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Abstract: In the last two decades, various kinds of the low-molecular-weight organogelators (LMOGs)
have been investigated in terms of technological applications in various fields as well as their
fundamental scientific properties. The process of gelation is generally considered to arise from
immobilization of the solvents in the three-dimensional networks formed by the assembly of gelator
molecules through weak intermolecular noncovalent interactions. From these points of view a huge
number of organogelators have been developed so far. In the course of our research on LMOGs we
have noticed a mixture of two gelators could show a different trend in gelation compared to the
single gelator. It is well known that the catecholic moiety easily forms cyclic boronate esters with
the boronic acid. Thus, we have investigated the two-component system based on cyclic boronate
esters formed by the catechols and a boronic acid in terms of the control of gelation capability. Basic
gelation properties of the constituent catecholic gelators have also been clarified. The catecholic
gelators with the amide unit form no gel by addition of the boronic acid. In contrast, the catecholic
gelators with the glutamic acid moiety improve their gelation abilities by mixing with the boronic
acid. Furthermore, the gelation ability of the catecholic gelators having the urea unit is maintained
after addition of the boronic acid. It has been found that gelation abilities of the catecholic gelators
are highly affected by addition of the boronic acid. In terms of practical applications some gels can be
obtained by on-site mixture of two kinds of solutions.

Keywords: catechol; organogel; boronate ester

1. Introduction

Self-assembly plays an important role in the creation of attractive functional soft materials [1].
Supramolecular gels formed by self-assembly of the low-molecular-weight organogelators
(LMOGs) [2–15] are an emerging field because they are not only related to fundamental scientific
interests, but also applied to a practical usage in various areas.

Although it seems difficult to predict the whole structural requirements for molecules to show
gelation properties in organic solvents, the information obtained from a wide variety of organogelators
helps to rationalize what kinds of chemical structures are necessary for building organogels. These
required structures are closely related to non-covalent bonding such as hydrogen bonds, electrostatic
attraction, hydrophobic interaction, and π–π interactions. In the last few decades a large number of
organogelators have been discussed in terms of structural features, effects of noncovalent interactions,
properties of gels, and aspects of their functions [16–22]. From this point of view we have developed
organogelators based on the cyclophane skeletons [23,24], the europium complex [25], coumarin
structure [26], and ferrocene unit [27].

When considering the structural unit for building a gelator molecule, the catechol group has to be
attractive because non-covalent bonding, such as hydrophobic interaction, electrostatic interaction,
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hydrogen bonds, π–π interactions, and metal-ligand coordination bonding, can be expected, and is
also well known to exhibit adhesive characteristics on a variety of surfaces [28–30]. Furthermore, a diol
and boronic acid complex [31], which is easily formed from each component, is known as a useful tool
for the construction of organized architectures in supramolecular chemistry [32,33]. This system based
on a dynamic covalent bonding might be advantageous for creation of chemical stimuli-responsive
soft materials [34–36]. In terms of gel systems using this diol/boronic acid complex, the gel materials
responding to some sugars such as a glucose have been reported [37,38]. This complex has also been
applied to polymer gels [39], star-shaped gels [40], and bola-shaped gels [41].

Thus, from these points of view it is expected that the gelators containing the catechol unit could
provide a unique system.

Here we have designed some catecholic gelators which have the amide unit or the urea unit as the
connection with the long alkyl chain and examined their preliminary gelating properties. Successively,
the two-component system based on cyclic boronate esters formed by the catechols and the boronic
acid has also been investigated in terms of formation of gels.

2. Results and Discussion

We have synthesized three kinds of the catecholic derivatives (2, 4, 6) as shown in Scheme 1.
The catecholic derivatives 2a–d were obtained by treating 1a–d prepared from 3,4-dimethoxybenzoyl
chloride and the corresponding alkylamines with BBr3 in the yields of 44–74%. The reaction of
3,4-dimethoxybenzoic acid and the corresponding alkylamines in the presence of diphenylphosphoryl
azide (DPPA) in DME gave the urea compounds 3a–d, followed by demethylation with BBr3 to afford
the desired catecholic derivatives 4a–d in the yields of 74–94%. The compounds 5a–d were synthesized
by condensation of the corresponding glutamic acid derivatives and 3,4-dimethoxybenzoic acid using
diethyl cyanophosphonate (DECP). By treating 5a–d with BBr3 the catecholic derivatives having the
glutamic acid moiety 6a–d were obtained in the yields of 50–76%. The referential compounds 7 and
8 were also prepared by the similar method as described above. The boronic acid carrying the long
alkyl chain 9 was obtained by the condensation of 4-carboxyphenylboronic acid and the corresponding
alkylamine under DECP in the yields of 74% as shown in Scheme 1.
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We have examined various kinds of solvents for the gelation behaviors of the catecholic derivatives
prepared here. The catecholic derivatives 2a–d show very good solubility against polar solvents such
as DMSO, DMF, EtOH, and MeOH as in Table 1, resulting in no gelation. The gelation properties
of 2a–d in other solvents are also summarized in Table 1. Formation of gel in toluene and benzene
was confirmed for 2c and 2d. It was found out that the compound 2d having the longer alkyl chain
gelated chloroform.

Table 1. Gelation properties of catechol derivatives in various solvents a.

2a 2b 2c 2d 4a 4b 4c 4d

Hexane I I I I I I I I
Cyclohexane I I I I I I I I

Toluene I P G(7.0) G(5.5) S G(4.5) G(3.5) G(2.5)
Benzene S P G(7.0) G(5.0) S PG PG G(4.0)

Chloroform I P P G(3.0) I P PG G(3.0)
EtOH S S S S S S S G(1.0)
MeOH S S S S S S S S
DMF S S S S S S G(2.0) G(1.5)

DMSO S S S S S S S G(3.0)
a I: insoluble, P: precipitate, S: soluble, PG: partial gel, G: gel. The values given in parentheses are the minimum
concentration (wt%) to achieve gelation.

The gelation properties of the catecholic derivatives 4a–d were also examined in various solvents
as summarized in Table 1. 4b,c show a different trend of gelation between toluene and benzene.
Although a stable gel from 4b and 4c in toluene was observed, a partial gel was only formed in benzene.
The partial gel means that the gel once formed on cooling tends to collapse after a while. Chloroform
can be effectively gelated by 4d. The only compound that can gelate EtOH is 4d, regardless of excellent
solubility of 4a–d in alcohols. The compound 4d with the long alkyl chain tends to form the gel in DMF
and DMSO. The optical image and SEM analysis of the gel from 4d in toluene are shown in Figure 1a
as an example. A developed network of elongated fibers was observed.
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Figure 1. Optical and SEM images of gels. (a) 4d in toluene; (b) 6d in DMSO.

The catecholic derivatives 6a–d exhibit a poor solubility in hexane and cyclohexane, and an
excellent solubility in DMF and DMSO. Some gel formations were confirmed as shown in Table 2.
Compound 6d is able to gelate toluene and benzene. Interestingly, 6c tends to build a partial gel in
these solvents. As an example the optical image and SEM analysis of the gel from 6d in DMSO are
shown in Figure 1b. Relatively thick fibers were observed.
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Table 2. Gelation properties of compounds (6a–d,7,8) in various solvents a.

6a 6b 6c 6d 7 8

Hexane I I I I I I
Cyclohexane I I I I I I

Toluene I P PG G(4.5) S G(0.8)
Benzene I P PG G(4.5) S G(0.8)

Chloroform I S G(7.0) S S G(1.0)
EtOH S S PG S S G(1.5)
MeOH S S PG S S S
DMF S S S S S S

DMSO S S S G(3.0) S S
a I: insoluble, P: precipitate, S: soluble, PG: partial gel, G: gel. The values given in parentheses are the minimum
concentration (wt%) to achieve gelation.

In order to know the effect of the hydroxyl group we examined the gelation properties of the
phenol derivative 7 as well as the compound 8. The results are also summarized in Table 2.

Although no gelation from 7 in any solvents examined was observed, the compound 8 carrying
three hydroxy groups clearly shows better gelation abilities compared to 2c. The minimum concentration
of 8 for gelation in toluene and benzene is about ten times lower than that of 2c. This result strongly
indicates that the hydroxy group plays a crucial role in gel formation.

Although the boronic acid 9 tends to dissolve in EtOH, MeOH, DMF, and DMSO, its precipitate
was produced in solvents such as benzene, toluene, and chloroform. Thus, the boronic acid 9 itself
showed no gelation in organic solvents examined. We carried out the gelation test for the 1:1 mixture
of catecholic compounds and 9 as summarized in Table 3. The 1:1 mixture of 2c and 9 in toluene and
benzene shows no gelation despite several trials. The similar results were obtained for the mixture of
2d. Although the gel is formed by 2d in chloroform, the 1:1 mixture with 9 cannot produce such a
gel. This decline of the ability in gelation can be ascribed to the loss of the hydroxy groups due to
formation of a boronate ester.

Table 3. Gelation properties of 1:1 mixture of catechol derivatives (2c,2d,4b–d,6b–d) and boronic acid 9
a.

2c/9 2b/9 4b/9 4c/9 4d/9 6b/9 6c/9 6d/9

Toluene S S G(7.0) G(6.5) G(4.5) P G(3.5) G(2.5)
Benzene S S G(7.5) G(7.0) G(5.5) P G(3.5) G(2.5)
Chloroform P S P PG G(8.0) S G(4.0) G(4.0)

a I: insoluble, P: precipitate, S: soluble, PG: partial gel, G: gel. The values given in parentheses are the minimum
concentration (wt%) to achieve gelation.

In contrast it has been found out that 4b–d maintain their ability for gelation in toluene and
chloroform even after mixing with 9 as shown in Table 3. It is interesting that the stable gels of 4b
and 4c were formed in benzene by mixing with 9 because they form the partial gels without 9. In this
case the urea group might compensate for the loss of hydrogen bonding based on the hydroxy groups.
We have examined thermal stability of the gels from 4d and 4d/9 in chloroform. The gels from both of
them collapsed at the same temperature (ca. 45 ◦C).

On the other hand the improvement of gelation ability for the compounds 6 can be also observed
when they are mixed with 9 (Table 3). Although no change for gelation properties of 6b was observed,
some improvements in gelation were confirmed for 6c and 6d. Compound 6c itself exhibited a partial
gel in benzene and toluene, however, the stable gel was formed by the 1:1 mixture with 9. Furthermore
the mixture of 6d also shows formation of gel in chloroform despite no gelation by 6d itself.

Figure 2 shows the optical image and SEM analysis of the gel from the mixture of 6d and 9 in
chloroform. A clear gel was obtained and a developed network was observed. The reason for this
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enhancement of gelation is still unclear, however, it is expected that three long alkyl chains in the
molecule could contribute to an effective molecular assembly.
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3. Conclusions

We have prepared organogelators based on the catechol unit having the amide, the urea,
and glutamic acid moieties. We have clarified their basic properties of gelation in organic solvents.
It has also been found that the gelation abilities of these catecholic gelators are highly affected by the
addition of a boronic acid. The catecholic gelators with the amide unit lose their gelation abilities
by the addition of a boronic acid. No effect on gelation properties was observed for the catecholic
gelators with the urea unit. In contrast it should be noted that the catecholic gelators with the glutamic
acid moiety improve their gelation abilities by mixing with the boronic acid. These phenomena might
be ascribed to formation of the boronic ester. Further research according to this concept is currently
underway in our laboratory. It should be noted that the system described here has an advantage from
the viewpoint of practical usage because the gel can be formed on-site by mixing up two kinds of
solutions containing the catecholic derivative and the boronic acid, respectively.

4. Materials and Methods

4.1. General

All chemicals were purchased from commercial suppliers and used without further purification.
Melting points were obtained by a Yanagimoto MP-52 melting point apparatus (AE-MIC Trading, Kyoto,
Japan). Nuclear magnetic resonance (NMR) spectra were measured on a Bruker ADVANCE HD 500
spectrometer (Billerica, MA, USA) with Me4Si as the internal reference. J values are given in Hz. Mass
spectra were recorded by using a JEOL JMS-SX102A spectrometer (JEOL, Tokyo, Japan). Elemental
analysis was carried out with Yanaco MT-6 CHN recorder (Yanaco New Science Inc., Kyoto, Japan).

4.2. Typical Procedure for Syntheses of 2a–d

After a solution of 3,4-dimethoxybenzoyl chloride (4.40 g, 22 mmol) and hexylamine (2.92 mL, 22
mmol) together with triethylamine (3.20 mL, 23 mmol) in chloroform (50 mL) was stirred for 2 h at
room temperature, the reaction mixture was washed with brine and water, then dried over sodium
sulfate. The chloroform solution was evaporated under reduced pressure to leave a residue that was
recrystallized from hexane to give 1a (4.90 g, 84%). To a stirred solution of 1a (2.01 g, 7.6 mmol) in
dichloromethane (40 mL) at 0 ◦C a solution of BBr3 (4.72 g, 18.8 mmol) in dichloromethane (40 mL) was
added dropwise. After the reaction mixture was stirred for 13 h at room temperature, it was poured
into ice-water. The mixture was stirred for a further 2 h at room temperature and extracted with ethyl
acetate. The extract was washed with water, dried over sodium sulfate, and evaporated under reduced
pressure to afford a residue which, on recrystallization from ethyl acetate and hexane, gave 2a as white
powder (1.18 g, 65%).

Compound 2a: Yield 65%; white powder; mp 152–154 ◦C (EtOAc/hexane); IR νmax (KBr)/cm−1:
3328, 3045, 2960, 1642, 1584, 1495, 1425, 1364, 1226, 1050, 1022, 805, 685; 1H NMR (500 MHz; DMSO-d6)
δ 0.86 (3H, t, J = 6.8 CH3), 1.26–1.32 (6H, m, CH2), 1.46–1.50 (2H, m, CH2), 3.18–3.20 (2H, m, CH2NH),
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6.73 (1H, d, J = 7.0 ArH), 7.16 (1H, dd, J = 1.6, 7.0 ArH), 7.26 (1H, d, J = 1.6 ArH), 8.10 (1H, s, NH),
9.05 (1H, s, ArOH), 9.40 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2, 23.4, 27.0, 31.8, 32.2,
68.4, 118.2, 120.2, 128.4, 132.8, 151.6, 152.4, 170.6; fast atom bombardment (FAB) MS m/z 237 (M+); Anal.
Found: C, 65.64; H, 8.33; N, 5.75%, Calc. for C13H19NO3: C, 65.79; H, 8.09; N, 5.90%.

Compound 2b: Yield 69%; white powder; mp 140–143 ◦C (EtOAc/hexane); IR νmax (KBr)/cm−1:
3330, 3050, 2960, 1642, 1580, 1495, 1425, 1360, 1226, 1052, 1022, 805, 746, 685; 1H NMR (500 MHz;
DMSO-d6) δ 0.86 (3H, t, J = 6.8 CH3), 1.26–1.30 (10H, m, CH2), 1.46–1.48 (2H, m, CH2), 3.16–3.20 (2H,
m, CH2NH), 6.73 (1H, d, J = 7.0 ArH), 7.16 (1H, dd, J = 1.6, 7.0 ArH), 7.26 (1H, d, J = 1.6 ArH), 8.09 (1H,
s, NH), 9.07 (1H, s, ArOH), 9.40 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2, 23.1, 27.4, 29.4,
30.4, 32.4, 68.4, 118.2, 120.0, 128.4, 132.8, 151.8, 152.4, 170.8; FAB MS m/z 265 (M+); Anal. Found: C,
67.61; H, 8.82; N, 5.44%, Calc. for C15H23NO3: C, 67.88; H, 8.75; N, 5.28%.

Compound 2c: Yield 74%; white powder; mp 142–145 ◦C (EtOAc/hexane); IR νmax (KBr)/cm−1:
3332, 3045, 2960, 1640, 1580, 1490, 1430, 1360, 1224, 1052, 1028, 805, 746, 685; 1H NMR (500 MHz;
DMSO-d6) δ 0.85 (3H, t, J = 6.8 CH3), 1.22–1.28 (14H, m, CH2), 1.44–1.48 (2H, m, CH2), 3.18–3.20 (2H,
m, CH2NH), 6.74 (1H, d, J = 7.0 ArH), 7.16 (1H, dd, J = 1.6, 7.0 ArH), 7.22 (1H, d, J = 1.6 ArH), 8.09
(1H, s, NH), 9.04 (1H, s, ArOH), 9.40 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2, 23.1, 27.6,
28.0, 29.4, 30.0, 30.4, 31.6, 68.4, 118.2, 121.0, 128.4, 132.8, 151.8, 152.4, 171.0; FAB MS m/z 293 (M+); Anal.
Found: C, 69.41; H, 9.44; N, 4.94%, Calc. for C17H27NO3: C, 69.58; H, 9.29; N, 4.77%.

Compound 2d: Yield 44%; white powder; mp 122–125 ◦C (EtOAc/hexane); IR νmax (KBr)/cm−1:
3328, 3040, 2965, 1640, 1580, 1495, 1425, 1360, 1224, 1092, 1028, 805, 734, 685; 1H NMR (500 MHz;
DMSO-d6) δ 0.85 (3H, t, J = 6.8 CH3), 1.22–1.32 (18H, m, CH2), 1.44–1.46 (2H, m, CH2), 3.18–3.22 (2H,
m, CH2NH), 6.74 (1H, d, J = 7.0 ArH), 7.18 (1H, dd, J = 1.6, 7.0 ArH), 7.22 (1H, d, J = 1.6 ArH), 8.09
(1H, s, NH), 9.04 (1H, s, ArOH), 9.42 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2, 23.1, 27.8,
28.4, 29.4, 30.4, 30.8, 31.6, 68.4, 118.2, 122.0, 128.4, 131.8, 152.0, 152.4, 171.0; FAB MS m/z 321 (M+); Anal.
Found: C, 70.77; H, 9.88; N, 4.50%, Calc. for C19H31NO3: C, 70.97; H, 9.74; N, 4.36%.

4.3. Typical Procedure for Syntheses of 4a–d

After a solution of 3,4-dimethoxybenzoic acid (1.50 g, 8.23 mmol) and diphenylphosphoryl azide
(DPPA) (1.88 mL, 8.72 mmol) together with triethylamine (1.65 mL, 11.9 mmol) in 1,2-dimethoxyethane
(DME) (50 mL) was stirred for 3 h at room temperature, hexylamine (1.10 mL, 8.32 mmol) was
added, followed by reflux for 1 h, and then extracted by dichloromethane. The extract was washed
with water, dried over sodium sulfate, followed by evaporation under reduced pressure to afford
a residue, which was washed with hexane to give 3a (1.04 g, 45%). To a stirred solution of
1-hexyl-3-[3,4-(dimethoxy)phenyl]urea (1.00 g, 3.57 mmol) in CH2Cl2 (40 mL) at 0 ◦C a solution
of BBr3 (2.23 g, 8.90 mmol) in CH2Cl2 (40 mL) was added dropwise. After the reaction mixture was
stirred for 13 h at room temperature, it was poured into ice-water. The mixture was stirred for a
further 2 h at room temperature and extracted with dichloromethane. This dichloromethane extract
was washed with water, dried over sodium sulfate, and evaporated under reduced pressure to yield a
residue which, on recrystallization from MeOH and water, gave 4a as white powder (0.72 g, 79%).

Compound 4a: Yield 79%; white powder; mp 160–162 ◦C (MeOH/water); IR νmax (KBr)/cm−1: 3330,
3045, 2960, 1650, 1584, 1495, 1425, 1364, 1226, 1050, 1022, 815, 695; 1H NMR (500 MHz; DMSO-d6) δ
0.86 (3H, t, J = 6.8 CH3), 1.24–1.28 (6H, m, CH2), 1.36–1.38 (2H, m, CH2), 2.98–3.04 (2H, m, CH2NH),
5.87–5.89 (1H, brs, NH), 6.51 (1H, dd, J = 1.6, 7.6 ArH), 6.55 (1H, d, J = 7.6 ArH), 6.91 (1H, d, J = 1.6
ArH), 7.93 (1H, s, NH), 8.32 (1H, s, ArOH), 8.78 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2,
23.1, 26.4, 31.7, 31.7, 69.6, 118.4, 120.2, 128.0, 132.6, 152.6, 153.4, 168.6; FAB MS m/z 252 (M+); Anal.
Found: C, 61.62; H, 8.21; N, 11.05%, Calc. for C13H20N2O3: C, 61.87; H, 8.00; N, 11.10%.

Compound 4b: Yield 86%; white powder; mp 152–155 ◦C (MeOH/water); IR νmax (KBr)/cm−1: 3334,
3045, 2960, 1650, 1584, 1498, 1425, 1360, 1226, 1050, 1020, 815, 695, 650; 1H NMR (500 MHz; DMSO-d6)
δ 0.86 (3H, t, J = 6.8 CH3), 1.24–1.32 (10H, m, CH2), 1.38–1.40 (2H, m, CH2), 3.00–3.04 (2H, m, CH2NH),
5.87–5.90 (1H, brs, NH), 6.50 (1H, dd, J = 1.6, 7.6 ArH), 6.55 (1H, d, J = 7.6 ArH), 6.90 (1H, d, J = 1.6
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ArH), 7.93 (1H, s, NH), 8.32 (1H, s, ArOH), 8.78 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2,
23.2, 27.4, 29.4, 30.0, 32.4, 69.4, 118.2, 120.0, 128.4, 132.8, 152.4, 153.4, 168.6; FAB MS m/z 280 (M+); Anal.
Found: C, 64.13; H, 8.81; N, 9.77%, Calc. for C15H24N2O3: C, 64.25; H, 8.64; N, 9.99%.

Compound 4c: Yield 94%; white powder; mp 148–152 ◦C (MeOH/water); IR νmax (KBr)/cm−1: 3330,
3045, 2965, 1650, 1584, 1500, 1425, 1356, 1226, 1050, 1020, 810, 695, 650; 1H NMR (500 MHz; DMSO-d6)
δ 0.86 (3H, t, J = 6.8 CH3), 1.24–1.34 (14H, m, CH2), 1.38–1.40 (2H, m, CH2), 2.98–3.04 (2H, m, CH2NH),
5.87–5.92 (1H, brs, NH), 6.50 (1H, dd, J = 1.6, 7.8 ArH), 6.55 (1H, d, J = 7.8 ArH), 6.90 (1H, d, J = 1.6
ArH), 7.94 (1H, s, NH), 8.32 (1H, s, ArOH), 8.78 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2,
23.0, 27.6, 28.0, 29.4, 30.2, 30.4, 31.6, 68.4, 118.2, 121.0, 128.4, 132.8, 152.6, 153.6, 168.6; FAB MS m/z 308
(M+); Anal. Found: C, 65.96; H, 9.22; N, 8.89%, Calc. for C17H28N2O3: C, 66.19; H, 9.17; N, 9.08%.

Compound 4d: Yield 74%; white powder; mp 130–132 ◦C (MeOH/water); IR νmax (KBr)/cm−1: 3335,
3045, 2965, 1650, 1584, 1504, 1428, 1356, 1226, 1050, 1022, 810, 695; 1H NMR (500 MHz; DMSO-d6) δ
0.86 (3H, t, J = 6.8 CH3), 1.26–1.34 (18H, m, CH2), 1.36–1.38 (2H, m, CH2), 2.98–3.02 (2H, m, CH2NH),
5.87–5.90 (1H, brs, NH), 6.50 (1H, dd, J = 1.6, 7.6 ArH), 6.58 (1H, d, J = 7.6 ArH), 6.88 (1H, d, J = 1.6
ArH), 7.94 (1H, s, NH), 8.32 (1H, s, ArOH), 8.78 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2,
23.1, 27.8, 28.4, 29.4, 30.2, 30.8, 31.6, 68.4, 118.2, 122.0, 128.4, 132.0, 152.2, 153.6, 168.6; FAB MS m/z 336
(M+); Anal. Found: C, 67.60; H, 9.74; N, 8.18%, Calc. for C19H32N2O3: C, 67.81; H, 9.60; N, 8.33%.

4.4. Typical Procedure for Syntheses of 6a–d

To a solution of 3,4-dimethylbenzoic acid (0.52 g, 2.84 mmol) and l-glutamic acid derivative
(n = 6) (0.88 g, 2.85 mmol) in the presence of triethylamine (0.66 mL, 5.03 mmol) in Tetrahydrofuran
(THF) (50 mL) in an ice bath was added a solution of diethyl cyanophosphonate (DECP) (0.45 mL, 3.03
mmol) in THF (10 mL). The reaction mixture was stirred for 20 h, then the solvent was removed to
leave orange solid. This solid was suspended in aqueous 10% NaOH and stirred for 1 h, followed
by filtration. The resulting solid was washed by 10% HCl solution and water to give white powder.
Further purification was carried out by repeated washing with hexane to afford 5a (1.08 g, 79%). To
a stirred solution of 5a (1.21 g, 2.54 mmol) in CH2Cl2 (40 mL) at 0 ◦C a solution of BBr3 (2.50 g, 10.0
mmol) in CH2Cl2 (40 mL) was added dropwise. After the reaction mixture was stirred for 20 h at room
temperature, it was poured into ice-water, and then was stirred for a further 2 h at room temperature.
The mixture was extracted with ethyl acetate. The extract was washed with water, dried over sodium
sulfate, and then evaporated under reduced pressure to afford a residue which, on recrystallization
from ethyl acetate and hexane, gave 6a as pale yellow powder (0.86 g, 76%).

Compound 6a: Yield 76%; pale yellow powder; mp 155–158 ◦C (EtOAc/hexane); IR νmax (KBr)/cm−1:
3330, 3045, 2960, 1640, 1580, 1495, 1425, 1360, 1226, 805, 676; 1H NMR (500 MHz; DMSO-d6) δ 0.88
(3H, t, J = 6.8 CH3), 1.23–1.30 (12H, m, CH2), 1.48–1.52 (4H, m, CH2), 1.93–1.95 (2H, m, CH2), 2.30–2.33
(2H, m, CH2), 3.22–3.26 (4H, m, CH2NH), 4.32–4.34 (1H, m, CH), 6.32 (1H, t, J = 6.9 NH), 6.75 (1H, d,
J = 7.0 ArH), 6.81 (1H, t, J = 6.9 NH), 7.23 (1H, dd, J = 1.6, 7.0 ArH), 7.30 (1H, d, J = 1.6 ArH), 8.15 (1H,
t, J = 6.9 NH), 8.32 (1H, s, ArOH), 8.78 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.0, 23.4, 27.2,
31.8, 32.2, 68.4, 118.0, 122.2, 128.4, 132.8, 151.4, 152.8, 165.0, 169.0, 171.6; FAB MS m/z 449 (M+); Anal.
Found: C, 63.94; H, 8.93; N, 9.25%, Calc. for C24H39N3O5: C, 64.10; H, 8.76; N, 9.35%.

Compound 6b: Yield 50%; pale yellow powder; mp 148–152 ◦C (EtOAc/hexane); IR νmax (KBr)/cm−1:
3335, 3045, 2960, 1640, 1583, 1495, 1425, 1360, 1220, 1050, 805, 674; 1H NMR (500 MHz; DMSO-d6) δ 0.88
(3H, t, J = 6.8 CH3), 1.23–1.28 (20H, m, CH2), 1.50–1.52 (4H, m, CH2), 1.93–1.95 (2H, m, CH2), 2.31–2.33
(2H, m, CH2), 3.24–3.26 (4H, m, CH2NH), 4.34–4.36 (1H, m, CH), 6.32 (1H, t, J = 6.9 NH), 6.75 (1H, d,
J = 7.0 ArH), 6.81 (1H, t, J = 6.9 NH), 7.23 (1H, dd, J = 1.6, 7.0 ArH), 7.30 (1H, d, J = 1.6 ArH), 8.15 (1H,
t, J = 6.9 NH), 8.26 (1H, s, ArOH), 8.72 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2, 23.0, 27.2,
29.4, 30.4, 32.4, 68.0, 117.8, 120.0, 128.4, 132.8, 152.8, 164.8, 169.0, 171.6; FAB MS m/z 505 (M+); Anal.
Found: C, 66.34; H, 9.53; N, 8.26%, Calc. for C28H47N3O5: C, 66.49; H, 9.39; N, 8.31%.

Compound 6c: Yield 66%; pale yellow powder; mp 146–148 ◦C (EtOAc/hexane); IR νmax (KBr)/cm−1:
3332, 3045, 2964, 1640, 1580, 1495, 1430, 1355, 1220, 1050, 805, 670; 1H NMR (500 MHz; DMSO-d6) δ 0.86
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(3H, t, J = 6.8 CH3), 1.20–1.28 (28H, m, CH2), 1.50–1.52 (4H, m, CH2), 1.90–1.95 (2H, m, CH2), 2.31–2.34
(2H, m, CH2), 3.24–3.26 (4H, m, CH2NH), 4.34–4.36 (1H, m, CH), 6.55 (1H, t, J = 6.9 NH), 6.72 (1H, d,
J = 7.0 ArH), 6.91 (1H, t, J = 6.9 NH), 7.23 (1H, dd, J = 1.6, 7.0 ArH), 7.30 (1H, d, J = 1.6 ArH), 8.15 (1H,
t, J = 6.9 NH), 8.26 (1H, s, ArOH), 8.70 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2, 23.0, 27.6,
28.2, 29.4, 30.0, 30.4, 31.6, 68.4, 118.2, 121.0, 128.0, 132.8, 152.8, 164.6, 169.0, 171.5; FAB MS m/z 561 (M+);
Anal. Found: C, 68.14; H, 9.96; N, 7.30%, Calc. for C32H55N3O5: C, 68.40; H, 9.89; N, 7.48%.

Compound 6d: Yield 62%; pale yellow powder; mp 130–133 ◦C (EtOAc/hexane); IR νmax (KBr)/cm−1:
3335, 3045, 2964, 1640, 1580, 1498, 1430, 1355, 1220, 1050, 805, 676; 1H NMR (500 MHz; DMSO-d6) δ 0.88
(3H, t, J = 6.8 CH3), 1.20–1.28 (36H, m, CH2), 1.50–1.52 (4H, m, CH2), 1.92–1.95 (2H, m, CH2), 2.31–2.34
(2H, m, CH2), 3.24–3.26 (4H, m, CH2NH), 4.26–4.30 (1H, m, CH), 6.43 (1H, t, J = 6.9 NH), 6.72 (1H, d,
J = 7.0 ArH), 6.90 (1H, t, J = 6.9 NH), 7.23 (1H, dd, J = 1.6, 7.0 ArH), 7.32 (1H, d, J = 1.6 ArH), 8.15 (1H,
t, J = 6.9 NH), 8.26 (1H, s, ArOH), 8.70 (1H, s, ArOH); 13C NMR (125 MHz, DMSO-d6) δ 14.2, 23.1, 27.6,
28.4, 29.4, 30.4, 30.6, 31.6, 68.4, 118.2, 122.2, 128.4, 131.8, 151.4, 152.8, 164.6, 169.0, 171.5; FAB MS m/z 617
(M+); Anal. Found: C, 69.87; H, 10.45; N, 6.72%, Calc. for C36H63N3O5: C, 69.96; H, 10.30; N, 6.80%.

4.5. Procedure for Synthesis of 9

To a solution of 4-carboxyphenylboroic acid (1.00 g, 6.03 mmol) and decylamine (0.83 mL, 6.30
mmol) together with triethylamine (1.30 mL, 10.0 mmol) in Dimethylformamide (DMF) (50 mL) in an
ice bath was added a solution of diethyl cyanophosphonate (DECP) (1.10 mL, 7.24 mmol) in DMF (20
mL). After the reaction mixture was stirred for 24 h, the solvent was removed to leave the solid. This
solid was suspended in aqueous 10% NaOH and stirred for 1 h, followed by filtration. The resulting
solid was washed by 10% HCl solution and water to give white powder. Further purification was done
by recrystallization with hexane to afford 9 as white powder (1.20 g, 74%).

Compound 9: Yield 74%; white powder; mp 122–126 ◦C (hexane); IR νmax (KBr)/cm−1: 3335, 3045,
2964, 1642, 1584, 1495, 1425, 1364, 1226, 1050, 1020, 805, 680; 1H NMR (500 MHz; DMSO-d6) δ 0.85 (3H,
t, J = 6.8 CH3), 1.24–1.30 (14H, m, CH2), 1.48–1.50 (2H, m, CH2), 3.20–3.22 (2H, m, CH2NH), 3.63 (2H,
brs, OH), 7.77 (2H, d, J = 1.6, ArH), 7.83 (2H, d, J = 1.6 ArH), 8.43 (1H, t, J = 6.9 NH); 13C NMR (125
MHz, DMSO-d6) δ 14.0, 23.2, 27.8, 28.4, 29.4, 30.0, 30.8, 31.6, 68.4, 123.0, 128.4, 131.8, 142.0, 171.0; FAB
MS m/z 304 (M+); Anal. Found: C, 66.57; H, 9.35; N, 4.40%, Calc. for C17H28BNO3: C, 66.88; H, 9.26; N,
4.59%.
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