These aromatic isocyanates oxidize when exposed to UV-light, therefore not suitable to be 

used for outdoor coatings application [74].  

 

 Moreover, potentially to form aromatic amines after degradation, aromatic isocyanate-based PUs 

are also considered to have higher toxicity than aliphatic isocyanate-based PUs [75]. Aliphatic 

isocyanate most frequently used in coating applications because they produce PUs with excellent 

UV resistance, transparent and exterior durability [76]. This isocyanates-based PUs also produce 

rubbery materials with high elongation but low in tensile strength [77].  The most common types 

of aliphatic isocyanates are hexamethylene diisocyanate (HDI), dicyclohexylmethane 4,4’-

diisocyanate (H12MDI), and isophorone diisocyanate (IPDI).  Additionally, aliphatic isocyanates 

are used to produce degradable PUs [73] and as a surface modification of cellulose and 

nanocellulose to promote dispersion in PUs matrix [78][79]. 
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Figure 1.8: Chemical structure of aromatic isocyanate and aliphatic isocyanates [75] 

 

Girouard et al. [80] reported that the chemical modification of cellulose nanocrystals (CNC) with 

IPDI had enhanced the dispersion in PUs composite, which increased the tensile strength and work 

of fracture more than 200% as compared to the neat PUs with high elongation. Figure 1.9 show 

CNC modified by isophorone diisocyanate (IPDI), this modification was having two monomers 

(primary and secondary) –NCO groups with both urethane and isocyanate functionality.  

 

Figure 1.9: Illustration of IPDI/CNC reaction with the secondary NCO group on IPDI [80]. 
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The pendant primary isocyanate group at the CNC surface were used as a route to facilitate 

covalent bond formation with a polyurethanes (PUs) elastomer, resulting in a significant 

improvement in the tensile properties of PUs polymer compared to the neat PUs. Polyurethane 

materials attract much attention due to their versatile applications with a wide variety of polyols 

and isocyanates market ready to synthesise PUs.  

 

1.6.3 Chain extender  

Chain extenders are reactive low molecular weight compounds such as hydroxylamines, glycols, 

or diamines and are used to increase the block length of the hard segment in PUs synthesis [73] 

[81]. Chain extender also shorter chain length as compared to polyols. The structure of the chain 

extenders determines the rigidity of the hard blocks and the density of hydrogen bonds [82]. The 

most common chain extender used in PUs synthesis is 1,4 butanediol (BD), 1,6 hexanediol, 

cyclohexane dimethanol, ethylene glycol, hydroquinone bis(2-hydroxyethyl)ether (HQEE) [69]. 

 

Cellulose is composed of repeating glucose units connected by 1,4-glycosidic linkages; the 

abundant free hydroxyl groups can be used to crosslink with PUs. The hydrophilicity of cellulose 

should be reduced before cellulose is used in PU synthesis [83]. Cellulose and cellulose acetate 

(CA) used as a chain extender in PUs polymerisation has been done by Ikhwan et al. [64] and 

Chung et al. [83].  
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CHAPTER 2 

Tailored higher performance silicone elastomer with cellulose nanofiber 

(CNF) through acidic treatment 

Abstract 

 

Cellulose nanofiber (CNF) can be used for reinforcer to silicone polymer to expect enhancement 

of its mechanical strength. However, CNF is a hydrophilic material, which typically poor-

dispersed characteristic in non-polar polymer matrices.    To overcome this bothersome, surface 

modification of CNF has been studied to tailor the interfacial interactions between CNF and 

matrices for fibre dispersibility in matrices. In this work, CNF was treated with some acids to 

modify a functional group on CNF.  The acid treatment approaches successfully introduced the 

functional groups onto CNF surface, which confirmed by FT-IR, TGA and SEM-EDS analyses.  

Moreover, the XRD analysis revealed that this treated CNF was the cellulose type I and acid 

treatments did not vary it. The TGA results showed lower thermal degradation of all treated CNF 

as compared to control CNF. Additionally, the effects of treated CNF as nanofiller in the silicone 

elastomer were evaluated the mechanical properties. The treated CNF also showed a good 

dispersibility in silicone composite, and no agglomeration was observed.   And also, the tensile 

strength and elongation of silicone composite with treated CNF as nanofiller showed high 

performance compare to silicone composite with pristine CNF.  The highest tensile value was 

recorded at 3.4 MPa in silicone/CNF-P samples using phosphoric acid-treated CNF.  Therefore, a 

low concentration of acid treatments has the potential to be an effective method as a surface 

modification of CNF. 

Keywords: Cellulose Nanofibre, composite polymer, acid treatment, Sylgard, elastomer 
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2.1   Introduction 

Cellulose fibre can be derived from renewable resources, eco-friendly, has excellent mechanical 

properties, good biocompatibility, and tailorable surface chemistry [84].  By comparing to 

cellulose fibre,  cellulose nanofibre (CNF) is lighter in weight with high surface area to volume 

ratio, higher strength, stiffness and it can act as a superb reinforcing agent for developing green 

bio-nano composites [20].  The CNF can be produced and extracted from cellulose by applying a 

mechanical treatment such as high-pressure homogenisation, microfluidization, ultrasonication, 

and water jet system [23][85].  

 

CNF can be reinforced to polymer composite which will make a lightweight compared to other 

fibre reinforced plastic (FRP) such as glass fibre reinforced plastic and carbon fibre reinforced 

plastic.  Polymer composites with CNF can be enhanced by well-dispersed CNF into the polymer 

matrices. However, nanocellulose is naturally poor-dispersed in low-polar materials due to its 

hydrogen bonding. To overcome the agglomeration of CNF in low-polar materials, the surface 

modification for CNF is the main step to interfere the hydrogen bond between CNFs. It has a 

reactive surface of hydroxyl groups which can be functionalised to various surface properties [86].    

Surface modification strategies on CNF specifically using carboxymethylation, TEMPO 

oxidation, acetylation, isocyanate grafting and silylation has been discussed by Abdul Khalil et al. 

[87]. Some of these strategies introduced the ionic groups on CNF surface to change its 

characteristic from hydrophilic to hydrophobic.  On the other hand,  the esterification reaction of 

CNF with acetic anhydride, butyric anhydride, and caproic anhydride has been studied to 

overcome the agglomeration [88] [89].   
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The size and distribution of nanofibre are important for FRP because the defect due to an 

agglomeration can be reduced by the mechanical properties of the hybrid composite polymer [90].  

The CNF has been extensively used in the production of nanocomposites using phenolic resin, 

styrene butyl acrylate, amylopectin, polyurethane, and melamine formaldehyde [91].   

 

Silicones are synthetic polymers with organic groups attached to an inorganic backbone giving a 

combination of unique properties such as high flexibility, low surface energy, high thermal 

stability, high gas permeability, and low biological activity [92].  With these unique properties, 

silicones particularly polydimethylsiloxanes (PDMS) have been used in a wide range of 

applications including coatings, painting, construction industry, medical applications, cosmetics, 

sensors, and optical materials [93][94].  The current problem with silicone is it has low mechanical 

properties but can be improved by the addition of fillers, for example, natural fibre or inorganic 

filler materials such as glass fibre [95], SiO2 [96][97], Al2O3 [97], and CaCO3 [98][99].  The 

strength of silicone polymers without filler is substandard for most applications, thus the addition 

of reinforcing fillers increase its hardness and enhance its mechanical strength [100]. 

 

A study by Jankauskaitė et al. [101] mentioned that the cellulose which was used as nanofiller in 

silicone without surface modification has caused the aggregation.  Despite the clear polarity 

difference between the CNF and the siloxane derivatives, the coexistence of these two types of 

chemical compounds in the same material can induce a new combination of properties to the 

material.  Silicone is a well applied and common materials in our life.  The disadvantages of 

silicone materials are on their mechanical performances, specifically low tensile strength and tear 

strength.  The combination of silicone and CNF may be expected to overcome their low 
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performance.  However, both of these materials have different chemical structures which makes 

the difference in their properties.  

 

In this study, CNF produced by a waterjet system was treated with several acid solutions and was 

used as a nanofiller in silicone to improve the tensile strength of the composite polymer.  The 

successful of acid treatments on CNF surface were evaluated based on their chemical structures, 

crystallinity, and dispersibility in solvents.  Moreover, the silicone/CNF composites were assessed 

on their transparency and mechanical properties by comparing with the original silicone.   

 

2.2   Experimental  

2.2.1   Materials 

Commercial CNF (5 wt % in water, DP 650) was kindly provided by Sugino Machine Limited, 

Toyama Prefecture, Japan. This CNF was produced by a super high-pressure water jet system. 

Phosphoric acid (85%), acetic acid (99%), sulfuric acid (95%), and hydrochloric acid (35-37%) 

were purchased from Wako Pure Chemical Industries Ltd, Japan.  All chemicals were used as it is 

without further purification and reverse osmosis (RO) water was used throughout the experiments.  

Silicone used was Sylgard 184 (Dow Corning Toray Co., Ltd). 

 

2.2.2   Acid treatment 

Commercial CNF was treated through acids as listed in Table 2.1.  The CNF mixture solution was 

sonicated under 40 Hz for 3 hours and continuously stirred for 4 hours at room temperature. Then, 

the product was washed with RO water and centrifuged at 8000 rpm for 10 minutes until it reached 

pH 6−7. The treated CNF was solvent exchanged to ethanol and stirred for 24 hours and then it 
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was centrifuged at 8000 rpm for 10 minutes and sediment was collected. This process were 

repeated 3 times to ensure water is removed. 

 

Table 2.1: Percentage and volume of acids in the acid treatment of CNF  

Sample 

Code Name 

CNF aq. 

(5 wt %) 

Acids Acid volume 

(Total 100 mL) 

CNF-P 10 g Phosphoric acid (85% w/w) 30 mL 

CNF-A 10 g Acetic acid (99% w/w) 30 mL 

CNF-S 10 g Sulphuric acid (95% w/w) and hydrochloric 

acid (37% w/w) 

30 mL and 10 mL 

 

2.2.3   Preparation of silicone/CNF composite 

The treated CNF (0.6% w/w) was added into Sylgard 184 using a mixing ratio of 10:1 (base 

polymer: curing agent). The blend compound was mixed through planetary centrifugal mixer AR-

100 (Thinky U.S.A., Inc) for 2.5 minutes successively.  Then, the mixture was slowly poured 

into a glass petri dish (9 cm diameter) and degassed under vacuum for 2 hours to eliminate air 

bubbles, and the mixture was cured at 80 °C for 2 hours and demoulding a silicone/CNF composite 

which was prepared with average 0.8 mm thickness for mechanical testing. Silicone polymer was 

used as a control. 
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2.3   Characterization  

2.3.1   Functional groups analysis  

Functional groups of treated CNF were analysed with a microscopic Fourier Transform Infrared 

(FT-IR) spectroscope Nicolet iS5 using iD7 ATR (Thermo Fisher Scientific, Japan). Prior to 

analysis, samples were dried at room temperature for 24 hours. The spectrum was recorded over 

the wavenumber ranging between 400 and 4,000 cm-1.  The spectra were the average of 16 scans 

at a spectral resolution of 4 cm-1. 

 

2.3.2   Morphological analysis 

The surface morphologies of CNF and treated CNF were observed under a 3D laser scanning 

confocal microscope (LSCM) model VK-X 100 (KEYENCE Corporation, Osaka, Japan) under 

prescribed conditions of laser:  red semiconductor laser, λ=658 nm, 0.95 mW, and pulse width of 

1 ns using a depth composition procedure.  

 

2.3.3   SEM-EDS analysis 

SEM-EDS images were observed using a scanning electron microscopy equipped with energy 

dispersive X-ray spectroscopy (SEM-EDS) (JCM 6000, JEOL Ltd. Tokyo, Japan). All CNF 

samples were dried at 24 hours in room temperature prior to analysis. The samples were coated 

with carbon using a vacuum sputter coater before observation by SEM-EDS. 

 

2.3.4   Dynamic laser scattering (DLS)  

Dynamic laser scattering (DLS) measurements were done to determine the size distributions by 

intensities and numbers for CNF after acid treatments. A DelsaMAx Pro was used (Beckman 
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Coulter, Inc), and analyses were carried out at room temperature, scattering angle of 163.5° using 

disposable sizing cuvettes fill with 100% ethanol solvent to reduce the agglomeration. The 

intensity of size distributions was obtained from the analysis of the correlation function using the 

Rayleigh Spheres model in the DelsaMax software. 

 

2.3.5   Wide Angle X-ray Diffraction (WAXD) 

The WAXD measurements were performed using a X-ray diffractometer (MiniFlex 600, Rigaku 

Co., Japan) at 30 kV and 15 mA at room temperature. Cu Kα radiation (λ = 1.54 Å) was used as 

the X-ray source. The diffraction angle was scanned from 3° to 70° at a rate of 1.4°/min. 

The crystallinity index (Ic) was determined using the height of 200 peaks (I002, 2θ = 23.5°) and the 

minimum intensity between 200 and 110 peaks (IAM, 2θ = 18°) which can be expressed as: 

 

𝐼 (%) =  × 100           (1) 

 

where I002 represents both crystalline and amorphous material while IAM represents amorphous 

material. 

 

2.3.6   Thermogravimetric analysis (TGA)  

TGA was carried out on EXSTAR TG/DTA 7200 (SII Nanotechnology Inc., Japan). The samples 

were scanned form 30 to 550 °C with the heating rate of 10 °C/min under the protection of nitrogen 

flow at 100 mL/min. 
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2.3.7   Mechanical properties 

The silicone/CNF composite was shaped into rectangular films with a size of 40 × 5 × 0.8 mm. The 

mechanical properties of silicone/CNF were determined by an IMC-18E0 model machine (Imoto 

Machinery Co. Ltd, Kyoto, Japan) at a rate of 10 mm/min crosshead speed at 23 °C.  The 

measurement was carried out using five replicates. 

 

2.3.8  Optical property 

Optical property of the composite films was determined by UV–Vis spectra. A rectangular piece of 

each film sample (4 cm × 4 cm) was directly mounted between the two spectrophotometer magnetic 

cell holders. The transmittance spectra of the composite films were measured at selected wavelength 

ranges from 190 to 1000 nm using a UV–Vis spectrophotometer (GENESYS 50, Thermo Fisher 

Scientific, USA). The optical properties of silicone and silicone composite films were characterized 

by the transmittance of visible (660 nm) regions.  

 

2.4   Result and Discussion 

2.4.1   Acid treatment and functional group analysis  

In this study, low concentration of acids were used in the treatment of CNF. The surface of CNF 

holds an abundance of hydroxyl groups, allowing the possibility of extensive chemical 

modifications.  Surface modification on CNF was done in order to achieve good compatibility with 

a polymer matrix. Carboxymethyl etherification, C6-carboxylation, phosphorylation, phosphite 

esterification, and sulfate esterification, are the common method use as surface modification and 

lead to their better compatibility in the hydrophobic polymer matrix [102]. However, some of this 

method required high concentration acid with combination high temperature, using harsh 
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chemical, and catalysts [25][88]. Therefore, the idea of using the low concentration acid treatment 

is to reduce the hydroxyl group in CNF by introducing another functional group.  The reduction 

of hydroxyl groups caused the improvement in the dispersion of CNF in non-polar polymers 

matrices [53][103]. The sonification process during acid treatment would facilitate the physical 

swelling of CNF and more surface areas would be exposed [104] [105]. This will allow the acid 

group to attack the hydroxyl group in CNF. The hydrochloric acid was added in CNF-S sample as 

a catalyst for swelling the cellulose and promote the sulfate group to attach to the CNF surface, 

which occurred after the esterification reaction of CNF with sulphuric acid [106] [9]. The modified 

CNF was washed repeatedly with RO water to remove unreacted acid.  By using chemical 

modification on CNF, the properties of the CNF could be changed and controlled in specific ways.   

 

The FT-IR analysis was carried out to study the functional groups present in treated CNF and to 

examine the changes of chemical structure that occurred due to the acid treatments as shown in 

Figure 2.1. The broad peak was observed at 3400-3300 cm-1 was attributed to the stretching 

vibration of O-H bonding from absorbed water molecules of the cellulose chains. This peak also 

includes inter- and intra-molecular hydrogen bond vibrations in hydroxyl groups in cellulose I 

[107][108].  The peak at 2895 cm-1 was attributed to the CH stretching vibration of all hydrocarbon 

constituent in polysaccharides and the peak at 894 cm-1  attributed to the ß-glycosidic linkages of 

the cellulose chain [109].  The peak at 1647 cm-1 may be attributed to the bending mode due to the 

absorbed water.  In the treated CNF-P,  new peaks of a phosphate group were observed at 980  and 

480 cm-1, which was assigned as the P(OH)3 stretch and OPO bending of H3PO4, respectively 

[110].  
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Besides, the weak absorption of the carboxyl group in the treated CNF-A was observed at the peak 

of 1740 and 1260 cm-1 which were assigned to C=O  ester and  C-O, respectively, indicating the 

occurrence of acetylation during the acetic acid treatment. On the other hand, for the treated CNF-

S, the peak at 1050 and 1002 cm-1 were observed by the shifted group of O=S=O [111], suggesting 

that the introduction of  sulfate group into CNF surface was successful. Based on the FT-IR spectra, 

this method was shown to successfully obtain surface modified CNF through this low 

concentration of acid treatment combined with sonification process. 

 

 

Figure 2.1: FT-IR spectrum of CNF treated with different acid solutions; (a) CNF, (b) CNF-P, 

(c) CNF-A, and (d) CNF-S 

 

2.4.2   Scanning electron microscopy energy dispersive X-ray spectroscopy  

(SEM-EDS) analysis 

The elemental analysis obtained via energy dispersive X-ray spectroscopy (EDS) is shown in Table 

2.2, indicating that the functional group was successfully introduced in CNF through acid 
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treatment. EDS is an analytical technique used for the elemental compositions and chemical 

characterisations, by emitting specific wavelengths of X-rays demonstrating the atomic structure 

characteristic of various elements [112].  Based on Table 2.2, the treated CNF-P sample showed a 

significant percentage of phosphorus (P) element at 3.42% after acid treatment. Besides, there was 

also a 14.03% increase of element O due to the substitution of OH groups by the phosphate groups 

containing additional O atoms [113]. In treated CNF-A, element C was reduced to more than 5% 

comparing to control CNF and increased element O was observed in treated CNF-A, indicating 

that the successful acid treatment [114].  Meanwhile, the treated CNF-S has shown the presence 

of sulphur element at 3.23% as compared to control CNF.  

 

Table 2.2: Elements analysis of CNF and treated CNF. 

Element CNF (%) CNF-P (%) CNF-A (%) CNF-S (%) 

C 92.51 82.55 87.29 88.12 

O 7.45 14.03 12.71 8.55 

P 0.03 3.42 - - 

S 0.01 - - 3.23 

Total 100 100 100 100 

 

 

2.4.3   Dynamic light scattering (DLS) and morphological of treated CNF 

Dynamic light scattering was performed to analyse the size of the length of CNF samples after 

acid treatment. The size distribution and the average length size of each sample were depicted 

in Figure 2.2a and 2.2b, respectively.  DLS method also was done by Gamelas et al. [115] to study 
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cellulose nanofibrils length distribution obtained by TEMPO-mediated oxidation and mechanical 

treatment. The result obtained by DLS for treated CNF is the average size distribution curves, 

including the presence of a small number of particle and fibrils aggregates. Therefore, the values 

obtained from DLS is for comparison between treated samples and not as a direct measure of the 

real size of the CNF. In Figure 2a, the treated CNF-S showed the smallest size distribution at an 

average of 278 nm in comparison to treated CNF-P and CNF-A which showed broad size 

distribution with an average of 413 nm and 324 nm, respectively.  Since electrostatic repulsion 

prevents from aggregation on the acidic treated CNF, the size distribution of both samples of CNF-

P and CNF-A were expected to be of broad size distribution. On the other hand, CNF-S exhibited 

narrow size distribution, suggesting that prior hydrolysis occurred on CNF-S contrary to the treated 

CNF-P and CNF-A.    

 

Size distribution is an important aspect to access the distribution of CNF as nanofiller to prevent 

the agglomeration in the silicone hybrid composite. The average size was taken into account due 

to the inability to discriminate the aggregation between fibrillated material and particles.  The size 

distribution of treated CNF samples was reduced by acid treatment.  Before the acid treatment 

procedure, the CNF sample showed a broad size distribution range of 537 nm. Consequently, after 

the treatment, the average size distributions of treated CNF samples were reduced, as shown in 

Figure 2.2b.  The previous study reported that CNF produced by mechanical methods have long 

fibril shapes with 1–100 nm in diameter and 500–2000 nm in length [116].  This result may also 

indicate that CNF-S was preferentially hydrolysed. 
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Figure 2.2: Size distributions of control CNF and acid-treated CNF; (a) Range of intensity 

distributions and (b) Mean size of particle-size distributions.  

 

Figure 2.3 shows the surface image of CNF and treated CNF under a 3D laser microscope.  

Measurements of all samples were taken after the acid treatment process without drying to prevent 

self-agglomeration and to preserve the native state of the CNF samples.  Smaller particles size of 

CNF was difficult to be observed under optical microscope [117].  High dynamic range (HDR) 

processing technique was applied to enhance the CNF images.  This high-level gradation technique 

can be obtained by capturing several images with different brightness levels and will reproduce a 

clear image.  This technique can reveal that the pristine CNF sample shows a large and long fibre 

as compared to CNF-P and CNF-A.  After acid treatment, the reduction of fibre size were revealed 
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from CNF-P and CNF-A samples, these results are similar to the DLS results. Number of long 

fibres in CNF-S image (Figure 2.3d) is significantly less than that of CNF-A and CNF-P. These 

results also reflect their DLS observations.  

 

 

Figure 2.3: Microscope images of CNF before and after acid treatment under a laser microscope 

at 20 × magnification without staining but placed in water; (a) CNF, (b) CNF-P, (c) CNF-A, and 

(d) CNF-S 

 

2.4.4   Wide-angle X-ray diffraction (WAXD) analysis of treated CNF 

The crystalline structure of CNF and treated CNF was investigated by WAXD to provide the data 

on the cellulose crystallinity and the influence of the acid treatments. Figure 2.4 shows the 

diffracted peaks at 2θ around 16. 5ᵒ (110), 23. 5ᵒ (200), and 35ᵒ (040)  which represent the typical 

structure of cellulose I [22][85] and the structure of the crystalline region were remained and not 
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disrupted by acid treatments. This finding was in agreement with the FT-IR analysis.  Tang et al. 

[118] reported that cellulose treated with NaOH/urea causing the cellulose I crystals to be 

dissolved into NaOH/urea solution and broke its hydrogen bonds. Part of the hydrogen bonds were 

reformed and cellulose was recrystallized into cellulose II during the precipitation step.  In order 

to maintain the crystallinity of cellulose І to prevent from recrystallization of cellulose II, the acid 

treatment used in our study was done without the neutralisation using NaOH.  

 

The crystallinity of the control CNF was 78% and after acid treatments, the crystallinity of treated 

CNF samples were decreased to 73%, 65%, and 65% for CNF-P, CNF-A, and CNF-S, respectively.   

Interestingly, the crystallinity of CNF was decreased to 19% from original CNF after sonication 

for 3 hours even though crystallinity of CNF is generally increased due to preferentially hydrolysis 

occur to amorphous phase with acid. The introduction of functional groups onto the cellulose 

backbone by acid treatment has disrupted the crystalline structure by decreasing the number of 

inter and intra-molecular hydrogen bonding, hence reducing the crystallinity of the CNF structure 

[113].  The WAXD data also indicated that the CNF after acid treatments was able to sustain at 

high degree of crystallinity in the CNF structure.  
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Figure 2.4: X-ray diffraction spectra of CNF and treated CNF 

 

2.4.5   Dispersibility of CNF on different solvents 

Due to the hydrophilic nature of cellulose, CNF cannot be uniformly dispersed in most non-polar 

polymer matrices and polar and non-polar solvents.  After acid treatments, the treated CNF was 

washed with RO water until it reached pH 7 and then freeze-dried.  For the dispersion study, each 

sample was sonicated for 1 hour until dispersed in the dedicated solvents. It is important to 

understand that even under sonication in organic solvent, it was difficult to achieve individual CNF 

without surface modification. The dispersibility of CNF and treated CNF samples were determined 

by dispersing the samples in acetone (ACt), ethanol (EtOH), methanol (MeOH), chloroform 

(CHCI3), RO water (H2O RO), dimethyl sulfoxide (DMSO), dimethylformamide (DMF), hexane 

(Hex), and toluene (TOL) as shown in Figure 2.5.  The dispersity of the samples were accessed 

after sonication and left for 3 days under ambient temperature.   
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Figure 2.5: Dispersibility of control CNF and acid-treated CNF in polar and non-polar solvents. 

 

Hydrogen bonding is formed during freeze-drying of CNF which led to a more stable structure due 

to irreversible hornification, making CNF difficult to redispersed in the solvent [119]. From the 

digital image in Figure 2.5, sediments can be observed in all the tested solvents indicating that the 

poor dispersion due to the formation of hydrogen bonding during freeze-drying. The presence of 

anion groups such as sulfate, carboxyl and phosphate groups on the surface CNF via acid treatment 

improved the charge repulsion, hence providing improved dispersibility of CNF in some solvents 

[120][121][26]. Treated CNF-S and CNF-P samples were well dispersed in H2O RO, DMF and 

partially dispersed in DMSO, EtOH and MeOH. Meanwhile for CNF-A samples, they dispersed 

well in H2O RO, DMSO and partially dispersed in DMF and sedimented in EtOH and MeOH after 

3 days observation. On the other hand, the CNF and treated CNF sample did not have good 

dispersibility in ACt, TOL, and Hex solvents, either before or after acid treatment. 
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2.4.6   Thermal degradation behaviour of CNF and treated CNF 

 The thermal stability of the CNF and treated CNF was investigated by TGA, as shown in Figure 

2.6.  The TGA curves revealed the weight loss percentage of materials with regards to the thermal 

degradation temperature.  All CNF samples displayed a slight weight loss below 100°C due to the 

presence of residual adsorbed moisture. All treated CNF showed lower thermal degradation 

compared to control CNF (270°C), the reason may decrease the degree of polymerization of CNF 

after acid treatment [122]. Among them, the lowest thermal degradation was for treated CNF-S, 

which was at 220°C. The decrease in the thermal stability can be attributed to the presence of 

sulphate group in cellulose, which reduced the thermal degradation temperature of CNF [116] 

[123][21].  Contrary to our findings, one study reported that the cellulose treated with phosphoric 

acid enhanced the thermal degradation of cellulose [124].  However, in our study, the treated CNF-

P exhibited low thermal degradation at 233°C, which was similar to a study by Daud et al. [113].  

The treated CNF-A had slightly higher thermal degradation as compared to other treated CNF 

samples which were at 248°C. The presence of carboxyl groups on the CNF-A surface is 

responsible for the lower thermal stability [125]. Therefore, the acidity of CNF may be a key factor 

to accelerate thermal degradation reaction since acidic functional groups may act as self-catalyst 

to the degradations.  All treated CNF samples had weight loss average at 24-34% as compared to 

control CNF at 9.5% of weight loss. The residual weight of the acid-treated CNF from TGA was 

higher than that of control CNF. From these profiles, the thermal degradation reaction showed 

different behaviors between the acid-treated CNF and control CNF. Therefore, the acid-treated 

NFC may occur carbonization via any side reactions. 
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Figure 2.6: Thermal degradation characteristic of CNF and treated CNF 

 

2.4.7   Silicone composite with treated CNF 

The treated CNF used for silicone composite production was exchanged solvent to ethanol prior 

to silicone/CNF composite preparation.  This process aimed to reduce the self-aggregation 

(hornification) and promoted the efficient dispersion of CNF in a silicone polymer. Study form  

Cichosz et al. [126] reported that the undried cellulose modified with maleic anhydride after a 

solvent exchange with ethanol gives the highest performance at tensile strength and elongation at 

break of ethylene–norbornene copolymer-based composites. The efficiency of nanofiller 

dispersion in the matrices and the capability of nanofiller interfacial interactions were critically 

affected by the physical and mechanical properties.  The filler as a reinforcer in polymer matrices 

is often agglomerated in the polymer matrices due to their high surface areas [127].  To reinforce 

non-polar polymers such as silicone with CNF, surface modification using acid treatment was 

conducted to introduce the functional groups onto the CNF.  This treatment is expected to increase 

polymer compatibility.  
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Figure 2.7: Mechanical properties of silicone and silicone composite with treated CNF; (a) 

Tensile strength, (b) Young`s modulus (c) Strain energy, and (d) Elongation 

 

The silicone/CNF composites were characterised according to the mechanical properties, as shown 

in Figure 2.7.  The treated CNF reinforcements enhanced the mechanical properties of the silicone 

composite.  The highest tensile values were recorded at 3.47 MPa in silicone/CNF-P, followed by 

silicone/CNF-A and silicone/CNF-S, as shown in Figure 7a.  There was 51.5% improvement in 

the tensile strength of the silicone/CNF-P as compared to silicone polymer.  Besides, the treated 

silicone/CNF-P had a higher value in Young's modulus (Figure 7b) and strain energy (Figure 7c) 

as compared to others. The Young's modulus of the silicone composite is significantly improved 
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with the treated CNF content embedded in the composite [128]. The improvement in tensile 

strength and Young's modulus is indicative of strong interfacial adhesion between filler and 

matrices. These also lead to a better filler dispersion, efficient stress transfer and elongation at 

break [129]. The elongation in Figure 2.7d showed an improvement of 11% for silicone/CNF-A, 

followed by silicone/CNF-S at 5.5%.  This improvement was due to the good adhesion property 

of the treated CNF to silicone, which resulted in a higher elongation at break than the pure silicone. 

The mechanical properties of the composite polymer were dependent on the distribution and size 

of nanofiller particles in the matrices [89] and chemical bonding between the polymer and 

nanofiller [88].  These characteristics are very important because agglomeration might reduce the 

mechanical properties of the composites and load transfer between reinforcement and polymer.  

 

The transparency of treated CNF in silicone composites were observed for dispersibility of 

untreated and treated CNF in silicone composite as a shown in Figure 2.8.  The silicone composite 

with treated CNF-P (Figure 2.8b) showed homogeneously white cloudy as compared with original 

silicone polymer as shown in Figure 2.8 (a).  As a result, silicone composite with treated CNF 

showed the nanofiller effect demonstrated the synergistic enhancement in both tensile strength and 

elongation as compared to silicone polymer (Figure 2.8a). This is because the treated CNF was 

homogeneously dispersed in silicone polymer.   Figure 2.8c shows the CNF agglomeration 

occurred in silicone polymer when use in dry form. The transmittance properties of silicone and 

silicone composite are shown in Figure 2.9, and Table 2.3 show the optical properties at 

transmittance at 660 nm. Incorporating treated CNF in the silicone matrix greatly reduced the 

transmittance of the composite compared to silicone.  The higher the transmittance value of the 

composite, the better the transparency, because more visible light (660 nm) can pass through the 
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composite [130]. Therefore, silicone composite with treated CNF-P shows higher transmittance 

value comparison with other composites since CNF-P in silicone showed good dispersibility. 

Surface modification with acid treatment shows a great potential as a low-cost and environmental-

friendly method to improve the surface properties of CNF to be used as nanofiller for a non-polar 

polymer. 

 

. 

Figure 2.8: Image of silicone and silicone composite with treated CNF. (a) Silicone, (b) 

Silicone/treated CNF-P, and (c) Silicone/CNF composite (dried CNF) 

 

 

 

 

 

 

 

 

Figure 2.9: UV–Vis transmittance spectra for silicone and silicone composite 

(a) (b) (c) 

(1.0mm Thickness)  (1.0mm Thickness)  (2.0mm Thickness)  
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Table 2.3: Optical properties of silicone and silicone composite 

Sample  Thickness (mm) %Transmittance (660 nm) 

Silicone  0.846 92.8 

Silicone NFC-P 0.889 58.1 

Silicone NFC-A 0.865 52.3 

Silicone NFC-S 0.814 39.1 

 

 

2.5   Conclusion  

CNF treatment with acid has confirmed to modify surface property through FT-IR, XRD, SEM-

EDS, and TGA. Their results showed to obtain modified CNF with acid as a simple method. In 

this method, the WAXD showed the crystalline structure of cellulose І before and after treatment 

with acid, and degree of crystallinity showed decreasing after acid treatment which may proof the 

conversion of the hydroxy group in CNF.  The shift of thermal degradability also showed the 

modification of CNF surface comparison with that of pristine CNF. Especially, a phosphoric acid 

treatment for CNF could disperse well in silicone matrices and its mechanical properties were 

enhanced to compare with original silicone.  Therefore, this study could be a platform to design 

renewable nanocomposites and provide high-quality materials with improved properties and 

various polymer matrices in the future.  
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CHAPTER 3 

Enhancing Mechanical Properties of Polyurethane with Cellulose Acetate as 

Chain Extender   

 

Abstract 

Polyurethanes (PUs) are a class of versatile engineering materials synthesized by the reaction 

between polyol, isocyanate, and chain extender as the hardener. Among various cellulose 

derivatives, cellulose acetate (CA) possessed unique features such as excellent mechanical 

properties, good thermal stability, tailorable surface chemistry, and can be used as hydroxyl 

providers to enhance the properties of PUs.  Our goal is to develop a simple method to prepare 

PUs by using varying weight ratio of CA as the chain extender or crosslinking agent. PUs modified 

with varying weight percentage of CA (5%, 10%, and 30%) (based on total parts per weight of 

poly(tetramethylene oxide) (PTMO) and isocyanate) were compared with PUs modified with 1, 4-

butanediol (BD), acting as the control. The morphological, chemical structural, thermal stability, 

and mechanical properties of the modified PU CA polymer were investigated thoroughly. The 

findings from this study found that modified PUs with CA possessed higher thermal stability. The 

PUs with 10% of CA as chain extender was found to be the optimal percentage for the preparation 

of PUs with the highest tensile strength and elongation properties. However, the utilisation of 

higher weight percentage of CA reduced the elongation property of the modified PUs due to 

excessive crosslinking effect.  

 

 

Keywords: Cellulose acetate, prepolymer method, polyurethanes, isocyanate, chain extender 
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3.1  Introduction 

Polyurethanes (PUs) is one of the most versatile and unique polymers which are formed by chemical 

reaction between an isocyanate and a hydroxyl group. The growth in the polyols and polyurethane 

market is expanding due to their multi-functionalities in many applications. PUs can been applied 

in furniture coatings, adhesives, construction materials [131], various biomedical applications such 

as artificial skin, pericardial patches, soft-tissue adhesive, drug delivery devices, and scaffolds for 

tissue engineering [132], [133].  PUs are formed from urethane linkage, a carbamate ester linkage 

synthesised by the reaction between an isocyanate group and hydroxyl group [134].  The terminal 

hydroxyl group allows for alternating blocks, called “segments” to be inserted into PUs chain [135].  

Soft segments are derived from polyols such as polyester, while the hard segments are formed from 

the combination of a diisocyanate and a chain extender [136].  The chain extender is usually a small 

molecule containing hydroxyl or amine functional groups [137].  The isocyanate groups are reactive 

towards active hydrogen groups such as amine (-NH), hydroxyl (-OH), carboxylic acid (-COOH), 

urea, and amide.  The isocyanates building block can be either aromatic isocyanates or 

aliphatic isocyanates in segmented polyurethane elastomers.  

 

Aromatic isocyanates are more reactive than the aliphatic isocyanates in PUs polymerization and 

generally contributed to better mechanical strength, thermal and flame retardant properties [71], 

[72].  Toluene diisocyanate (TDI) and methylene diphenyl diisocyanate (MDI) are some of the 

typical aromatic isocyanates used in the industry to enhance the mechanical performances of the 

polymer [73]. However,  aromatic PUs is not suitable for outdoor coatings application due to 

degradation and/or metamorphose under exposure of UV-light [74]. Moreover, aromatic 

isocyanate-based PUs are more likely to form aromatic amines after degradation which have higher 
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toxicity in comparison to aliphatic-based PUs [75].  To overcome the setbacks, aliphatic isocyanate-

based PUs are often considered as they possessed excellent UV resistance, high transparency, and 

good outdoor durability as required in coating applications [76]. The most common aliphatic 

isocyanates are hexamethylene diisocyanate (HDI), dicyclohexylmethane 4,4’-diisocyanate 

(H12MDI), and isophorone diisocyanate (IPDI). Some researchers focused on PUs polymerization 

using aliphatic isocyanates to produce degradable PUs with the inclusion of biodegradable fillers 

in the matrix. 

 

Cellulose fibre is derived from renewable resources which is eco-friendly. It has excellent 

mechanical properties, good biocompatibility, and also tailorable surface chemistry [84]. The 

enhancement of the physical and mechanical properties from the incorporation of cellulose-based 

materials in aliphatic isocyanates-based  PUs have been thoroughly investigated [138][139][140]. 

Girouard et al.[80] reported that the site-selective modification of cellulose nanocrystals with IPDI 

enhanced the dispersion in PUs composite that increased the tensile strength, elongation and work 

of fracture more than 200% as compared to the neat PUs. Similar study also reported on the 

enhancement in tensile strength (287%) and Young`s modulus (900%) with the inclusion of 1 wt 

% cellulose in the PUs matrix as compared to neat PUs [141]. However, high content of cellulose 

fibre in PUs often led to poor adhesion between the fibre and matrix interface [142]. Furthermore, 

the hydrophilic properties of cellulose diminish the dispersion in PUs matrix without surfactant or 

surface modification [143]. To overcome this problem, thermoplastic cellulose acetate (CA), a 

derivative of cellulose was found to be a suitable substitute as chain extender in PU polymerisation 

which have been previously reported [83].  
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CA is synthesised via esterification of cellulose and widely used as biodegradable plastics, modern 

coatings, optical films, composites, and laminates [144]. Due to their interesting chemical 

functionalities, CA has the potential to be also used as hydroxyl providers in the modification of 

PUs. Their ability to be incorporated readily in PUs matrix can be achieved using the blending 

method [145][146][147] and electrospinning [148]. PUs prepared via these methods are usually 

used for ultrafiltration, scaffold in tissue engineering, air filter, biomedical, and pharmaceutical 

materials for wound healing and drug delivery [149].    

 

Herein, this study reports on the preparation and characterization of modified PUs with varying 

weight percentage of CA (5%, 10% and 30%) as the chain extender. In comparison to previous 

studies, our approach to prepare modified PU based on aliphatic diisocyanate minimized the 

utilization of harmful and toxic chemicals. This facile and simple method of modified PUs 

preparation should provide pertinent knowledge in future studies pertaining to the incorporation of 

CA in polymer matrix. 
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3.2  Experimental 

3.2.1  Material 

Cellulose acetate L-30 (CA, acetyl content 55%) was kindly obtained from Daicel Corporation, 

Japan. Poly(tetramethylene oxide) 2,000 (PTMO) and dibutyltin (IV) dilaurate (DTBL) were 

purchased from Wako Pure Chemical Industries Ltd, Japan. Dicyclohexylmethane 4,4’-

diisocyanate (H12MDI) and 1,4-Butanediol (BD) were obtained from Tokyo Chemical Industry 

Co., Ltd. All other reagent-grade chemicals were purchased from Wako Pure Chemical Industries 

Ltd, Japan and were used without further purification.  

 

3.2.2  Synthesis of PUs/ CA 

The PUs were prepared using PTMO and H12MDI using the prepolymer method in the presence of 

DTBL as catalyst. Table 3.1 depicts the prepolymer production composition. The prepolymer was 

prepared in super dehydrated DMF solvent under vacuum condition with constant nitrogen gas flow 

at 80 oC for one hour. DTBL was then added to the prepolymer as the catalyst. After the prepolymer 

reaction is completed, degassing is conducted using a vacuum chamber. Varying weight percentage 

of CA (5%, 10% and 30%) was then added to the prepolymer and was agitated for one hour under 

constant stream of nitrogen gas flow and vacuum condition. The polymer was then precipitated in 

acetone and filtered through a filter paper.  Finally, the polymer was post-cured in vacuum oven at 

70 °C for 24 h to remove any remaining solvent. The samples were denoted as PU CA 5%, PU CA 

10% and PU CA 30%. As for the control sample, BD was used as the chain extender and the 

obtained sample is denoted as PU BD.   
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Table 3.1: Composition of modified PUs and PU BD polymer 

 PU CA PU BD 

Prepolymer   

             PTMO (Mw:1900-2120 g/mol) 0.23 mmol 0.23 mmol 

             H12MDI (Mw:262.35 g/mol) /DBTL 0.69 mmol/0.05 mmol 0.69 mmol/0.05 mmol 

Chain Extender   

CA (L-30)  

 

5%, 10%, 30% (w/w) - 

1,4-Butanediol (Mw:90.12 g/mol) - 0.46 mmol 

 

 

3.2.3   Preparation of PUs film  

PUs films were formed using a hydraulic hot-press (IMC-180C, Imoto Machinery Co., Japan) at 

110 °C for 15 min under a pressure of 20 MPa, and then the cold press was performed at 30 °C for 

30 minutes.   

 

3.2.4  Characterisation of PUs film 

3.2.4.1  Optical property 

The optical property of the composite films was determined by UV–Vis spectra. A rectangular piece 

of each film sample (4 cm × 4 cm) was directly mounted between the two spectrophotometer 

magnetic cell holders. The transmittance spectra of the PUs films were measured at selected 

wavelength ranges from 190 to 1000 nm using a UV–Vis spectrophotometer (GENESYS 50, 

Thermo Fisher Scientific, USA). The optical properties of PU BD and modified PUs films were 

characterized by the transmittance of visible (660 nm) regions.  
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3.2.4.2  Chemical analysis 

The chemical analysis was carried out using the Fourier Transform Infrared (FT-IR) spectroscope 

Nicolet iD7 ATR (Thermo Fisher Scientific, Japan).  Each sample recording consisted of 16 scans 

recorded from 400 to 4000 cm−1. 

 

3.2.4.3  Thermogravimetric analysis (TGA) 

TGA and DTG were carried out using EXSTAR TG/DTA 7200 (SII Nanotechnology Inc., Japan) 

with scan range from 30 to 550 °C at a constant heating rate of 10 °C /min under continuous nitrogen 

flow rate of 100 mL/min.  Initial degradation temperatures (Tonset) were determined at 5% stage of 

mass loss while the maximum degradation temperatures (Tmax) were calculated from the first 

derivative of the TGA curves (DTG). 

 

3.2.4.4  Wide Angle X-ray Diffraction (WAXD) 

The WAXD measurement was performed using X-ray diffractometer (MiniFlex 600, Rigaku Co., 

Japan) at 30 kV and 15 mA operated at room temperature.  The X-ray source used was Cu Kα 

radiation (λ = 1.54 Å).  The diffraction angle was scanned from 3° to 70° at a rate of 1.4°/min. 

 

3.2.4.5  Mechanical properties 

The test films were cut into a rectangular shape with a size of 40 × 5 × 0.5 mm.  The mechanical 

properties of PUs were determined by an IMC-18E0 model machine (Imoto Machinery Co. Ltd, 

Kyoto, Japan) at a rate of 10 mm/min crosshead speed at 23 °C.  The measurement was carried out 

with five replicates. 
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3.3  Results and Discussion  

3.3.1  Synthesis and morphological characteristics of the modified PUs 

During prepolymer synthesis, isocyanate group from H12MDI reacted with the hydroxyl groups 

from PTMO to form urethane chains in the presence of DTBL as the catalyst. The continued 

formation of urethane chain is further driven with the addition of CA, in which the remaining 

isocyanate (N=C=O) groups reacted with the abundant free hydroxyl groups. The precipitation in 

acetone further increased the size of the white precipitate (polymer) indicating the feasibility of 

acetone to remove unreacted diisocyanate, CA, and DMF. In addition, the usage of acetone not 

only completely removed the unreacted reactants but also shortens the drying time of the polymer 

which is a convenient process.  

 

 From Figure 3.1, there were no significant differences in the transparency of the modified PUs 

with CA (Figure 3.1b – 3.1d) and PU BD (Figure 3.1a) after the hot press method indicating good 

dispersion rate of the CAs in the PUs. Moreover, this also agrees with the value of the transmittance 

of PU BD and modified PUs (Figure 3.2) and visible light at 660 nm (Table 3.2). In terms of 

textural properties, PU CA 5% possessed smooth surface with soft plastic like properties.  

Meanwhile, PU CA 10% possessed rougher surface texture, soft and flexible akin to a rubber like 

material. The polymer becomes more rigid due to higher NCO/OH ratio from the increase in cross-

linking [150]. Attributed to the excessive cross-linking, PU CA 30% possessed thermoplastic-like 

properties; high stiffness and brittleness.  
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Figure 3.1: Morphological of (a) control PU BD and modified PUs with different weight 

percentage of cellulose acetate; (b) PU CA 5%, (c) PU CA 10%, and (d) PU CA 30% 

 

 

Figure 3.2: UV–vis transmittance spectra for PU BD and modified PUs 
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Table 3.2: Optical properties of PU BD and modified PUs 

Sample  Thickness (mm) %Transmittance (660 nm) 

PU BD  0.434 87.4 

PU CA 5% 0.448 84.7 

PU CA 10% 0.436 87.3 

PU CA 30% 0.453 84 

 

3.3.2  Chemical structures of the modified PUs 

As shown in Figure 3.3, the chemical structures of modified PUs with different amounts of CA 

and PU BD were investigated using FT-IR spectroscopy.  The presence of urethane linkage was 

evident from the band observed at 3315 cm-1 attributed to the N-H stretching and bending vibration 

bands. The absence of the band at 2250 cm-1 attributed to isocyanate group (-NCO) demonstrated 

that diisocyanate did not remained in the PUs [151].  The characteristic peaks of the PUs were 

observed at 2925-2850 cm-1 for CH2 and CH3 stretching, respectively [152], [153].  The peak at 

1100 cm-1 corresponds to C-O-C stretching vibration of  PTMO [153]. The slight red shift in the 

C-H bond is observed in PU CA 5%, 10%, and 30% upon comparing to PU BD at 1524 cm-1. The 

carbonyl C=O stretching peak of urethane appeared at approximately 1713 cm-1 for PU BD.  The 

new C=O stretch peak arose from the urethane bonding was observed at 1627 cm-1 for both PU 

CA 5% and PU CA 10%.  Meanwhile, for PU CA 30%, the C=O peak was shifted to 1667 cm-1. 

This peak indicated the strong hydrogen bonding between the soft segments and hard segment of 

PUs [154].  This C=O peak could also be contributed from CA, indicating that CA can be 

effectively used as a chain extender [83]. The peak appearing around 600 cm-1 in PU CA 30%, but 

absent in PU CA 5% and PU CA 10% may be contributed from the unreacted CA.  
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Figure 3.3: FT-IR spectra of PU BD and modified PUs with different weight percentage of 

cellulose acetate; PU CA 5%, PU CA 10%, and PU CA 30% 

 

3.3.3  Thermal decomposition of the modified PUs 

To probe the thermal behaviour, TGA and DTG analysis were carried out and their thermograms 

were shown in Figure 3.4a and 3.4b, respectively.  The thermal decomposition parameters 

determined from the thermograms were further summarised in Table 3.3.  As shown in Figure 

3.4a, CA possessed a single stage thermal decomposition and highest thermal stability due to the 

propionyl groups from the cellulose backbone [155], in which at higher temperature, the glycosidic 

bonds of cellulose structure will breakdown [156].  The PU BD and the modified PU CA samples 

showed similar thermal degradation behaviour exhibiting two decomposition stages, indicating the 

successful polymerization with CA as the chain extender. The first degradation stage is attributed 

to the severance of the urethane bonds in which the decomposition leads to the formation of 

primary amine and olefin or the formation of secondary amine and carbon dioxide [157].  The 
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second stage of the degradation curve is attributed to the decomposition of ester groups [158].  The 

addition of CA as chain extender in PU further improved the thermal stability as compared to the 

PU BD, specifically the PU CA 10% attributed from the strong chemical bonding formation 

between the hydroxyl group of the CA and modified PUs [159], [160].  Additionally, the weight 

residue at 500oC of the modified PU CA 10% showed 12.22% followed by 6.9% residue of PU 

CA 5% and 4.37% residue of PU CA 30%.   

 

The initial temperature (Tonset) was calculated from DTG curves in Figure 3.4b to access the 

decomposition temperature and degradation dynamics. The decomposition process of PU 

BD occurred at 302.5 °C while the modified PU CA 5% and PU CA 10% decomposition 

occurred at 314.2 °C and 317.7 °C, respectively.  For PU CA 30%, it was observed that the 

decomposition process occurred at a lower temperature, 295.9 °C.  The rate of weight loss was 

further analysed from the DTG curves to obtain the Tmax values.  The Tmax1 and Tmax2 of the PUs 

can be defined as the maximum temperature rate for decomposition of polyurethane rigid segments 

and soft segments [161].  The Tmax1 value for CA is the highest (366.6 oC) followed by PU BD 

(347.9 oC).  The increase in the weight percentage of CA as chain extender further decreases the 

Tmax1 values ranging from 334-346 °C.  The disruption of crosslinked network in the hard segment 

of the PUs with high concentrations of CA was observed.  It might  prevents the motion of the 

chains during relaxation process resulting in less soft segment-ordered structures or crystallisation 

[162], [163].  However, the higher density of urethane linkages leads to a more thermally stable 

PUs [164].  The Tmax2 values for all the modified PUs were found to possess almost similar 

decomposition temperature ranging from 413.0 °C to 419.6 °C as compared to PU BD (404.6 °C).   
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Table 3.3: The decomposition temperature of PU BD, CA (L-30) and modified PUs at 10 °C 

min-1 in nitrogen  

Samples  

Tonset  (°C) 

 

Tmax1 (°C) 

 

Tmax2 (°C) 

Residue at 500 °C 

(wt%) 

CA L-30 298.5 366.56 - 13.91 
 

PU BD 302.5 347.9 404.6 2.42 
 

PU CA 5% 314.2 346.4 413.0 6.9 
 

PU CA 10% 317.7 343.7 419.6 12.22 
 

PU CA 30% 295.9 334.6 419.0 4.37 

 

 

 

Figure 3.4: TGA (a) and  DTG (b) curves for PU BD, CA (L-30), and modified PUs with different 

weight percentage of cellulose acetate; PU CA 5%, PU CA 10%, PU CA 30% 

 

3.3.4  Wide-angle X-ray diffraction (WAXD) analysis of the modified PUs  

Wide-angle X-ray diffraction was carried out to identify the crystalline structure of PU BD and 

modified PU CA samples.  In segmented PUs, the phase separation between soft segments and 
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hard segments occurred due to their relative material, structural regularity, and thermodynamic 

incompatibility [165], [166].  Figure 3.5 shows the WAXD profiles of PU BD and modified PU 

CA.  The crystallinity of each PUs to reveal the interaction between PUs chains and structures can 

appear from WAXD profiles.  The PU BD showed a sharp diffraction peak appearing at 2θ = 19.4°.  

Meanwhile, the peak for modified PU CA 5% and 10% were observed at 2θ = 20.0° and 20.4°, 

respectively.  Particularly in comparison to PU CA 5 % and 10%, the 2θ degree of PU CA 30% 

shifted to 21.2°.   

 

Figure 3.5: WAXD patterns of the PU BD and modified PUs with different weight percentage of 

cellulose acetate; PU CA 5%, PU CA 10%, and PU CA 30% 

 

Based on the peak profiles, the reduce of crystalline structure is due to the short range ordering in 

the hard segment domains of PUs [167]–[169]. Density of cross-linkage in PUs cause a reduction 

of hydrogen bonding in hard segments and chemical crosslinking in soft segments, as well as 

annealing process [170].  Generally, the higher the intensity of the diffraction peaks, the higher the 

crystallinity in the polyurethane [171].  The WAXD spectra profiles also corroborated the findings 
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by Trovati et al. [158] which indicated that the PU BD and  modified PUs samples with CA were 

soft PUs [172]. 

 

3.3.5  Mechanical properties of the modified PUs  

Tensile test was carried out on the modified PUs with CA and PU BD to access their tensile 

strength and elongation behaviour. The mechanical properties of PUs are often related to their 

molecular masses and the ratio of soft and hard segment.  As shown in Figure 3.6a, the 

enhancement in the tensile strength were apparent in the PUs modified with CA.  The highest 

tensile value was obtained at 17 MPa for PU CA 10% followed by PU CA 30% at 16.9 MPa.  

There was a 354% improvement in the tensile strength in comparing PU CA 10% with PU BD, 

which was 4.8 MPa.  The findings indicated that the tensile strength of PUs are affected by the 

amount of CA in the PU chains [83].   

 

However, there was a huge difference in the tensile strength for PU CA 5% in comparison to other 

modified PUs which can be attributed to the insufficient isocyanate groups to crosslink with the 

hydroxyl group in CA.  In addition, the elongation properties for the modified PU CA were shown 

in Figure 3.6b.  The control PU BD sample exhibited the highest elongation percentage. Among 

the modified PUs with CA, PU CA 10% exhibited the highest elongation percentage followed by 

PU CA 5% and PU CA 30%. In comparison to PU BD, the elongation percentage decreased at a 

rate of 21.92 %, 5.10 %, and 76.60 % for PU CA 5%, PU CA 10% and PU CA 30%, respectively. 

The minimal decrease in the elongation percentage PU CA 10% indicated that CA as chain 

extender is comparable to BD. As higher weight percentage of CA is introduced as chain extender, 

the rigidity of the polymer will increase due to the excess urethane formation which is evident in 
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PU CA 30%. The increase in the content of hard segment led to rigid material with high modulus 

and tensile strength, but low in elongation [82].  

 

 

 

 

 

 

 

Figure 3.6: Tensile strength (a), elongation (b) and tensile strength curves (c) of PU BD  and 

modified PUs with different weight percentage of cellulose acetate; PU CA 5%, PU CA 10%, and 

PU CA 30% 

Figure 3.6c shows the tensile strength of the modified PUs.  PU CA 30% exhibited the highest 

tensile strength at lower strain percentage due to the rigidity of the sample. The plausible 
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explanation can be attributed to the excess unreacted CA which does not have good affinity with 

the PU, as proved in the FTIR result.  Meanwhile, for PU CA 5%, PU CA 10%, and PU BD, the 

tensile strength increased with elongation. Therefore, modified PUs with 10% of CA is the best 

mixing polymerization ratio to acquire polymer with high tensile strength and elongation 

properties. 

 

3.4  Conclusion 

Various weight percentage of CA was successfully used as chain extender in the polymerisation of 

PUs. The good transparency of the film formed in the modified PUs with CA (up to 30%) showed 

that CA dispersed homogenously within the PU matrix. In comparison to PU BD as the control, 

PU CA 10% was found to be the optimal mixing ratio to obtain a modified PUs with enhanced 

mechanical properties. The higher amount of CA used in the polymerisation led to the increase in 

the tensile strength but with reduced elongation properties. From their thermal behaviour, modified 

PUs with CA showed higher thermal stability in comparison to PU BD. Hence, CA can be used to 

replace BD as the chain extender to further enhance the PUs performance in terms of their 

transparency, thermal stability, and mechanical properties.  Owing to these properties, the 

modified PU prepared using this simple process is a promising substitute as a new generation 

material for weather and waterproof coating, thermal insulation film for glass windows, powder 

coatings, and biomedical applications. The findings of this study also opened up avenue for the 

exploration of other modified cellulose to be used as chain extender in the preparation of fibre 

reinforced PUs.  
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CHAPTER 4 

Covalent Incorporation of Cellulose Nanofibre (CNF) Into Polyurethanes 

Elastomer and the Effect on Mechanical Properties 

 

Polyurethanes (PUs) is one of the most versatile and unique polymers which are formed by a 

chemical reaction between an isocyanate and a hydroxyl group.  The present study investigates the 

PUs composite properties of aliphatic-based PUs prepared from a poly(tetramethylene oxide) 

(PTMO) and dicyclohexylmethane 4,4’-diisocyanate (H12MDI) with different degree of 

polymerisation (DP) of cellulose nanofibre (CNF). Different DP of CNF was treated with 

phosphoric acid and been used in synthesis PUs via in situ polymerisation. Controls PUs with the 

conventional chain extender 1,4-butanediol was prepared as a reference. The morphology, 

chemical structure, mechanical, and thermal properties of the resultant PUs composite were 

investigated by scanning electron microscopy (SEM), Fourier transform infrared analysis (FT-IR), 

tensile test, wide angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). 

Modified CNF shows a good dispersion rate in the PUs composite, and FT-IR result confirms a 

chemical bonding reaction between the hydroxyl group of modified CNF and isocyanate group in 

composite PUs. PUs composite with 20% of modified CNF, DP 650 archived the highest tensile 

strength, which is 51.5 Mpa. Besides, PUs composite with all modified CNF possessed higher 

thermal stability as compared to control PUs.  

 

 

 

Keywords: cellulose nanofibre, in situ polymerisation, polyurethanes, aliphatic isocyanate, 

acetone solvent 
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4.1  Introduction 

Polyurethanes (PUs) are unique polymers with a wide variety of applications in the form of rigid 

and flexible foams, coatings, adhesives and elastomers, such as heat insulation, building, 

automotive components, seating materials and medical devices. Building blocks of PUs, containing 

two or more functional groups, can be divided into polyisocyanates, polyols and chain extender 

[134].  Polyols typically consist of polyesters, polyethers or polycarbonates, whereas isocyanates 

can be eventually classified into aromatic and aliphatic [136].  The chain extender is usually a small 

molecule with either hydroxyl or amine groups [137]. Isocyanate will attack the hydroxyl group, 

and this reaction will structurise the urethane group in PUs polymerisation. The chemical structure 

and properties of PUs can be tailored over a wide range by using various isocyanate/polyol ratio 

and various amounts of chain extenders or additives [173]. Several types of PUs have been 

developed and used in various industries due to their superior properties. Beside, PUs has some 

disadvantages, that is, low thermal resistance, low adhesion and mechanical properties [174]. 

However, nanomaterials have been widely used to improve the properties of PUs due to their small 

size effect and surface effect, such as nano-silica, nano-zinc oxide, nano-titanium dioxide, clay, and 

cellulose nanocrystals [175].  

 

The aromatic isocyanates are more reactive than the aliphatic isocyanates and generally develop 

better mechanical strength, thermal and flame retardant properties and rigid PUs [72][71].  

Moreover, aromatic isocyanate-based PUs has lower UV light stability, leading to yellowish over 

the time and potential to form aromatic amines after degradation, while aliphatic isocyanate-based 

PUs have better UV light stability, transparent, exterior durability and lower toxicity [75][76]. 

Aliphatic isocyanates-based PUs also produce rubbery materials with high elongation but low in 

tensile strength [77].  Besides, polymerisation processes can be in a lower temperature, easily 
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customisable process conditions and product properties have led to unique applications in this 

isocyanate-based PUs, specifically hexamethylene diisocyanate [176].  

 

Reinforcement of PUs with cellulose had great attention for the improvement of the physical and 

mechanical properties of PUs composites. A recent study shows the tensile strength and Young`s 

modulus of PUs were enhanced by 287% and 900% with 1 wt % cellulose nanocrystals as compared 

to the neat PUs [141]. Meanwhile, Pei et al. [177] reported increased tensile strength and strain-to-

failure of aromatic PUs with only 1 wt % of cellulose nanocrystals incorporated. The tensile strength 

were obtained at 61.5 MPa, strain-to-failure at 994.2% and Young’s modulus at 42.4 Mpa. Besides, 

Zhang et al. [178] reported use of nanocrystalline cellulose could improve the anti-yellowing 

property of aromatic polyurethane, and the yellowing of the composite was decreased by 57.7% 

with 1.5% surface-modified of nanocrystalline cellulose. The PUs/cellulose nanocrystal 

nanocomposites are usually prepared by solvent casting and in situ polymerisation technique using 

dimethylformamide (DMF) as a solvent [58] [138]. However, due to the high boiling point (153 

℃), nanocomposite entails difficulties for solvent removal later, time-consuming and hazardous 

effects of DMF [179].  

 

Besides, the high content of cellulose fibre in the PUs polymer will cause a slightly poor adhesion 

between the fibre and matrix interface [22]. In order to avoid the agglomeration in PUs 

nanocomposites, the surface modification of cellulose needs to be done.  Cellulose possesses a high 

hydrogen bond that makes it have hydrophilic properties in nature [27]. Without surface 

modification on the cellulose surface, its tendency to agglomeration in a PUs matrix and decreases 

the mechanical properties of composites material. The surface modification of cellulose, for 
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example, acetylation, esterification, silanisation, silylation, glyoxalization, grafting of glycidyl 

methacrylate, and maleic anhydride is an effective method for improving the interface compatibility 

between composites material [138][28]. 

 

Cellulose fibres attract much more interest and have been widely used as the polymer fillers to 

improve the mechanical properties due to their superior advantages including biodegradability, 

renewable resources, eco-friendly, good biocompatibility, and tailorable surface chemistry [84]. 

Comparing to cellulose fibre, cellulose nanofibre (CNF) is lighter in weight with high surface area 

to volume ratio, higher strength, stiffness and it can act as an excellent reinforcing agent for 

developing green bio-nano composites [20]. CNF has hydroxyl groups as reactive groups which 

can be functionalised to various surface properties [86]. However, CNF has some difficulties, such 

as poor compatibility between nanomaterials and PUs matrix, which is easy agglomeration and poor 

dispersion in a polymer matrix. Herein, to obtain advanced nanocomposites, a proper dispersion of 

the nanofiller in the matrix must be achieved.  

 

PUs-based nanocomposites reinforced with cellulose nanomaterials is remains challenging due to 

the hydrophilicity of cellulose. In this study, CNF with different DP was treated with phosphoric 

acid and incorporated into PUs matrix in acetone solvent by in situ polymerisation. This our first 

approach used different DP of CNF in PUs composite.  The PUs matrix consisted of PTMO and 

H12MDI. This isocyanate-based PUs is low in tensile strength. Therefore, the final purpose is to 

develop high mechanical and thermal properties PUs with good biocompatibility by introducing a 

much stronger chemical bond between CNF and PUs. The morphological, chemical analysis and 

thermal degradation of PUs composite were investigated by comparing to PU with 1,4-butanediol 
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as control (PU BD). For mechanical properties, we were comparing treated and untreated CNF with 

different DP in PUs composite. 

 

4.2  Experimental 

4.2.1  Material 

Poly(tetramethylene oxide) 2,000 (PTMO) Mw:1900-2120 obtained from Wako Pure Chemical 

Industries Ltd, Japan and dicyclohexylmethane 4,4’-diisocyanate (H12MDI) Mw: 262.35 obtained 

from Tokyo Chemical Industry Co., Ltd.  Dibutyltin (IV) dilaurate (DTBL) Mw: 631.56 as the 

polymerisation catalyst, acetone (99%) obtained from Wako Pure Chemical Industries Ltd, Japan 

and 1,4-butanediol Mw: 90.12 obtained from Tokyo Chemical Industry Co., Ltd used as a chain 

extender. Commercial of CNF was kindly provided by Sugino Machine Limited, Toyama 

Prefecture, Japan. This NFC was produced by a super high-pressure water jet system. Different 

degree of polymerization (DP) of CNF (5 wt % in water) were used which is CNF FMa-100 (DP 

200), CNF WFo-100 (DP 650) and CNF IMa-100 (DP 800). 

 

4.2.2   Surface modification of CNF by phosphoric acid. 

Commercial CNF with different DP has undergone acid treatment, as described in Chapter 2 are 

listed in Table 4.1.  CNF was treated by phosphoric acid under ultrasonic 40 Hz for 3 hours and 

continuously stirred for 4 hours at room temperature. Then, the product was washed with RO water 

and centrifuged at 8000 rpm for 10 minutes until it reached pH 6−7. In order to use in PUs 

polymerisation, modified CNF was solvent exchanged to acetone and stirred for 24 hours. After 

that, modified CNF was centrifuged at 8000 rpm for 10 minutes, and sediment was collected. 

These processes were repeated three times to ensure water is removed. 
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Table 4.1: Percentage and volume of acids used in the acid treatment of CNF  

Sample 

Code Name 

NFC aq. 

(5 wt %) 

Acids Acid volume 

(Total 100 mL) 

FMa-P 10 g Phosphoric acid (85% w/w) 30 mL 

WFo-P 10 g Phosphoric acid (85% w/w) 30 mL 

IMa-P 10 g Phosphoric acid (85% w/w) 30 mL 

 

3.2.3 Synthesis of PUs/modified CNF in acetone solvent 

PUs composite was synthesised in situ polymerisation in acetone solvent using three-neck bottle 

flask (500 mL) equipped with a reflux condenser, temperature indicator, and mechanical stirrer 

(Figure 4.1). Table 4.2 shows the composition of PUs composite with CNF, and Table 4.3 shows 

the composition of PUs composite with modified CNF used in situ polymerisation. Initially, CNF 

or modified CNF was dispersed in acetone solvent by sonication treatment for 5 minutes. After that, 

PTMO was added and continue mixed at 90 °C for 2 hours. The reflux condenser was used to avoid 

evaporation of the solvent. Then, H12MDI and DBTL were added to the mixture, and the chemical 

reaction was carried out under a nitrogen condition at 90°C for 3 hours.  After the polymerisation 

was completed, the composite was collected and washed with acetone solvent and filtered through 

a filter paper.  The filtered product was dried in the vacuum oven at 70 °C to remove any remaining 

solvent.  
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Figure 4.1: Schematic of the reflux process to synthesising PUs composite with CNF or modified 

CNF in acetone solvent. 

Table 4.2: Chemical composition of PUs composite with CNF 

 Composition (mmol)   

Sample Code PTMO H12MDI/DBTL BD (%)(w/w) CNF (%)(w/w) 

PU BD 0.6 3/0.05 30 - 

PU FMa 10% 0.6 3/0.05 - 10 

PU FMa 20% 0.6 3/0.05 - 20 

PU FMa 30% 0.6 3/0.05 - 30 

PU WFo 10% 0.6 3/0.05 - 10 

PU WFo 20% 0.6 3/0.05 - 20 

PU WFo 30% 0.6 3/0.05 - 30 

PU IMa 10% 0.6 3/0.05 - 10 

PU IMa 20% 0.6 3/0.05 - 20 

PU IMa 30% 0.6 3/0.05 - 30 
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Table 4.3: Chemical composition of PUs composite with acid-modified CNF  

 Composition (mmol)  

Sample Code PTMO H12MDI/DBTL CNF-P (%)(w/w) 

PU FMa-P 10%  0.6 3/0.05 10 

PU FMa-P 20%  0.6 3/0.05 20 

PU FMa-P 30%  0.6 3/0.05 30 

PU WFo-P 10%  0.6 3/0.05 10 

PU WFo-P 20%  0.6 3/0.05 20 

PU WFo-P 30%  0.6 3/0.05 30 

PU IMa-P 10%  0.6 3/0.05 10 

PU IMa-P 20%  0.6 3/0.05 20 

PU IMa-P 30%  0.6 3/0.05 30 

 

4.2.4   Preparation of PUs film  

PUs composite films were formed using a hydraulic hot-press (IMC-180C, Imoto Machinery Co., 

Japan) at 120 °C for 15 min under a pressure of 30 MPa, and then the cold press was performed at 

30 °C for 30 minutes.   

 

4.3  Characterisation of PUs film 

4.3.1   Scanning electron microscopy (SEM) 

Surface morphologies of the fractured PUs composite films were observed by Scanning electron 

microscopy (SEM) (JCM-6000, JEOL, Japan) operated at 15 kV accelerating voltage. The 

composite samples were fractured under liquid nitrogen. Each sample was deposited on carbon 

tape and carbon-coated for 90 seconds before the observation. 
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4.3.2  Optical property  

Optical property of the PUs composite was determined by UV–Vis spectra. A rectangular piece of 

each film sample (4 cm × 4cm) was directly mounted between the two spectrophotometer magnetic 

cell holders. The transmittance spectra of the PUs composite were measured at selected 

wavelength ranges from 190 to 1000 nm using a UV–Vis spectrophotometer (GENESYS 50, 

Thermo Fisher Scientific, USA). The optical properties of PU BD and PUs composite were 

characterized by the transmittance of visible (660 nm) regions 

 

4.3.3  Chemical analysis 

PUs composite was analysed using a microscopic Fourier Transform Infrared (FT-IR) spectroscope 

Nicolet iS5 using iD7 ATR (Thermo Fisher Scientific, Japan).  The spectrum was recorded over the 

wavenumber ranging between 400 and 4,000 cm−1.   The spectra were the average of 16 scans at a 

spectral resolution of 4 cm−1. 

 

4.3.4  Mechanical properties 

PUs composite was prepared as a dumbbell-shaped film with a size of 60 × 3 × 0.5 mm. The 

mechanical properties of composite PUs were determined by an IMC-18E0 model machine (Imoto 

Machinery Co. Ltd, Kyoto, Japan) at a rate of 10 mm/min crosshead speed at 23 °C.  The 

measurement was carried out using five replicates. 

 

4.3.5  Thermogravimetric analysis (TGA) 

TGA and DTG were carried out using EXSTAR TG/DTA 7200 (SII Nanotechnology Inc., Japan) 

with a scan range from 30 to 550 °C at a constant heating rate of 10 °C /min under a continuous 

nitrogen flow rate of 100 mL/min.  Initial degradation temperatures (Tonset) were determined at 5% 



 

69 | P a g e  
 

stage of mass loss, while the maximum degradation temperatures (Tmax) were calculated from the 

first derivative of the TGA curves (DTG). 

 

4.3.6  Wide Angle X-ray Diffraction (WAXD) 

The WAXD measurement was performed using X-ray diffractometer (MiniFlex 600, Rigaku Co., 

Japan) at 30 kV and 15 mA operated at room temperature.  The X-ray source used was Cu Kα 

radiation (λ = 1.54 Å).  The diffraction angle was scanned from 3° to 70° at a rate of 1.4°/min. 

 

4.3.7  Swelling behaviour  

Swelling behaviour of the synthesised PUs composite was performed at room temperature. The 

solvent used is hexane, methanol, ethanol, dimethyl sulfoxide (DMSO), dimethylformamide 

(DMF), and chloroform. Test samples for swelling experiments were squares, cut from the films 

after the hot press method, weighing about 0.2 g. The PUs composite samples were immersed in a 

solvent in 24 hours, and the picture was taken start form 0 hours, 12 hours and 24 hours. 

 

4.3.8  Ultraviolet (UV) Exposure Conditions. 

UV exposure was carried out using a UV light source MUV-202 (Moritex Co., Tokyo, Japan) 

(λ=200-600nm). The samples were placed at a distance of 10 cm from a standard UV lamp that 

reproduces the solar spectrum and is exposed to light in a conditioned cabinet (40 ° C) for 8 days 

observation. 
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4.4  Results and Discussion  

4.4.1  Synthesis and morphological characteristics of the composite PUs 

Composite PUs were prepared in situ polymerisation method in acetone solvent. The advantage of 

acetone as a polymerisation solvent obtain a homogeneous mixture solution, a wide range of 

structure and emulsion, high quality and reliable reproducibility of end products [143]. In this 

synthesis, urethane groups are formed by reacting PTMO and H12MDI with the presences of DTBL 

as a catalyst. Concurrently, the isocyanate group from H12MDI reacted with the hydroxyl group 

from CNF to extend the urethane chain polymer. After polymerisation is completed, the successful 

synthesised product was precipitated in a white colour form. Figure 4.2a and Figure 4.2b are the 

PUs composite product after the hot press method. The image shows a good dispersion of the 

modified CNF was observed in PUs composite. 

 

Figure 4.2: Flow diagram of composite PUs (a) the product after polymerisation process and 

drying in silicone mould using oven-dry (b) the product after hot press method for analysis. 
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Figure 4.3 shows the PUs composite product after hot press moulding. The PU BD (Figure 4.3a) 

showed the transparency and smooth surface of PUs film. The PUs composite (Figure 4.3b, 4.3c, 

and 4.3d) also showed the transparency and no aggregation of modified CNF indicated a good 

dispersibility of modified CNF in PUs composite.  However, PU IMa-P 20% (Figure 4.3d) sample 

with a higher number of DP in modified CNF, were aggregation in some spots. The PUs composite 

prepared with untreated CNF showed some aggregation occur in the composite compared to PUs 

composite with modified CNF (Image not show). 

 

 

Figure 4.3: Images of PUs film after hot press; (a) PU BD (b) PU FMa-P 20% (c) PU WFo-P 20% 

(d) PU IMa-P 20%. 

 

a b

c d
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Figure 4.4: UV–vis transmittance spectra for PU BD and PUs composite 

 

The UV-vis transmittance spectra of the PUs composite with different DP of treated CNF are 

shown in Figure 4.4. It shows that the transparency of all the PUs composites is good in the visible 

light range even when the treated CNF content is as high as 20 wt%.  Table 4.4 (approximate 

thickness: 5 mm) show the optical properties of PUs composite in visible light transmission at 660 

nm. All PUs composite with different DP of treated CNF possess good visible light transmittance 

and slightly decrease compared to the PU BD. 

 

Table 4.4: Optical properties of PU BD and PUs composite 

Sample  Thickness (mm) %Transmittance (660 nm) 

PU BD  0.433 87.7 

PU FMa 20% 0.503 67.9 

PU WFo 20% 0.504 57.1 

PU IMa 20% 0.533 61.1 
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SEM images of the fractured PUs composite sample are shown in Figure 4.5. The PU BD fractures 

have a smooth surface, revealing the low resistance to the propagation of cracks. The PU FMa-P 

20%, PU WFo-P 20% and PU IMa-P 20% observed similar trends and features. These samples 

presented fracture regions with a large amount of roughness with different profiles compared to PU 

BD, which is associated with modified CNF within the PUs Matrix (red circles). Better 

compatibilization between the modified CNF and the PUs matrix might be attributed to the 

enhanced tensile strength of PUs. This also allows stress to efficiently transfer from the matrix to 

the reinforcing phase, resulting in the better mechanical strength of the PUs [141]. 

 

 

Figure 4.5: SEM images of the fractured surface of the PUs; (a) PU BD, (b) PU FMa-P 20%,  

(c) PU WFo-P 20%, and (d) PU IMa-P 20% 
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4.4.2  Chemical structures of the PUs composite  

As shown in Figure 4.6a, 4.6b, and 4.6c, the chemical structures of PUs composite with different 

DP and percentage of modified CNF, and PU BD as reference have been investigated using FT-

IR spectroscopy.  The presence of urethane linkages was observed at 3330-3315 cm-1 of the NH 

stretching and bending vibration absorptions, indicating the polymerisation reaction occurred to 

form a urethane group, and a PUs successfully was obtained. The disappearance of isocyanate 

bond (-NCO) was observed at wavenumber approximately 2250 cm-1, demonstrated that the 

diisocyanate was completely reacted with PTMO and modified CNF [151].  The characteristic 

absorptions peaks of the PUs series were observed at 2925-2850 cm-1 for CH2 and CH3 stretching 

[152][153].  The peak at 1100 cm-1 was C–O–C stretching vibration of  PTMO [153].  Furthermore, 

C-H bond at 1524 cm-1 for PU BD [83] and shifted C-H bond was identified at 1550 cm-1 for all 

sample PUs composite which is PU FMa-P, PU WFo-P and PU IMa-P.  The carbonyl C=O 

stretching peak of urethane appeared at approximately 1700 cm-1 for PU BD.  The new C=O stretch 

peak arose from the urethane bonding was observed at 1630 cm-1  for all sample PU FMa-P, PU 

WFo-P and PU IMa-P. This C=O group is possibly a reaction of the hydroxyl group of modified 

CNF and isocyanate group in PUs composite [180]. The absorption peaks in the range 1094-1043 

cm-1 are due to the C-O-C bond was observed in PU BD. However, all sample PU FMa-P, PU 

WFo-P and PU IMa-P is shifted C-O-C peak was observed at 1135cm-1. The CH and CH2 

stretching band in PUs composite series were observed at peak 1375 and 1325 cm-1, respectively 

[143].  
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Figure 4.6: FT-IR spectra of PU BD and PUs composite with different DP and percentage of 

modified CNF; (a) PUs composite with modified FMa CNF, (b) PUs composite with modified 

WFo CNF, and (c) PUs composite with modified IMa CNF. 

 

 

4.4.3  Mechanical properties of the PUs composite series 

The enhancement of modified CNF on the property of PUs composite can be further demonstrated 

via tensile testing. The mechanical properties of PUs composite with modified CNF was compared 

with PUs composite with CNF (untreated), and PU BD is shown in Table 4.5 and Table 4.6. In 

general, the PU BD exhibited a weak and soft rubbery material with the ultimate tensile stress and 

elongation values of 5.76 MPa and 89.42%, respectively. Surface functionalisation has been 

applied to improve the wettability of the CNF surface, consequently increases the interfacial 

interaction between the PUs composite and CNF components and dispersion [181]. For PUs 

composite series with CNF, tensile strength is not significantly different from other CNF with 
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different DP, and the value is between 28.1-19.5 Mpa. CNF through surface modification using 

the phosphoric acid was shown to increases the tensile strength of the PUs composite. The highest 

value was achieved with 51.5 MPa for PU WFo-P 20% and followed by 48.8 MPa for PU WFo-P 

30%, 40 MPa for PU FMa-P 10% and 37.2 MPa for PU IMa-P 10%. The PUs composite with 

modified CNF may have some cross-linkage points to assist the compatibility [175] since the 

composites showed high specific strength and tensile strength. 

 

The Young`s modulus of the composite PUs is significantly improved with the modified CNF 

content embedded in the PUs composite (Table 4.5 and 4.6). PUs composite with pristine CNF, 

Young`s modulus is between 0.019-0.065 GPa. Meanwhile, for PUs composite with modified CNF, 

the value is around 0.049-0.165 GPa, and PU BD as a control PU shows the lowest, which is 0.020 

GPa. The improvement in tensile strength and Young`s modulus indicates strong interfacial 

adhesion between filler and matrices. The elongation at break of the PUs composites increased 

with pristine NFC as similar to PU BD might be predominant to the backbone of PUs due to 

agglomeration occurred. The highest values were achieved with PU FMa 30% (697%) with 

pristine NFC. Contrary, the highest value of elongation at break of PUs composite with modified 

CNFs showed 363.9% with PU WFo-P 20%. Different DP of CNF was also influenced on the 

elongation of the PUs composite.  As the concentration of the CNF increases to the maximum 

level, the PUs composite becomes more brittle because of surface adhesion reduced between filler 

and composite. For the strain energy, the highest value was indicated on PU FMa 30% which is 

111.1 J/m3 and followed with the composite PU WFo-P 20% which is 104.1 J/m3.  
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Table 4.5: Mechanical properties of PU BD and PUs composite series with different DP and 

percentage of CNF. 

Sample Tensile  strength 

(MPa) 

Young`s 

Modulus (GPa) 

Elongation 

(%) 

Strain energy 

(J/m3) 

PU BD 5.76 0.020 89.42 2.85 

PU FMa 10% 28.1 0.042 317.4 56.1 

PU FMa 20% 21.7 0.058 150.5 33.2 

PU FMa 30% 27.2 0.025 697.3 111.1 

PU WFo 10% 20.7 0.021 582.7 78.0 

PU WFo 20% 25.2 0.046 515.6 84.3 

PU WFo 30% 23.9 0.027 427.1 83.2 

PU IMa 10% 19.5 0.042 455.6 60.4 

PU IMa 20% 25.4 0.065 172.9 34.8 

PU IMa 30% 10.0 0.043 68.8 12.5 

 

Table 4.6: Mechanical properties of PUs composite series with different DP and percentage of 

modified CNF. 

 

Sample  Tensile  strength 

(MPa) 

Young`s Modulus 

(GPa) 

Elongation 

(%) 

Strain energy 

(J/m3) 

PU FMa-P 10% 40.0 0.120 313.2 82.63 

PU FMa-P 20% 28.7 0.165 175.9 34.93 

PU FMa-P 30% 21.3 0.045 159.1 20.46 

PU WFo-P 10% 33.4 0.034 344.4 72.54 

PU WFo-P 20% 51.5 0.049 363.9 104.1 

PU WFo-P 30% 48.8 0.122 239.2 100.0 

PU IMa-P 10% 37.2 0.091 345.9 80.33 

PU IMa-P 20% 30.7 0.121 127.9 25.08 

PU IMa-P 30% 22.1 0.051 175.6 35.69 
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4.4.4  Thermal decomposition of the PUs composite  

To investigate the thermal behaviour of PUs composite, TGA and DTG analysis was carried out, 

and their thermograms were shown in Figure 4.7. The thermal decomposition parameters 

determined from the thermograms were further summarised in Table 4.7. As can be seen, all 

samples exhibited two degradation stages, indicating that the diisocyanate polymerised with 

PTMO and modified CNF to form PUs. The first stage of the decomposition is attributed to the 

breakage of the urethane bonds. The decomposition leads to the formation of primary amine and 

olefin or the formation of secondary amine and carbon dioxide [157]. The second stage of weight 

loss has been associated with soft segment decomposition of ester groups [158]. Furthermore, it 

has been suggested that the amount of weight loss at each degradation stage may be used as a 

quantitative measurement of the hard and soft content in the PUs composite. The hard segments 

are less thermally stable, and that their degradation stage depending on the isocyanate properties 

[182]. Besides, incorporating modified CNF into PUs composite improves their thermal stability 

as the dispersed CNF layers hinder the permeability of volatile degradation products out of the 

materials. This enhancement can be observed on PUs composite series as compared to PU BD.  
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Figure 4.7: The TGA and DTG of PU BD, and PUs composite with different DP and percentage 

of modified CNF; (a) PUs composite with modified FMa CNF, (b) PUs composite with modified 

WFo CNF, and (c) PUs composite with modified IMa CNF 

 

The initial temperature (Tonset) was calculated from DTG curves in Figure 4.7 to access the 

decomposition temperature and degradation dynamics. The decomposition process of PU 

BD occurred at 301.8 °C while all samples PUs composite series decomposition occurred at 
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around 303.3 °C - 311.2 °C (Table 4.7).  The rate of weight loss was further analysed from the 

DTG curves to obtain the Tmax values.  The Tmax1 and Tmax2 of the PUs can be defined as the 

maximum temperature rate for the decomposition of PUs rigid segments and soft segments 

[161].  Based on the result in Table 4.7, the highest Tmax1 value was observed in PU BD, which is 

351.1 oC. However, for PUs composite, Tmax1 value of PUs composite decreased with higher CNF 

loading. On the contrary, for PU WFo-P series with higher loading of CNF, Tmax1 value is 

horizontally increased. This might occur due to the presence of phosphorus atom on the surface of 

modified CNF (DP 650), and strong hydrogen bonding between modified CNF and urethane 

linkages. These results agreed with the mechanical properties, which is a higher density of urethane 

linkages, leading to more thermally stable PUs and higher mechanical properties [164][183]. On 

the other hand, higher loading of modified CNF may interrupt the crosslinked network in the hard 

segment of the PUs composite.  The Tmax2 values for all the PUs composite were possessed almost 

similar decomposition temperature ranging from 420.3 °C to 422.9 °C as compared to PU BD 

(406.4 °C). Additionally, the weight residue at 500oC of the composite shows the highest on PU 

WFo-P 30% which is 8.49% followed by 2.9% residue of PU IMa-P 20% and 1.30% residue of 

PU IMa-P 10%.   
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Table 4.7: The decomposition temperature of PU BD, PUs composite series at 10 °C min-1 in 

nitrogen  

Samples  

Tonset  (°C) 

 

Tmax1 (°C) 

 

Tmax2 (°C) 

Residue at 500 °C 

(wt%) 

PU BD 303.8 351.1 406.4 0.00 

PU FMa-P 10%  308.6 334.8 423.3 0.00 

PU FMa-P 20%  309.2 342.5 420.2 0.083 

PU FMa-P 30%  310.9 338.4 422.3 0.29 

PU WFo-P 10%  303.3 333.0 422.9 0.62 

PU WFo-P 20%  311.2 343.3 421.1 0.08 

PU WFo-P 30%  309.5 345.1 420.3 8.49 

PU IMa-P 10%  307.6 339.5 422.7 1.30 

PU IMa-P 20%  307.2 345.0 421.7 2.9 

PU IMa-P 30%  304.0 338.2 422.2 0.14 

 

4.4.5  Wide-angle X-ray diffraction (WAXD) analysis of the PUs composite  

Wide-angle X-ray diffraction was carried out to identify the crystalline structure of PU BD and 

PUs composite.  Generally, the phase separation between soft segments and hard segments in PUs 

occurred due to their relative material, structural regularity, and thermodynamic incompatibility 

[165], [166].  Figure 4.8 shows a different DP on the WAXD profiles of PU BD and PUs composite.  

The PU BD showed a sharp diffraction peak appearing at 2θ = 20.64°.  Meanwhile, the peak for 

composite PU FMa-P 20%, PU WFo-P 20%  and PU IMa-P 20% were also observed at 2θ = 19.98°, 

19.46°  and 19.56°, respectively.  

 

Generally, the higher the intensity of the diffraction peaks, the higher the crystallinity in the 

polyurethane [171].  Therefore, the crystallinity of PUs composites was higher than the PU BD. 
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In this trend, low DP of modified CNF was induced higher crystallinity to PU composites. Since 

the reduction of the crystalline structure is due to the short-range ordering in the hard segment 

domains of PUs [169][167][168], The high DP of CNF causes a reduction of hydrogen bonding 

due to crosslinking with soft segments.  The WAXD spectra profiles also corroborated the findings 

by Trovati et al. [158], which indicated that the PU BD and PUs composite series with modified 

CNF were soft PUs. 

 

Figure 4.8: WAXD patterns of the PU BD and PUs composite series with different DP and 

percentage of modified CNF 

 

4.4.6  Swelling behaviour of the PUs composite in a chemical solvent 

Swelling behaviour of the PUs composite (PU WFo-20%) based on higher mechanical properties 

was investigated in a polar and non-polar solvent, which is methanol, ethanol, DMSO, DMF, 

hexane, and chloroform. The sample was immersed in dedicated solvents and was observed for 24 

hours. Figure 4.9 shows the picture of PUs composite in various solvent was taken form 0 hours, 

12 hours and 24 hours. Generally, polymers do not dissolve instantaneously, and dissolution is 
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controlled by either the disentanglement of the polymer chains or by the diffusion of the chains 

through a boundary layer adjacent to the polymer-solvent interface [184]. After 12 hours of 

observation, the PUs composite starts swelling in ethanol, methanol, and chloroform, but not in 

hexane, DMSO and DMF. When solvent diffuses into the PUs, a gel-like swollen layer is formed 

along with two separate interfaces, and this behaviour can be observed after 24 hours of composite 

PUs immersed in the dedicated solvent. The PUs composite is partially dissolved in ethanol and 

methanol but maintains swelling in the chloroform. However, PUs composite does not swell in 

hexane, DMSO and DMF after 24 hours immersed in the solvent.  

 

 

Figure 4.9: Image of swelling behaviour of PU WFo-P 20% in a various solvent; (a) 0 hours, (b) 

12 hours, and (c) 24 hours 
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4.4.7  UV resistant of PUs composite  

To evaluate the effect of the UV degradation of the PUs composite, the PU WFo-P 20% sample 

was exposed to well-controlled, accelerated UV environments and compared to PU BD and 

commercial aromatic based-PUs (Simpact™ 85A). Figure 4.10 shows the image of PU BD, PU 

WFo-P 20%, and Simpact™ 85A after 192 hours exposure to UV light. Aromatic based-PUs are 

more susceptible to UV degradation than aliphatic based-PUs [185]. The first indication is 

discolouration or yellowing on the surface when a PUs starts to degrade due to UV exposure. This 

behaviour can be observed on the commercial PUs in Figure 4.10c, which form yellowing after 48 

hours exposure and continuing until 192 hours later. The yellowing is caused by the oxidation 

reaction in the backbone of the PUs. Irradiation affected the physical and chemical properties of 

the PUs surface and caused yellowish and degradation [186].  

 

Figure 4.10: Images of PU BD, Simpact™ 85A, and PU WFo-P 20% samples before and after 

UV exposure. (a) 0 hour of UV exposure, (b) 96 Hours of UV exposure, and (c) 192 Hours of 

UV exposure 
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Comparing to commercial PUs, aliphatic based-PUs not yellowish after UV exposure. However, 

physical properties, such as colour, gloss, adhesion, are also affected negatively on sample PU BD 

and PU WFo-P 20% after 96 and 192 hours UV exposure (Figure 4.10b and 4.10c). The PUs 

becomes brittle, and cracks are formed at the sample surface. Influences of the modified CNF in 

the PUs composite (PU WFo-P 20%) improved the anti-yellowing property and inhibited the 

micro-crack formation of PUs as compared to the Simpact™ 85A and PU BD. 

 

Figure 4.11: FT-IR spectra of PU BD, Simpact™ 85A and PU WFo-P 20% after and before UV 

exposure 

 

The commercial PUs, PU BD and PU WFo-P 20% were further investigated using FT-IR 

spectroscopy to apprehend the effect changes in the chemical structure of PUs after UV exposure. 

As shown in Figure 4.11, FT-IR spectra are all the PUs before and after 8 days of UV exposure. 

The absence of the band at 2250 cm−1 is due to the complete consumption of isocyanate groups 
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and PUs were successfully obtained. The characteristic peaks of the PUs were observed at 2925-

2850 cm-1 for CH2 and CH3 stretching, respectively [152][153]. The carbonyl group stretching 

vibrations related to the urethane and urea linkages, in the vibrational range 1625–1720 cm−1.  

Furthermore, the urethane domains were also observed at peaks 3315 cm-1 attributed to the N-H 

stretching and bending vibration bands. After 8 days of UV exposure, PU BD UV and PU WFo-P 

20% UV show the decreasing absorption C-O-C peaks at 1094 cm-1, and 1100 cm-1, respectively. 

These decreasing peaks have also been observed for sample Simpact™ 85A UV at 1047 cm-1, and 

peak at 1522 cm−1 gradually decreases, which indicates a degradation of the urethane structure 

may occur. Besides, missing absorption peaks were observed at 2826 cm-1 after UV exposure 

revealed the photochemical decomposition of the PUs. Increasing absorption peaks carbonyl 

groups at 1723 cm-1 was observed on PU WFo-P 20% sample, due to hydroxyl groups of modified 

CNF is oxidized by the UV [178]. The degradation may occur in sample PU WFo-P 20% and 

become unstable and might reduce the performance of PUs. Modified CNF was confirm reduced 

the yellowish and micro crack formation in PUs composite compared to other reference PUs. 

However, the mechanical properties of the PUs composite may be affected. 

 

4.5  Conclusion 

Different DP of CNF was treated using phosphoric acid and was successfully incorporated in the 

polymerisation of PUs in acetone solvent.  The morphological of PUs composite with modified 

CNF showed that a relatively good dispersion was achieved as no modified CNF aggregations 

were invisible, indicating that the modified CNF has good dispersibility in PUs composite. The 

FT-IR result shows chemical bonding between the hydroxyl group of modified CNF and 

isocyanate group in PUs composite. Modified CNF has confirmed the enhancement of the 
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mechanical properties in PUs composite as compared to untreated acid CNF and PU BD. From 

their thermal behaviour, PUs composite with modified CNF showed higher thermal stability than 

PU BD. Hence, modified CNF can be used to replace BD and further enhanced PUs performance 

in terms of their mechanical properties, thermal stability, and as the UV-resistance. As a result, the 

PUs composite prepared on this method is good on mechanical properties, and it can be a substitute 

for replacing aromatic PUs. It also a promising alternative material for outdoor and waterproof 

coating, thermal insulation film for glass windows, powder coatings, and biomedical applications.  
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CHAPTER 5 

The Design of Dry CNF Filler by Hybridization with Silica Particle for 

Moulded Polypropylene Composite 

 

Abstract 

Silica/CNF as a hybrid filler was successfully prepared using ethanol/water mixed solvents at room 

temperature without a catalyst. The method was applied in this study is convenient, less energy 

required and time-saving. Polypropylene (PP) as a polymer matrix was melt blending using a twin-

screw extruder to study the dispersion of filler in the composite. The morphology, chemical 

structure, mechanical properties and thermal stability of the prepared composites were investigated 

by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscope, tensile 

testing and thermogravimetric analysis (TGA). The image was obtained from SEM showed that 

the silica nanoparticles were deposited onto surface CNF fibres.  All the PP composites sample 

showed good dispersion rate and strong adhesion between the filler and the PP matrix. The FT-IR 

shows the chemically bonding between the filler and PP composite. Incorporation of filler into the 

PP matrix significantly increase the mechanical properties on the composite. However, elongation 

sharply reduced due to the stiffening effect of filler. Silica as a filler also improves the thermal 

stability of the PP composite. 

 

 

 

 

Keywords: Cellulose nanofibre, Silica, Polypropylene, Composite, Hybrid filler 
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5.1  Introduction  

Polymer composite is the material formed when the reinforcing materials are dispersed in the 

polymer matrix. Incorporating inorganic fillers into a polymer matrix can give unique composite 

properties, such as rigidity, high thermal stability and mechanical property, flexibility, and 

ductility [45]. The mechanical properties of polymers are regularly low, and fillers can provide 

overcoming this limitation. The most used nanoscale fillers include metal nanoparticles, 

polyhedral oligomeric silsesquioxane, carbon nanomaterials, graphite nanoplates, silica 

nanoparticles, and nanocellulose [187][188][189]. These fillers shape factor can be a particle, fibre, 

and sheet [190].  The reinforcing effect of filler is attributed to several factors, such as polymer 

properties, filler nature and type, polymer and filler concentration, particle size and distribution 

[45]. The fillers with particle sizes in the 1–100 nm range define as a nanofiller. These nanofillers 

incorporated into a polymer matrix can improve their mechanical properties, gas and solvents 

barrier properties, thermal degradation, and chemical resistance [191][192]. Traditional micro 

fillers can cause polymer embrittlement, loss of transparency and lightweight.  

 

Natural fibres as a filler such as cellulose fibre produce composites that offer advantages, for 

example, superior mechanical properties, eco-friendly, processability, biodegradability, 

biocompatibility, low toxicity, cost-saving, and improved fuel efficiency [193][194]. The natural 

filler is difficult to disperse properly in hydrophobic polymer due to different surface properties.  

The strategy is using hybrid nanofillers with different surface properties such as silica 

nanoparticles is an effective way to achieve better mechanical and thermal properties of 

composites.  
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Researchers are trying to utilize more than one filler materials to explore the nanofillers synergistic 

effect on the final properties of polymer nanocomposites [49]. Anwer et al.[195] prepared 

nanocomposites using epoxy resin with carbon nanofibre (CNF), graphene nanoplatelets (GNP), 

and a hybrid combination of CNF/GNP as fillers. These composites were processed with and 

without the use of surfactants. It was proposed the GNP prevented agglomeration of the CNF 

during processing, leading to larger particle aspect ratios in the nanocomposite. Kwak et al.[196] 

successfully prevented the agglomeration of the CNF during dehydration using fish-derived 

gelatine. Both of these studies show combinations with other material is possible to prevent the 

agglomeration of CNF using physical modification without the use of surfactants.  In a hybrid 

filler system, both fillers support the dispersion of one another and avoid the agglomeration on 

some level. Thomas et al. [197] study hybrid filler of carbon nanotube (CNT) and nano clay in 

nitrile rubber /natural rubber blends. The hybrid filler CNT/clay helps the dispersion of one another 

through synergism and prevents the agglomeration in the composite blend. Moreover, a hybrid 

filler system has reinforced mechanical properties such as tensile strength and tears resistance 

which are attributed to the large contact area between clay and CNT. 

 

Few studies have been done to synthesized silica/cellulose as filler, and this hybrids filler usually 

were prepared by the sol-gel method application. Li et al. [198] synthesized cellulose 

nanocrystal/silica hybrids using TEOS as the silica precursor. This hybrids material was melt 

blending with ultrahigh molecular weight polyethylene (UHMWPE) polymer in the twin-screw 

extruder. The nanocomposite shows the improvement of flexural modulus, tensile and flexural 

strength. The sol-gel method is considered adequate to modify the surface of substrates or material. 

However, the limitation of this is method is energy demanding, costly chemical, and a time-
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consuming cause needs days to obtain the product, volume shrinkage, and cracking during drying 

[190][199].  

  

To obtain nanocomposite materials by an accessible, fast, and low-cost method, we attempted a 

new approach using ethanol/water mixed solvent method applied to silica particles/CNF without 

chemical modification. During this process, commercialized silica particles (SiP) and CNF will be 

dispersed in the mixed solvent, and SiP will be deposited onto the CNF surface. During the solvent 

evaporation process, it was expected that the property of the particle of this SiP could prevent the 

agglomeration of CNF. Before this method, it was impossible to incorporate cellulose particles 

into hydrophobic polymers without surfactants or chemical modifications [190]. 

 

In this study, polypropylene was used as a polymer matrix due to excellent properties as common 

applications [200]. Filler preparation using ethanol/water mixed solvents were investigated their 

morphological and structural properties. Subsequently, the composite preparation with 

polypropylene, fillers (SiP, CNF, or SiP/CNF) by melt blending in the twin-screw extruder. The 

effect of fillers on PP composites was investigated by morphological, chemical analysis, thermal 

degradation, and mechanical properties. Pulverized SiP and pulverized CNF as filler in PP 

composite have also investigated their performance on mechanical properties. 
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5.2  Experimental 

5.2.1  Material 

Polypropylene was used as the polymer matrix obtained from Japan Polypropylene Corporation, 

Japan. Cellulose nanofibre (5 wt% aqueous solutions, DP 650) was kindly provided from Sugino 

Machine Limited, Toyama Prefecture, Japan. This CNF was produced by a super high-pressure 

water jet system. SiP powders, Sylosphere 200 (SS, diameter 3.0µm), and Sylophobic 200 (SP, 

diameter 3.9µm) were obtained from Fuji Silysia Chemical, respectively.   All other reagent-grade 

chemicals were purchased from Wako Pure Chemical Industries Ltd, Japan, and were used without 

further purification.  

 

5.2.2   Filler preparation procedure 

The prepared filler and hybrid filler samples in this study were coded, as demonstrated in Table 

5.2. The required amount of SiP and CNF was added into the ethanol/water mixed solvents and 

stirred for one hour. The mixture was then evaporated by using a rotary evaporator (Eyela N-1110, 

Tokyo Rikakiki Co. Ltd., Tokyo, Japan). Subsequently, it was dried under vacuum overnight, 

before use. 

 

5.2.2.1  Preparation of pulverized SiP and pulverized CNF  

The pulverized SiP and pulverized CNF as reference filler were prepared by the wet-pulverizing 

using Star Burst Mini (Nozzle size: 0.10 mm, Sugino, Japan) using ethanol as a solvent. Then, the 

solvent was evaporated using a rotary evaporator and dried under vacuum overnight. Pulverized 

SiP and pulverized CNF and namely as pul.SS (Sylosphere 200), pul.SP (Sylophobic 200) and 

pul.CNF.  
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Table 5.1: Sample composition of PP and filler  

Sample PP (wt%) Sylosphere (wt%) Sylophobic (wt%) CNF (wt%) 

PP 100 - - - 

PP-8.75 SS 91.25 8.75 - - 

PP-8.75 pul.SS 91.25 8.75 - - 

PP-10 SS 90 10 - - 

PP-1.25 CNF 98.75 - - 1.25 

PP-1.25 pul.CNF 98.75 - - 1.25 

PP-pul.SS/CNF 90 8.75 - 1.25 

PP-pul(SS/CNF) 90 8.75 - 1.25 

PP- SS/CNF 90 8.75 - 1.25 

PP-8.75 SP 91.25 - 8.75 - 

PP-8.75 pul.SP 91.25 - 8.75 - 

PP-10 SP 90 - 10 - 

PP-pul.SP/CNF 90 - 8.75 1.25 

PP-pul(SP/CNF) 90 - 8.75 1.25 

PP- SP/CNF 90 - 8.75 1.25 

 

 

5.2.3  Composite preparation 

5.2.3.1  Twin-screw extruder  

The desired amount of filler, hybrid filler and polymer matrix were feds into the twin-screw 

extruder (IMC-1979, Imoto Machinery Co., Japan). The rotation speed, temperature, and residence 

time for melt mixing are controlled at 40 rpm, 180 °C, and 5 minutes, respectively.  

 

5.2.3.2  Preparation of composites film 

The films were prepared using a hydraulic hot-press (IMC-180C, Imoto Machinery Co., Japan) at 

180 °C for 3 minutes under a pressure of 30MPa, and then cooled at room temperature. 
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5.3  Characterisation of PP composite 

5.3.1  Morphological analysis 

The surface morphologies of SiP were observed under a 3D laser scanning confocal microscope 

(LSCM) model VK-X 100 (Keyence Corporation, Osaka, Japan) under prescribed conditions of 

laser:  red semiconductor laser, λ=658 nm, 0.95 mW, and pulse width of 1 ns using a depth 

composition procedure.  

 

5.3.2   Scanning electron microscopy (SEM) 

The morphology of the fractured composites and dispersion state of the filler in the PP matrix was 

observed by scanning electron microscopy (SEM) (JCM-6000, JEOL, Japan) operated at 15 kV 

accelerating voltage. The PP composite samples were fractured under liquid nitrogen. Each sample 

was deposited on carbon tape and carbon-coated for 90 seconds before the observation. 

 

5.3.3  Optical property 

Optical property of the composite films was determined by UV–Vis spectra. A rectangular piece of 

each film sample (4 cm × 4 cm) was directly mounted between the two spectrophotometer magnetic 

cell holders. The transmittance spectra of the PP films were measured at selected wavelength ranges 

from 190 to 1000 nm using a UV–Vis spectrophotometer (GENESYS 50, Thermo Fisher Scientific, 

USA). The optical properties of PP and PP composite films were characterized by the transmittance 

of visible (660 nm) regions.  
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5.3.4  Chemical analysis 

The chemical analysis was carried out using the Fourier Transform Infrared (FT-IR) spectroscope 

Nicolet iD7 ATR (Thermo Fisher Scientific, Japan).  Each sample recording consisted of 16 scans 

recorded from 400 to 4000 cm−1. 

 

5.3.5  Mechanical properties 

The PP composite films were cut into a rectangular shape with 40 × 5 × 0.5 mm.  The mechanical 

properties of PP composite were determined by an IMC-18E0 model machine (Imoto Machinery 

Co. Ltd, Kyoto, Japan) at a rate of 10 mm/min crosshead speed at 23 °C.  The measurement was 

carried out with five replicates. 

 

5.3.6  Thermogravimetric analysis (TGA) 

TGA was carried out using EXSTAR TG/DTA 7200 (SII Nanotechnology Inc., Japan) with a scan 

range from 30 to 550 °C at a constant heating rate of 10 °C /min under a continuous nitrogen flow 

rate of 100 mL/min.   

 

5.4  Result and Discussion 

5.4.1 Silica/CNF filler mechanism in PP polymer 

 

Figure 5.1a and 5.1b show the schematic filler preparation in the ethanol/water mixed solvents and 

the possible mechanism of hybrid filler in the hydrophobic polymer. Hydrophilic CNF causes 

irreversible agglomeration during drying, and due to the formation of additional hydrogen bonds 

between particles, hydrophilic CNF induces aggregation in the non-polar matrix [201]. SiP powder 

was used to prevent the CNF aggregation from occurring when incorporated into the hydrophobic 
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polymer. SiP powders, which are Sylosphere 200 (SS) and Sylophobic 200 (SP) with different 

shapes and surface properties, were used. This two silica was compared and further used in hybrid 

filler preparation with CNF in ethanol/water mixed solvents. For hybrid filler preparation sample, 

namely PP-pul.SS/CNF and PP-pul.SP/CNF, SiP powder was prepared in ethanol/water mixed 

solvent and pulverized. After pulverized, the required amount of CNF was added into the solution 

and stirred for one hour. Then, the solvent was removed using a rotary evaporator.  

 

Meanwhile, hybrid preparation sample for PP-pul(SS/CNF) and PP-pul(SP/CNF), SiP powder and 

CNF were prepared in ethanol/water mixed solvent and pulverized.  After pulverized, the mixture 

was continued stirred for one hour. Then the solvent was removed using a rotary evaporator. The 

hybrid filler preparation for sample PP-SS/CNF and PP-SP/CNF, the required amount of SiP and 

CNF was added into the ethanol/water mixed solvents and stirred for one hour. The mixture was 

then evaporated by using a rotary evaporator. All the sample after evaporated was dried under 

vacuum overnight before use. This ethanol/water mix solvents promote the SiP to deposited 

onto the surface of the CNF fibre. When the SiP/CNF mixture solvent is evaporated, both fillers 

will prevent one or both from agglomerated.  

 

As shown in Figure 5.1a, the SiP covered mostly localized at the intersection of the CNF fibres. 

Interaction between SiP and CNF may be caused by hydrogen bonds, due to the large surface areas 

and high amount of hydroxyl groups present in SiP [202][203] and figure 5.1b shows the dry CNF 

is agglomerated without silica. In further to understand the hypothesis mechanism, PP polymer as 

the polymer matrix was melt blending using a twin-screw extruder. After the composite was melt 

bending in a twin-screw extruder, the composite was hot press for further analysis. As a result, the 
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hybrid filler prevented the aggregation formation of CNF in PP composite, and a good dispersion 

rate and transparency were achieved (Figure 5.1c).  

 

 

Figure 5.1: Schematic representation of SiP/CNF filler; (a) hybrid filler preparation, (b) 

agglomerated CNF without SiP and (c) hybrid filler mechanism in PP polymer 

 

5.4.2  Morphological characteristics of the hybrid filler and PP composite 

Figures 5.2a and 5.2c are a detailed microscopic view of SiP SS and SP under a laser microscope 

with 50x magnification. The view sample was done by using scotch tape techniques without using 

a solvent.   SiP SS is single-distributed spherical silica particles and smooth surfaces with average 

size 3-4 µm giving the features such as high mobility and outstanding dispersivity. Meanwhile, 

SiP SP has a rough surface and irregular shape with an average size of 2-7 µm. According to the 
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manufacturer, SiP SP demonstrates completely hydrophobic properties by chemically replacing 

the silanol groups on the silica surface with organic silicone compounds. 

 

Figure 5.2: Morphological image of SiP particles; (a) SiP SS 50X, (c) SiP SB 50X, and SEM 

image of hybrid filler; (b) SS/CNF 1000X, (d) SP/CNF 1000X 

 

The structures of both hybrid fillers can be directly observed by using SEM. The SEM images in 

Figures 5.2b and 5.2d (SS/CNF and SP/CNF) illustrate that the SiP were relatively homogeneously 

dispersed in the CNF matrix.  It was verified that both SiP was deposited predominantly on the 

surface of CNF fibres and prevent the CNF agglomeration when drying. Both SiP SS and SP help 

the dispersion of CNF by way of synergism effect and avoid the agglomeration to some degree. 

This result also indicates that the hybrid filler particles play a very important role in preventing 

aggregation formation in the polymer matrix. 
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Figure 5.3: Morphological of PP composite (a) PP, (b) PP-8.75 pul.SS, (c) PP-8.75 pul.SP, (d) 

PP-1.25 pul.CNF, (e) PP- SS/CNF and (d) PP- SP/CNF 

 

Successful the hybrid nanofiller preparation was further investigated in PP as a polymer matrix. 

The PP composite was melt blending through a twin-screw extruder. Figure 5.3 shows the PP 

composite after melt blending and hot press for analyses and mechanical properties study.  Neat 

PP polymer is without SiP, and CNF (Figure 5.3a) was used as a reference. Figure 5.3b and 5.3c 

is PP composite with SiP SS, and SP as control and Figure 5.3d is PP composite with CNF without 

SiP. PP composite with SiP show excellent dispersibility, and no agglomeration was observed. 

However, PP composite with CNF, it clearly can see significant agglomeration or poor dispersion 

of CNF in PP composite, caused by different surface properties and the hydrophilicity nature of 

CNF nanofibers. With the right amount and percentage of SiP/CNF content, the PP composite 

shows the superior distribution of hybrid filler was observed in Figure 5.3e and 5.3f. Archiving 
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good dispersion of fillers and polymer matrix are the most critical factors to determine their 

resultant mechanical performances [204]. 

 

 

Figure 5.4: UV–vis transmittance spectra for PP and PP composite 

 

Figure 5.4 show the UV-vis transmittance spectra of the PP composite with hybrid filler. The 

percentage of visible light transmittance values of the PP composite are summarized in Table 5.2.  

It should be noted that the see-through clarity, as determined by the naked eye, might be different 

from light transmission measured by an instrument. Based on data given in Table 2, it was found 

that the transmittance of PP polymer at 65.3 %T and after adding the hybrid filler, the transmittance 

value is reduced. The percentage transmittance values of the two composite revealed that the PP 

SP/CNF was higher than the PP SS/CNF, even provided the same hybrid filler loading level. 
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Table 5.2: Optical properties of PP and PP composite 

Sample  Thickness (mm) %T(Transmittance) 

 (660 nm) 

PP  0.255 65.3 

PP SS/CNF 0.446 17.9 

PP SP/CNF 0.356 44.6 

 

5.4.3   Characterization of composite films  

Chemical structures of PP composite were characterized using FT-IR spectroscope. Figure 5.5 

depicts the typical FT-IR spectra of neat PP, SiP, CNF, and PP composite. The appearance of 

characteristic absorption bands of SiP at 1054 and 1048 cm-1   is assigned to the siloxane Si–O–Si 

bonds were observed for SiP SS and SP, respectively. Furthermore, adsorption bands at 794 and 

797 cm-1 indicate the presence of hydroxyl groups on the surface [205]. The characteristic 

absorption bands of the CH3 groups for polyalkyl siloxane on the SiP SP as hydrophobic surface 

treatments were observed at 2966, 2898 and 1392 cm-1 [206]. For the CNF, the broad peak was 

observed at 3400-3300 cm-1 was attributed to the stretching vibration of O-H bonding from 

absorbed water molecules of the cellulose chains. This peak also includes inter- and intra-

molecular hydrogen bond vibrations in hydroxyl groups in cellulose I [107][108].  The peak at 

2895 cm-1 was attributed to the CH stretching vibration of all hydrocarbon constituent in 

polysaccharides and the peak at 894 cm-1  attributed to the ß-glycosidic linkages of the cellulose 

chain [109].   

 

As shown in Figure 5.5, the peaks at 2950–2835 cm-1 were contributed by C–H stretching 

vibrations in neat PP chains. The absorption peak observed at 2952 cm−1 is related to CH3 

asymmetric stretching vibration. The peaks found at 1450 and 1376 cm−1 were assigned to CH2 
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and CH3 bending vibration in neat PP [207]. Absorption peaks displayed at 972, 997, and 1165 

cm−1 are assigned to CH3 rocking vibration. Also, the absorption peak located at 840 cm−1 is 

assigned to C–CH3 stretching vibration [208]. This peak is a typical characteristic of PP polymer. 

Influencing of the hybrid filler in the PP composites for sample PP SS/CNF and PP SP/CNF were 

observed at peak at 1087 and 1076 cm−1 of the asymmetric vibration of O-Si-O bonds. Besides, 

increasing the medium intensity were observed at 806 cm−1 is stretching vibrations of Si-O. 

However, The characteristic bonds of the C-O in CNF is not observed due to the overlapping with 

the O-Si-O band [209].  

 

 

Figure 5.5: FTIR spectra of SiP Sylosphere 200, Sylophobic 200, CNF, and PP composites 
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5.4.4  Mechanical properties of PP composite 

Mechanical properties, precisely tensile strength, and elongation are often used to measure the 

strength and elasticity of the composite film. Nanoparticles or fillers incorporated into composite 

films significantly affect their mechanical properties due to the specific surface area and dispersion 

of the filler. The improved mechanical properties can be achieved through an improved interface 

between the filler and polymer matrix [210].  

 

Table 5.3 shows the effect of filler properties on the tensile strength of PP composites compares 

to neat PP. Incorporating the filler increased the tensile strength of PP composites corresponding 

to the neat PP polymer (21.2 Mpa). The values of the tensile strength of PP composite with SiP as 

a reference have also been observed. PP composite with SiP SS, PP-8.75 SS, PP-8.75 pul.SS, and 

PP-10 SS are 27.8, 21.8, and 23.5 MPa. This result shows that the pulverized SiP SS did not 

influence the tensile strength of the PP composite, and increasing the weight percentage up to 10% 

of filler also decreased the tensile strength.  For Sample SiP SP as filler, pulverized SP also 

decreased the tensile strength, which is at 26.3 MPa, were observed on sample PP-8.75 pul.SP, as 

compare to PP-8.75 SP (29.5 MPa). However increasing the weight percentage of SiP SP (PP-10 

SP), increased the tensile strength. Besides, the sample PP-1.25 CNF in the composites does not 

bring much change compared to PP-1.25 pul.CNF. It can be concluded that pulverized CNF in the 

PP composite does not affect the tensile strength. 

 

The synergism of hybrid filler occurs due to the possibility of bonding between the functional 

groups of SiP and CNF. This functional group built the interfacial surface compatibility and 

increased the dispersibility between CNF and PP matrix. Furthermore, it improves system 
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homogeneity and matrix particle interaction, increasing the strength values were obtained. 

Compared to the neat PP (21.2MPa), the value of sample PP-SS/CNF and PP-SP/CNF shows 

tensile strength increment at 73.5% and 60.3%, respectively. The result obtained also shows the 

pulverized SiP on the CNF surface did not improve much on tensile strength. The pulverized 

process may destroy the spherical shape on the SiP SS and functional group present on the surface 

SiP SP, thus reducing the performance of SiP, which already optimize by the manufacturer.  

 

The elongation at break of PP composites was sharply reduced by the addition of filler due to the 

stiffening effect of SiP and CNF on the PP composite [210]. Presence of a rigid interface between 

SiP and CNF fibres and PP matrix decreased the deformability of the PP matrix, which led to more 

rigid and stiffer composites [207][211]. Furthermore, the PP-8.75 SP (149.2%) composites with 

SiP SP exhibit higher elongation at break than other PP composites. The functional group that 

present in SiP SP enhanced the interfacial interaction between filler and PP matrix and generated 

a stronger interfacial bonding due to the hydrophobicity compatibility and suitable for molecular 

chain flexibility. Functional group present on SiP may destroy after the pulverized process, which 

can be observed on sample PP-8.75 pul.SP, the elongation is reduced to 16.2%. However, 

increasing the weight percentage up to 10% of SiP SP also reduces the elongation on the PP 

composite, which can be observed on sample PP-10 SP (47.4%). 

 

Young’s modulus is an essential parameter in engineering materials and can directly reflect 

polymers mechanical properties [212].  Rigid fillers such as SiP and CNF typically increase the 

polymer's stiffness, which can be measured with Young’s modulus.  Young’s modulus for 

composites containing filler is also shown in Table 5.3, and the results show higher modulus values 
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at 1.44 GPa for sample PP-8.75 SS compare to neat PP (1.09 GPa). The inclusion of a rigid phase 

of filler increased the composite stiffness. However, a higher percentage of the filler reduces the 

Young’ modulus value, and the lower Young’s modulus value was observed on sample PP-1.25 

CNF which 0.81 GPa. Relatively, the stiffness of the composite with SiP/CNF filler (PP-SS/CNF 

and PP-SS/CNF) is lower than the neat PP. In conclusion, interfacial stress transfer efficiency 

depends on the stiffness of the interphase, and with higher interfacial stiffness, it improved the 

modulus of the composite [213]. 

 

Table 5.3: Mechanical properties PP composites 

Sample code Tensile  strength (MPa) Young`s Modulus 

(GPa) 

Elongation (%) 

PP 21.2 1.09 260.5 

PP-8.75 SS 27.8 1.44 7.30 

PP-8.75 pul.SS 21.8 0.94 9.97 

PP-10 SS 23.5 0.87 24.7 

PP-1.25 CNF 24.5 0.81 12.1 

PP-1.25 pul.CNF 24.8 1.07 18.1 

PP-pul.SS/CNF 28.3 1.17 5.45 

PP-pul.(SS/CNF) 25.7 1.13 8.80 

PP- SS/CNF 36.8 0.93 20.8 

PP-8.75 SP 29.5 0.91 149.2 

PP-8.75 pul.SP 26.3 1.15 16.2 

PP-10 SP 31.4 0.95 47.4 

PP-pul.SP/CNF 24.3 0.92 24.7 

PP-pul.(SP/CNF) 27.3 1.21 6.27 

PP- SP/CNF 34.0 1.01 10.2 
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5.4.5  Morphology of the Fracture Surface of PP Composites 

PP composites were further analysed with SEM to study fatigue crack propagation. The sample 

was freeze fractured in a liquid nitrogen bath.  After freeze-fracture, the cross-section of the 

fracture surface was carbon-coated and view. Figure 5.6 depicts the SEM micrograph typical 

fracture surfaces of neat PP and PP composite samples. The rough surface was observed on neat 

PP (Figure 5.6a) indicated the typical characteristic of the elastic behaviour of PP [214].  

 

 

 

Figure 5.6: SEM micrographs of composites: (a) PP polymer, (b) PP SS/CNF and (c) PP 

SP/CNF 
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In Figures 5.6b and 5.6c, the SEM images show a uniform distribution of the fillers in a porous 

matrix surface in PP composite. Sample PP SS/CNF shows the particulate fillers with a spherical 

and fibrous shape with holes left (red circle) have been found in the composite, suggesting the 

applied stress effectively transferred to the filler from the polymer matrix by scattering the energy 

during crack propagation [90]. While on the sample PP SP/CNF, interconnected nanofibers are 

formed with rough surfaces in irregular shape were observed. SiP SP exhibit better interfacial 

bonding strength and filler dispersion in PP composite (Figure 5.6c). These results indicated a 

robust interfacial adhesion between the PP matrix and filler due to the hydrophobicity 

compatibility. 

 

5.4.6  Thermogravimetric analysis (TGA) of PP composite 

Figure 5.7 shows the thermal stability of the neat PP, SiP, CNF, and PP composite. The TGA result 

shows the neat PP and PP composite degradation in a single step degradation. SiP SP has a weight 

slightly loss at 420 ℃ may be attributed to the thermal decomposition of the functional group of 

polyalkyl siloxane. Form temperature above 450 °C, there is no weight loss observed for both SiP 

samples, indicating the left residual is SiP. Besides, SiP have high thermal stability temperatures 

up to 800 °C [215]. Moreover, for  CNF sample, the weight loss was observed at  270 ℃ due to 

the thermal decomposition of the carboxyl groups [216]. 

 

The TGA result also shows the neat PP degrades completely without any char formation, with the 

residual of the original sample mass being only 1.3%. Compared to the neat PP, the decomposition 

temperature of PP composite was increased significantly with the addition of hybrid filler, 

indicated that SiP protected thermal decomposition of PP composite. Improvement of thermal 
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stability is related to the excellent dispersion of hybrid filler in the polymer matrix. As a result, it 

inhibited the distribution of volatile decomposition products out of the materials and the formation 

of carbonaceous-silicate char, which acts as a physical barrier [217]. Additionally, the weight 

residue at 500 ℃ of the PP composite shows the highest for sample PP SS/CNF, which at 10.28% 

residue, followed by CNF, which 9.54% residue and PP SP/CNF is 7.53% residue. 

 

 

Figure 5.7: TGA curves of PP, SiP, CNF, PP SS/CNF, and PP SP/CNF 

 

5.5  Conclusion  

An environmentally friendly method using ethanol/water mixed solvent was successfully prepared 

on the SiP/CNF and used as a hybrid filler in the polymer matrix. This method applied in this work 

is very convenient, time-saving, less energy requires, and sidestepping chemical modification. It 

was noted that the synergistic effect of hybrid filler occurred at this composition by showing a 
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significant enhancement dispersion of CNF in the hydrophobic polymer. The morphologies result 

has confirmed the deposition of SiP onto the CNF surface, resulting in good dispersion of hybrid 

filler in the PP matrix, and no agglomeration was observed. The FT-IR results demonstrated 

existence of interfacial interactions between hybrid filler and the PP matrix. The incorporation of 

filler into the PP matrix significantly increases the mechanical properties of the composites. 

Sample PP-SS/CNF exhibit higher tensile strength at 36.8 Mpa, which increments 73.55% 

compared to the neat PP. However, the elongation sharply reduced due to the stiffening effect of 

filler. The thermal stability of PP composite was improved by the incorporation of filler acts as a 

physical barrier. The hybrid filler exhibited synergistic effects, especially for the tensile strength 

proved to be more effective than single filler systems. The simplicity of these methods can be 

applied to other fillers such as metal oxide and graphene oxide to prepare hybrid fillers for 

designing polymer composites, especially to improve mechanical properties and thermal stability. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS  

 

6.1  Conclusion 

Nanocellulose fibre focused as a sustainable biomaterial with exceptional physicochemical 

properties. Though it can be upgraded from inexpensive renewable cellulosic biomass, their 

utilization is limited for applications or exploitation due to original hydrophilicity.  This study 

focuses on surface modification treatment on the CNF and its effects as filler in the hydrophobic 

polymer. In chapter 2, the surface modified of CNFs using acid treatment by introducing the 

functional group were successfully obtained. CNF can be used as a reinforced filler, which has 

confirmed the enhancement of the tensile strength in silicone/CNF composite. Therefore, the 

morphological of silicone/CNF composite showed relatively good dispersion to prevent CNF 

aggregations into polymer matrices.  Among various cellulose derivatives, cellulose acetate (CA) 

possessed unique features such as excellent mechanical properties, good thermal stability, 

tailorable surface chemistry, and can be used as hydroxyl providers to enhance the properties of 

PUs.  

 

In chapter 3, PUs with commercialized CA were prepared to PUs composite to investigate polymer 

composite potential with modified cellulose. CA in PUs composite as a thermosetting polymer can 

be obtained through modifying reaction conditions. Furthermore, the PUs with CA composite 

prepared transparent film after moulding and showed enhancement of its mechanical property 

compare to control PUs. Hence, CA can replace 1,4 butanediol (PU BD) as the chain extender to 

further enhance the PUs performance in terms of their transparency, thermal stability, and 
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mechanical properties.  However, CNF has more hydroxyl groups as reactive moieties with 

isocyanate group comparing to CA. Chapter 4 investigate preparation reinforced PUs with 

modified CNF as a reinforcer. The different degree of polymerization (DP) of CNF was treated 

with phosphoric acid to prepare modified CNF and successfully obtained the PUs through in situ 

polymerization. The morphological of PUs composite with modified CNF showed a relatively 

good dispersion compared with that of pristine CNF. Furthermore, PUs with modified CNF 

showed various positive performance compare to PUs with pristine CNF such as mechanical 

properties, thermal stability, and UV resistant. The modified CNF to aliphatic-based PUs can be 

upgraded mechanical performance as similar to aromatic-based PUs.  

 

However, these CNF have to use water solutions as emulsion due to prepare composites even 

though almost all polymer matrices are hydrophobic. In order to study the availability of handling 

CNF for the polymer moulding process to prepare polymer composite, preparation of dried CNF 

filler was prepared in Chapter 5. Commercial silica nanoparticles (SiP) and CNF were mixed in 

ethanol/water mixed solvent. This procedure is a revolutionary convenience to obtain fillers, such 

as time-saving, less energy, and sidestepping chemical modification. In this methodology, the 

interaction between CNF and SiP can prevent agglomeration and enhance the dispersion of CNF 

in the hydrophobic polymer, resulting in excellent mechanical performances and the dispersion of 

the hybrid filler in the PP matrix. The thermal stability of PP composite also improved.  

 

In conclusion, the author accomplished to control the characterisation of CNF, which can be a 

broad application for potential polymer matrices. These findings expect to contribute widely to 

academia and industries. 
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6.2  Recommendations 

This study has contributed to the surface modification of cellulose nanofiber (CNF) with enhanced 

dispersibility in hydrophobic polymer by changing the surface properties or reducing the hydroxyl 

group on the CNF surface. The method that was used is convenience, environmentally friendly, 

time-saving and low cost. Further investigations are recommended further to understand CNF 

surface properties after treatment and their interaction when reinforcing potential with other a 

hydrophobic polymer.  Further development bio-based polyols and isocyanates for the production 

of bio-based PUs are also should be considered. 

 

Based on the results obtained in the surface modification CNF via acid treatment, a more detailed 

investigation of surface chemistry and potential surface modification strategies for functionalized 

CNF is recommended.  

 

Based on the results obtained from the polyurethane polymerization, an alternative method to 

incorporate NC into a PUs matrix can involve the use of:  

I. functionalized NC for enhancing chemical/covalent bonding between PUs and NC 

II. different type of cellulose to prepare PUs/cellulose nanocomposites 

III. different type of  diisocyanate and compatibilizer for enhancing the surface wettability of 

PUs 
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