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ABSTRACT 
 
Peptides play an important role in all aspects of the immunological reactions to invading 

cancer and pathogen cells. It has been known for over 40-years that peptides are critical 

influences in assembling the immune system against foreign invaders. Since then, new 

knowledge about the generation and function of peptides in immunology has supported 

efforts to harness the immune system to treat disease. Yet, with little immunological insight, 

most of the highly productive treatments, including vaccines, have been developed 

empirically. Nonetheless, increased knowledge of the biology of antigen processing as well 

as chemistry and pharmacological properties of antigenic and antimicrobial peptides has now 

permitted to development of drugs and vaccines. Due to advanced technologies, it is vitally 

important to develop automatic computational methods for rapidly and accurately predicting 

immune-peptides. In this thesis, the author focuses on the machine learning approaches for 

addressing classification problems of four types of immune-peptides (anti-inflammatory, 

proinflammatory, anti-tuberculosis, and linear B-cell peptides). 
 

Numerous inflammatory diseases and autoimmune disorders by therapeutic peptides have 

received substantial consideration; however, the exploration of anti-inflammatory peptides 

via biological experiments is often a time consuming and expensive task. The development 

of novel in silico predictors is desired to classify potential anti-inflammatory peptides prior 

to in vitro investigation. Herein, an accurate predictor, called PreAIP (Predictor of Anti-

Inflammatory Peptides) was developed by integrating multiple complementary features. We 

systematically investigated different types of features including primary sequence, 

evolutionary and structural information through a random forest classifier. The final PreAIP 

model achieved an AUC value of 0.833 in the training dataset via 10-fold cross-validation 

test, which was better than that of existing models. Moreover, we assessed the performance 

of the PreAIP with an AUC value of 0.840 on a test dataset to demonstrate that the proposed 

method outperformed the two existing methods. These results indicated that the PreAIP is 

an accurate predictor for identifying anti-inflammatory peptides and contributes to the 

development of anti-inflammatory peptides therapeutics and biomedical research. The 

curated datasets and the PreAIP are freely available at 

http://kurata14.bio.kyutech.ac.jp/PreAIP/. 

A proinflammatory peptide (PIP) is a type of signaling molecules that are secreted from 
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immune cells, which contributes to the first line of defense against invading pathogens. 

Numerous experiments have shown that PIPs play an important role in human physiology 

such as vaccines and immunotherapeutic drugs. Considering high-throughput laboratory 

methods that are time consuming and costly, effective computational methods are great 

demand to timely and accurately identify PIPs. Thus, in this study, we proposed a 

computational model in conjunction with a multiple feature representation, called ProIn-

Fuse, to improve the performance of PIPs identification. Specifically, a feature 

representation learning model was utilized to generate a set of informative probabilistic 

features by making the use of random forest models with eight sequence encoding schemes. 

Finally, the ProIn-Fuse was constructed by the linearly combined models of the informative 

probabilistic features. The generalization capability of our proposed method evaluated 

through independent test showed that ProIn-Fuse yielded an accuracy of 0.746, which was 

over 10% higher than those obtained by the state-of-the-art PIP predictors. Cross-validation 

and independent results consistently demonstrated that ProIn-Fuse is more precise and 

promising in the identification of PIPs than existing PIP predictors. The web server, datasets 

and online instruction are freely accessible at http://kurata14.bio.kyutech.ac.jp/ProIn-Fuse/. 

We believe that the proposed ProIn-Fuse can facilitate faster and broader applications of PIPs 

in drug design and development. 

 

Tuberculosis (TB) is a leading killer caused by Mycobacterium tuberculosis. Recently anti-

TB peptides have provided an alternative approach to combat antibiotic tolerance. Herein, 

we have developed an effective computational predictor iAntiTB (identification of anti-

tubercular peptides) that integrates multiple feature vectors deriving from the amino acid 

sequences via Random Forest (RF) and Support Vector Machine (SVM) classifiers. The 

iAntiTB combined the RF and SVM scores via linear regression to enhance the prediction 

accuracy. To make a robust and accurate predictor we prepared the two datasets with different 

types of negative samples. The iAntiTB achieved AUC values of 0.896 and 0.946 on the 

training datasets of the first and second datasets, respectively. The iAntiTB outperformed the 

other existing predictors. Thus, the iAntiTB is a robust and accurate predictor that is helpful 

for researchers working on peptide therapeutics and immunotherapy. All the employed 

datasets and software application are accessible at 

http://kurata14.bio.kyutech.ac.jp/iAntiTB/. 

 

http://kurata14.bio.kyutech.ac.jp/ProIn-Fuse/
http://kurata14.bio.kyutech.ac.jp/iAntiTB/
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Linear B-cell peptides are critically important for immunological applications such as 

vaccine design, immunodiagnostic tests, antibody production, and disease diagnosis and 

therapy. The accurate identification of linear B-cell peptides remains challenging despite 

several decades of research. In this work, we have developed a novel predictor, iLBE 

(Identification of B-Cell Epitope), by integrating evolutionary and sequence-based features. 

The successive feature vectors were optimized by a Wilcoxon rank-sum test. Then the 

random forest (RF) algorithm used the optimal consecutive feature vectors to predict linear 

B-cell epitopes. We combined the RF scores by the logistic regression to enhance the 

prediction accuracy. The performance of the final iLBE yielded an AUC score of 0.809 on 

the training dataset. It outperformed other existing prediction models on a comprehensive 

independent dataset. The iLBE is suggested to be a powerful computational tool to identify 

the linear B-cell peptides and development of penetrating diagnostic tests. A web application 

with curated datasets is freely accessible of iLBE at http://kurata14.bio.kyutech.ac.jp/iLBE/. 

 

Taken together, the above results suggest that our proposed predictors (PreAIP, ProIn-Fuse, 

iAntiTB, and iLBE) would be helpful computational resources for the prediction of anti-

inflammatory, pro-inflammatory, tuberculosis, and linear B-cell peptides. 

 

Keywords: Anti-inflammatory peptides, Proinflammatory peptides, Anti-tuberculosis 

peptides, Linear B-cell epitopes /peptides, Feature encoding, Feature selection, and Machine 

learning algorithms, Webserver applications 

http://kurata14.bio.kyutech.ac.jp/iLBE/
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概要 

 

ペプチドは、癌や病原体細胞に対する免疫反応のあらゆる側面で重要な役割を果た

す。ペプチドが外来の侵入物に対する免疫系を起動する上で決定的な影響を与える

ことは 40年以上前から知られている。それ以来、免疫学におけるペプチドの生成と

機能に関する新しい知見は、病気を治療するために免疫系を利用する研究を支えて

きた。依然として、免疫学的洞察がほとんどないため、ワクチンを含む効率的治療

法のほとんどは、経験的に開発されている。それでもなお、抗原プロセシングの生

物学、ならびに抗原性および抗菌性ペプチドの化学・薬理学に関する知見の増加に

より、現在、薬物およびワクチンの開発が可能になっている。高度な技術により、

免疫ペプチドを迅速かつ正確に予測するためのコンピュータ技術を開発することが

非常に重要である。この論文では、著者は 4 種類の免疫ペプチド（抗炎症、炎症誘

発性、抗結核、および線形 B 細胞エピトープ）の分類問題に対処するための機械学

習アプローチに焦点を当てる。 

 
炎症性疾患および自己免疫疾患に対する治療用ペプチドは、多くの検討がなされて

きた。しかし、生物学的実験による抗炎症ペプチドの探索は、多くの場合、時間と

費用のかかる作業である。新しい in siloco予測器の開発は、in vitro実験に先立って、

潜在的な抗炎症ペプチドを同定するために望まれている。ここでは、PreAIP（抗炎

症ペプチドの予測器）と呼ばれる予測器が、複数の補完的機能を統合することによ

って開発された。一次配列、進化的および構造的情報を含むさまざまなタイプの特

徴量を、ランダムフォレスト分類器を介して抽出した。最終的な PreAIP モデルは、

10分割交差検定によるトレーニングデータセットで 0.833の AUC値を達成した。こ

れは、既存のモデルよりも優れた値である。さらに、独立の検証用データセットで

AUC 値 0.840 を達成し、提案された方法が 2 つの既存の予測器よりも優れているこ

とを示した。これらの結果は、PreAIP が抗炎症ペプチドを同定するための正確な予

測器であり、抗炎症ペプチド治療および生物医学研究の開発に貢献した。用いたデ

ータセットと PreAIPは、http：//kurata14.bio.kyutech.ac.jp/PreAIP/から自由に利用でき

る。 
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炎症誘発性ペプチド（PIP）は、免疫細胞から分泌されるシグナル伝達分子の一種で

あり、侵入する病原体に対する防御の第一線を担当する。多くの実験により、PIPは

ワクチンや免疫療法薬などにおいて重要な役割を果たすことが示されている。ハイ

スループットな生物実験に時間と費用が掛かることを考えると、効率的なコンピュ

ータ予測は、PIPを短時間にかつ正確に特定するために大きな需要がある。したがっ

て、この研究では、PIP 識別性能を向上させるために、ProIn-Fuse と呼ばれる複数の

特徴表現を組み合わせた計算モデルを提案した。具体的には、特徴表現学習モデル

を利用して、8つのシーケンスエンコーディングスキームを備えたランダムフォレス

トモデルを利用することにより、確率的予測スコアを計算した。ProIn-Fuseは、確率

的予測スコアの線形結合モデルによって構築された。提案手法の汎化性能を独立し

たテストデータで評価した結果、ProIn-Fuseの精度は0.746であり、これは最新のPIP

予測器によって得られた精度よりも 10％以上高かった。テストデータによる検証結

果は、ProIn-Fuse が既存の PIP 予測器よりも正確に PIP 識別できることを示した。 

Web サ ー バ ー 、 デ ー タ セ ッ ト 、 お よ び 説 明 書 は 、 http ：

//kurata14.bio.kyutech.ac.jp/ProIn-Fuse/から自由にアクセスできる。ProIn-Fuse は、ド

ラッグデザイン含む幅広いアプリケーションに応用できる。 

 

結核（TB）は、結核菌によって引き起こされる疾患である。最近、抗結核ペプチド

は抗生物質耐性に対抗するための代替アプローチを提供している。ここでは、ラン

ダムフォレスト（RF）およびサポートベクターマシン（SVM）分類器を用いてアミ

ノ酸配列に由来する複数の特徴ベクトルを統合する効果的な予測器 iAntiTB（抗結核

ペプチドの識別）を開発した。 iAntiTBは、線形回帰を介して RFスコアと SVMス

コアを組み合わせて、予測精度を向上させた。ロバストで正確な予測器を作成する

ために、異なるタイプのネガティブサンプルを使用して 2 つのデータセットを準備

した。iAntiTBは、1番目と 2番目のデータセットのトレーニングデータセットでそ

れぞれ 0.896と 0.946の AUC値を達成した。iAntiTBは、他の既存の予測器の性能を

上回った。このように、iAntiTBは、ペプチド治療および免疫療法に取り組んでいる

研究者に役立つロバストで正確な予測器である。利用されたすべてのデータセット

とソフトウェアアプリケーションは、http：//kurata14.bio.kyutech.ac.jp/iAntiTB/から自

由にアクセスできる。 
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線形 B 細胞エピトープは、ワクチンの設計、免疫診断テスト、抗体産生、疾患の診

断や治療などの免疫学的応用に非常に重要である。線形 B 細胞エピトープの正確な

同定は、数十年の研究にもかかわらず、依然として挑戦的課題のままである。本研

究では、配列の進化的特徴や物理化学的特徴等を統合することにより、新規な線形

B 細胞エピトープ予測モデル（iLBE）を開発した。Wilcoxon 順位和検定によって最

適化した特徴ベクトル群をランダムフォレスト（RF）アルゴリズムを用いて学習し

て、線形 B 細胞エピトープの予測スコアを計算した。ロジスティック回帰を用いて

RF スコアを組合せて、予測精度を高めた。 iLBE は、トレーニングデータセットで

0.809 の AUC を達成し、独立のテストデータセットを用いた検定では、既存の予測

モデルの性能を超えた。線形 B 細胞エピトープを同定する強力な計算ツールである

iLBE は、診断テストの開発に有用である。注釈付きデータセットを備えた iLBE モ

デ ル の ウ エ ブ ア プ リ ケ ー シ ョ ン は 自 由 に ア ク セ ス で き る

http://kurata14.bio.kyutech.ac.jp/iLBE/。 

 

キーワード：抗炎症ペプチド、炎症誘発性ペプチド、抗結核ペプチド、線形 B

細胞エピトープ/ペプチド、特徴符号化、特徴選択、機械学習アルゴリズム、Webサ

ーバーアプリケーション 
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CHAPTER 1 INTRODUCTION 

 
1.1 Immune-peptide developments 
All aspects of the immunological responses, peptides play a critical role to regulate invading 

pathogens and cancer cells (Alt et al., 2015; De Lorenzi et al., 2017; Hosokawa et al., 2006; 

Lomash et al., 2010; Margulies et al., 2019; Rosenthal, 2005). Immune-peptides are critical 

aspects in activating the immune cell against foreign invaders. The function and generation of 

peptides in immunology have maintained the immune cycle in a cell to treat disease (Gokhale 

and Satyanarayanajois, 2014; Mojsoska and Jenssen, 2015; Skovbakke and Franzyk, 2017; 

Teveroni et al., 2016). So far, with little immunological insight, most of the highly effective 

treatments, including vaccines, have been prepared empirically, with little immunological 

perception. Nonetheless, improved knowledge about the pharmacological and chemical 

properties of antigenic and antimicrobial peptides presentation, processing, and 

acknowledgment by immune cells, has now permitted to development of vaccines and drugs. 

 

Immune peptides can work as immunomodulating agents by either stimulating the immune 

reaction or blocking the immune reaction. Though the immune-peptide developments are well 

advanced, autoimmunity arises when autoreactive immune-peptides are triggered to motivate 

their responses against self-tissues [3]. This occurs due to a lack of breakdown of the 

mechanism that reins immune tolerance, resulting in miscarriage of the host system to 

differentiate the cells to self from non-self (Cunningham et al., 2017; Guichard et al., 1994; 

Kemp, 1990; Kim et al., 2020; Skovbakke and Franzyk, 2017). Different types of organ-

specific diseases that may occur via immune-peptides include celiac disease, multiple sclerosis, 

Type 1 diabetes mellitus, and myasthenia gravis. Immune-peptides suppress or block the 

immune system as in the case of autoimmune diseases, allergy/asthma, inflammation, and 

transplantation. A common solid-phase synthesis process of the peptide is shown in Figure 1-

1. 
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Figure 1-1 A solid-phase peptide synthesis process. Fmoc implies ‘fluorenylmethoxycarbonyl’. 

Peptides are categorized or classified according to their functions and sources (Jurczak et al., 

2020). We summarized the existing active peptides and their therapeutic agents in Table 1-1. 

Some groups of peptides contain brain peptides, endocrine peptides, incentive peptides, fungal 

peptides, plant peptides, antibiotic/bacterial peptides, skin peptides/amphibian, venom peptides, 

anticancer/cancer peptides, vaccine peptides, immune/inflammatory peptides, gastrointestinal 

peptides, cardiovascular peptides are described in the Handbook of “Biologically Active 

Peptides” (Kastin, 2017). Overall, peptides are linear but some of the rope structures (Kieber-

Emmons et al., 1997). The component of the antioxidant peptides has been defended by the 

common non-ribosomal peptides. Other non-ribosomal peptides are most common in 

unicellular organisms, fungi, and plants that are synthesized by modular enzyme developments 

called nonribosomal peptide synthetises.  

Table 1-1 List of different types of peptides. 

Peptides  Description 

Anti- inflammatory Generally, a peptide was considered as anti-inflammatory (positive 

sample) if the anti-inflammatory cytokines of peptides induce any 

one of IL-10, IL-4, IL-13, IL-22, TGFb, and IFN-a/b in T-cell 

analyses of mouse and human. Numerous endogenous peptides 

recognized through inflammatory reactions function as anti-

inflammatory agents can be employed by new therapies for 

autoimmune and inflammatory illnesses. 

Pro-inflammatory A proinflammatory cytokine or an inflammatory peptide is referred 

https://en.wikipedia.org/wiki/Splicing_(genetics)
https://en.wikipedia.org/wiki/Antioxidant
https://en.wikipedia.org/wiki/Unicellular_organism
https://en.wikipedia.org/wiki/Fungi
https://en.wikipedia.org/wiki/Plant
https://en.wikipedia.org/wiki/Modularity_(biology)
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 to as a type of signaling molecules, which is secreted from immune 

cells and certain cell types for promoting the inflammation. 

Different studies reported that PIPs play an important role in human 

physiology such as vaccines and immunotherapeutic drugs. 

Nonetheless, these peptides may cause unwanted immuno-activity 

in the B or T cell instigation and other proinflammatory events, 

which belong to any of the proinflammatory cytokines (IL1α, 

TNFα, IL1β, IL12, IL18, and IL23) 

Anti-tubercular 

 

Tuberculosis (TB) peptides is generated by Mycobacterium 

tuberculosis (Mtb), is a type of infective disease, being responsible 

as a major threat for the human beings. AntiTB peptides with low 

immunogenicity make them a possible complement for expectable 

TB drugs. 

Anti-cancer A series of short peptides (~10–60 amino acids) consisted in anti-

cancer peptides of which constrain by tumour or migration cell 

proliferation, or destroy the development of tumour blood vessels.  

Dipeptidyl peptidase 

IV inhibitory 

To the treatment of Type 2 diabetes (T2D), the dipeptidyl peptidase 

IV inhibition is well known as a new possibility drug target. In T2D 

subjects concentration, these peptides have been revealed by 

normalizing the blood glucose in cell. 

Tumor T cell antigens Tumor-germline antigens are categorized by their appearance in the 

testis and on tumors. Epitopes from these antigens are not 

predictable in the testis, as those cells do not express of major 

histocompatibility complex, thereby making them attractive targets 

for T-cell immunotherapy. 

Brain peptides The classical brain peptides are assembled into broad families such 

as the neurohypophyseal hormones, the hypothalamic-releasing 

hormones, the opioids, the pituitary peptides, the gastrointestinal 

peptides, and the tachykinins. 

Linear B-cell epitope Linear B-cell epitopes are critically important for immunological 

applications, such as vaccine design, immunodiagnostic test, 

https://pubs.acs.org/doi/abs/10.1021/acs.jproteome.0c00590
https://pubs.acs.org/doi/abs/10.1021/acs.jproteome.0c00590
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antibody production, as well as disease diagnosis and therapy. 

Nowadays, biopharmaceutical research and development of 

epitope-based antibodies are growing up due to their high 

efficiency, biosafety, and acceptability. Thus, the analysis of BCEs 

is prerequisite for the development of penetrating diagnostic tests 

and design of the operative vaccines. 

Therapeutic peptides A chain of 40 or less amino acids is regulated and considered as 

peptide therapeutic. Therapeutic peptides are considered by rational 

methods with high specificity to bind and modulate a protein 

interaction of interest. 

Cell-penetrating 

peptides 

Cell-penetrating peptides (CPPs) are short peptides that facilitate 

cellular intake and uptake of molecules ranging from nanosize 

particles. CPPs deliver the cargo into cells. It is commonly use in 

research and medicine.  

Tumor homing 

peptides 

To recognize the tumor cells, tumor homing peptides are linear or 

cyclic peptides that contained a few amino acids inherent properties. 

It unambiguously bind to the cell receptors and present on the tumor 

lymphatic vessels, tumor blood vessels, or tumor cells. 

Antiviral peptides The virus explicit antiviral peptides are known as virucidal. It is 

directly targeted the viral proteins. In specific regions or 

components, most of the antivirals have been described to inhibit 

the development of viruses. 

Anti-angiogenic 

peptides 

Preventing the interaction with the receptor via antagonistic 

peptides could present an effective anti-angiogenic therapy. Most 

important modulators of angiogenesis is vascular endothelial 

growth factor. 

Host defense peptides In all complex life forms, host defence peptides (HDPs) are short 

cationic amphipathic peptides. HDPs have critical roles in the 

body's reaction to inflammation and infection. 

Haemolytic peptides In clinical trials, therapeutic peptides could be attributed to their 

toxicity profiles like haemolytic activity that hamper the progress of 

peptides as drug candidates.  

javascript:void(0)
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Anti-hypersensitive 

peptides 

Blood hypertension and pressure are massively influenced by the 

Angiotensin I-converting enzyme. Anti-hypersensitive peptides are 

occurred during intestinal digestion through the aid of enzymes.  

Bitter peptides In food and pharmaceutical application, bitterness of whey protein 

hydrolysates (WPH) can negatively affect limit utilization and 

product quality. The bitter peptides are documented in a commercial 

WPH using sensory-guided fractionation techniques. 

Umami peptides Food seasoning and healthy eating, umami ingredients are very 

important. Development and application in food products, umami 

peptides are found in the natural ingredients with a high demand  

Quorum sensing 

peptides 

To activate intracellular response regulators via phosphor-transfer, 

the quorum sensing peptides bind membrane associated receptors. 

These peptides response the regulators target gene expression. 

 

 

1.2 Experimental methods for peptide identification 
The peptides or epitopes of proteins have been identified by a diversity of experimental 

techniques including western blotting (Jaffrey et al., 2001), and eastern blotting (Welsch and 

Nelsestuen, 1988), radioactive chemical method (Slade et al., 2014), mass spectrometry 

(Agarwal et al., 1969; Medzihradszky, 2005), liquid chromatography (Welsch and Nelsestuen, 

1988), and chromatin immunoprecipitation (ChIP)(Umlauf et al., 2004). The MS technique is 

one of the mainstay routes in detecting peptides in a high-throughput manner. The new MS and 

capillary liquid chromatography instrumentation have made a revolutionary advance in 

enrichment strategies in our growing knowledge of many peptides (Doll and Burlingame, 2015). 

In the last decade of the actual description of many peptides complexity has emerged through 

diverse technologies and thousands of precise peptides can now be identified with high 

confidence (Choudhary et al., 2009; Hebert et al., 2014; Hendriks et al., 2014; Imamura et al., 

2014; Kim et al., 2011; Masuda et al., 2011; Olsen et al., 2010; Richards et al., 2015; Trinidad 

et al., 2012). A similar strategy of fragmentation for peptide identification is the beam-type 

collision-induced dissociation, also called higher-energy collisional dissociation (Syka et al., 

2004). These types of fragmentation are characterized by higher activation energy. Most of the 

fragmentation methods of precursor ions are based on radical anions or thermal electrons 

javascript:void(0)
javascript:void(0)
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(Myers et al., 2013). These methods are advantageous over collisionally activated dissociation 

methods for detecting the unstable peptides (e.g., anti-cancer and tumor) because the peptide 

backbone fragmentation method is virtually independent of the amino acid sequence (Han et 

al., 2012; Moremen et al., 2012; Ramstrom and Sandberg, 2011). 

 

Notwithstanding the increasing number of experimentally examined AIPs in vivo, the 

molecular mechanism of AIP specificity remains largely unknown. Particularly, the 

experimental analysis of peptides often requires labor-intensive sample preparations and 

hazardous or expensive chemical reagents. For instance, in the radioactive assay of protein in 

the kinase-based methods are often included the radioactive label of ATP as a substrate donor 

for identifying peptides (Slade et al., 2014). In summary, the identification of peptides by the 

experimental techniques is laborious, time-consuming, and usually expensive. As an alternative, 

the machine learning approaches are more efficient for identifying large-scale novel peptides. 

In the next section, the author will introduce machine learning approaches for different types 

of peptides prediction. 
 

1.3 Computational approaches for immune-peptides prediction 

A large number of computational approaches have been taken toward predicting peptide 

presentation by different approaches. The last few decades have been remarkable progress in 

the identification and functional analysis of peptides in proteins for different disease 

biomarkers. Peptides play a vital role in protein folding, protein function, and interactions with 

other proteins (DeMartino, 2009; Striebel et al., 2009). Because of critical functions of 

immune-peptides, it is very important to prediction and analysis the function of diverse 

peptides. On the other hand, large-scale experimental analysis of immune peptide is time-

consuming, laborious, and expensive. An alternative, computational approach that provides an 

accurate and reliable prediction of immune-peptides is required to complement the 

experimental efforts and to access the prompt identification of potential immune-peptides prior 

to their synthesis. In addition, the computational tools can narrow down the number of potential 

candidates and rapidly generate useful information for investigating further experimental 

approaches. 
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Figure 1-2 A workflow of computational methods for immune-peptide prediction. 

 

Thus far, the prediction of immune-peptides is an important research topic in the field of 

immune bioinformatics. Although great progress has been made by employing various machine 

learning approaches with numerous feature vectors, the problem is still far from being solved. 

In this work, the author focuses on the machine learning approaches for addressing 

classification problems of four types of immune-peptides (anti-inflammatory, proinflammatory, 

anti-tuberculosis, and linear B-cell peptides). A workflow of the prediction pipeline of peptides 

is shown in Figure 1-2. In the next section, the author will discuss the importance of peptides 

prediction. 

 

1.3.1 Peptide databases 

Recently, several peptide databases have been industrialized to maintain and accumulate data 

on different peptides (Basith et al., 2020b). Table 1-2 shows the primary databases 
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summarizing data on general and specific functional peptides, such as anti-cancer peptides, 

cell-penetrating, immune-peptide, anti-inflammatory peptides, Quorum sensing, and 

Antihypertensive peptides. The establishment of these databases is to generate larger positive 

and negative samples in regions that are important for peptide drug development and endorse 

the utility of machine learning approaches. Though, few limitations are associated with these 

databases that need to be solved. First, most of the established databases focus only on specific 

bio-peptides like antimalarial peptides, anti-cancer peptides, Anti-tubercular peptides, and so 

forth. Second, the reported databases cover only positive samples. To overwhelmed these 

limitations, construct a comprehensive peptide database is essential that integrates more diverse 

bioactive peptides and includes negative samples for developing effective machine learning 

models. Additionally, combined efforts of different scientific disciplines will help to compile, 

link, and develop a large peptide data resource, in which peptide sequences with diverse 

biological activities could be retrieved from a single large peptide source. 

 

Table 1-2 General and specific databases currently available for the prediction of peptide 

activities 

Peptide 

database 

type 

Database  Database link Description Publicati

on year 

General  FeptideDB 

(Panyayai et 

al., 2019) 

http://www4g.

biotec.or.th/ 

FeptideDB/ind

ex.php 

Database bioactive peptides for foods 2019 

PepBank 

(Shtatland 

et al., 2007) 

 

http://pepbank.

mgh.harvard.e

du/ 

It’s a public database and includes of 

bioactive peptides with ≤ 20 length of 

amino acids.  

2007 

SATPdb 

(Singh et 

al., 2016) 

 

http://crdd.osd

d.net/raghava/s

atpdb/links.ph

p 

This database covers peptide 10 

categories peptide including toxic 

peptides, antibacterial peptides, 

anticancer peptides, anti-viral 

peptides, antiparasite peptides, and so 

forth 

2015 
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Anticancer LAMP 

(Zhao et al., 

2013) 

http://biotechla

b.fudan.edu.cn

/database/lamp

/ 

Database of  antibacterial peptides and 

anticancer peptides 

2013 

CancerPPD 

(Tyagi et 

al., 2015) 

http://crdd.osd

d.net/raghava/c

ancerppd/ 

Database of anticancer peptides and 

proteins 

2015 

DRAMP 

(Fan et al., 

2016; Kang 

et al., 2019) 

http://dramp.cp

u-bioinfor.org/ 

Database of antimicrobial peptides, 

anticancer peptides, antibacterial 

peptides, and so forth 

2013 

Cell 

penetratin

g 

CPPsite/CP

Psite 2.0 

(Agrawal et 

al., 2016; 

Gautam et 

al., 2012) 

https://webs.iii

td.edu.in/ragha

va/cppsite/ 

Maintains experimentally validated 

cell penetrating peptides 

2012 

Quorum 

sensing 

Quorumpep

s 

(Wynendael

e et al., 

2013) 

http://quorump

eps.ugent.be/ 

Resource for quorum-sensing 

signaling peptides 

2013 

Antihypert

ensive 

AHTPDB 

(Kumar et 

al., 2015) 

http://crdd.osd

d.net/raghava/a

htpdb/ 

Manually curated database of 

experimentally validated 

antihypertensive peptides 

2015 

Antituberc

ular 

AntiTbPdb 

(Usmani et 

al., 2018b) 

https://webs.iii

td.edu.in/ragha

va/antitbpdb/ 

Database of antitubercular or 

antimycobacterial peptides 

2018 

Anti-

inflammat

ory 

IEDB (Vita 

et al., 2015) 

http://www.ied

b.org/ 

This database contained peptide data 

on antibody and T-cell 

epitopes in infectious diseases, 

transplantation, autoimmunity, and 

allergy.  

2015 
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1.3.2 Feature descriptors for the prediction of peptides 

Feature extraction is one of the most important steps for predicting protein, peptides, DNA, 

and RNA sequences(Hasan et al., 2020a; Hasan et al., 2018c, 2019a, 2020b; Hasan et al., 2018d; 

Hasan et al., 2017c; Hasan et al., 2019c, 2020c; Hasan et al., 2020d, e; Hasan et al., 2019d; 

Khatun et al., 2019a; Khatun et al., 2020a; Khatun et al., 2020b; Mosharaf et al., 2020; 

Shahjahan et al., 2020). Appropriate features in the prediction model enable the accurate 

prediction of immune-peptides. In general, these features refer to the characterization of the 

sequences and local structures around these protein functional sites. Ideally, the features can 

clearly distinguish peptides from the random features. In the real world, however, the feature 

of protein functional sites can also exist on the non-functional sites of proteins. In the prediction 

peptides, this specific problem is particularly prominent due to the sequence diversity. For 

instance, some motifs are very weak and some are not available without the sequence 

evolutionary information (Liu et al., 2011; Passerini et al., 2006; Ren et al., 2008; Sharma et 

al., 2007; Vandermarliere and Martens, 2013; Youn et al., 2007). To address this problem, we 

can search PSI-BLAST (Altschul et al., 1997) against the NCBI NR database to generate a 

profile (i.e., position-specific scoring matrix (PSSM)) to generate enhanced features. Such 

sequence profiles reflect the conservation and variation between protein sequences through 

evolutionary information (Dekker et al., 2004; Gobel et al., 1994; Lockless and Ranganathan, 

1999). 

In the prediction of immune-peptides, researchers have made plenty of efforts for mining 

the different characteristics of peptides. These characteristics might be suitable for a particular 

peptide classification problem, thus mining new features is always an important task for 

peptides prediction. The features are mainly obtained from two ways, namely based on the 

peptide sequences and structures. In addition to the amino acid sequence itself, the 

physicochemical properties of amino acids have also been widely used in the prediction of 

peptides (Xu et al., 2015; Zhao et al., 2015). Some of the common physicochemical features 

include hydrophilicity/hydrophobicity, pKa value of the amino acid residues, the polarity of 

the amino acid (positively charged residues, residues with negatively charged and uncharged 

residue), the volume of amino acid side chains, whether it contains benzene, sulfur and so on. 

At present, most of the physicochemical properties of amino acid residues have been converted 

into numbers and stored in the famous amino acid index (AIP) database (Kawashima and 
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Kanehisa, 2000; Kawashima et al., 1999; Kawashima et al., 2008). Until now, the AIP database 

contains 544 physicochemical properties of amino acid residues, which can be used as a feature 

set for analyzing immune-peptides.  

Recently, several types of pepptide structure features proposed. For example, one can 

examine the amino acid solvent accessibility of immune-peptides. Analyzing the residue 

interactions that maintain the stability of protein structures (including hydrophobic interactions, 

electrostatic interactions, hydrogen bonds, van der Waals interactions, disulfide bonds, and so 

on) may be also helpful (Halperin et al., 2008; Mooney et al., 2005). Moreover, the residues' 

structural flexibility information like B-factor and root mean square deviation is sometimes 

useful, too. Finally, some of the residue contact network parameters (degree, betweenness, 

closeness, and clustering coefficient) were used as features for peptide prediction (Gupta et al., 

2016; Tang et al., 2016). For a real-world prediction task, note that the researchers usually use 

the integrated feature set to predict the immune-peptides. 

 

1.4 Machine learning approaches for immune-peptides prediction 

After determining the appropriate features, the next job is to use an appropriate machine 

learning algorithm to classify these features for the prediction of immune-peptides. It will 

improve the accuracy of the prediction if the prediction algorithm is appropriate. In early 1959, 

Arthur Lee Samuel defined machine learning as "the field of study that gives computers the 

ability to learn without being explicitly programmed" (Phil, 2013). For the prediction of peptide 

sequences, some common machine learning algorithms are widely used such as support vector 

machine (SVM), and random forest (RF), Naïve Bayes (NB), and deep learning (DL). 

Subsequently, the author will introduce these four common machine learning algorithms. 

 

1.4.1 Support vector machine 
To classify the PPI datasets, SVM, or kernel machines are used (Hajisharifi et al., 2014). The 

SVM maximizes the margins that are related to the inevitability of its classification. The 

objective of this classifier is likely to have small margins (Hasan et al., 2015) using a label of 

the training dataset. SVM is very influential and can classify problems with random density 

information, although it needs large memory requirements and a complex format. The SVM is 

a little bit slow to train and assess the high dimensional features via radial basis function kernel. 

Another disadvantage is that the parameters can significantly alter the results. We refer to more 
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details (Hasan et al., 2015; Jia et al., 2015; Kurata, 2018). 

 

1.4.2 Random forest 
Random forest is an ensemble and supervised machine learning algorithm (Breiman, 2001). It 

can integrate multiple classifiers to improve the performances of the prediction (Maclin and 

Opitz, 1999; Polikar, 2006; Rokach, 2010). The RF algorithm involves numerous ensemble 

decision trees that can categorize the two-class prediction problem (Liaw, 2002; Schaduangrat 

et al., 2019; Shoombuatong et al., 2019; Su et al., 2019; Win et al., 2017). On the training model, 

each decision tree is built using the casual feature vectors that are sampled from a dataset in 

every node in a tree independently. Then each classification tree is entirely grown via randomly 

selected variables. To categorize a new entity, the response vector keeps each of the trees in the 

forest. Allowing the majority voting, one class is allocated to the entity. The RF is an effective 

algorithm when there exist a large number of features and datasets, and can rank important 

features for accurate classification (Manavalan et al., 2018c; Manavalan et al., 2018d). The RF 

is widely used in computational biology research (Boopathi et al., 2019; Hasan et al., 2017b; 

Hasan et al., 2016; Hasan et al., 2015; Manavalan et al., 2018a; Manavalan et al., 2018c) (M. 

S. Khatun, 2018).  

 

1.4.3 Naïve Bayes 
Naïve Bayes is a predictive algorithm based on the statistical learning theory of the 

Bayesian theorem. The advantages of this algorithm are very simple and high speed. In the 

Bayesian theorem, the posterior probability of a random event is the conditional probability, 

which is assigned after the relevant evidence has been taken into account. Bayesian assumes 

that a property of a given value is affected in the other values. This assumption is not often 

established on the model, so its accuracy can be rejected for other properties of the class 

forecasting models, such as linear regression and logistic regression models. The majority of 

biologists think that for analyzing the biological data Naïve Bayes is an important algorithm 

(Rani and Pudi, 2008). Although, these methods are many outliers affected and do not handle 

the noise model (David J. Hand 2001). In bioinformatics research, Naïve Bayes algorithms are 

widely used (Shao et al., 2009; Sheppard et al., 2013; Zhang et al., 2006). 

 

1.4.4 Deep learning 
Deep learning (DL) consists of several approaches including Recurrent Neural Networks 
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(RNN), Deep Belief Networks (DBNs), and Deep Neural Networks (DNN), (Chaudhary et al., 

2018; Yao et al., 2019; Zhang et al., 2018). Different DL algorithms are suitable for different 

specific applications. For instance, for the analysis of sequential information, RNNs are 

appropriate. The DBNs are decent at examining inside associations in high-dimensional data. 

To predict PPIs, DNN is one of the most suitable ML algorithms (Sun et al., 2017). The DNN 

input should be the vectors with a fixed dimension. The main parts of the DNN component are 

to remove highly homologous sample information and eliminate noise, and to decrease data 

dimensions. DNN architectures are assembled layer-by-layer with a greedy algorithm. DNN 

helps to pick out unravel features to improve performance. 

In summary, the machine learning algorithm is a subfield of computer science and statistics 

that evolved the study of pattern recognition and computational learning theory in artificial 

intelligence. For immune-peptides prediction, a machine learning algorithm is an essential step 

for testing the model performance. In the next two sections, the author will introduce four types 

of immune-peptides (anti-inflammatory, pro-inflammatory, anti-tubercular, and linear B-cell 

peptides) prediction by using machine learning approaches. 

 

1.5 Research progress of anti-inflammatory peptides 

The present therapy for autoimmune and inflammatory peptides (PIP) involves the use of non-

specific anti-inflammatory drugs and other immunosuppressant’s (Lowenberger, 2001; 

Reichhart and Achstetter, 1990; Yi et al., 2019), which are frequently related to different side 

effects, such as initiation of a higher possibility of infectious diseases and ineffectiveness 

alongside inflammatory disorders (Tabas and Glass, 2013). Notwithstanding the increasing 

number of experimentally examined AIPs in vivo, the molecular mechanism of AIP specificity 

remains largely unknown. On the other hand, large-scale experimental analysis of AIPs is time-

consuming, laborious, and expensive. An alternative, computational approach that provides an 

accurate and reliable prediction of AIPs is required to complement the experimental efforts and 

to access the prompt identification of potential AIPs prior to their synthesis. To date, three 

machine learning approaches have been proposed to predict AIPs (Gupta et al., 2017; 

Manavalan et al., 2018b). In 2017 Gupta et al. employed hybrid features with a SVM classifier 

to develop the AntiInflam predictor (Gupta et al., 2017). Manavalan et al. developed the 

AlPpred predictor by using the primary sequence encoding features. Recently, the author 

proposed a PreAIP predictor by integrating multiple complementary sequence features. Even 

https://en.wikipedia.org/wiki/Greedy_algorithm
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though the performances of the existing predictor were satisfactory, there is room to advance 

the prediction performance. 

 

1.6 Research progress of pro-inflammatory peptides 

A proinflammatory cytokine or an inflammatory peptide (PIP) is referred to as a type of 

signaling molecule, which is secreted from immune cells and certain cell types for promoting 

inflammation (Watkins et al., 1995; Zhang and An, 2007). The importance of PIPs is confirmed 

through the pathophysiological dealings (Mukhopadhyay et al., 2014; Zhao et al., 2005). For 

instance, Herpes Simplex Virus-2 produces a glycoprotein G-2 through the gG-2p20 peptide 

that causes proinflammatory responses in human neutrophils and activates as an effective 

antineoplastic agent (Bellner et al., 2005; Bylund et al., 2001). Similarly, the C-peptide of PIPs 

produces proinsulin which is used in peptide-therapeutics but leads to inflammation in 

vasculature and kidney or long-term deterioration of diseases (Vasic and Walcher, 2012). Those 

PIP functions are important to analyze. To reduce time and economic cost, a computational 

identification method of PIPs is needed before experimental verification. There are only a few 

computational methods developed for PIP identification, e.g., ProInflam (Gupta et al., 2016) 

and PIP-EL (Manavalan et al., 2018c). In 2016, Gupta et al. firstly introduced a computation 

method named ProInflam that employed a SVM classifier with different sequence-based 

features (Gupta et al., 2016). Manavalan et al. developed another computation method named 

PIP-EL by using several sequence features (Manavalan et al., 2018c). Recently, Khatun et al. 

develop ProIn-Fuse by fusing multiple feature representations. Existing methods provide good 

prediction results, but their prediction performances are yet not fully satisfactory and there is 

still room for further improvement. 

 

1.7 Research progress of anti-tubercular peptides 

Tuberculosis (TB) is regulated by Mycobacterium tuberculosis (Mtb), which is a type of 

immune infective disease, being responsible as a major threat for human beings (Hamilton et 

al., 2015; WHO, 2017b; Zumla et al., 2015). (AlMatar et al., 2018; Jhamb et al., 2014). Many 

large-scale experimental screenings were carried to explore anti-TB peptides (Padhi et al., 2014; 

Yount and Yeaman, 2004). Many experimental candidates of anti-TB peptides were found and 

registered in the AntiTbPdb database (Usmani et al., 2018b). Notwithstanding the increasing 
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number of experimentally validated anti-TB peptides, the mechanisms by which anti-TB 

peptides affect TB remain largely unknown (Gao et al., 2015; Gavrish et al., 2014; Nikonenko 

et al., 2004; Usmani et al., 2018b). Since the large-scale experimental identification of anti-TB 

peptides is laborious and time-consuming, alternative, computational methodologies are 

required that provide an accurate and robust prediction of anti-TB peptides. Recently, Usmani 

et al. developed the AntiTBpred, a computational predictor implementing a support vector 

machine (SVM) classifier (Usmani et al., 2018a). They illustrated that the composition of 

amino acids and N5C5 binary profiles (i.e., five amino acid residues from the N- and C-

terminals) contribute to the enhanced prediction accuracy. Khatun et al. develop iAntiTB by 

Integrating the Amino Acid Patterns and Properties.  

 

1.8  Research progress of linear B-cell peptides 

B-cell peptides or epitope (BCEs) are specific regions of immunoglobulin molecules that can 

stimulate the immune system, which contributes to a diagnostic test, antibody production, and 

vaccine design (El-Manzalawy et al., 2008; Tomar and De, 2010; Yang and Yu, 2009). B cells 

are activated by BCEs to perform a variety of biological functions (Groell et al., 2018; Tomar 

and De, 2010). Linear BCEs have vast applications in the area of vaccine design, 

immunodiagnostic test, antibody production, as well as disease diagnosis and therapy (Bryson 

et al., 2010; Steere et al., 2011; Sweredoski and Baldi, 2009; Wang et al., 2018). Given 

experimental identification of BCEs is labor-intensive and costly, computational identification 

of BCEs has gained remarkable interest recently (Balachandran Manavalan1 and Lee, 2018; 

Gupta et al., 2013; Jespersen et al., 2017; Saha and Raghava, 2006; Wang and Pai, 2014). 

Several computational approaches have been developed to predict BCEs, which can be 

categorized into local and global predictors. Local predictors, such as BepiPred (Jespersen et 

al., 2017), Bcepred (Saha and Raghava, 2007), and COBEpro (Sweredoski and Baldi, 2009), 

explore some potential BCE encoding sequences from given protein sequences. These local 

methods aim to identify the regions or stretches of proteins that form BCEs [31], but it is 

difficult to specify the exact regions. Global predictors, such as iBCE-EL (Balachandran 

Manavalan1 and Lee, 2018), IgPred (Gupta et al., 2013), ABCpred (Saha and Raghava, 2006), 

SVMTriP (Yao et al., 2012), and LBtope (Singh et al., 2013), determine whether a given 

sequence is a BCE or not. Since the number of BCEs has rapidly increased in the immune 

epitope database (Vita et al., 2018), global methods gain attention as the classifier of BCEs. 
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Two global methods, LBtope, and iBCE-EL, have recently been developed and publicly 

available (Balachandran Manavalan1 and Lee, 2018; Singh et al., 2013). These two predictors 

exclusively investigated primary sequence-based features, such as amino acid composition, 

binary properties, and physicochemical properties, but did not consider any evolutionary 

information. Therefore, advanced analytic tools for identifying linear BCEs are still desirable. 

 

1.9 Article description 

1.9.1 Development of anti-inflammatory peptides prediction tool 

In this thesis, at first, the author develops a bioinformatics tool termed as PreAIP (Predictor 

of Anti-Inflammatory Peptides) by integrating multiple complementary features. We 

systematically investigated different types of features including primary sequence, 

evolutionary and structural information through a random forest classifier. A peptide was 

considered as an anti-inflammatory (positive sample) if the anti-inflammatory cytokines of 

peptides induce any one of IL-10, IL-4, IL-13, IL-22, TGFb, and IFN-a/b in T-cell analyses of 

mouse and human (Jin et al., 2014; Marie et al., 1996). The final PreAIP model achieved an 

AUC value of 0.833 in the training dataset via 10-fold cross-validation test, which was better 

than that of existing models. 

 

 

1.9.2 Development of pro-inflammatory peptides prediction tool 
Second, the author develops a novel bioinformatics tool termed ProIn-Fuse, for predicting a 

pro-inflammatory by using multiple feature representation. The ProIn-Fuse predictor is capable 

of yielding a high accuracy. Specifically, a feature representation learning model was utilized 

to generate a set of informative probabilistic features by making the use of random forest 

models with eight sequence encoding schemes. Then the ProIn-Fuse was constructed by the 

linearly combined models of the informative probabilistic features. The generalization 

capability of our proposed method evaluated through independent tests showed that ProIn-Fuse 

yielded an accuracy of 0.746, which was over 10% higher than those obtained by the state-of-

the-art PIP predictors. 
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1.9.3 Development of anti-tuberculosis peptides prediction tool 

Third, the author develops an effective computational predictor iAntiTB (Identification of anti-

tubercular Peptides) by the integration of multiple feature vectors deriving from the amino acid 

sequences via RF and SVM classifiers. The iAntiTB combined the RF and SVM scores via 

linear regression to enhance the prediction accuracy. To make a robust and accurate predictor 

we prepared the two datasets with different types of negative samples. The iAntiTB achieved 

AUC values of 0.896 and 0.946 on the training datasets of the first and second datasets, 

respectively. The ProIn-Fuse was established by fusing the successive probabilistic scores 

using a linear regression model. 

 

1.9.4 Development of linear B-cell epitope prediction tool 

Fourth, the authors develop a novel predictor, Identification of B-Cell Epitope (iLBE), by 

integrating evolutionary and sequence-based features for prediction. The successive feature 

vectors were optimized by a Wilcoxon rank-sum test. Then the random forest (RF) algorithm 

using the optimal consecutive feature vectors was applied to predict linear B-cell peptides. We 

combined the RF scores by the logistic regression to enhance the prediction accuracy. iLBE 

yielded an area under curve (AUC) score of 0.809 on the training dataset and outperformed 

other prediction models on a comprehensive independent dataset. iLBE is a powerful 

computational tool to identify the linear B-cell peptides and would help to develop penetrating 

diagnostic tests. 

 

1.10 Introduction of different sections 

In the second, third, fourth, and fifth chapters, the author will report the detailed procedures 

about the anti-inflammatory, proinflammatory, anti-tuberculosis, linear B-cell peptides 

prediction approaches, including data collection procedure, feature encoding, feature 

optimization protocol, model training, performance comparisons, and web servers. Finally, in 

the sixth chapter, conclusions of this thesis and future research perspectives will also be 

summarized and discussed, respectively. 
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CHAPTER 2 PREDICTION OF ANTI-INFLAMMATORY 

PEPTIDES BY INTEGRATING MULTIPLE 

COMPLEMENTARY FEATURES 

 

2.1 Introduction 

Inflammation responses occur under the normal conditions when tissues are damaged by 

bacteria, toxins, trauma, heat, or any other reason (Ferrero-Miliani et al., 2007). These 

responses cause chronic autoimmune and inflammation disorders, including neurodegenerative 

disease, asthma, psoriasis, cancer, rheumatoid arthritis, diabetes, and multiple sclerosis 

(Hernandez-Florez and Valor, 2016; Patterson et al., 2014; Steinman et al., 2012; Tabas and 

Glass, 2013; Zouki et al., 2000). Numerous inflammation mechanisms are crucial for the 

upkeep of the state of tolerance (Corrigan et al., 2015; Miele et al., 1988). Numerous 

endogenous peptides recognized through inflammatory reactions function as anti-inflammatory 

agents can be employed by new therapies for autoimmune and inflammatory illnesses (Delgado 

and Ganea, 2008; Gonzalez-Rey et al., 2007). The immunotherapeutic aptitude of these anti-

inflammatory peptides (AIPs) has various clinical applications such as generation of regulatory 

T cells and inhibition of antigen-specific T(H)1-driven responses (Delgado and Ganea, 2008). 

Moreover, certain synthetic AIPs act as effective therapeutic agents for autoimmune and 

inflammatory disorders (Zhao et al., 2016). For instance, chronic adenoidal direction of human 

amyloid- peptide causes an Alzheimer’s disease. Mice models result in compact deposition of 

amyloid- peptides, which is a pathological marker of Alzheimer’s disease, astrocytosis, 
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microgliosis, and neuritic dystrophy in the brain (Boismenu et al., 2002; Gonzalez et al., 2005; 

Kempuraj et al., 2017). The present therapy for autoimmune and inflammatory disorders 

involves the use of non-specific anti-inflammatory drugs and other immunosuppressant’s, 

which are frequently related to different side effects, such as initiation of a higher possibility 

of infectious diseases and ineffectiveness alongside inflammatory disorders (Tabas and Glass, 

2013). 

 

Notwithstanding the increasing number of experimentally examined AIPs in vivo, the 

molecular mechanism of AIP specificity remains largely unknown. On the other hand, large-

scale experimental analysis of AIPs is time-consuming, laborious, and expensive. An 

alternative, computational approach that provides an accurate and reliable prediction of AIPs 

is required to complement the experimental efforts and to access the prompt identification of 

potential AIPs prior to their synthesis. To date, two in silico methods have been proposed to 

predict AIPs (Gupta et al., 2017; Manavalan et al., 2018b). In 2017 Gupta et al. employed 

hybrid features with a support vector machine (SVM) classifier to develop the AntiInflam 

predictor (Gupta et al., 2017). Manavalan et al. developed the AlPpred predictor by using the 

primary sequence encoding features with a random forest (RF) classifier (Manavalan et al., 

2018b). These two methods used the primary sequence feature information without considering 

any evolutionary or structural features.  

 

Nonetheless, the performance of the abovementioned existing predictors is not sufficient and 

remains to be improved. In this study, we have developed an accurate predictor named PreAIP 

(Predictor of Anti-Inflammatory Peptides) by integrating multiple complementary. We 

investigated different types sequence features including the primary sequence, evolutionary, 

and structural through a RF classifier. The PreAIP achieved higher performance on both the 
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training and test datasets than the existing methods. In addition, we obtained valuable insights 

into the essential sequence patterns of AIPs. 

 

 
Figure 2-1 Computational framework of PreAIP. 

 

2.2 Materials and methods 

2.2.1 Dataset collection 
To construct the PreAIP, we collected training and test datasets from a recently published article 

of the AIPpred (Manavalan et al., 2018b) and the IEDB database (Vita et al., 2018). A peptide 

was considered as anti-inflammatory (positive sample) if the anti-inflammatory cytokines of 

peptides induce any one of IL-10, IL-4, IL-13, IL-22, TGFb, and IFN-a/b in T-cell analyses of 

mouse and human (Jin et al., 2014; Marie et al., 1996). Meanwhile, the linear peptides for anti-

inflammatory cytokines were considered non-AIPs (i.e., negative samples). To solve the 

overfitting problem of the prediction model, CD-HIT was employed with a sequence identity 

threshold of 0.8 (Huang et al., 2010). After eliminating redundant peptides, the same training 

and test samples were retrieved from the AIPpred predictor (Manavalan et al., 2018b). More 

reliable performance would be achieved by using a more stringent criterion of 0.3 or 0.4, as 

executed in (Hasan et al., 2017a; Hasan et al., 2016). However, this study did not use such a 
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stringent criterion, because the length of the currently available AIPs is between 4 and 25. If 

we apply a stringent criterion of less than 0.8, the number of the available AIPs is greatly 

reduced so that we cannot retrieve the datasets employed by the previous predictor (Manavalan 

et al., 2018b). The collected training dataset results in 1,258 positive and 1,887 negative 

samples, and the test dataset contains 420 positive and 629 negative samples. All of curated 

datasets are included in our web server. 

 

2.2.2 Computational framework 
An overall computational framework of the proposed PreAIP is shown in Figure 2-1. After 

collecting the positive and negative AIPs from the AIPpred server (Manavalan et al., 2018b), 

their sequence datasets were transformed into the primary sequence, evolutionary and 

structural features. We considered polypeptides with 1 to 25 natural amino acids. When the 

peptide contains less than 25 residues, our scheme provides gaps (-) to the missing residues to 

compensate a peptide length of 25. To encode the primary sequence features, we employed two 

encoding methods of the composition of k-spaced amino acid pairs (KSAAP) and AAindex 

properties. An evolutionary feature was encoded by using the position specific encoding matrix, 

i.e., profile-based composition k-space of amino acid pair (pKSAAP). The structural feature 

(SF) was encoded by using SPIDER2 (Yang et al., 2017) and PEP2D 

(http://crdd.osdd.net/raghava/pep2d/) bioinformatics tools. The resulting five types of 

descriptors were independently put into RF models to produce five consecutive, independent 

RF prediction scores. Those RF scores were linearly combined using the weight coefficients to 

obtain the final prediction score. A web server was developed to implement the PreAIP. 
 

2.2.3 Feature encoding 
The PreAIP was constructed based on a binary classification problem (positive AIPs and 

negative-AIPs) through RF algorithms. The extraction of a set of relevant features is a crucial 

step to present a classifier. To keep the generated feature vectors, a high-quality peptide 

encoding method is necessary. As a substitute of the simple binary representation, we adopted 

five types of complicated feature encoding methods: AAindex, KSAAP, SPIDER2, PEP2D 

and pKSAAP, which are briefly described in the following subsections. 
 

Table 2-1. Eight types of high index (HI) of AAindex properties used in this study.  

AAindex ID Index name Properties Describtion 
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MIYS990104 HI1 Optimized relative partition 

energies 

BLAM930101 HI2 Alpha helix propensity of 

position 44 in T4 lysozyme 

BIOV880101 HI3 Information value for 

accessibility 

MAXF760101 HI4 Alpha and turn propensities 

TSAJ990101 HI5 Volumes including the 

crystallographic waters using 

standard radii and volumes. 

NAKH920108 HI6 Amino acid composition of 

MEM of multi-spanning 

proteins 

CEDJ970104 HI7 Amino acid composition and 

cellular location in proteins. 

LIFS790101 HI8 Conformational preference for 

all beta-strands 

 

 

2.2.4 Amino acid index properties 
Numerical physicochemical properties of amino acids exist in the AAindex database (version 

9.1) (Kawashima et al., 2008). After assessing different types of AAindex indices, we selected 

8 types of high indices (HI) and ordered them from HI1 to HI8 (Table 2-1). In a peptide 

sequence with length L, a (L×20) feature vector was generated through the AAindex encoding. 
 

2.2.5 KSAAP encoding 
The KSAAP encoding descriptor is widely used in bioinformatics research (Hasan et al., 2018d; 

Md Mehedi Hasan, 2017). The procedure of KSAAP is briefly described as follows. Peptide 

sequences contain (20×20) types of amino acid pairs (i.e. AA, AC, AD, … , YY)400 for every 

single k, where k denotes the space between two amino acids. The optimal kmax was set to 0-4 

to generate (20×20×5) =2,000 dimensional feature vectors for each corresponding peptide 

sequence. Details of the KSAAP encoding method are described elsewhere (Hasan et al., 2015). 
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2.2.6 Structural features 

Protein-based SF 
The protein-based SF features are generated by the SPIDER2 software that is widely used in 

bioinformatics research (Lopez et al., 2018; Yang et al., 2017). Three types of features were 

generated by SPIDER2: accessible surface area (ASA), backbone torsion angles (BTA) and 

secondary structure (SS). The BTA generated 4-type feature vectors of phi, psi, theta and tau. 

The SS generated 3-type feature vectors of helix, strand and coil. Totally, 8-type feature vectors 

were generated SPIDER2. For each peptide sequence, (L×8) dimensional feature 

vectors were generated, where L was the length of a given AIP. 
 

Peptide-based SF 
We employed PEP2D to generate a peptide structure prediction feature 

(http://crdd.osdd.net/raghava/pep2d/). The PEP2D generated three types of probability scores: 

Helix Prob, Sheet Prob, and Coil Prob. For each peptide sequence, (L×3) dimensional feature 

vectors were generated, where L was the length of a given AIP. 
 

2.2.7 pKSAAP encoding 
In protein or peptide sequence analysis, the PSSM provides useful evolutionary information. 

This matrix measures the replacement probability of each residue in a protein with all the 

residues of the genomic code. The PSSM profile was created by using PSI-BLAST (version of 

2.2.26+) against the whole Swiss-Prot NR90 database (version of December 2010) with two 

default parameters, an e-value cutoff of 1.0×10-4 and an iteration number of 3 (Hasan et al., 

2015). Then, we extracted the feature vectors using the given peptide sequences. After 

generating the PSSM profile, we generated possible k-space pair composition from the PSSM, 

i.e., pKSAAP, in the same manner as the previous study of protein pupylation site prediction 

(Hasan et al., 2015). When an optimal k-space was between 0 and 4, a (5× 20×20 = 2000) 

dimensional feature vector was generated. 
 

2.2.8 Feature selection 
To find the top ranking features for predicting AIPs, a well-established, supervised method for 

feature dimensionality reduction, Information Gain (IG) (Thanamani, 2013), was used through 

a WEKA package (Frank et al., 2004)). A large value of the IG indicates that the corresponding 

residues have a great impact on prediction performance. The IG processes the decrease in 

http://crdd.osdd.net/raghava/pep2d/
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entropy when given information is used to group values of an alternative (class) feature. The 

entropy of feature U is defined as 

           𝐻(𝑈) = − ∑ 𝑃(𝑢𝑖)𝑙𝑜𝑔2(𝑃(𝑢𝑖))𝑖                                                            (2-1) 

 

where ui is a set of values of U and P (ui) is the prior probability of ui. Conditional entropy 

H(U/V), given another feature V, is defined as 

            𝐻(𝑈|𝑉) = − ∑ 𝑃(𝑣𝑗) ∑ 𝑃(𝑢𝑖|𝑣𝑗)𝑙𝑜𝑔2(𝑃(𝑢𝑖|𝑣𝑗)) 𝑖𝑗                            (2-2) 

where P (ui | vj) is the posterior probability of U given by the value vj of V. The IG is defined 

as the decreased entropy calculated by subtracting the conditional entropy of U given by V 

from the entropy of U, as follows. 

               𝐼𝐺(𝑈|𝑉) = 𝐻(𝑈) − 𝐻(𝑈|𝑉)                                                               (2-3) 
 

2.2.9 Machine learning 
The RF is a supervised machine learning algorithm (Breiman, 2001) and is widely used for 

various biological problems (Bhadra et al., 2018; Hasan MM, 2018; Manavalan et al., 2017; 

Manavalan et al., 2018b). In brief, the following steps are carried to construct n trees of the RF 

model. Initially, to obtain a new dataset, N samples are obtained from the training set by random 

selection with replacement procedures. To get n different datasets this procedure is repeated n 

times and n decision trees are built based on the n datasets. In this assembling process, for K 

input features, k (k << K) features are selected randomly, where k is the constant during 

construction of the RF. To split the node, a gini impurity criterion is used from the given 

features. To grow completely, each decision tree is grown without pruning. Afterward getting 

n decision trees, the class with the most votes is the final prediction (Breiman, 2001). An R 

package was implemented to train the proposed model (https://cran.r-

project.org/web/packages/randomForest/). We set n to 1000 through the 10-fold cross-

validation (CV) test, which is large enough to gain stable prediction. 
 

The performance of the RF was characterized in comparison to three commonly used machine 

learning algorithms: Naive Bayes (NB) (Lowd, 2005), SVM (Hearst, 1998), and artificial 

neural network (ANN) (R. S. Michalski 2013). We used the NB and ANN algorithms of the 

WEKA software (Frank et al., 2004) and the SVM algorithm with a kernel radial basis function 

(RBF) of the LIBSVM package (http://www.csie.ntu.edu.tw/Bcjlin/libsvm/). In the NB 

algorithm, we set batch size to 1000 through the 10-fold CV via the WEKA software. For the 

https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/web/packages/randomForest/
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ANN algorithm, we considered “MultilayerPerceptron –L 0.3 –M 0.2 –N 500 –V 0 S 0 –E 20 

–H a” via the WEKA software. To optimize the parameters of the SVM model, the cost and 

gamma functions were set to 8 and 0.03125 for KSAAP, respectively, via the LIBSVM package. 

Similarly, the cost and gamma functions were set to 2 and 0.0123 for AAindex, 32 and 0.0625 

for pKSAAP, 16 and 0.125 for SPIDER2, and 8 and 0.015625 for PEP2D. 
 

2.2.10 Combined method 
To make an efficient and robust prediction model, optimization of incorporative feature 

methods is generally essential. We linearly combined the RF scores of the five encoding 

methods: AAindex, KSAAP, SPIDER2, PEP2D and pKSAAP, using the following formula 

(Hasan et al., 2017b): 

 

Combined = 𝑤1 × SPIDER2 + 𝑤2 × PEP2D + 𝑤3 × KSAAP + 𝑤4 × AAindex + 𝑤5

× pKSAAP     (2 − 4) 

 

where w1, w2, w3, w4, and w5 are the weight coefficients indicating the strength of the five 

descriptors; the sum of w1, w2, w3, w4, and w5 is 1. We adjusted each weight from 0 to 1 with 

an interval of 0.05. When w1, w2, w3, w4, and w5 were 0.00, 0.00, 0.15, 0.25, and 0.6, 

respectively, the AUC value on the CV of training dataset was maximal. Therefore, the linear 

combination of the three successive RF models of KSAAP, AAindex, and pKSAAP was 

actually “Combined”.  
 

2.2.11 Performance evaluation matrix 
To investigate the performance of the PreAIP, the threshold-dependent and threshold-

independent indices were measured. Using the threshold-dependent indices, four widely used 

statistical measures denoted as accuracy (Ac) specificity (Sp), sensitivity (Sn), and Matthews 

correlation coefficient (MCC), respectively, were considered. The four outcomes are presented 

in the following formulas, 

 

              n(FN)n(TN)n(FP)n(TP)
n(TN)n(TP)Ac




                                                      (2-5) 

                      n(FN)n(TP)
n(TP)Sn


                                                                            (2-6) 
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n(FP)n(TN)

n(TN)Sp


                                 (7) 

    n(FP)]][n(TN)n(FPTN)][nn(FPTP)n(FN)][n[n(TN)
n(FN)n(FP)n(TN)n(TP)MCC




       (2-8) 

where n(TP) exemplifies the number of correctly predicted positive samples; n(TN) the number 

of correctly predicted negative samples; n(FP) the number of incorrectly predicted positive 

samples, and n(FN) the number of incorrectly predicted negative samples. Furthermore, we 

used the receiver operating characteristics (ROC) curve (Sn vs. 1-Sp plot) to evaluate the area 

under the ROC curve (AUC) of the threshold-independent parameter (Centor, 1991; Gribskov 

and Robinson, 1996).  

 

Since the balance between the correctly predicted AIPs and non-AIPs is critically responsible 

for accurate prediction, Sp and Sn are intuitive, intelligible measures. Typically, high Sp 

decreases Sn. In this study, the prediction performance of the PreAIP for the training dataset 

was evaluated with a stepwise change in Sp. We calculated Sn, Ac and MCC at high (0.903), 

moderate (0.801) and low (0.709) levels of Sp. These three levels of Sp were given by setting 

the high (0.468), moderate (0.388) and low (0.342) thresholds of the RF score. In the same 

manner, we measured the performance of the individual encoding scheme of KSAAP, AAindex, 

SPIDER2, PEP2D, and pKSAAP at each level of Sp. When the same threshold values of the 

RF score were applied to prediction of the test dataset, the high, moderate and low levels of Sp 

were calculated as 0.871, 0.747, and 0.636, respectively. 

 

To assess the performance of the PreAIP using the measures of Ac, Sp, Sn, MCC, and AUC, a 

10-fold CV test was used. For the 10-fold CV, original training samples were randomly and 

equally picked up into 10 subclasses. Among 10 subclasses, one subclass was singled out as 

the test sample, and the remaining 9 subclasses were considered as the training sample. Then 

we computed all performance measures for each predictor. We repeated this procedure 10 times 

by changing the training and test samples. Eventually, we calculated the average value of each 

performance measure for each predictor. 
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Figure 2-2. Sequence logo representation of positive and negative AIPs. The upper portion 

(enriched) is represented by positive AIPs, while lower portion (depleted) negative AIPs. The 

statistically significant local sequence within the N-terminal 15-residues of AIPs was plotted 

with p < 0.05 by Welch's t-test. 
 

2.3 Results and discussion 

2.3.1 Sequence preference analysis of AIPs 
To investigate the amino acid preference of positive and negative AIPs, we performed sequence 

compositional preference analysis using the amino acids from the 1 to 15 N-terminal residues 

of training sets. The length of the AIPs ranged between 4 and 25 amino acid residues in this 

study. The average length of AIPs was 15 amino acids. Since Ialenti et al. suggested that the 

AIP activity is located in the N-terminal region of the molecule (Ialenti et al., 2001), we 

investigated the 1 to 15 N-terminal amino acids by the sequence compositional preference 

analysis. A non-existing residue was coded by “O” to fill the corresponding position of the 

AIPs. 

 

At first, we submitted the 1 to 15 N-terminal amino acids of positive and negative AIPs to the 

sample logo online server (http://www.twosamplelogo.org/) to generate the sequence logo 

representations (Figure 2-2). The height for each amino acid was in proportion to the 

percentage of positive (over-represented) or negative (under-represented) peptides. The logos 

were scaled according to their statistical significance threshold of p < 0.05 by Welch’s t-test. 

Leucine (L) at positions 5, 7, 10, 11, and 15, cysteine (C) at position 7 and 10, isoleucine (I) at 

positions 2 and 7, arginine (R) at position 5, phenylalanine (F) at position 8, and lysine (K) at 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ialenti%2C+Armando
http://www.twosamplelogo.org/
https://en.wikipedia.org/wiki/Arginine
https://en.wikipedia.org/wiki/Phenylalanine
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position 15 were significantly overrepresented compared with other amino acids, while aspartic 

acid (D) at positions 4, 5, 10, 13 and 15, threonine (T) at positions 3 and 7, valine (V) at 

position15 were significantly underrepresented. In addition, tyrosine (Y) at positions 4 and 5 

was overrepresented, while Y at positions 5 and 10 underrepresented. These results suggested 

that positive and negative AIPs are significantly different. 

 

 
Figure 2-3. Comparison of evolutionary information of positive and negative AIPs. Blue lines 

represent the positive AIP, while orange lines the negative AIPs. “*” represents that the APV is 

statistically different between both the AIPs, with p < 0.05 by the KW test. 
 

 

Table 2-2 Statistical difference in the APVs between the positive and negative AIPs. The p-

values were calculated using the KW test and corrected by the Bonferroni test. ‘*’ represents 

p-values < 0.05. 

N-terminal positive p-value 

1 

2 

3 

4 

5 

6 

7 

8 

9 

5.41E-01 

1.00 

1.00 

1.01E-02* 

9.64E-01 

1.00 

4.64E-02* 

1.00 

1.00 

https://en.wikipedia.org/wiki/Tyrosine
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10 

11 

12 

13 

14 

15 

1.00 

1.00 

1.00 

3.64E-02* 

2.11E-02* 

1.79E-02* 
 

Secondly, we examined the evolutionary conservation features of the PreAIP using the average 

PSSM value (APV) for each amino acid within 1 to15 N-terminal amino acids of AIPs. The 

evolutionary conservation information of APV of both the positive and negative AIPs is 

illustrated in Figure 2-3. Some of amino acid positions of positive and negative AIPs showed 

significantly different scores. Furthermore, a nonparametric Kruskal-Wallis (KW) test was 

used to examine whether positive and negative AIPs were significantly dissimilar. The p-values 

were calculated and corrected by the Bonferroni test (Table 2-2). 

 

Thirdly, we examined the AAindex encoding features of PreAIP. Eight types of informative 

amino acid indices were used and named HI1 to HI8 as the input feature vectors from the 

AAindex database. We examined these HI amino acid properties of both the positive and 

negative AIPs. As illustrated in Figure 2-4, the average values of the eight indices were 

renamed as AVHI1 to AVHI8. These indices represented the amino acid compositions of 

intracellular proteins. Some of the AIPs had distinct amino acid compositions in the eight high-

quality amino acid indices between two samples of AIPs (Figure 2-4). The KW test was used 

to examine whether two samples of AIPs were significantly dissimilar with respect to the eight 

HI properties. The p-values were calculated and corrected by the Bonferroni test (Table 2-

3). Significantly different AAindex values with p-value <0.05 appeared at some positions of 

AIPs, as marked with ‘*’ in Figure 2-4. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584904/figure/f3-ijn-12-6303/
https://biocomputer.bio.cuhk.edu.hk/SuccinSite2.0/download_file/Supplementary%20File%20SuccinSite2.0.pdf
https://biocomputer.bio.cuhk.edu.hk/SuccinSite2.0/download_file/Supplementary%20File%20SuccinSite2.0.pdf
https://biocomputer.bio.cuhk.edu.hk/SuccinSite2.0/download_file/Supplementary%20File%20SuccinSite2.0.pdf
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Figure 2-4. Comparison of eight high-quality amino acid indices between two samples of AIPs. The eight 

high-quality amino acid indices from HI1 to HI8 are placed at the centers of eight amino acid index clusters, 

which indicate high residue propensities of AAindex. The row represents the N-terminal peptide, while the 

blue lines signify the positive AIP and the orange lines the negative AIPs. “*” represents that the amino acid 

indices are statistically different between both the samples with p < 0.05 by the KW test. 
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Table 2-3 Statistical difference in the high index of AAindex properties between the positive 

and negative AIPs. The p-values were calculated using the KW test and corrected by the 

Bonferroni test. ‘*’ represents p-values < 0.05. 

N-terminal 

positive 

AVHI1 AVHI2 AVHI3 AVHI4 AVHI5 AVHI6 AVHI7 AVHI8 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1.00 

1.00 

1.00 

2.91E-02* 

1.00 

1.00 

2.45E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.99E-02* 

1.00 

4.65E-02* 

1.00 

1.00 

1.00 

1.15E-03* 

1.00 

1.00 

3.86E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

3.65E-02* 

1.00 

1.00 

1.00 

1.01E-02* 

5.98E-01 

1.00 

4.64E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

4.87E-02* 

1.00 

4.08E-02* 

1.00 

1.00 

1.00 

1.00 

2.69E-02* 

1.00 

2.39E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

2.19E-02* 

3.79E-02* 

1.00 

1.00 

1.00 

1.00 

3.64E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

3.01E-02* 

1.29E-02* 

1.00 

1.00 

1.00 

4.01E-02* 

1.00 

1.00 

3.37E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

2.11E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

4.07E-02* 

3.01E-02* 

1.33E-02* 

1.00 

1.00 

1.00 

3.01E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

3.99E-02* 

2.38E-02 

 

Table 2-4 Statistical difference in the 8 types of SFs by SPIDER2 between the positive and 

negative AIPs. The p-values were calculated using the KW test and corrected by the Bonferroni 

test. ‘*’ represents p values < 0.05. 

N-terminal 

positive 

AAS Phi Psi The Tau Coil Stand Helix 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

5.99E-02 

4.40E-02* 

3.78E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

3.75E-02* 

3.13E-02* 

2.39E-02* 

3.78E-01 

8.67E-02 

1.69E-01 

1.91E-02* 

4.98E-02* 

8.88E-02 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

2.87E-02* 

1.00E-02* 

1.08E-03* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

2.87E-02* 

4.13E-03* 

1.39E-03* 

7.78E-01 

4.67E-02* 

3.69E-02* 

3.11E-02* 

5.98E-02 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

3.67E-02* 

2.97E-03* 

1.65E-03* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

4.53E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

4.98E-02* 

6.56E-01 

1.00 

1.00 

7.08E-01 

6.67E-01 

6.54E-02 

4.14E-02* 

4.08E-02* 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

7.67E-02 

4.97E-02* 

1.99E-02* 
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Figure 2-5. Comparison of 8 types of the SFs by SPIDER2 between positive and negative AIPs. The row 

represents the N-terminal peptide, while the blue lines signify the positive AIPs and the orange lines the 

negative AIPs. “*” represents that the SFs are statistically different between both the samples with p < 0.05 

by the KW test. 
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Finally, we examined the difference in 8 types of SFs by SPIDER2 between the positive and 

negative AIPs, as shown in Figure 2-5. We calculated the average value of 8 types of SFs for 

SPIDER2: ASA, phi, psi, theta, tau, coil, stand, and helix of both the positive and negative 

AIPs. The average features were represented as AVAS, AVPhi, AVPsi, AVThe, AVTau, 

AVCoil, AVSta, and AVHel (Figure 2-5). We plotted these average values of SFs with respect 

to the 1 to 15 N-terminal AIPs. Distinguished differences were observed between the positive 

and negative samples of AIPs. The KW test was employed to examine whether two sample of 

AIPs were significantly dissimilar among the eight SFs. The p-values were calculated and 

corrected by the Bonferroni test (Table 2-4). Significantly different SFs were perceived at some 

positions of AIPs, with a p-value <0.05, as indicated with ‘*’ in Figure 2-5. 
 

The above analysis of residue preference between the positive and negative AIPs suggested 

that the combination of the primary sequence, evolutionary and structural amino acid 

occurrences achieves a precise prediction. 

 

 
Figure 2-6. ROC curves of the various prediction models. (A) 10-fold CV test on a training 

dataset and (B) test dataset. The PreAIP combined the KSAAP, pKSAAP, and AAindex 

methods. High AUC values show accurate performance. 

 

2.3.2 Overall prediction performance of PreAIP 
The selected five descriptors (AAindex, KSAAP, SPIDER2, PEP2D, and pKSAAP) were 

separately used for prediction of AIPs. Optimization of multiple encoded features is generally 

https://biocomputer.bio.cuhk.edu.hk/SuccinSite2.0/download_file/Supplementary%20File%20SuccinSite2.0.pdf
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essential in the training model to reduce dimensionality while retaining the significant feature. 

To achieve this, we performed multiple rounds of experiments to select appropriate feature 

vectors using the IG feature selection via 10-fold CV test on training set; however, it turned out 

that the IG feature selection did not improve prediction performance. Thus, the IG feature was 

used to collect significant features and for interpreting a superiority of KSAAP encoding. 

 

Table 2-5. AUC values for prediction performance of the training dataset by 10-fold CV test 

Methods Sp Sn Ac MCC AUC p-value 

pKSAAP 0.798 0.647 0.738 0.450 0.789 0.017 

AAindex 0.795 0.644 0.735 0.448 0.774 0.012 

SPIDER2 0.765 0.434 0.633 0.235 0.739 0.004 

PEP2D 0.769 0.411 0.629 0.219 0.734 0.004 

KSAAP 0.805 0.656 0.745 0.463 0.813 0.118 

PreAIP* 0.806 0.709  0.767 0.508 0.833  

* PreAIP is the combined method of SPIDER2, PEP2D, KSAAP, AAindex and pKSAAP 

encoding schemes and their weight coefficients are 0.00, 0.00, 0.15, 0.25, and 0.6, respectively 

via RF scores. A p-value was computed based on the final model of AUC values by using a 

Wilcoxson matched-pair signed test. 
 

We accessed the performances of the training model of five successive encoding methods of 

AAindex, KSAAP, SPIDER2, PEP2D, and pKSAAP through a 10-fold CV test using the RF 

classifier. The prediction results by each of five encoding features and the ‘Combined features’ 

are shown in Figure 2-6A. The AUCs of AAindex, KSAAP, SPIDER2, PEP2D, and pKSAAP 

were 0.774, 0.813, 0.739, 0.734, and 0.789, respectively. The KSAAP performed best for the 5 

single encoding approaches in terms of Sn, MCC and AUC (Table 2-5). The “Combined 

features” (PreAIP) showed better performance with an AUC of 0.833 than any other single 

feature. It is noted that “Combined features” means a linear combination of the RF scores 

(Materials and Methods). Moreover, the PreAIP presented the highest AUC value (0.840) in 

the test dataset (Figure 2-6B). The performance of PreAIP was effective and reasonable for all 

the tested cases (Figure 2-6) and was best in the AIP prediction. 
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Figure 2-7 Top 20 amino acid pairs selected by the IG feature of the KSAAP method. (A) The 

radar diagram is represented by the composition of each amino acid pair whose length is 

proportional to the composition of KSAAP features. (B) Box plot shows the top 20 average 

value of feature scores (AVFS) by the IG. Red color denotes the positive AIPs, while gray color 

denotes the negative AIPs. The p-value is computed by two-sample t-test. 

 
Table 2-6 Top 20 IG features of KSAAP encoding with corresponding amino acid pair positions. 

Ser. No IG features Amino acid pairs 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

0.01145 

0.01077 

0.00909 

0.00807 

0.00562 

0.00475 

0.00446 

0.0044 

0.0041 

0.00368 

0.00368 

0.00356 

0.00346 

0.00345 

0.00332 

0.00331 

0.0033 

L×L 

L×××L 

S×L 

LL 

L××××L 

L×H 

L×××K 

C×D 

R×××K 

A×L 

R××××L 

G×××D 

Y××Y 

R×××P 

LE 

V×××Y 

L×K 
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18 

19 

20 

0.0033 

0.00328 

0.00327 

P×M 

I×C 

R×K 

 

In addition, we found that KSAAP performed best for all the five single encoding methods. To 

investigate the most significant residue of the KSAAP method, the top 20 amino acid pairs of 

AIPs were examined through the IG feature selection. The top 20 significant residue pair scores 

and their corresponding positions are listed in Table 2-6. These significant features are also 

presented using a radar diagram (Figure 2-7A). For example, the feature sequence motif 'L×L', 

which is represented by 1-spaced residue pair of 'LL', is the most important residue pair, where 

'×' stands for any amino acid. The feature ‘L×××L’ represented the second enriched motif 

surrounding positive samples of AIPs. Similarly, the feature 'LL', which represents a 0-spaced 

residue pair of 'LL', is important and enriched in the negative samples AIPs. Similarly, to keep 

other k-space amino acid pairs from KSAAP, the same exemplification was employed. Residue 

preference analysis demonstrated that "L", "Y", "C", "D", and "I" residues frequently appear 

for AIPs (Figures 2-2 and 2-7A). These residues are expected to play a key role in the 

recognition of AIPs. To characterize the top 20 KSAAP-specific features, we compared the 

numbers of positive and negative AIPs. Figure 2-7B showed the top 20 average value of feature 

scores (AVFS) by the IG. The average of top 20 features was significantly different between 

two samples of AIPs with p-value <0.05, suggesting the effectiveness of the KSAAP encoding. 

The significant residue pair scores are listed in Table 2-6, which provides some insights into 

the sequence patterns of the AIPs. They deserve further experimental validation. 

 

Table 2-7 Performance comparison with exiting predictors using test dataset 

Predictor Threshold Sp Sn Ac MCC AUC  p-value 
AntiInflam (LA)  -0.3 0.892 0.258 0.638 0.197 0.647 <0.001 

AntiInflam (MA)  0.5 0.417 0.786 0.565 0.210 0.706 <0.001 

AIPpred  Server 0.746 0.741 0.744 0.479 0.813 0.039 

 

PreAIP 

 High 0.871 0.618 0.770 0.512 0.840  

 Moderate 0.747 0.784 0.762 0.522 0.840  

 Low 0.636 0.863 0.727 0.492 0.840  

A p-value was computed based on AUC values by using a Wilcoxson matched-pair signed test 

and p<0.05 indicates a statistically significant difference between the proposed PreAIP and 

each selected method. The performances of AntiInflam LA and MA methods were computed 
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using default threshold (server) values of -0.3 and 0.5, respectively. The AIPpred threshold was 

the same as given by its server.  
 

2.3.3 Comparison of PreAIP with existing predictors using test dataset 
We evaluated the performances of PreAIP along with that of existing predictors on the test 

dataset. We submitted the test set to the AIPpred (Manavalan et al., 2018b) and AntiInflam 

(Gupta et al., 2017) servers to assess the performance. It is noted that AntiInflam server 

provides different thresholds values. We used two threshold values of -0.3 and 0.5 and renamed 

as less accurate (LA) and more accurate (MA) models (Gupta et al., 2017), respectively. The 

AIPpred represents the state-of-the-art predictor available. The average performances of the 

LA, MA, AIPpred and PreAIP are illustrated in the Table 2-7. The LA showed the highest Sp 

(0.892) with the lowest Sn (0.258), MCC (0.197) and AUC (0.647) for all the predictors. The 

PreAIP with the high threshold presented much higher Sn (0.618) Ac (0.770), MCC (0.512) 

and AUC (0.840) than LA, while it provided Sp (0.871) comparable to LA. The PreAIP with 

the low threshold showed the highest Sn (0.863), while keeping Sp, Ac, MCC and AUC at a 

high level. While the AIPpred presented considerably high values to all the measures of Sp, Sn, 

Ac, MCC and AUC, the PreAIP with the moderate threshold outperformed the AIPpred, 

presenting well-balanced, high prediction performances. The PreAIP performance 

improvement was found distinct on the test dataset by the Wilcoxson matched-pair signed test, 

demonstrating its ability to predict unseen peptides. 

 

Table 2-8 Performance comparison of PreAIP with AIPpred using training dataset.   

Methods Threshold Sp Sn Ac MCC AUC p-value 

AIPpred Default  0.711 0.758 0.730 0.460 0.801 0.034 

 

PreAIP 

High 0.903 0.632 0.795 0.566 0.833  

Moderate 0.801 0.719 0.768 0.520 0.833  

Low 0.709 0.784 0.739 0.484 0.833  

A p-value was computed based on AUC values by using a Wilcoxson matched-pair signed test and p<0.05 

indicates a statistically significant difference between the proposed PreAIP and AIPpred. 

 

2.3.4 Comparison of PreAIP with AIPpred using training dataset 
We compared the performance of the proposed PreAIP with the AIPpred using the same 

training dataset. In this study, the same dataset as the AIPpred set was used to make a fair 

comparison for prediction performance of AIPs. As shown in Table 2-8, the PreAIP achieved 
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a better performance than the AIPpred in terms of Ac, Sp, Sn, MCC and AUC. The AUC value 

was nearly 3% higher than the AIPpred predictor. The PreAIP performance (AUC) 

improvement over the AIPpred was demonstrated on the training set by the Wilcoxson 

matched-pair signed test (Table 2-8). 
 

 

Table 2-9 AUC values of AIP prediction by different machine learning algorithms based on a 

10-fold CV test 

Algorithms SPIDER2 PEP2D AAindex KSAAP pKSAAP Combined 

RF 0.739 0.734 0.774 0.813 0.789 0.833 

NB 0.659 0.655 0.707 0.729 0.717 0.736 

SVM 0.698 0.677 0.738 0.766 0.749 0.779 

ANN 0.662 0.649 0.716 0.741 0.736 0.753 

"Combined" indicates that the performance of the optimized combined features. The combined 

score of RF was given as the sum of the five SPIDER2, PEP2D, AAindex, KSAAP, and 

pKSAAP features with weight values of 0.00, 0.00, 0.15, 0.25, and 0.6 respectively. In the same 

way, the weight values of NB, SVM, and ANN were given as (0.00, 0.00, 0.10, 0.35, and 0.55), 

(0.00, 0.00, 0.22, 0.45, and 0.33), and (0.00, 0.00, 0.18, 0.5, and 0.32), respectively.  
 

 

Table 2-10 AUC values with 60% peptide redundancy on the training dataset by 10-fold CV 

test 

Methods Sp Sn Ac MCC AUC 

pKSAAP 0.802 0.627 0.719 0.413 0.768 

AAindex 0.786 0.613 0.704 0.388 0.753 

SPIDER2 0.755 0.414 0.594 0.235 0.739 

PEP2D 0.761 0.365 0.574 0.199 0.693 

KSAAP 0.801 0.652 0.731 0.443 0.806 

PreAIP* 0.806 0.709  0.761 0.486 0.821 

* PreAIP is the combined method of SPIDER2, PEP2D, KSAAP, AAindex and pKSAAP 

encoding schemes and their weight coefficients are 0.00, 0.00, 0.10, 0.35, and 0.55, 

respectively via RF scores 
 

2.3.5 Comparison of different machine learning algorithms 
The performance of the RF was compared to the three widely used machine learning algorithms, 
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NB, SVM, and ANN by using the same training datasets and features, as shown in Table 2-10. 

The AUC values of the prediction by the five algorithms were calculated by a 10-fold CV test, 

while using the SPIDER2, PEP2D, AAindex, KSAAP, and pKSAAP encodings and their 

combined method. The RF provided higher AUC than any other algorithms for all the encoding 

methods and their combined method. 

 

 
                  Figure 2-8: AUC values with 60% peptide redundancy removal on the test dataset. 

 

 

2.3.6 The effect of peptide redundancy on the predictive model 
The peptide redundancy might lead to the overestimation on the predictive performance. 

Therefore, we adopted 60% identity cut-off at the peptide level by CD-HIT (Huang et al., 2010). 

After removing the 60% sequence redundancy, we re-assembled a training dataset that 

contained 1,098 positive and 1,226 negative samples, and the test dataset contains 308 positive 

and 275 negative samples. After removal of the 60% peptide redundancy, the overall 

performance of PreAIP in the 10-fold CV decreased slightly (AUC = 0.821) as shown in Table 

2-10. Moreover, PreAIP could still achieve the best performance on the independent testing 

dataset (Figure 2-8). For instance, when compared with AIPpred, PreAIP achieved AUC 

values of approximately 6% higher. The PreAIP also achieved at least an 8% AUC 
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improvement compared with AntiInflam. These performance comparison results prove that 

PreAIP predictor provides a stable or competitive performance compared with the other 

predictors on the test dataset, even after 60% peptide redundancy. 

 

2.3.7 Advantages of PreAIP  
In theoretical viewpoints, comparison of the proposed PreAIP with existing predictors is 

summarized: (1) The PreAIP investigated the primary sequence, physicochemical properties, 

structural and evolutionary features, although the AIPpred and AntiInflam predictors used only 

primary sequence encoding method. For instance, in AntiInflam method (Gupta et al., 2017), 

studied hybrid features based on primary sequence encoding schemes such as amino acid 

composition (AAC), dipeptide composition (DPC), and tripeptide composition with SVM 

algorithm. The AIPpred (Manavalan et al., 2018b) studied individual composition (AAC, 

AAindex, DPC, and chain-transition-composition) through multiple machine learning 

algorithms. (2) Since existing prediction tools did not control the Sp level, users cannot 

understand which AIP is highly positive or negative from their servers. On the other hand, the 

PreAIP controlled Sp at high, moderate and low levels by changing the threshold of the RF 

scores, based on 10- fold CV test results. A limitation of the PreAIP is that the employed dataset 

is still small, but we believe that the dataset will grow to enable intensive identification of AIPs. 

 

2.3.8 Development of PreAIP Server  
A web server of the PreAIP has been developed and publically accessible at 

http://kurata14.bio.kyutech.ac.jp/PreAIP/. The web application was implemented by 

programming languages of Java scripts, Perl, R, CGI scripts, PHP and HTML. After submitting 

a query sequence to the server, it generates consecutive feature vectors. Then, the server 

optimizes the performances through RFs. After completing the submission job, the server 

returns the result in the output webpage which consists of the job ID and probability scores of 
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the predicted AIPs in a tabular form. A user gets a job ID like "2018032900067" and can save 

this ID for a future query. The server stores this job ID for one month. The input peptide 

sequence must be in the FASTA format. Each of the 20 types of standard amino acids must be 

written as one uppercase letter. See the test example on the server. The length of AIP sequence 

was limited from 1 to 25. If users submit 200 amino acids, the PreAIP takes first 1 to 25 residues 

to analyze. When the peptide contains less than 25 residues, the PreAIP provides gaps (-) to the 

missing residues to compensate a peptide length of 25. 

 

 

 

2.4 Summary of chapter 2 

We have designed an accurate and efficient computational predictor for identifying potential 

AIPs. It outperforms the existing methods and is effective in understanding some mechanisms 

of AIP identification. An IG-based feature selection method was carried out to suggest 

sequence motifs of AIPs from KSAAP encoding. A user-friendly web-server was developed 

and freely available for academic users.  
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CHAPTER 3 PREDICTION OF PROINFLAMMATORY 

PEPTIDES BY FUSING OF MULTIPLE FEATURE 

REPRESENTATIONS 
 

 

 

3.1 Introduction 

A proinflammatory cytokine or an inflammatory peptide (PIP) is referred to as a type of 

signaling molecules, which is secreted from immune cells and certain cell types for 

promoting the inflammation (Watkins et al., 1995; Zhang and An, 2007). The PIPs contain 

interleukin-1 (IL-1), IL-12, and IL-18, interferon-gamma, tumor necrosis factors, and 

granulocyte-macrophage association motivating factors, which contribute to the first line 

of defense against invading pathogens (Scarpioni et al., 2016). Different studies reported 

that PIPs play an important role in human physiology such as vaccines and 

immunotherapeutic drugs (Cavaillon, 2001; Pinho-Ribeiro et al., 2015; Zhang and An, 

2007). Nonetheless, these peptides may cause unwanted immuno-activity in the B or T 

cell instigation and other proinflammatory events (Gordon et al., 2005; Gustafsson et al., 

2010; Shi et al., 2015). Diverse transferrable agents were found in proteins with 

immunomodulatory properties, which can assist in the evolution and instigation of 
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diseases (Desmet, 1987; Hsu et al., 2001). 

 

The importance of PIPs is confirmed through the pathophysiological dealings 

(Mukhopadhyay et al., 2014; Zhao et al., 2005). For instance, Herpes Simplex Virus-2 

produces a glycoprotein G-2 through the gG-2p20 peptide that causes proinflammatory 

responses in human neutrophils and activates as an effective antineoplastic agent (Bellner 

et al., 2005; Bylund et al., 2001). Similarly, the C-peptide of PIPs produces proinsulin 

which is used in peptide-therapeutics but leads to inflammation in vasculature and kidney 

or long-term deterioration of diseases (Vasic and Walcher, 2012). Those PIP functions are 

important to analyze. To reduce time and economic cost, a computational identification 

method of PIPs is needed before experimental verification. There are only a few 

computational methods developed for PIP identification, e.g., ProInflam (Gupta et al., 

2016) and PIP-EL (Manavalan et al., 2018c). In 2016, Gupta et al. firstly introduced a 

computation method named ProInflam that employed a support vector machine (SVM) 

classifier with different sequence-based features (Gupta et al., 2016). Recently, 

Manavalan et al. developed another computation method named PIP-EL by using several 

sequence features (Manavalan et al., 2018c). All in all, existing methods provide good 

prediction results, but their prediction performances are yet not fully satisfactory and there 

is still room for further improvement. 

 

Motivated by these considerations, we thus propose a computational predictor named 

ProIn-Fuse (Prediction of Proinflammatory Peptides) to accurately predict PIPs by making 

the use of multiple feature representations. The overall framework of the ProIn-Fuse is 

depicted in Figure 3-1. Firstly, we collected up-to-date PIPs and non-PIPs from the IEDB 
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database and constructed the benchmark dataset containing samples with low similarity. 

Secondly, we calculated the probabilistic scores by employing random forest (RF) 

algorithm in conjunction with various encoding schemes, i.e., the k-mer composition from 

profile (kmer-pr), profile-based composition of the amino acid (PKA), k-mer composition 

of the amino acid (kmer-ac), k-space amino acid pairs (KSAP), binary encoding (BE), 

amino acid index properties (AIP), N-terminal 5 and C-terminal 5 dipeptides composition 

(C5N5-DC), and structural features (SF). Thirdly, the ProIn-Fuse was established by 

fusing the successive probabilistic scores using a linear regression (LR) model. Cross-

validation (CV) and independent results showed that the ProIn-Fuse yielded better 

performance than those obtained by existing predictors and other well-known machine 

learning (ML) models, signifying that it has a great advantage as an auxiliary tool for PIP 

identification. 

 

Figure 3-1 Computational workflow for the prediction of proinflammatory peptides 



45 
 

3.2 Materials and Methods 

3.2.1 Dataset preparation 
To develop an ML-based predictor, we collected experimentally validated positive 

datasets from the IEDB database (1,505 PIPs), which belong to any of the 

proinflammatory cytokines (IL1α, TNFα, IL1β, IL12, IL18, and IL23) (Fleri et al., 2017; 

Vita et al., 2015). Negative samples (3,350 non-PIPs) that are excluded from the 

proinflammatory cytokines were collected from the IEDB database. The PIPs or non-PIPs 

whose amino acid residue length is greater than or equal to 5 and less than or equal to 25 

were considered. Although previous studies have provided their benchmark datasets 

(Manavalan et al., 2018c), these datasets still contain many redundant samples leading to 

overestimated accuracy. Here, to avoid overestimation caused by the homology biases, 

the sequence identity between both positive and negative datasets was reduced to 0.60 

using CD-HIT (Huang et al., 2010). After such a screening process, the benchmark dataset 

consists of 741 PIPs and 1254 non-PIPs. The benchmark dataset was randomly divided 

into the training and independent sets with a ratio of 8:2. Finally, the training dataset 

consists of 607 PIPs and 1098 non-PIPs, while the independent dataset consists of 134 

PIPs and 156 non-PIPs. The training and independent datasets used in this study are 

publicly accessible at http://kurata14.bio.kyutech.ac.jp/ProIn-Fuse/download.php. 

 

3.2.2 Feature encodings 

To develop a sequence-based predictor, the critical step is to represent a peptide sequence 

by a fixed-length feature vector (Hasan et al., 2019b; Hasan et al., 2020f; Hasan et al., 

2020h). To encode PIP and non-PIP sequences, eight types of encoding schemes were 
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used: Kmer-pr, PKA, Kmer-ac, KSAP, BE, AIP, C5N5-DC, and SF. We summarized each 

encoding as follows. 

3.2.3 Kmer-pr encoding 

The Kmer-pr was generated by the PSI-BLAST (version 2.2.26+) with two restrictions of 

iteration times of 3 and e-value of 1.0×10-4 from the Swiss-Prot database, respectively 

(Chen et al., 2009; Dong et al., 2013). The Kmer-pr generated a PSSM profile for the PIP 

and non-PIP sequences and encoded the composition-based features of the profile. At 

K=0 and 3, an 8020 (20+20×20×20)-dimensional (D) feature vector was generated.  

3.2.4 PKA encoding 

The PKA encoding measured the possible k-space composition from the PSSM profile, 

in the same way as the earlier study of anti-inflammatory peptides identification (Khatun 

et al., 2019a). A 1200 (3×20×20)D feature vector was generated when the optimal K-

space was 0, 1, and 2. 

3.2.5 Kmer-ac encoding 

The Kmer-ac encoded the amino acid residue sequences with a fixed length of amino 

acids. At K=1, the Kmer-ac encodes monopeptides into a 20D feature vector. At K=2 it 

encodes dipeptides into a 400(20×20)D feature vector; at K=3 it encodes tripeptides into 

an 8000(20×20×20)D feature vector. In this study, K=1 and 3 are considered, which 

generates an 8,020D feature vector. 

3.2.6 KSAP encoding 

The KSAP encoding is successively used in many bioinformatics prediction tasks (Hasan 

M.M., 2018; Hasan MM, 2017; Md. Mehedi Hasan, 2017). Possible k-space amino acid 

pairs were collected from the curated peptides. At K=0, a 400(20×20)D feature vector 

was generated. At K=0, 1, and 2, it generates a 1200D feature vector. 
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3.2.7 Binary encoding 

A 20-dimensional binary vector is used to encode an amino acid residue of a peptide 

sequence (Hasan et al., 2016). The BE encoding generates a 420 (21×20)D feature vector 

for a peptide sequence window. 

3.2.8 AIP encoding 

The AIP encoding uses amino acid properties (Kawashima et al., 2008). We selected 10 

instructive amino acid indices by assessing the diverse types of properties (Table 3-3). In 

a 22 peptide length of sequences, the AIP encoding generates a 220(22×10)D feature 

vector. 

3.2.9 C5N5-DC encoding 

To employ C5N5-DC, we extracted 5 amino acids from C- and N-terminal. Then we 

encode a new sequence window as dipeptides. When 20 natural amino acids are 

considered, the C5N5-DC scheme generates a 400(20×20)D feature vector. 

3.2.10 Structure feature encoding  

We employed SF to represent the PIP and non-PIP sequences. We used SPIDER2 (Yang 

et al., 2017) that considers the backbone torsion angles, accessible surface area, and 

secondary structure. The SF that consists of 8 types of feature vectors generated a 176 

(22×8)D feature vector for a sequence window. 

 

3.2.11 Machine learning algorithms 

Different ML-based algorithms were employed to classify the PIP and non-PIP sequences, 

including RF, SVM, AB, and NB. The RF is a supervised ML algorithm (Hasan et al., 

2017c; Hasan and Kurata, 2018; Hasan et al., 2016; Tahir M, 2019), which works as a 

group of decision trees (Basith et al., 2020a; Charoenkwan et al., 2020; Charoenkwan et 
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al., 2013; Hasan et al., 2019d; Khatun et al., 2019b; Maclin and Opitz, 1999; Manavalan 

et al., 2019b; Polikar, 2006; Rokach, 2010). An R package of ‘randomForest’ was 

employed (Hasan et al., 2019d; Khatun et al., 2019a). The SVM has been widely applied 

to address binary class prediction problems (Hasan et al., 2015). We used a radial basis 

function of the LIBSVM package to optimize their parameters (cost function and gamma) 

by a simple grid search. The AB is an adaptive boosting ML algorithm. To improve the 

method performance, The AB classifiers are linearly combined with the weight 

coefficients that characterize the final output of the boosted classifier. The R package 

(https://cran.r-project.org/web/packages/adabag) was employed for AB. The NB is a 

simple ML algorithm based on applying Bayes' theorem with robust naive assumptions 

(Hasan et al., 2018a; Hasan et al., 2017a). We used an R package of NB to classify PIP 

and non-PIP samples at (https://cran.r-project.org). 

 
3.2.12 Performance evaluation matrixes 
To evaluate the performance of our prediction models, we used the five statistical 

measures: accuracy, sensitivity, specificity, Matthews’ Correlation Coefficient (MCC) 

(Liaw, 2002; Manavalan et al., 2018c; Schaduangrat et al., 2019; Shoombuatong et al., 

2019; Su et al., 2019; Win et al., 2017), and Area Under the Curve (AUC). The following 

formulas are used to calculate these measures: 

      (1) 

                                          (2) 

                                          (3) 

       (4) 

TP TNAc
TP TN FP FN




  

FNTP
TPSn




TNSp
TN FP




    FP)(TNFPTNFPTPFN)(TN
FNFPTNTPMCC






https://cran.r-project.org/web/packages/adabag
https://en.wikipedia.org/wiki/Bayes%27_theorem
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where TP, FP, TN, and FN respectively characterize the numbers of the correctly 

predicted samples as PIP, incorrectly predicted ones as PIP, correctly predicted ones as 

non-PIP, and incorrectly predicted ones as non-PIP. To evaluate the AUC values, the 

ROC curves were measured by the pROC package of the R language (Centor, 1991; 

Gribskov and Robinson, 1996). 

 

3.2.13 Fusion model 
To enhance the prediction performance, we fused the curated ML probability scores from 

the Kmer-pr, PKA, Kmer-ac, KSAP, BE, AIP, C5N5-DC, and SF encodings via an LR 

model as follows: 

Fusion = ∑ 𝑊𝑖

8

𝑖=1

𝑀𝑖 
(5) 

where Wi, (i= 1, 2, 3, …, 8) are the weight coefficients and Mi the ML score of each 

single-encoding based model under a constraint: ∑ 𝑊𝑖
8
𝑖=1 = 1. The linearly combined 

models of the ML scores assessed by the eight encodings are denoted as the fusion 

model. 

 

3.2.14 Hybrid model 
To examine the effectiveness of the ProIn-Fuse, we compared it with a hybrid model 

(i.e., hybrid model is the conjunction of all curated features in plain as a row) for the 

prediction of PIPs. In the hybrid model, the eight feature vectors (F) generated by the 

Kmer-pr, PKA, Kmer-ac, KSAP, BE, AIP, C5N5-DC, and SF were lined up in a row as 

follows: 

H = (F(Kmer − pr), F(PKA), F(Kmer − ac), F(KSAP), F(AIP), F(C5N5

− DC), F(SF)) 
(6) 
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where H is the hybridized feature vector consisting of the eight feature vectors. The 

total dimension of hybrid model was 19,656D. Details are described elsewhere [35, 38].  

To reduce the dimension from the hybrid model, we considered a feature ranking 

method of Wilcoxon rank sum (WR) test [30, 40]. 

 

3.3 Results and Discussion 

3.3.1 Preference of PIP sequence 

It is of importance to examine the sequence preference of PIPs and non-PIPs. Figure 3-2 

compares the difference of amino acid frequencies between PIP and non-PIP sequences 

on the first 20 N-terminal residues (http://www.twosamplelogo.org/). We found that the 

PIP and non-PIP samples have significantly different sequence preferences. The arginine 

(R) at positions 1 and 4, serine (S) at positions 2, 11, and 12, leucine (L) at positions 5, 

11, and 14-16, glycine (G) at positions 16, 18, and 19, asparagine (N) at positions 5 and 

6, Glutamine (Q) at positions 1 and 10 were enriched in the upstream of the PIPs. For the 

non-PIPs, aspartic acid (D) at positions 1, 5, 8, 11, 12, 15, and 17 and G at positions 7, 

10, and 14 were depleted. However, no significant residue was enriched at positions of 3, 

8, 9, 13, and 20, and was depleted at positions of 3, 9, 13, 16, and 18-20. These 

observations suggested that the PIP and non-PIP samples have distinct location-specific 

preferences of amino acid residues. This information is important to identify PIPs. 

https://en.wikipedia.org/wiki/Glycine
https://en.wikipedia.org/wiki/Asparagine
https://en.wikipedia.org/wiki/Glutamine
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Figure 3-2 Two-Sample-Logos were visualized for PIP and non-PIP samples 

(https://www.twosamplelogo.org/). On the 20N-terminal amino acid sequence, the 

position-wise residues significantly enriched or depleted (t-test, P < 0.05) are presented 

 

3.3.2 Evaluation of ProIn-Fuse on the training dataset 
PIPs and non-PIPs sequences of the benchmark dataset were encoded into the eight 

feature vectors by using the Kmer-pr, PKA, Kmer-ac, KSAP, BE, AIP, C5N5-DC, and SF. 

The resultant feature vectors were inputted into the RF model to construct eight, single 

encoding-based RF models. The prediction performances of them were evaluated using 

5-fold CV tests as shown in Figure 3A. The Kmer-pr and PKA encodings achieved a 

similar performance with AUC of ~0.78. As seen, their AUCs were 2.6-8.6% higher than 

the AUCs obtained from the other six encodings. As suggested by many studies, there 

were a number of ways to incorporate multiple prediction models, including meta-

predictors (Boopathi et al., 2019; Manavalan et al., 2019a, b, c), hybrid models and fusion 

https://www.twosamplelogo.org/
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methods (Hasan et al., 2019b, c). Here, we employed the fusion method that linearly 

combines the eight, single encoding-based RF models, named as ProIn-Fuse. The weight 

coefficients of them were optimized to maximize the AUC. In the ProIn-Fuse, the optimal 

weight coefficients of Kmer-pr, PKA, Kmer-ac, KSAP, BE, AAindex, C5N5-DC and SF 

are 0.35, 0.45, 0.10, 0.00, 0.00, 0.10, 0.00 and 0.00, respectively, indicating the Kmer-pr, 

PKA, Kmer and AAindex contributed 45%, 35%, 1%, and 1% to the final prediction, 

respectively, while the remaining encodings did not contribute to the final prediction. In 

the combined model, the Kmer-pr and PKA-based models significantly contributed to the 

prediction, compared to the other encoding models. The AUCs of all the single encoding-

based models and the ProIn-Fuse model are assessed by 5-fold CV test in Figure 3-3A. 

Remarkably, the ProIn-Fuse yielded the highest AUC of 0.817 with the values of Sn, Sp, 

Ac, and MCC of 0.596, 0.866, 0.784, and 0.506, respectively (Table 3-1). All in all, the 

ProIn-Fuse significantly outperformed all the single encoding-based models with two-

sample t-test at the level of p-value< 0.05.  

 

 

Figure 3-3 ROC curves of ProIn-Fuse and eight, single encoding-based models on A) 

training and B) independent datasets. 
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Table 3-1 Performance of ProIn-Fuse and eight, single encoding-based models on the 

training dataset. 

Method Sn Sp Ac MCC AUC P-value 

Kmer-pr 0.519 0.887 0.750 0.448 0.765 0.021 

PKA 0.534 0.892 0.754 0.456 0.777 0.028 

Kmer-ac 0.478 0.842 0.711 0.413 0.731 <0.001 

KSAP 0.484 0.852 0.713 0.422 0.736 <0.001 

BE 0.504 0.889 0.752 0.434 0.742 0.012 

AIP 0.508 0.890 0.751 0.445 0.746 0.017 

C5N5-DC 0.442 0.829 0.693 0.293 0.712 <0.001 

SF 0.454 0.822 0.695 0.312 0.720 <0.001 

ProIn-Fuse 0.596 0.866 0.784 0.506 0.817 - 

For the ProIn-Fuse model, the optimal weights for Kmer-pr, PKA, Kmer-ac, KSAP, BE, AIP, 

C5N5-DC, and SF are 0.35, 0.45, 0.10, 0.00, 0.00, 0.10, 0.00 and 0.00, respectively. 

 

 

 

3.3.3 Comparison of RF with other well-known MLs on training 

dataset 

To demonstrate the effectiveness of the RF algorithm employed by the ProIn-Fuse, the 

ProIn-Fuse was compared with the fusion models that linearly combine the SVM-, AB- 

and NB-evaluated scores with the eight, single encoding schemes, which are named 

SVM-, AB- and NB-Fuse models, respectively. By CV test, we compared the ProIn-Fuse 

with the SVM-, AB- and NB-Fuse models, as shown in Table 3-4 and Figure 3-4. The 

ProIn-Fuse achieved higher performances than any other ML-fusion models, while SVM-

Fuse was comparable to the ProIn-Fuse. Moreover, the AUC of ProIn-Fuse was 2-7% 

higher than those obtained by SVM-, AB- and NB-Fuse models, indicating the superiority 
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of the RF over the other well-known ML algorithms. 

 
Table 3-2 Comparison with existing predictors 
 
Method Sn Sp Ac MCC 

ProInflam 0.666 0.596 0.628 0.264 

PIP-EL 0.542 0.741 0.649 0.299 

ProIn-Fuse 0.666 0.814 0.746 0.488 

 

 

 

Figure 3-4 Performance comparison of different machine learning algorithms 

 

 

3.3.4 Comparison of ProIn-Fuse with a hybrid model on training 

dataset 

As mentioned above, there were various ways to incorporate multiple prediction models. 

In this section, we compared the performance of the ProIn-Fuse against the hybrid model, 

a sequential combination model, on the same training dataset. The hybrid model lined up 

all of the eight feature vectors in a row, and then feed these feature vectors into four 



55 
 

different classifiers (i.e., RF, SVM, AB, and NB). As shown in Figure 3-5, the hybrid 

models implementing RF, SVM, AB, and NB yielded AUC values of 0.789, 0.763, 0.757, 

and 0.744. Furthermore, the WR test was employed to select the important features from 

the hybrid model. According to the relevance to the redundancy between the features, the 

WR test can rank all the features themselves. Based on the WR test, we selected the top 

1450D features from the total 19,656D and inputted them to RF, SVM, AB, and NB, 

respectively, and evaluated the resultant prediction models using the 5-fold CV test. As 

shown in Table 3-5, with feature selection the hybrid models implementing RF, SVM, 

AB, and NB yielded AUC values of 0.794, 0.779, 0.763, and 0.746, respectively, while 

the ProIn-Fuse provided an AUC value of 0.817. Thus, the AUC value of the ProIn-Fuse 

was ~2 to 6% higher than that of any hybrid models. 

 

 

Figure 3-5 Performance comparison of the fused and hybrid models using diverse 
machine learning algorithms 
  

3.3.5 Performance of ProIn-Fuse on independent datasets 

In this section, we validated the generalization capability of the ProIn-Fuse by evaluating 

its performance on the independent dataset. The performance of the ProIn-Fuse was 
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compared with the eight, single encoding-based RF models, as shown in Figure 3-3B. 

For all the single encoding-based RF models, the PKA encoding achieved the highest 

AUC of 0.786, while the Kmer-pr and Kmer-ac encodings yielded the second and third 

highest AUCs of 0.764 and 0.751, respectively. These results were well consistent with 

the weight coefficients of the ProIn-Fuse, where the weight coefficients of Kmer-pr, PKA 

and Kmer-ac are 0.35, 0.45 and 0.10, respectively. The ProIn-Fuse achieved the best AUC 

of 0.822, which was 3-11% higher than the AUCs of the eight, single encoding-based RF 

models. 

 

Table 3-3 Selected 10 types of AIP properties used in this study. 
Properties A  R N D C Q  E G H I L K M F  P S T W Y V 

MIYS990104 -0.04 0.07 0.13 0.19 -0.38 0.14 0.23 0.09 -0.04 -0.34 -0.37 0.33 -0.30 -0.38 0.19 0.12 0.03 -0.33 -0.29 -0.29 

BLAM930101 0.96 0.77 0.39 0.42 0.42 0.80 0.53 0.00 0.57 0.84 0.92 0.73 0.86 0.59 -2.50 0.53 0.54 0.58 0.72 0.63 

MAXF760101 1.43 1.18 0.64 0.92 0.94 1.22 1.67 0.46 0.98 1.04 1.36 1.27 1.53 1.19 0.49 0.70 0.78 1.01 0.69 0.98 

CEDJ970104 7.9 4.9 4.0 5.5 1.9 4.4 7.1 7.1 2.1 5.2 8.6 6.7 2.4 3.9 5.3 6.6 5.3 1.2 3.1 6.8 

LIFS790101 0.92 0.93 0.60 0.48 1.16 0.95 0.61 0.61 0.93 1.81 1.30 0.70 1.19 1.25 0.40 0.82 1.12 1.54 1.53 1.81 

ARGP820101 0.61 0.60 0.06 0.46 1.07 0. 0.47 0.07 0.61 2.22 1.53 1.15 1.18 2.02 1.95 0.05 0.05 2.65 1.88 1.32 

ARGP820102 1.18 0.20 0.23 0.05 1.89 0.72 0.11 0.49 0.31 1.45 3.23 0.06 2.67 1.96 0.76 0.97 0.84 0.77 0.39 1.08 

BHAR880101 0.357 0.529 0.463 0.511 0.346 0.493 0.497 0.544 0.323 0.462 0.365 0.466 0.295 0.314 0.509 0.507 0.444 0.305 0.420 0.386 

ARGP820103 1.56 0.45 0.27 0.14 1.23 0.51 0.23 0.62 0.29 1.67 2.93 0.15 2.96 2.03 0.76 0.81 0.91 1.08 0.68 1.14 

ISOY800107 1.34 2.78 0.92 1.77 1.44 0.79 2.54 0.95 0.00 0.52 1.05 0.79 0.00 0.43 0.37 0.87 1.14 1.79 0.73 0.00 

 

 

Table 3-4 AUC values of different machine learning algorithms on the training dataset. 

Method RF SVM AB NB 

Kmer-pr 0.765 0.751 0.743 0.721 

PKA 0.777 0.759 0.746 0.691 

Kmer-ac 0.731 0.728 0.695 0.688 

KSAP 0.736 0.738 0.673 0.681 

BE 0.742 0.746 0.714 0.663 
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AIP 0.746 0.747 0.716 0.646 

C5N5-DC 0.712 0.722 0.694 0.653 

SF 0.720 0.726 0.692 0.672 

Combined 0.817 0.799 0.773 0.749 

“Combined” specifies that the performance of the optimized fused features. For the RF 

model, the optimal weights for Kmer-pr, PKA, Kmer-ac, KSAP, BE, AIP, C5N5-DC, and 

SF are 0.35, 0.45, 0.10, 0.00, 0.00, 0.10, 0.00 and 0.00, respectively. In the same way, the 

weight values of SVM, AB, and NB were given as (0.30, 0.35, 0.00, 0.15, 0.00, 0.2, 0.00, 

and 0.00), (0.30, 0.55, 0.00, 0.1, 0.00, 0.05, 0.00, and 0.00), and (0.35, 0.40, 0.00, 0.15, 

0.00). 

 

3.3.6 Comparison of ProIn-Fuse with existing predictors 
To investigate the superiority of the ProIn-Fuse, we compared its performance with the 

existing two PIP predictors, i.e., ProInflam(Gupta et al., 2016) and PIP-EL(Manavalan et 

al., 2018c), using the same independent dataset. Table 3-2 compares the prediction results 

among the ProIn-Fuse, ProInflam and PIP-EL. Note that the prediction results of 

ProInflam and PIP-EL were obtained by feeding the protein sequences to their web 

servers. The ProIn-Fuse achieved better performances (i.e., Sn of 0.666, Sp of 0.814, Ac 

of 0.746, and MCC of 0.488) than PIP-EL and ProInflam for all the four statistical 

measures. Furthermore, the MCC value of the ProIn-Fuse was 19% and 22% higher than 

the PIP-EL and ProInflam, respectively. Considering that the independent test is a 

rigorous CV method, we thus claim that the proposed ProIn-Fuse is superior to the 

existing PIP predictors. 
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Table 3-5 AUC values Performance of hybrid model on the training dataset using WR-

based feature selection approach. 

Method Sn Sp Ac MCC AUC 

 

RF 0.558 0.890 0.771 0.467 0.794 

SVM 0.542 0.890 0.766 0.459 0.779 

AB 0.477 0.891 0.743 0.439 0.763 

NB 0.452 0.890 0.734 0.431 0.746 

3.4 Summary of chapter 3 

We have developed an efficient and accurate computational predictor named ProIn-Fuse 

for PIPs identification. The ProIn-Fuse linearly combined the eight probability scores 

evaluated by the single encoding-based RF models. The ProIn-Fuse more effectively 

identified PIPs than any single encoding-based RF models and the other fusion/hybrid 

models. To validate the superiority of the ProIn-Fuse, we have compared it with 

ProInflam and PIP-EL using the independent test. The ProIn-Fuse outperformed the 

existing predictors. To help potential users, a user-friendly web-application of the ProIn-

Fuse was provided for public use at http://kurata14.bio.kyutech.ac.jp/ProIn-Fuse/. It is 

highly anticipated that the proposed ProIn-Fuse can be instrumental in facilitating the 

identification of novel PIPs for drug design and discovery.  

http://kurata14.bio.kyutech.ac.jp/ProIn-Fuse/
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CHAPTER 4 PREDICTION OF ANTI-

TUBERCULAR PEPTIDES BY INTEGRATING THE 

AMINO ACID PATTERNS AND PROPERTIES 
 

4.1 Introduction 

Tuberculosis (TB) is regulated by Mycobacterium tuberculosis (Mtb), is a type of 

infective disease, being responsible as a major threat for the human beings (Hamilton et 

al., 2015; WHO, 2017b; Zumla et al., 2015). Among 10 reasons for human deaths, TB is 

the foremost cause, mentioned by the ‘Global TB report 2018’ issued by the World Health 

Organization (WHO) (WHO, 2017a). In 2017, TB killed 1.6 million people. There were 

ten million people newly affected by TB with 5.8 million males, 3.2 million females, and 

1.0 million kids (WHO, 2017a). TB is the universal health anxiety, mostly in developing 

countries. It is assessed that 44% TB covered by only three high-risk countries such as 

India, China, and Indonesia (WHO, 2017a). Nearly 90-95% of infected people induce 

immune responses against Mtb, thus they do not get ill. It is called to be latently infected, 

because TB-causing bacteria harbor somewhere in human bodies, especially in lungs. The 

remaining 5-10% of infected people become sick with active TB when bacteria replicates 
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are unrelieved in spite of all-out efforts by the immune system. 

 

Treatment of TB typically leads to complication and shows high mortality rate (nearly 

15%) due to the widespread of multi-drug resistance (MDR) strains (Wilson and 

Tsukayama, 2016). The TB treatment is far from satisfactory at present. General treatment 

requires a long-term, daily administration of drugs (Wang et al., 2015), which are less 

effective and toxic due to severe side effects. MDR is resistant to most influential first-

line anti-TB drugs, such as rifampicin and isoniazid. It needs treatment with the second-

line medications including fluoroquinolones and aminoglycosides [7], which in general 

are more side effects, less effective and much more expensive than the first-line drugs. 

The MDR is an urgent priority for developing anti-TB new drugs, mentioned by WHO 

(Arbex et al., 2010). Different complex mechanisms are involved in the expansion of 

MDR acquired by the Mycobacterium. The MDR is related to the diverse iatrogenic 

factors, thus the MDR rates are increasing in highly populated cities and low-income 

countries (Kim and Yang, 2017; Silva et al., 2016). Due to the technical limitations of in 

vitro drug vulnerability testing, the drug-resistance mechanisms of TB have not clearly 

been defined by WHO (Silva et al., 2016), notwithstanding several initiatives of TB 

treatment. Novel medicines are still desirable to control this severe disease (Aggerbeck 

et al., 2018; Chaurasiya, 2018). 

 

Nowadays, a peptide-based therapy appears as a potential alternative to therapies of anti-

mycobacterial drugs (Zasloff, 2006). Anti-TB peptides with low immunogenicity make 

them a possible complement for expectable TB drugs (AlMatar et al., 2018; Jhamb et al., 

2014). Large-scale experimental screenings were carried to explore anti-TB peptides 



61 
 

(Padhi et al., 2014; Yount and Yeaman, 2004). Many experimental candidates of anti-TB 

peptides were found and registered in the AntiTbPdb database (Usmani et al., 2018b). 

Notwithstanding the increasing number of experimentally validated anti-TB peptides, the 

mechanisms by which anti-TB peptides affect TB remain largely unknown (Gao et al., 

2015; Gavrish et al., 2014; Nikonenko et al., 2004; Usmani et al., 2018b). Since the large-

scale experimental identification of anti-TB peptides is laborious and time-consuming, 

alternative, computational methodologies are required that provide an accurate and robust 

prediction of anti-TB peptides. Recently, Usmani et al. developed the AntiTBpred, a 

computational predictor implementing a support vector machine (SVM) classifier 

(Usmani et al., 2018a). They illustrated that the composition of amino acids and N5C5 

binary profiles (i.e., five amino acid residues from the N- and C-terminals) contribute to 

the enhanced prediction accuracy. However, the exact performance of AntiTBpred was 

not assessed, because they did not separate the training and independent samples. 

 

In this research, we have established a computational predictor termed iAntiTB 

(Identification of Anti-tubercular Peptides) through integration of amino acid patterns and 

properties, as shown in Figure 4-1. We classified four sequential feature vectors through 

the Random Forest (RF) and Support Vector Machine (SVM) and then combined the RF 

and SVM scores via a linear regression model. The resulting iAntiTB outperformed the 

existing predictors.  
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Figure 4-1 An overview of iAntiTB for predicting anti-TB peptides. 

 

4.2 Materials and Methods 

4.2.1 Data construction 

To construct an efficient computational model, we collected the positive samples of anti-

TB peptides from the AntiTbPdb database (Usmani et al., 2018b). After eliminating the 

duplicate peptides, 246 positive unique peptides were selected that are effective against 

Mycobacterium. The length of the peptide varies from 5 to 61. Next, we collected the two 

sets of negative samples as same as a recently published article [11]. The negative samples 

were from the non-anti-bacterial peptides of the Swiss-Prot database (Bairoch and 

Apweiler, 2000) and anti-bacterial peptides from the DBAASP database (Pirtskhalava et 
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al., 2016). The collected negative samples are blind from positive ones. From the Swiss-

Prot database, 246 non-anti-bacterial peptides were collected, while removing the positive 

samples and anti-bacterial peptides. They were named the “first negative samples”. 

 

From DBAASP database [27], we have selected anti-bacterial peptides containing natural 

residues and are operative against Gram negative and Gram positive microbes. After 

eliminating the peptide redundancy (i.e., remove the identical dataset as same positive 

ones), 4,192 distinctive peptides were left. From this, we have kept one of our second 

negative samples, containing 246 anti-bacterial peptides as same [11]. Then we used the 

same strategies as a recently published article to divide the positive and negative samples 

with a ratio of 1:1 (Usmani et al., 2018a). Consequently, the training dataset of 199 

positive and 199 first-negative samples and the independent datasets of 47 positive and 

47 first-negative samples were named as the “first dataset”. The training dataset of 199 

positive and 199 second-negative samples and the independent datasets of 47 positive and 

47 second-negative samples were named as the “second dataset”. The two different 

datasets were employed to investigate the robustness of the proposed predictor. Note that 

the positive samples are common between the first and second datasets and the range of 

peptide length was kept the same for all the datasets. 

 

4.2.2 Sequence preference analysis 

The sequence preference logos were generated using an online two-sample-logo web 

server (Vacic et al., 2006). The graphical logos are the representative residues in the 

multiple peptide/window fragment sequences, which provides the position specific 

preference of amino acids. The length was limited from 1 to 20 in this study. Therefore, 
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we submitted the curated datasets to the two sample logos server at 

(http://www.twosamplelogo.org/) and generated sequence logos. Amino acid preference 

at each position is signified by a stack of symbols, where large symbols denote repeatedly 

detected residues or conserved residues. 

 

4.2.3 Feature descriptors 

To encode positive and negative peptide samples, four types of descriptors were 

employed: amino acids index (AAindex) properties, binary encoding (BE), dipeptide 

composition (DPC), and tripeptide composition (TPC). We summarized each descriptor 

as follows. 

 

4.2.4 Amino acid index properties 

The database of AAindex (a version of 9.1) registers numerical indices of biochemical 

and physicochemical properties (Kawashima et al., 2008). After evaluating various kinds 

of properties, we selected 8 types of topmost informative indexes: TSAJ990101, 

NOZY710101, NAKH920108, CEDJ970104, LIFS790101, BLAM930101, 

MAXF760101, and KLEP840101. The anti-TB peptide samples were transformed into 

the feature vectors of the AAindex properties. An (L×8) dimensional vector was 

generated where L was the peptide sequence length. 

 

4.2.5 Binary encoding 

The BE scheme represents the positional wise amino acid information. The BE 

summarizes the compositional information as well as the order of positional information 

(Hasan et al., 2017a; Hasan et al., 2018c). The BE was generated for each peptide, where 

http://www.twosamplelogo.org/


65 
 

each amino acid is represented by a 20-dimensional vector. For example, Alanine (A) is 

represented by a vector of (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). The peptide 

with a length of 20 was characterized by a 400 (20 × 20) dimensional vector.  

 

4.2.6 Dipeptide composition 

The DPC values were calculated based on the composition of amino acid pairs (e.g., 

AA, AC, AD)400 (Usmani et al., 2018a). To each peptide sample, a 400 (20 × 20) 

dimensional vector was generated. The DPC was given by: 

DPC = [𝑓1, 𝑓2, … , 𝑓400]                                      (1) 

where fi signifies the dipeptide composition of the i-th residue pair in {AA, AC, AD, … , 

YY}. 

  

4.2.7 Tripeptide composition 

The TPC values were calculated based on the composition of three residues (e.g., AAA, 

AAC)8,000 that were connected in a sequence. For each peptide sample, an 8,000 (20 × 

20 × 20) dimensional vector was generated. The TPC value of each tripeptide was given 

by: 

TPC = [𝑓1, 𝑓2, … , 𝑓8000]                                   (2) 

where fi represents the tripeptide composition of the i-th residue pair in {AAA, AAC, 

AAD, … YYY}. 

 

4.2.8 Machine learning algorithms 

Two well-known supervised machine learning classifiers of SVM (Hearst, 1998) and RF 

(Breiman, 2001) were employed in this study. The RF algorithm has been widely used in 
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medicine and computational biology fields (Hasan M.M., 2018; Hasan MM, 2018). RF 

works on a large ensemble of classifiers and regression trees. The RF models of the 

‘randomForest’ package (https://www.r-project.org/) were optimized with 1,000 trees via 

10 fold cross-validation (CV) test. The SVMlight software (version 6.02, 

http://www.cs.cornell.edu/People/tj/svm_light/) was used with default parameters. The 

SVMlight is an intelligible software that allows researchers to implement various kernels 

such as linear, polynomial, radial and sigmoid kernels (Usmani et al., 2018a). 

 

4.2.9 Feature selection 

The optimization of the encoded features is a crucial step in the sequence analyses [43-

46]. In this study, a well-established feature dimensionality reduction, 

GainRatioAttributeEval (GA) of a WEKA software 

(https://www.cs.waikato.ac.nz/ml/weka/) was used. The GA evaluated the contribution 

of each feature by measuring the gain ratio with respect to the positive and negative 

samples. The attribute with a large value of GA is critically responsible for prediction. To 

select effective feature vectors, we executed multiple rounds of the GA with 10-fold CV 

test on the training dataset. In this study, it turned out that the GA scheme hardly increased 

the prediction performance. Therefore, the GA was applied to select the vital features and 

to deduce the supremacy of the DPC and TPC encoding schemes. 

 

4.2.10 Combined model 

To enhance the performance of the predictor, a linear regression model was used to 

combine the RF and SVM scores for AAindex, BE, DPC, and TPC, respectively. The 

models that combine the RF and SVM scores for the four descriptors were named RF-

https://www.r-project.org/
http://www.cs.cornell.edu/People/tj/svm_light/
https://www.cs.waikato.ac.nz/ml/weka/
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iAntiTB and SVM-iAntiTB, respectively, as follows. 

RF − iAntiTB = AAindexRF ∗ 𝑤1 + BERF ∗ 𝑤2 + DPCRF ∗ 𝑤3 + TPCRF ∗ 𝑤4         (3) 

SVM − iAntiTB = AAindexsvm ∗ 𝑤5 + BEsvm ∗ 𝑤6 + DPCsvm ∗ 𝑤7 + TPCsvm𝑤8     (4) 

The iAntiTB linearly combined the scores by the RF-iAntiTB and the RF-iAntiTB, as 

follows.  

iAntiTB = RF − iAntiTB ∗ 𝑤9 +  SVM − iAntiTB ∗ 𝑤10                        (5) 

Weight coefficients: w1, w2, w3, w4, w5, w6, w7, w8, w9, and w10 are adjusted from 0 to 1 with 

an interval of 0.05. 

 

4.2.11 Performance measurement 

To measure the prediction performances, accuracy (Ac), sensitivity (Sn), specificity 

(Sp), and Matthews’s correlation coefficient (MCC) were employed as follows: 

                      
n(FN)n(TN)n(FP)n(TP)

n(TN)n(TP)Ac



                                     (6) 

                      
n(FN)n(TP)

n(TP)Sn


                                                                        (7) 

                     
n(FP)n(TN)

n(TN)Sp


                                                                         (8) 

    n(FN)]][n(TP)n(FPTN)][nn(FPTP)n(FN)][n[n(TN)
n(FN)n(FP)n(TN)n(TP)MCC




  (9) 

where n(TP) characterizes the number of accurately anticipated anti-TB peptides, n(TN) 

represents that of accurately anticipated non-anti-TB peptides, n(FP) that of incorrectly 

predicted anti-TB peptides, and n(FN) that of incorrectly anticipated non-anti-TB 

peptides. Moreover, we measured the area under the ROC curve (AUC). 
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Meanwhile, the equilibrium between the anticipated anti-TB and non-anti-TB are 

analytically liable for precise estimation, Sn and Sp are inherent, comprehensible 

procedures. Generally, Sp increases with a decrease in Sn. The result of the predictors 

was assessed with a stepwise adjustment by Sp on the training dataset. We changed an Sp 

threshold level to understand how accurately anti-TB peptides are identified. In the first 

dataset, the Sp was set to 0.913, 0.851, and 0.756 for the high, moderate, and low levels 

by using threshold values of 0.3, 0.25, and 0.19, respectively. In the second dataset, the 

Sp was set to 0.960, 0.869, and 0.814 for the high, moderate, and low levels by using the 

threshold values of -0.05, -0.08, and -0.13, respectively. Details in threshold selection 

strategies are described in our previous study (Khatun, 2019). 

 

4.2.12 iAntiTB web implementation 

A user-friendly and publicly accessible web-server was established to implement the 

iAntiTB. Users submit an anti-TB peptide of interest to a query box, then the server 

returns the prediction consequence to the output webpage that contains the combined 

probability scores, job ID, and prediction decisions. Users retrieve the job ID for a next 

inquiry. The server keeps this ID for 30 days. 

 

4.3 Results and Discussion 

4.3.1 Analysis of anti-TB peptides 

It is important to examine the sequence preference of positive and negative samples. First, 

we generated the two sample sequence logos with respect to the first and second datasets 
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[28]. As shown in Figure 4-2A, we found a difference in sequences between the positive 

and negative samples in the first dataset. In the positive peptide samples, the Lysine (K) 

residues at positions 1 and 7, Tryptophan (W) at positions 2, and Leucine (L) at positions 

5, 6, 8, 12, and 20 were enriched. On the other hand, there were no significantly enriched 

amino acids at positions 3, 9, 11, 13, 15, 17, and 18; there were no depleted amino acids 

at positions 2, 8, 9, and 12. These observations suggested that positive and negative 

samples have distinct location-specific differences. In Figure 4-2B, there was different 

sequence information between the positive and negative samples in the second dataset. 

The K at position 1, 7, 9, 10, 14, and 19, Phenylalanine (F) at position 5 and 9, Cysteine 

(C) at position 2 and 13, Histidine (H) at position 13 and 18, and W at positions 2 and 11 

were significantly enriched. There were no enriched amino acids at positions 4, 8, 12, 15, 

and 20 and no depleted amino acids at positions 1, 3, 13, 14, and 19. These analyses 

suggested that the positive and negative samples have distinct location-specific 

differences. The positional and frequency-wise methods were found important to identify 

anti-TB peptides. The amino acid residues of K, W, F, L, and K were enriched at the same 

positions 1, 2, 5, 6, and 7 between the first and second datasets, but the positions of the 

depleted amino acid residues were not consistent between them. It suggests that the 

frequently occurring amino acid residues of positive samples are robust with respect to 

changes in negative samples.  
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Figure 4-2 Sequence logo representations of anti-TB peptides. The amino acid 

occurrences are shown for the positive and negative samples. (A) The two-sample logos 

for the first dataset. (B) Two-sample logos of the second dataset. 

 

4.3.2 Optimization of peptide length 

The peptide length is an important factor of the prediction performance [47,48]. To assess 

the influence of the adjacent residues, the peptide lengths were optimized using the AUC 

values. The peptide length was increased from 4 to 24 and encoded by the four 

consecutive methods of AAindex, BE, DPC, and TPC for the first and second datasets. 

Then we classified the encoded feature vectors by RF algorithm via 10-fold CV test 

(Figure 4-3). The optimal peptide length 20 was finally selected after several trials of 

developing the iAntiTB predictor. 
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Figure 4-3 AUC value by optimizing of peptide length using the RF classifier via 10-fold 

CV. (A) First training dataset and (B) second training dataset. 

 

4.3.3 Evaluation of iAntiTB using the first dataset 

To train a predictor, we used the first dataset. We selected four descriptors of AAindex, 

BE, DPC, and TPC to characterize the samples. The RF and SVM algorithms were 

employed to explore the features that are correlated with anti-TB in the training dataset. 

Then, the performance results were assessed by using a 10-fold CV and an independent 

test via RF and SVM algorithms. In both of the training and independent datasets, Figure 

4-4 depicted the ROC curves for the four single descriptor models and the combined 

models with the four descriptors (RF-iAntiTB and SVM-iAntiTB). The combined model 
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showed higher AUC than any single descriptor model. For the RF-iAntiTB the AUC value 

was highest on the training dataset, when the weight coefficient for AAindex, BE, DPC, 

and TPC were 0.35, 0.15, 0.3, and 0.2, respectively. The AUC was maximal for the SVM-

iAntiTB when the weight coefficient for AAindex, BE, DPC, and TPC was 0.05, 0.25, 

0.3, and 0.4, respectively. Table 4-1 shows the prediction performance of the RF-iAntiTB 

and SVM-iAntiTB on the training and independent datasets. The RF-iAntiTB and SVM-

iAntiTB provided high AUC values of 0.887 and 0.849 on the training dataset and 0.882 

and 0.871 on the independent one, respectively. 

 

 Table 4-1 Prediction performance for the training and independent datasets. T* 

indicates the training dataset; I* the independent dataset. 

Measure             First dataset          Second dataset 

                                     RF                 SVM                   RF            SVM 

                                       T*     I*   T*    I*    T*    I*     T*     I* 

                    Sp 0.915  0.872 0.903 0.875 0.955 0.914 0.947 0.937 

                     Sn 0.699 0.729 0.595 0.660 0.766 0.801 0.708 0.787 

                    Ac 0.807 0.801 0.749 0.768 0.861 0.858 0.828 0.862 

                   MCC 0.628 0.607 0.531 0.548 0.733 0.718 0.678 0.733 

                    AUC 0.887 0.882 0.849 0.871 0.934 0.953 0.907 0.955 

The final model of iAntiTB linearly combined the scores of the RF-iAntiTB and SVM-

iAntiTB, where the weight coefficient for them were 0.75 and 0.25, respectively. As the 

iAntiTB with a high threshold of Sp (0.913) showed Sn of 0.707, Ac of 0.810, and MCC 

of 0.636. A moderate threshold of Sp (0.851) provided Sn of 0.759, Ac of 0.804, and 

MCC of 0.599; a low threshold of Sp (0.756) showed Sn of 0.793, Ac of 0.775, and MCC 
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of 0.492. The iAntiTB presented high values to all the measures on the independent 

dataset (Table 4-2). In summary, the iAntiTB presented high prediction performance on 

both the training and independent samples of the first dataset. 

 

4.3.4 Evaluation of iAntiTB using the second dataset 

By using the second dataset, we evaluated the robustness of the iAntiTB with respect to 

change in negative samples. The ROC curves for the four single descriptor models and 

the combined models with the four descriptors (RF-iAntiTB and SVM-iAntiTB) were 

plotted on both the training and independent datasets (Figure 4-5). The combined models 

showed higher AUC than any single descriptor model. For the RF-iAntiTB the AUC value 

was highest on the training dataset, when the weight coefficient of AAindex, BE, DPC, 

and TPC were 0.15, 0.2, 0.3, and 0.35, respectively. The AUC was maximal for the SVM-

iAntiTB when the weight coefficient of AAindex, BE, DPC, and TPC was 0.2, 0.3, 0.4, 

and 0.1, respectively. The AUC values of the RF-iAntiTB and SVM-iAntiTB on the 

training dataset were 0.934 and 0.907, respectively (Figure 4-5AC). The AUC values of 

the RF-iAntiTB and SVM-iAntiTB on the independent dataset were 0.953 and 0.955, 

respectively (Figure 4-5BD). The detailed performances of the RF-iAntiTB and SVM-

iAntiTB are shown in Table 4-1. 
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Figure 4-4 ROC curves of anti-TB peptide prediction on the first dataset. (A) The RF 

classifier is applied to the training dataset. (B) The RF classifier is applied to the 

independent dataset. (C) The SVM classifier is applied to the training dataset. (D) The 

SVM classifier is applied to the independent dataset. 
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Figure 4-5 ROC curve of anti-TB peptide prediction on the second dataset. (A) The RF classifier is 

applied to the training dataset. (B) The RF classifier is applied to the independent dataset. (C) The 

SVM classifier is applied to the training dataset. (D) The SVM classifier is applied to the independent 

dataset. 

 

Table 4-2 Frequently occurring DPCs and TPCs and their corresponding feature selection scores on 

the training data. 

Top 20 

features 

DPC for first 

dataset 

DPC for second 

dataset 

TPC for first 

dataset 

TPC for second 

dataset 

Score DPC Score DPC Score TPC Score TPC 

1 0.1703 IW 0.2094 VM 0.1612 LKK 0.192 KKL 
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2 0.158 RT 0.1791 IE 0.1511 WWK 0.176 LKK 

3 0.1511 AI  0.1703 IW 0.1436 KKW 0.1732 RWF 

4 0.1436 KC 0.1673 VY 0.1436 ALA 0.1643 HWR 

5 0.1395 LG 0.1673 VT 0.1436 VKG 0.1643 RRW 

6 0.1395 II 0.1643 CA 0.1395 AGK 0.1612 RWR 

7 0.1395 WY 0.1633 HT 0.1395 RVC 0.1546 KWW 

8 0.1351 MK 0.1511 AI 0.1351 KRW 0.1511 WKW 

9 0.1351 LS 0.1511 HY 0.1351 KWW 0.1511 KWL 

10 0.1351 HS 0.1511 DE 0.1351 QKL 0.1511 KCK 

11 0.1351 CA 0.1511 NW 0.1351 RIK 0.1475 WRR 

12 0.1334 ND 0.1475 DN 0.1351 KFK 0.1475 VDY 

13 0.1302 LW 0.1475 WY 0.1351 KWL 0.1436 KKW 

14 0.1302 KM 0.1475 KY 0.1351 VNY 0.1436 LRG 

15 0.1302 IC 0.1475 NG 0.1334 WWW 0.1436 VCR 

16 0.1302 CW 0.1475 NC 0.1302 RWR 0.1395 IKK 

17 0.1302 VT 0.1436 TY 0.1302 RWF 0.1395 WRK 

18 0.1302 CE 0.1436 II 0.1302 RRK 0.1395 WRW 

19 0.1302 TR 0.1436 YG 0.1302 YQG 0.1395 KFK 

20 0.1302 CL 0.1395 CE 0.1302 QFG 0.1351 LAK 

For example, the feature 'NxxE' represents a 2-spaced residue (any amino acid) pair of 

'NE', where x stands for any amino acid. The same representation was applied to other k-

spaced residue pairs.  

 

The final model of the iAntiTB linearly combined the RF-iAntiTB and SVM-iAntiTB 

scores with weight coefficients of 0.35 and 0.65, respectively. The iAntiTB with a high 

threshold of Sp (0.960) showed Sn of 0.745, Ac of 0.853, and MCC of 0.721 (Table 4-

3). A moderate threshold of Sp (0.869) provided Sn of 0.835, Ac of 0.851, and MCC of 

0.705, while a low Sp threshold of 0.814 showed Sn of 0.880, Ac of 0.847, and MCC of 

0.696. In the iAntiTB, the AUC value was 0.946, while the AUCs of the RF-iAntiTB and 

SVM-iAntiTB were 0.934 and 0.907, respectively. The Sn, Sp, and MCC for high, 
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moderate, and low values were also evaluated on the independent dataset in Table 4-3. 

Altogether, the iAntiTB presented robust performances to the second dataset. 

 

Table 4-3 Prediction performances of the iAntiTB at high, moderate, and low thresholds 
Dataset          Training dataset        Independent dataset  

Threshold Sp Sn Ac MCC AUC Sp Sn Ac MCC AUC 

First 

dataset 

 High 0.913 0.707 0.810 0.636 0.896 0.851 0.750 0.800 0.604 0.913 

Moderate 0.851 0.759 0.804 0.599 0.896 0.809 0.771 0.789 0.580 0.913 

 Low 0.756 0.793 0.775 0.492 0.896 0.745 0.813 0.779 0.559 0.913 

Second 

dataset 

 High 0.960 0.745 0.853 0.721 0.946 0.875 0.936 0.905 0.812 0.959 

Moderate 0.869 0.835 0.851 0.705 0.946 0.833 0.957 0.895 0.796 0.959 

 Low 0.814 0.880 0.847 0.696 0.946 0.771 0.964 0.868 0.740 0.959 

The performances of the iAntiTB were computed using threshold values of 0.3, 0.25, and 

0.19 for the first dataset and -0.05, -0.08, and -0.13 for the second dataset. A 10-fold CV 

of training test was employed. 

 

4.3.5 Significant features of DPC and TPC 

Firstly, to explore the most significant residues of the DPC and TPC encoding schemes, 

the top 20 features were collected by the GA feature selection scheme from the first 

dataset. The significant residue sequences and the scores with their corresponding 

positions are listed in Table 4-2. A radar diagram shows the significant residue sequences 

as shown in Figure 4-6A. For the DPC methods on the first dataset, 'IW' represented the 

most important residue pair and was enriched in the positive samples. The pair of ‘RT’ 

signified the second enhanced motif adjoining negative samples of anti-TB peptides. 

Likewise, the top 20 important features were collected from the TPC method from the 

first dataset. The amino acid residues of ‘LKK’ was most enriched in the radar diagram 

(Figure 4-6C). The average of the top 20 features between two samples was found 
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significant (by a two-sample paired t-test with a p-value of <0.05) (Table 4-4), signifying 

the efficiency of the DPC and TPC encodings on the first dataset. 

 

Table 4-4 Statistical significance (p-value) of the top 20 features by using the two-sample 

paired t-test between positive and negative samples on the training data.  
Top 20 features DPC for first dataset DPC for second 

dataset 

TPC for first 

dataset 

TPC for second 

dataset 

1 2.25E-03 8.92E-03 1.27E-04 1.94E-06 

2 6.91E-04 9.01E-03 1.41E-03 2.90E-05 

3 2.09E-03 4.16E-02 4.41E-03 2.67E-05 

4 4.41E-03 7.35E-05 1.01E-02 1.47E-04 

5 7.82E-03 3.91E-04 1.72E-02 2.27E-04 

6 4.45E-02 2.26E-03 7.82E-03 2.59E-04 

7 7.02E-03 2.82E-02 2.78E-02 8.04E-04 

8 3.70E-02 4.28E-02 1.39E-02 1.41e-03 

9 1.39E-02 1.85E-02 3.93E-02 2.09E-03 

10 1.11E-02 1.25E-03 4.29E-02 1.01E-02 

11 2.49E-03 2.09E-02 2.93E-03 2.50E-03 

12 4.52E-02 1.13E-08 1.42E-02 3.61E-03 

13 5.22E-02 5.75E-06 3.42E-02 4.41E-03 

14 2.25E-03 4.07E-02 3.11E-02 6.41E-03 

15 1.22E-02 1.67E-02 1.29E-02 2.63E-04 

16 2.26E-05 1.24E-02 1.02E-02 7.82E-03 

17 8.32E-03 9.62E-04 1.41E-03 1.11E-02 

18 3.26E-02 2.61E-02 7.29E-02 7.82E-03 

19 6.05E-03 3.17E-03 4.24E-03 3.12E-03 

20 5.64E-03 8.92E-03 2.49E-02 1.92E-02 

 

Secondly, the top 20 significance features were collected from the second dataset by using 

the DPC and TPC schemes (Table 4-2). The DPC of ‘VM’ was most enriched in the 

positive samples of the first dataset (Figure 4-6B). The TPC of ‘KKL’ was most enriched 
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in the positive samples. The collected features by using the DPC and TPC schemes were 

significantly validated by a two-sample pair t-test for the second dataset (Table 4-4), 

suggesting the effectiveness of DPC and TPC encoding schemes. The enriched residues 

were estimated to play an important role in identifying anti-TB peptides. Moreover, we 

observed several common DPCs of ‘IW’, ‘CA’, ‘II’, ‘AI’, ‘VT’, and ‘CE’ in both the first 

and second datasets. In the TPC scheme, we found ‘LKK’, ‘RVC’, ‘KRW’, ‘WWK’, and 

‘KKW’ are common to both the datasets. The above measurement suggests that the 

common DPCs and TPCs are involved in the prediction of anti-TB peptides. 

 

Table 4-5 Performances of different anti-TB peptide predictors on the training dataset. 

Predictor First dataset Second dataset 

Sp Sn Ac MCC AUC Sp Sn Ac MCC AUC 

RF-

iAntiTB 

0.915 0.699 0.806 0.628 0.887 0.995 0.766 0.860 0.733 0.934 

SVM-

iAntiTB 

0.903 0.595 0.749 0.531 0.849 0.947 0.708 0.828 0.678 0.907 

iAntiTB 

 

0.913 0.707 0.808 0.636 0.896 0.960 0.745 0.852 0.721 0.946 

AntiTBpr

ed 

0.729 0.802 0.766 0.530 0.830 0.862 0.688 0.775 0.560 0.850 
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Figure 4-6 Top 20 amino acid residues selected by the GA feature selection method. 

Green color denotes anti-TB peptides, while blue color denotes nonanti-TB peptides. The 

radar diagrams of AB and CD are represented with respect to the DPCs and TPCs, 

respectively. (A) Frequently occurring DPCs in the first dataset. (B) Frequently occurring 

DPCs in the second dataset. (C) Frequently occurring TPCs in the first dataset. (D) 

Frequently occurring TPCs in the second dataset. 
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4.3.6 Comparison performance of iAntiTB with AntiTBpred 

To make a fair comparison with the existing predictor AntiTBpred, we used two types of 

training samples (Materials and Methods). AntiTBpred predictor reserved all samples as 

a positive and negative samples without considering training and independent sets. Since 

the developers of the AntiTBpred did not separate the training and independent samples, 

the performance comparison on the independent set was not reasonable. We directly 

assessed the AntiTBpred performance according to their original literature. As shown in 

Table 4-5, the proposed iAntiTB predictors achieved much higher AUCs on the training 

sets of the first and second datasets than the AntiTBpred. 

 

4.3.7 Advantages of iAntiTB  

Assessment of the iAntiTB in comparison to the current predictor antiTBpred is abridged 

in a theoretical viewpoint. Firstly, the iAntiTB employed the AAindex, BE, DPC, and 

TPC, while the antiTBpred used the amino acid composition, DPC, and binary profiles 

via N5C5 encodings. Secondly, the iAntiTB combined the RF-iAntiTB and SVM-

iAntiTB scores via a linear regression model, while the antiTBpred did not consider any 

combined one. Thirdly, the iAntiTB controlled a threshold value of Sp to understand 

which peptides contribute to prediction of anti-TB peptides, while the antiTBpred did not 

control the Sp level. Finally, the iAntiTB investigated the residues critically responsible 

for the anti-TB peptide prediction, while the antiTBpred did not illustrate them. 
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4.4 Summary of chapter 4 

In this chapter, author develop developed the iAntiTB to accurately predict anti-TB 

peptides by integrating the four descriptors through RF and SVM algorithms. To 

characterize the significant features, a feature selection analysis was carried out to 

facilitate the explaining and understanding of our prediction model. The iAntiTB is a 

promising computational predictor that outperforms the existing one. A web-application 

of the iAntiTB is presented for the public to facilitate drug discovery.  
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CHAPTER 5 PREDICTION OF LINEAR B-CELL 

PEPTIDES BY INTEGRATING SEQUENCE AND 

EVOLUTIONARY FEATURES 
 

5.1 Introduction 

B-cell peptide or epitopes (BCEs) are specific regions of immunoglobulin molecules that 

can stimulate the immune system(Wang, 2020; Wang et al., 2020a; Wang et al., 2020b; 

Wang et al., 2020c; Yan et al., 2020; Yang et al., 2020; Yao et al., 2020; Yi et al., 2020; 

Zhang et al., 2020), which contributes to diagnostic test, antibody production, and vaccine 

design (El-Manzalawy et al., 2008; Tomar and De, 2010; Yang and Yu, 2009). B cells 

are activated by BCEs to perform a variety of biological functions (Groell et al., 2018; 

Tomar and De, 2010). Identification of BCEs is challenging but crucial for 

immunotherapy and immunodiagnostics (Guedes et al., 2018; Ma et al., 2018; Mangsbo 

et al., 2018; Yi et al., 2017). Nowadays, biopharmaceutical research and development of 

peptide-based antibodies are growing up due to their high efficiency, biosafety, and 

acceptability (Kang et al., 2019; Kozlova et al., 2018; Olvera et al., 2020; Peng et al., 

2020; Poretsky et al., 2020; Rahman Kh et al., 2016; Rao et al., 2020; Usmani et al., 

2018b). Thus, the analysis of BCEs is prerequisite for the development of penetrating 

diagnostic tests and design of the operative vaccines. 

BCEs are categorized into two groups: continuous and discontinuous ones (Barlow et 

al., 1986; El-Manzalawy et al., 2008; Langeveld et al., 2001). Peptides in the continuous 

group, called linear BCEs, consists of consecutive amino acids. Discontinuous peptides 

are provided in the form of spatially folded polypeptides and their antigen-binding 
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residues are scattered in their amino acid sequences, making it hard to find them from the 

primary sequences [21]. To identify the discontinuous peptides, it is necessary to consider 

many factors such as biochemical properties and structural proximity (Gao et al., 2012; 

Liang et al., 2009; Sweredoski and Baldi, 2008). Despite the complex form of the 

discontinuous peptides, they are less effective diagnostic/treatment tools than continuous 

ones (Kozlova et al., 2018). Linear BCEs have vast application in the area of vaccine 

design, immunodiagnostic test, antibody production, as well as disease diagnosis and 

therapy (Bi et al., 2017; Bryson et al., 2010; Chen and Chang, 2017; El-Manzalawy et al., 

2017; Khairy et al., 2017; Steere et al., 2011; Sweredoski and Baldi, 2009; Wang et al., 

2018; Yu et al., 2016). Given experimental identification of BCEs is labor intensive and 

costly, computational identification of BCEs has gained remarkable interest recently 

(Balachandran Manavalan1 and Lee, 2018; Gupta et al., 2013; Jespersen et al., 2017; Saha 

and Raghava, 2006; Wang and Pai, 2014). Several computational approaches have been 

developed to predict BCEs, which can be categorized into local and global predictors. 

Local predictors, such as BepiPred (Jespersen et al., 2017), Bcepred (Saha and Raghava, 

2007), and COBEpro (Sweredoski and Baldi, 2009), explore some potential BCE 

encoding sequences from given protein sequences. These local methods aim to identify 

the regions or stretchs of proteins that form BCEs [31], but it is difficult to specify the 

exact regions. Global predictors, such as iBCE-EL (Balachandran Manavalan1 and Lee, 

2018), IgPred (Gupta et al., 2013), ABCpred (Saha and Raghava, 2006), SVMTriP (Yao 

et al., 2012), and LBtope (Singh et al., 2013), determine whether a given sequence is a 

BCE or not. Since the number of BCEs have rapidly increased in the immune peptide 

database (Vita et al., 2018), global methods gain attention as the classifier of BCEs. Two 

global methods, LBtope and iBCE-EL, have recently been developed and publicly 

available (Balachandran Manavalan1 and Lee, 2018; Singh et al., 2013). These two 

predictors exclusively investigated primary sequence-based features, such as amino acid 

composition, binary properties, and physicochemical properties, but did not consider any 

evolutionary information. Therefore, advanced analytic tools for identifying linear BCEs 

are still desirable. 

In this work, we have established a computational, global predictor named 

Identification of Linear B-cell Peptide (iLBE) by integrating sequence and evolutionary 

features. For evolutionary features, we considered the position-specific scoring matrix 
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(PSSM) and composition of profile-based amino acids frequency (PKAF) encoding 

descriptors. For primary sequence features, we considered amino-acid index property 

(AIP) and amino acid frequency composition (AFC). To optimize the consecutive feature 

vectors, a non-parametric Wilcoxon-rank sum (WR) test was employed. Then the random 

forest (RF) algorithm using the optimal consecutive feature vectors was used to identify 

linear BCEs. By the combination of the RF scores through logistic regression (LR), the 

iLBE yielded better performance than other predictors. Finally, we implemented iLBE as 

a user-friendly web application. The computational outline of the iLBE is shown in 

Figure 5-1. 

5.2 Materials and Methods 

5.2.1 Dataset preparation 
Experimentally well-characterized datasets of BCEs are needed to develop an accurate 

machine learning (ML) classifier. We pulled an experimental dataset of linear peptides 

from the Immune Peptide Database (IEDB), which consists of the verified positive 

samples (BCEs) and negative samples (non-BCEs) (Schisler and Palmer, 2000; Vita et al., 

2015). The IEDB integrates multi-species datasets derived from virus, bacteria, and fungi. 

We removed homolog sequences from these collected datasets. To evaluate the potential 

over-fitting problem in the prediction model, a 70% sequence homology reduction 

method of CD-HIT was performed (Huang et al., 2010). To make a fair comparison with 

other methods available, the same training and independent samples were retrieved from 

a recent study (Balachandran Manavalan1 and Lee, 2018). The training model contained 

4440 BCEs and 5485 non-BCEs, whereas the independent dataset consisted of 1110 BCEs 

and 1408 non-BCEs. To avoid the prediction biases, a none-redundant dataset of 

experimentally validated BCEs and non-BCEs was used, and the samples with more than 

70% sequence similarity were excluded. In this study, the peptide length of BCEs and 

non-BCEs was set to 24. When the length of positive and negative peptide samples was 

< 24, the null residues (gaps) were added downstream. The curated datasets are shown in 

our web server and a statistics of the curated dataset is included in Table 5-1. 
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Figure 5-1 Overview of the iLBE. 

 

Table 5-1 Statistics of the datasets used in this study 

Length of epitope Training set Independent set 

BCE Non-BCE  BCE Non-BCE 

7-12aa 478 (10.77%) 372 (6.78%) 129 (11.62%) 115 (8.17%) 

13-20aa 3,465 

(78.04%) 

4,910 

(89.52%) 

870(78.38%) 1,215 

(86.29%) 

21~  497 (11.19%) 203 (3.7%) 111 (10%) 78 (5.54%) 

Total 4,440 (100%) 5,485 (100%) 1,110 (100%) 1,408 (100%) 

The parentheses represent the percentages of epitopes. 
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5.2.2 Feature encoding strategies 

PSSM profile 
The PSSM profile was generated using the PSI-BLAST (a version of 2.2.26+) with the 

whole Swiss-Prot non-redundant-protein database (a version of December 2010). We 

used two onset parameters: an iteration times of 3 and e-value cutoff of 0.0001 (Hasan et 

al., 2017b; Hasan et al., 2018d). The feature vectors were extracted based on the sequence 

of BCEs and non-BCEs. For each peptide sequence with length 24, an (24 × 20) 

dimensional vector was generated via the PSSM encoding. When the query peptide length 

is < 24, zero was added downstream of each PSSM to neutralize the null residues. 
 

PKAF encoding 
After generating the PSSM profile, we generated PKAF feature vectors (Dong et al., 2013; 

Hasan et al., 2015). In brief, if the residue pair appears between m and m+k+1, the 

composition scores were measured or standardized by the following formula: 

𝑆𝑖𝑗 =

∑ max [min{PSSM(𝑚, 𝑥𝑖), PSSM(𝑚 + 𝑘 + 1, 𝑥𝑗)} , 0]
𝑇

𝑖,𝑗=1

𝑊 − 1
          (1)  

where W is the peptide length of BCEs, a k-spaced residues characterized as xi{k}xj (i, j= 

1, 2, …, 20) represent 20 types of common residues, and T means that xi{k}xj performs T 

times for the positive /negative samples. PSSM (m, xi) signifies the score of amino acid 

xi at mth row in xi{k}xj, and PSSM (m+k+1, xj) indicates the score of residue xj at the row 

of (m+k+1)th. An optimum value of k is 0 or 1, and the dimension of PKAF was 800. 

In addition, we employed a similarity-search-based tool of BLAST (version of ncbi-

blast-2.2.25+) to examine whether a query peptide belongs to BCEs or not (Altschul et 

al., 1997; Whelan et al., 2013). An e-value of 0.01 via BLASTP was used for the whole 

Swiss-Prot non-redundant90 database (version of December 2010). 

 

AIP encoding 
The AIP database (a version of 9.1) contained numerical indices of biochemical and 

physicochemical properties of amino acids (Kawashima et al., 2008). With assessing 

various types of indices, we measured 8 types of high informative indices, including 



88 
 

NAKH920108, CEDJ970104, LIFS790101, BLAM930101, MAXF760101, 

TSAJ990101, NOZY710101, and KLEP840101. To produce the feature vectors, the 

selected AIP properties were transformed into the BCEs and non-BCEs. A null residue 

was used to fill the gap and pseudo residues. In a peptide sequence with length W, an (W 

× 8) dimensional vector was generated via the AIP encoding. 
 

AFC encoding 
The AFC encoding is widely used for representing short sequence peptide motifs [21,24]. 

The procedure of AFC is briefly described as follows. When a peptide is composed of 20 

types of common residues, it contains (AA, AC, AD, …, YY)400 types of residue pairs. 

An optimal value of k, which signifies the frequency of any two-amino acid pairs, was set 

to 0 or 1. Consequently, 20 × (k+1) × 20 = 800 distinguished residue pairs were generated. 

The feature vector was then calculated and standardized by the following formula: 

400

,...,, 










total

YY

total

AC

total

AA

N
N

N
N

N
N

                                (2) 

where Ntotal is the length of peptide in the total composition residues. If peptide length W 

is 24 and k is 0 or 1, then Ntotal = W−k−1 is 23 or 22, respectively. (NAA, NAC,…, NYY) 

represents the frequency vector of amino acid pairs within the BCEs and non-BCEs. 
 

5.2.3 Feature selection 
Uncorrelated and redundant features may exist in the generated feature vectors, which 

can affect the accuracy of a prediction model (Hasan et al., 2017b). Hence, feature 

selection approaches are important to collect the informative features and to characterize 

the intrinsic properties of BCEs. To characterize the features important for predicting 

BCEs, a well-established reduction method of feature dimensionality, WR, was used. A 

large value of the WR specifies that the corresponding residues have a great impact on 

the prediction performance. Details in the WR scheme are described elsewhere (Hasan et 

al., 2018d). 
 

5.2.4 Model training and evaluation 
To construct a prediction model, an RF classifier was used. It is a supervised ML 
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algorithm and widely used in bioinformatics research (Hasan et al., 2018b; Hasan et al., 

2017c; Hasan et al., 2016; Li et al., 2012; Md. Mehedi Hasan, 2017; Pan et al., 2014; 

Zhao et al., 2018). In brief, the RF is an ensemble of a number of decision trees, H = 

{H1(S), H2(S), …, HN(S)}, which are built on N random subcategories of the training 

samples. This forest was trained with the bagging method to build an ensemble of decision 

trees. The general idea of the bagging method is that learning models are assembled to 

increase the global performance. Details in the RF algorithm were provided in previous 

studies (Hasan et al., 2018d; Hasan et al., 2016). The R package was employed to 

implement the RF into the proposed iLBE (https://cran.r-

project.org/web/packages/randomForest/). 

Three commonly used ML algorithms, naive Bayes (NB) (Lowd, 2005), support 

vector machine (SVM) (Hearst, 1998), and artificial neural network (ANN) (R. S. 

Michalski 2013), were compared with the RF algorithm. The WEKA software (Frank et 

al., 2004) was used for the NB and ANN algorithms and the LIBSVM software 

(https://www.csie.ntu.edu.tw/~cjlin/libsvm/) was used for the SVM algorithm 

To construct the final model of iLBE, the respective RF scores evaluated from the 

four features (PSSM, PKAF, AIP, and AFC) were combined using a LR algorithm. The 

LR algorithm was effectively used in ubiquitination site prediction (Chen et al., 2015). 

After examining the performance of the resulting S-prediction models (S is the number 

of the encoding schemes) the final prediction score P was calculated by: 

          log (
P

1−P
) = ∑ 𝛽𝑛𝑅𝑛 + αS

n=1                                    (3) 

where 𝛽n is the regression coefficient, Rn is the RF score of each feature, and 𝛽 is the 

regression constant. The R software package (https://cran.r-project.org/) was employed 

for a generalized model of LR. 
 

5.2.5 Performance evaluation matrixes 
To examine the performance of iLBE, four widely-used statistical measures, represented 

as sensitivity (Sn), specificity (Sp), accuracy (Ac), and Matthews correlation coefficient 

(MCC), were defined as: 

 

https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/web/packages/randomForest/
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n(FN)n(TP)

n(TP)Sn


                                                                  (4) 

n(FP)n(TN)
n(TN)Sp


                                     (5)             

n(TN)n(FP)n(FN)n(TP)
n(TN)n(TP)Ac




                                                                  (6) 

    n(FN)]][n(TP)n(FPTN)][nn(FPTP)n(FN)][n[n(TN)
n(FN)n(FP)n(TN)n(TP)MCC




         (7) 

where n(TP), n(TN), n(FP), and n(FN) demonstrate the number of anticipated positive, 

anticipated negative, unexpected positive, and unexpected negative samples, respectively. 

Furthermore, we depicted the receiver operating characteristic (ROC) curve (Sn vs. 1-Sp) 

and measured the area under curve (AUC) values (Centor, 1991; Gribskov and Robinson, 

1996). 

The prediction performance was assessed using 10-fold cross-validation (CV) test on 

the training model until no further improvement occurred after each round of optimization 

parameters. The training dataset was separated into 10 groups, where 9 of the groups were 

used for training and the remaining one for test. This selection process was repeated 10 

times to assess the average performance of the 10 models. 

 

5.2.6 Model development 
To develop the prediction model, we first compiled the training and independent datasets 

in the same manner as described by Manavalan et al. (see Dataset preparation section) 

(Balachandran Manavalan1 and Lee, 2018). The prediction result was evaluated based on 

the criterion of whether the indication measure (Sp, Sn, MCC, Ac, or AUC) exceeds a 

threshold value. The AUC value of the ROC curve was evaluated, with the threshold value 

of the RF score changed to classify a BCE or non-BCE. The threshold value determines 

the desirable balance to successfully detect positive and negative BCEs. The true positive 

rate (Sn) and the false positive rate (1-Sp) were calculated for each threshold value of the 

RF scores. The high, moderate, and low-level thresholds were determined based on RF 

scores of 0.485, 0.410, and 0.360, respectively, which corresponded to Sp levels of 0.866, 

0.747, and 0.636 in the training set results, respectively. 
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5.2.7 Web application and implementation 

To provide a prediction service of potential BCEs to the scientific community, an 

accessible web page of the iLBE was established at 

http://kurata14.bio.kyutech.ac.jp/iLBE/. The web application was written in various 

programming languages including Perl, R, CGI scripts, HTML, and PHP. The server 

takes antigen peptides written with 20 types of common amino acids in the FASTA format. 

When the submission job is completed, the server returns the prediction results with a 

combined RF score of the predicted BCEs in a tabular form to the output webpage with 

the job ID and a query peptide. Users can save the ID for a future query and the iLBE 

server stores this ID for a month. 

 

5.3 Results and discussion 

5.3.1 Analysis of positional amino acids 

To investigate the sequence preference of BCEs and non-BCEs, we performed amino acid 

positional analysis using the iceLogo software (Colaert et al., 2009). In the training 

datasets, 1 to 15 residues were employed to create iceLogos. The average length of the 

BCE and non-BCEs was set to 15. Significant differences in the surrounding BCEs and 

non-BCEs were observed by Welch's t-test with p < 0.05 (Figure 5-2). The neutral amino 

acids P, N, and Y showed a strong preference on BCEs at positions 3, 4, 6, 7, 8, and 10, 

while amino acids A, H, L, M, and V showed a strong preference for non-BCEs. This 

analysis supports the idea that different residues are targeted by distinct BCEs, suggesting 

that combination of different features is critical for accurate prediction of BCEs. 

http://kurata14.bio.kyutech.ac.jp/iLBE/
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Figure 5-2 Distribution of amino acids of BCEs. The iceLogo software 

(https://iomics.ugent.be/icelogoserver/) is used. The amino acids show a significantly 

different distribution between the BCE and non-BCEs (p<0.05). 

 

Table 5-2 Performance comparison among four single feature methods and the combined 

feature method (iLBE) 

Method Sp Sn Ac MCC AUC  p-value 

PSSM 0.703 0.714 0.708 0.368 0.746 0.006 

AIP 0.704 0.689 0.697 0.369 0.742 0.006 

PKAF 0.705 0.737 0.719 0.429 0.774 0.033 

AFC 0.703 0.739 0.719 0.432 0.775 0.038 

iLBE 0.747 0.759 0.752 0.496 0.809  

A10-fold CV test was applied to the training dataset. The 2-6 columns represent the 

prediction performances of the single feature method and the combined method (iLBE). 

The last column signifies a statistical test based on the AUC measures by a two-tailed t-

test, where p ≤ 0.05 indicates a statistically meaningful difference between the iLBE 

and each single feature method. 

https://iomics.ugent.be/icelogoserver/
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5.3.2 Selection of the optimal model 
To inspect the performance of the iLBE, the curated BCE datasets were first coded as 

mathematical feature vectors based on the four successive encodings of AIP, AFC, PSSM, 

and PKAF. Given prediction performance may be impaired by uncorrelated and 

redundant evidence in the curated features, we used the WR method to optimize the 

feature vectors. After several trials, top 170, 510, 320, and 490 feature vectors were 

selected from the AIP, AFC, PSSM, and PKAF descriptors, respectively. Then the 

selected feature vectors were rearranged in the ascending order of WR values. The RF 

classifiers were trained by using the final four encoding feature vectors. The decision 

trees of RF were optimized over the training dataset by a 10-fold CV test. Then the RF 

scores by the PSSM, AIP, PKAF, and AFC encoding methods were combined by the LR 

scheme with regression coefficients of 0.435, 0.102, 1.337, and 0.465, respectively. As 

shown in Table 5-2, AFC presented a higher performance than any other single encoding 

approach in terms of Ac, Sn, MCC, and AUC in the training dataset. The combined model 

of iLBE outperformed all the four single encoding approaches in terms of Sn, MCC, Ac, 

and AUC. The superiority of iLBE was confirmed to be significant by two-tailed t-test. 

Table 5-3 Performance comparison of iLBE with existing predictors 

Predictors Threshold Sp Sn Ac MCC AUC  

LBtope  - 0.672 0.660 0.667 0.330 0.730 

iBCE-EL  - 0.739 0.716 0.729 0.454 0.782 

 

iLBE 

 High 0.866 0.568 0.733 0.452 0.809 

Moderate 0.747 0.759 0.752 0.496 0.809 

 Low 0.636 0.838 0.726 0.475 0.809 

A10-fold CV test was applied to the training dataset. The performances of the LBtope 

and iBCE-EL methods were collected according to their published studies. In the 

proposed iLBE, the high, moderate and low-level thresholds were determined based on 

the RF scores of 0.485, 0.410 and 0.360, respectively, which corresponded to the Sp levels 

of 0.866, 0.747 and 0.636 in the training dataset results. 
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The performances of each single feature vector-trained model and the combined model 

were evaluated in the training and independent datasets, as shown in Figure 5-3. AUCs 

obtained using iLBE were higher than those obtained using any single feature model for 

both training and independent datasets, demonstrating the robustness of the iLBE model. 

Moreover, we also measured the predictive performance based on either sequence or 

evolutionary features alone for the training and independent datasets (Table 5-5). The 

AUC values of the sequence feature-based methods were at most 0.791 and 0.798 for the 

training and independent sets, respectively (Table 5-5)). Similarly, the AUC values of the 

evolutionary feature-based methods were at most 0.789 and 0.786 for the training and 

independent sets, respectively. Neither the sequence nor evolutionary feature-based 

methods outperformed iLBE, indicating that the combination of the sequence and 

evolutionary features in iLBE is effective for enhanced prediction accuracy. 

 

In addition, we used BLAST to determine the sequence profile information of BCEs and 

non-BCEs in the training dataset [40]. In total 1038 BCE and 597 non-BCE samples were 

selected out of 4440 BCE and 5485 non-BCE samples via the BLASTP with an e-value 

of 0.01. Then the BLAST performance was evaluated through 10-fold CV test. The Sp, 

Sn, Ac, MCC, and AUC were 0.811, 0.214, 0.544, 0.042, and 0.569, respectively, which 

are lower than those of iLBE. Therefore, BLAST was not considered for the final 

prediction. 

 

Table 5-4 Performance comparison with existing predictors on the independent dataset 

Predictors Threshold Sp Sn Ac MCC AUC  p-value 

LBtope  - 0.567 0.759 0.615 0.328 0.730 <0.01 

iBCE-EL  - 0.724 0.742 0.732 0.463 0.786 <0.05 

 

iLBE 

 High 0.861 0.554 0.726 0.440 0.813  

Moderate 0.745 0.752 0.748 0.494 0.813  

 Low 0.635 0.830 0.721 0.467 0.813  
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The high, moderate and low thresholds in the 2nd column were considered based on the 

training dataset performances. The 8th column represents the statistically significant 

difference (p<0.05) by a paired two-sample t-test based on the AUC values between the 

iLBE and each existing method. 
 

 

 

Figure 5-3 ROC curves of the various prediction models. (A) The training dataset. (B) 

The independent data set. The iLBE is the LR-combined model of the PSSM, AIP, PKAF 

and AFC encoding schemes. Their LR coefficients are 0.435, 0.102, 1.337, and 0.465, 

respectively. 

 

We found that the AFC scheme presented the highest AUC, Sp, Sn, Ac, and MCC for all 

four single encoding methods (Table 5-2). To investigate significant residues estimated 

by the AFC method, the top 25 amino acid pairs were examined through the WR feature 

selection. The top 25 significant residue pairs and the WR scores were listed in Table 5-

6. As shown in Figure 5-4, the average value of the AFC was measured for the BCE and 

non-BCE peptides. The selected feature of LxT (where ‘x’ signifies any amino acid) was 

the most significant residue pair and depleted around non-BCE (P = 3.112E–12, t-test, 

Table 5-6). Likewise, the feature SP that characterizes a 0-spaced (i.e., there is no space 

in this case) pair of residues SP is important and enriched in BCEs (Figure 5-4; P = 
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2.88E–09, t-test, Table 5-6). The above similar concept was applied to other selected pairs 

of residues (Figure 5-4). Importantly, the top 25 features contained P, N, and Y residues, 

which showed strong preference in positional residue analysis (Figure 5-2). These 

residues would play an important role in the recognition of BCEs. Moreover, as shown in 

Table 5-6, the average AFC of top 25 features was significantly different between BCEs 

and non-BCEs (P < 0.05; paired two-sample t-test). 
 

 

Figure 5-4 The distribution of the top 25 significant features deriving from the AFC 

scheme. The Y-axis represents the average value of the AFCs for BCEs and non-BCEs. 

The X-axis represents the selected features. 
 

 

5.3.3 Optimal length of peptides 

To optimize the length of short peptides, we investigated the different lengths (5, 10, 15, 

20, or 25 amino acids) of BCEs using the four encoding schemes of AIP, PSSM, AFC, 

and PKAF and their combined scheme (iLBE) (Table 5-7). The RF algorithm without 

any feature selection approach was used to evaluate prediction performance on the 

training data via 10-fold CV test. The prediction performance increased with an increase 

in sequence length, and was saturated for lengths of 20 and 25 (Table 5-7). Therefore, a 

24 sequence length of 24 was determined for iLBE.  
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Table 5-5 AUC values of prediction based on sequence or evolutionary methods 
Methods Training dataset Independent dataset 

Sequence-

based method 

AFC 

AIP 

AFC+AIP 

0.742 

0.775 

0.791 

0.751 

0.778 

0.798 

Evolutionary-

based method 

PSSM 

PKAF 

PSSM+PKAF 

0.746 

0.774 

0.789 

0.726 

0.773 

0.786 

 

5.3.4 Comparison with different ML algorithms 
The RF algorithm was characterized in comparison with the widely-used ML algorithms 

of NB, SVM, and ANN on the same training dataset. AUC values of predictions using 

the four algorithms without any feature selection were evaluated by 10-fold CV test. As 

shown in Table 5-8, the RF algorithm provided a higher AUC than any other algorithms. 

Accordingly, we implement the RF algorithm in iLBE. 

 

Table 5-6 Top 25 AFC features ranked by a WR-based selection method  
No. of feature WR feature p-value 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

L×T 

SP 

NN 

NK 

Y×N 

D×N 

PY 

P×P 

N×K 

KY 

N×N 

3.112E-12 

2.88E-09 

4.76E-08 

1.29E-08 

2.91E-08 

9.39E-09 

9.18E-08 

1.28E-08 

2.82E-07 

1.03E-06 

6.77E-08 



98 
 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

PP 

YK 

NP 

N×Y 

S×E 

P×D 

EY 

L×D 

K×Y 

AM 

Y×E 

Q×E 

K×L 

ND 

1.76E-07 

2.51E-06 

6.09E-06 

7.01E-06 

4.04E-06 

4.17E-06 

1.28E-06 

3.34E-06 

3.068E-06 

7.75E-06 

9.32E-06 

1.21E-05 

1.78E-05 

3.39E-04 

The p-values were calculated using a paired t-test for the top 25 significant BCEs and 

non-BCEs. 
 

5.3.5 Comparison of iLBE with existing methodologies 
We evaluated the prediction performance of the proposed iLBE with existing approaches 

on the same dataset. First, we employed the training dataset to compare the performance 

of iLBE with those of the LBtope and iBCE-EL models, which are the state-of-the-art 

predictors and publicly accessible. As shown in Table 5-3, an increase in Sp decreased 

Sn for iLBE. iLBE with the moderate threshold showed higher Sp, Sn, MCC, Ac, and 

AUC than LBtope and iBCE-EL, demonstrating that iLBE outperforms the existing 

pioneering predictors. Furthermore, we compared the performance of iLBE with that of 

LBtope and iBCE-EL in the independent dataset (see Method). As shown in Table 5-4, 

an increase in the Sp also decreased the Sn for iLBE in the independent dataset. iLBE 

with the moderate threshold outperformed the two existing methods in terms of Sp, MCC, 

and AUC, while it presented almost the same Sn as LBtope. The superiority of iLBE to 

the existing methods was confirmed to be significant (P < 0.05, two sample t-test). 
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Table 5-7 AUC values for different lengths of epitopes 

Methods AIP PSSM AFC PKAF iLBE 

5aa 0.526 0.538 0.546 0.555 0.563 

10aa 0.557 0.559 0.579 0.576 0.598 

15aa 0.589 0.588 0.663 0.687 0.718 

20aa 0.703 0.737 0.765 0.761 0.781 

25aa 0.716 0.729 0.758 0.763 0.786 

A 10-fold CV test was applied to the training dataset 
 

5.3.6 Effect of combination methods  
To investigate the effects of combination methods on the prediction performance, we built 

a competitive model of iLBE, which arranges the four encoding vectors of AFC, AIP, 

PSSM, and PKAF in a row, instead of the use of LR. It is named as the sequential 

combination model. The resultant total dimension was 2192. The top 380 feature vectors 

were collected and rearranged in the ascending order of WR values. The WR-optimized 

feature vectors were used to train the RF classifier via 10-fold CV test. The sequential 

combination model with and without feature collection approaches yielded AUC values 

of 0.778 and 0.767 on the training dataset, respectively (Figure 5-5A), and presented 

0.798 and 0.781 on the independent dataset, respectively (Figure 5-5B). The LR-based 

combination of iLBE outperformed the sequential combination model (Figure 5-3) and 

was found to be the best in this study. 
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Figure 5-5 ROC curve of the sequential combination model that integrates the feature vectors with 

and without feature selections approach. A) Training and B) Independent datasets. 

 

 

Figure 5-5 ROC curve of the sequential combination model that integrates the feature 

vectors with and without feature selections approach. A) Training and B) Independent 

datasets 
 

Table 5-8 AUC values for different ML algorithms  

Algorithms PSSM AIP PKAF AFC iLBE 

NB 0.682 0.717 0.736 0.747 0.756 

ANN 0.699 0.711 0.732 0.739 0.743 

SVM 0.733 0.721 0.753 0.766 0.774 

RF 0.738 0.739 0.768 0.767 0.788 

A 10-fold CV test was applied to the training dataset 
 

 



101 
 

5.4 Summary of chapter 5 
We have developed a novel computational predictor, iLBE, that accurately predicts BCEs 

for both the training and independent datasets. iLBE outperformed existing state-of-the-

art predictors LBtope and iBCE-EL. The iLBE model combined the sequence-based 

features and evolutionary information, while the LBtope and iBCE-EL predictors only 

used sequence-based encoding methods. iLBE employed the LR-based combined model 

of the RF-based classifiers, while LBtope and iBCE-EL used SVM and an ensemble ML 

model, respectively. Importantly, iLBE allows the use of various threshold values at high, 

moderate, and low levels to demonstrate whether a BCE is highly positive or negative, 

which is not available in the existing prediction tools. As a complementary to the 

experimental strategies, iLBE provides insight into the functional and significant 

characteristics of BCEs. A user-friendly web-application was also developed for easy use 

by the immunological research community. 
 

Availability 
A web application with curated datasets for iLBE is freely accessible at 

http://kurata14.bio.kyutech.ac.jp/iLBE/. 
 

http://kurata14.bio.kyutech.ac.jp/iLBE/
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CHAPTER 6 CONCLUSIONS AND PERSPECTIVES 

6.1 Conclusions 

High-throughput omics-based bioinformatics methods have been widely used in the study of 

biology, resulting in that the need for rigorous, computational analysis of biological data has 

never been so greater. This thesis focuses on the prediction of four types of protein four types 

of immune-peptides (anti-inflammatory, pro-inflammatory, anti-tuberculosis, and linear B-cell 

peptides). At first, a novel predictor termed as PreAIP has been developed for the prediction of 

pro-inflammatory peptides. The prediction result suggests that the integrating multiple 

encoding is able to capture important sequence evolutionary information, which plays an 

important role in the performance improvement. Moreover, a feature selection experiment was 

performed to characterize the contributive features and facilitate better understanding and 

interpretation of prediction model. These analyses also demonstrate that the proposed method 

can be used as a powerful tool for understanding the mechanism of pro-inflammatory peptides. 

Taken together, these findings suggest that the novel software PreAIP can be served as a 

powerful tool to help the identification of pro-inflammatory peptides. The web server and 

curated datasets in this study are freely available at http://kurata14.bio.kyutech.ac.jp/PreAIP/. 

Secondly, a novel predictor called ProIn-Fuse has been developed through the integration 

of different sequence features. The ProIn-Fuse predictor is capable of yielding a high accuracy. 

Specifically, a feature representation learning model was utilized to generate a set of 

informative probabilistic features by making the use of random forest models with eight 

sequence encoding schemes. Then the ProIn-Fuse was constructed by the linearly combined 

models of the informative probabilistic features. The web server and curated datasets are freely 

available at http://kurata14.bio.kyutech.ac.jp/ProIn-Fuse/. 

Thirdly, an effective computational predictor iAntiTB (Identification of anti-tubercular 

Peptides) has been developed by the integration of multiple feature vectors deriving from the 

amino acid sequences via RF and SVM classifiers. The iAntiTB combined the RF and SVM 

http://kurata14.bio.kyutech.ac.jp/ProIn-Fuse/
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scores via linear regression to enhance the prediction accuracy. To make a robust and accurate 

predictor we prepared the two datasets with different types of negative samples. The iAntiTB 

achieved AUC values of 0.896 and 0.946 on the training datasets of the first and second datasets, 

respectively. The ProIn-Fuse was established by fusing the successive probabilistic scores 

using a linear regression model. For user community, a free accessible web application of 

iAntiTB is available at http://kurata14.bio.kyutech.ac.jp/iAntiTB/. 

Finally, authors develop a novel predictor, Identification of B-Cell Epitope (iLBE), by 

integrating evolutionary and sequence-based features for prediction. The successive feature 

vectors were optimized by a Wilcoxon rank-sum test. Then the RF algorithm using the optimal 

consecutive feature vectors was applied to predict linear B-cell peptides. We combined the RF 

scores by the logistic regression to enhance the prediction accuracy. iLBE is a powerful 

computational tool to identify the linear B-cell peptides and would help to develop penetrating 

diagnostic tests. A web application of iLBE predictor is available at 

http://kurata14.bio.kyutech.ac.jp/iLBE/.  

 

6.2 Perspectives 

In this thesis the author discussed the machine learning approaches for addressing classification 

problems of four types of immune-peptides (anti-inflammatory, pro-inflammatory, anti-

tuberculosis, and linear B-cell peptides). To assist knowledge discoveries through intensive 

analysis of vast amounts of immune-peptides, further improvements are required. The 

followings are important perspectives for immune-peptides prediction. 

To further improve the prediction performance, we have the following suggestions. First, to 

decrease bias in the training dataset, excluding highly homologous sequences is needed. Such 

a dataset will be helpful for developing more reliable and powerfully trained models. Second, 

based on our analysis, we observed that feature-encoding approaches converging on position 

specific information and profile-based information may be very suitable for classifying 

immune-peptides. Third, several performance improvement protocols have recently been 

developed (Hasan et al., 2020c; Hasan et al., 2020d; Hasan et al., 2020g; Manavalan, 2020), 

including adaptive feature learning, iterative representation feature, meta-classifier 

representation, and fusing with multi-view evidence. Applying multiple approaches on the 

same dataset and selecting the most suitable one may evolution model robustness. Exploring 

different classifiers on the same dataset and selecting an appropriate one are recommended. 

http://kurata14.bio.kyutech.ac.jp/iAntiTB/
http://kurata14.bio.kyutech.ac.jp/iLBE/
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Finally, web servers should be developed while considering the capabilities of researchers. 

Current immune-peptide-based predictors are developed based merely on sequence 

information. With the increase of dataset whose structures are known, researcher might take 

structural-based immune-peptides analyses and forecasts into account for more comprehensive 

understanding of immune-peptide patterns. 
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