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A B S T R A C T

Quantum technologies exploit quantum mechanical processes to achieve outcomes beyond the
reach of classical machinery. One of their most promising applications is quantum simulation,
whereby particles, atoms and molecules can be examined thoroughly for the first time, having
been beyond the scope of even the most powerful supercomputers.

Models have been useful tools in understanding physical systems: these are mathematical
structures encoding physical interactions, which allow us to predict how the system will behave
under various conditions. Models of quantum systems are particularly difficult to design and
test, owing to the huge computational resources required to represent them accurately. In this
thesis, we introduce and develop an algorithm to characterise quantum systems efficiently, by
inferring a model consistent with their observed dynamics. The Quantum Model Learning Agent
(QMLA) is an extensible framework which permits the study of any quantum system of interest,
by combining quantum simulation with state of the art machine learning. QMLA iteratively
proposes candidate models and trains them against the target system, finally declaring a single
model as the best representation for the system of interest.

We describe QMLA and its implementation through open source software, before testing it
under a series of physical scenarios. First, we consider idealised theoretical systems in simulation,
verifying the core principles of QMLA. Next, we incorporate strategies for generating candidate
models by exploiting the information QMLA has gathered to date; by incorporating a genetic
algorithm within QMLA, we explore vast spaces of valid candidate models, with QMLA reliably
identifying the precise target model. Finally, we apply QMLA to realistic quantum systems,
including operating on experimental data measured from an electron spin in a nitrogen vacancy
centre.

QMLA is shown to be effective in all cases studied in this thesis; however, of greater interest is
the platform it provides for examining quantum systems. QMLA can aid engineers in configuring
experimental setups, facilitate calibration of near term quantum devices, and ultimately enable
complete characterisation of natural quantum structures. This thesis marks the beginning of a
new line of research, into automating the understanding of quantum mechanical systems.
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1
I N T R O D U C T I O N

Quantum mechanics (QM) is the study of nature’s fundamental processes, manifest in its
smallest particles. QM has been at the forefront of physics since the early 20th century [5].
Advances in theoretical understanding of quantum mechanical systems in the first half of the
century [6–10] came to underpin many modern information and communications technologies1

in the second half [11, 12]. The 21st century, on the other hand, is poised to see the development
of technologies which deliberately exploit the most intricate quantum processes [13]. These
quantum technologies share the promise of super-classical outcomes, i.e. that exploiting quantum
phenomena can yield results which could never be achieved through non-quantum (or classical)
means. The enduring motivation for the development of quantum technologies is quantum
simulation: controlling quantum systems to represent other quantum systems, enabling the study
of such structures and interactions for the first time [13, 14].

Significant advances in the design and construction of quantum hardware in recent years
promise reliable, large scale quantum infrastructure in the near future [15, 16]. Alongside
improvements in quantum systems’ control, progress in quantum algorithms and software
foreshadow impactful applications for quantum technologies, from database search [17] to
quantum chemistry [18] and drug design [19]. Automated methodologies for characterising
quantum systems are among the applications becoming feasible, with the development of
quantum devices capable of simulating nature at the quantum level [20]. There is a large
and growing interest in automatically identifying the models of quantum systems, i.e. the
mathematical structure representing a system’s interactions [21–25].

In parallel to the rise of quantum technologies over the past several decades, machine learning
(ML) and artificial intelligence have enjoyed increasing interest and resources. Landmark out-
comes, for example in facial recognition [26] and complex strategy games [27,28], were bolstered
by dramatic gains in the design of information processing machinery such as supercomputing
facilities [29] and graphics processing units [30]. ML has been widely adopted to accelerate the
impact of quantum technologies, from error correction [31, 32] to metrology [33] and device
calibration [34].

In this thesis we report progress in the domain of quantum system characterisation, through
novel quantum algorithms empowered by the promise of quantum simulators, leveraging state-
of-the-art machine learning techniques. Namely, we introduce and develop the Quantum Model
Learning Agent (QMLA) as a powerful platform for the study of quantum systems, ranging
from controlled quantum simulators to experimental setups. QMLA distills an approximate
model for a given quantum system, by constructing a series of candidate models and testing
them against data from the system of interest. In providing a robust software framework for

1 Colloquially referred to as Quantum 1.0.
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1.1 thesis outline

QMLA, we initiate an exciting field of research at the overlap of machine learning and quantum
simulation, with proposed applications in calibrating new quantum technologies as well as
understanding quantum processes in nature.

1.1 thesis outline

The works presented in this thesis are closely related, all stemming from the QMLA protocol
and framework. The thesis is organised into parts, which group together related bodies of work;
within each part, individual studies are presented in self contained chapters. The main results
and novel research is contained in Parts II to IV. At the outset of each part, we summarise its
chapters and contributions. The contents of each part are as follows.

Part I contextual review

We introduce the concepts upon which the thesis will build. Chapter 2 establishes the vo-
cabulary of quantum mechanics, followed by a summary of machine learning in Chapter 3.
In both cases, we seek to introduce the minimal nomenclature required to contextualise
the work in the following chapters; that is, neither topic is described exhaustively.

Part II algorithms

We provide a thorough explanation of the algorithms underlying this thesis. We start by
summarising quantum Hamiltonian learning, which serves as a key subroutine within
later studies and should therefore be understood, in order that the contributions of later
chapters may be fully appreciated. The first major result is the QMLA algorithm itself,
detailed in Chapter 5. All subsequent chapters assume knowledge of the terminology and
concepts related to QMLA, so unfamiliar readers will find Chapter 5 essential. Our next
contribution is an open source software platform for the implementation of QMLA, for
the study of arbitrary quantum systems. In Chapter 6 we list the implementation details
of this framework, but do not further any physical or algorithmic concepts. The QMLA
software is available at [3] with documentation at [4]. By the end of Part II, we are armed
with QMLA as a tool for the inspection of target quantum systems of interest, which will
serve as a platform for the remaining chapters.

Part III theoretical study

We perform tests of the QMLA framework under idealised simulated conditions, corre-
sponding directly to [2]. In Chapter 7 we demonstrate that QMLA is trustworthy in the
most straightforward scenario, where a number of candidate models are proposed in
advance. We then move to more difficult conditions in Chapter 8, exploring spaces of 105

valid candidate models, by incorporating a genetic algorithm within QMLA. Together, the
cases studied here verify that QMLA shows promise in characterising quantum systems,
in particular suggesting a compelling application in the calibration and verification of
quantum simulators.
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1.1 thesis outline

Part IV experimental study

The final contribution reflects work published in [1]. We extend the QMLA protocol to
realistic quantum systems, namely targeting the decoherence processes dominating the
dynamics of an electron spin in a nitrogen-vacancy centre. In Chapter 9 we operate on
data extracted from an experimental system, from which QMLA distills models with high
predictive power – i.e. which can reproduce the dynamics of the target system – and which
are in agreement with theoretical predictions. Chapter 9 relied on several constraints to
facilitate the model search; in Chapter 10 we relax some of those constraints by simulating
a similar system, and again exploit a genetic algorithm to explore the model space. The
results of this part indicate that QMLA may be helpful in the study of black-box quantum
systems.

Part V conclusion

We close the thesis with a brief summary of its main contributions, and offer an outlook
for model learning methodologies in the context of quantum technologies.
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C O N T E X T UA L R E V I E W



2
Q UA N T U M T H E O RY

This thesis focuses on the application of machine learning to the characterisation of quantum
mechanical systems through use of quantum simulators, so it is pertinent first to introduce
the vocabulary of quantum mechanics (QM). It is impossible, however, to succinctly capture
the entire discipline; in this chapter we will only introduce concepts utilised throughout. For
completeness, we elucidate some fundamental topics of linear algebra and quantum theory
in Appendix B, but consider them too cumbersome to include in the main text. For a more
complete and general introduction to QM, the reader is referred to [35, 36]. Likewise, in this
chapter we quickly summarise the key aspects of quantum computation, but for further details,
we recommend unfamiliar readers to consult [37], while a more complete discussion is presented
in [38].

2.1 quantum mechanics

At any time, t, a quantum system, Q, can be described by its wavefunction, Ψ(t), which contains
all information about Q. In analogy with Newton’s second law of motion, which allows for the
determination of a particle’s position at any time,~r(t), given its conditions – its initial position,
~r(t0) and momentum – quantum equations of motion can describe the evolution of Q through
its wavefunction [39]. One proposal1 for the equation of motion to describe the evolution of
the wavefunction under known conditions, i.e. determining Ψ(t) from Ψ(t0) ∀t > t0, is the
Schrödinger equation [35, 40, 41].

Although the Schrödinger equation is a postulate of QM, i.e. can act as a starting point for
QM (see Appendix B.2), we will sketch a brief, informal derivation to elucidate its meaning
following [36]. We have yet to describe the structure of the wavefunction, which we will do
in Section 2.2, but here we will represent wavefunctions using Dirac notation (Appendix B.6),
and can think of them generically as vectors, i.e. Ψ(t) → |ψ(t)〉. Suppose we have two such
wavefunctions, |φ(t)〉 , |ψ(t)〉 which are functions of time t > t0. We start with the assumption
that similarity is conserved between two wavefunctions, if they undergo the same transformation
(Susskind’s minus first law of classical mechanics [36]),

〈φ(t)|ψ(t)〉 = 〈φ(t0)|ψ(t0)〉 . (2.1)

Then, assuming some equations of motion capture the dynamics of Q, there exists some
evolution operator, Û(t), which deterministically maps |ψ(to)〉 to |ψ(t)〉. That is,

|ψ(t)〉 = Û(t) |ψ(t0)〉 , (2.2)

1 The most noteworthy alternative formalism, due to Heisenberg [9], was shown equivalent to the Schrödinger
picture described here.
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2.1 quantum mechanics

where we have not yet imposed any restrictions on Û. We also have the dual vector2 of Eq. (2.2),

〈ψ(t)| = 〈ψ(to)| Û†. (2.3)

Combining Eqs. (2.1) to (2.3),

〈φ(t)|ψ(t)〉 = 〈φ(t0)|Û†Û|ψ(to)〉
⇒ 〈φ(t0)|Û†(t)Û(t)|ψ(to)〉 = 〈φ(t0)|ψ(t0)〉

⇒ Û†(t)Û(t) = 1̂ ∀t,

(2.4)

where the result Û†(t)Û(t) = 1̂ is the condition for unitarity of Û(t) (Appendix B.5), so we can
claim the quantum wavefunction evolves unitarily.

By construction, we require that after zero time, i.e. t = t0, the wavefunction has not changed:

|ψ(t = t0)〉 = Û(t = t0) |ψ(t0)〉 = |ψ(t0)〉
⇒ Û(t = t0) = 1̂.

(2.5)

Without loss of generality we can set t0 = 0, giving Û(0) = 1̂. Then, let us consider an
infinitesimally small time increment t0 + ε: again, take t0 = 0 so t = ε, where ε� ε2. We can
say

Û(ε) = 1̂ +O(ε), (2.6)

which merely suggests that the time evolution operator at very small time is very close to the
identity, with some small displacement proportional to the time, which must be an operator to
act on the wavefunction (vector). We suppose the form of the offset, so we can write

Û(ε) = 1̂− ε

(
i
h̄

Ĥ0

)
, (2.7)

where the inclusion of the phase −i is arbitrary, and we have named as Ĥ0 the operator by which
the time evolution differs from the identity, scaled by the reduced Planck constant, h̄ = 1.054×
10−34. In other words, the operator Ĥ0 is, generically, the generator of the evolution/dynamics

2 see Appendix B.1.
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2.1 quantum mechanics

of Q: any difference between |ψ(t0)〉 and |ψ(t)〉 arises solely due to Ĥ0. So far there is no
restriction3 on Ĥ0. Recalling the unitarity condition, and that limε→0O(ε2) ≈ 0, we have:

Û†(ε)Û(ε) = 1̂

⇒
(

1̂ +
i
h̄

εĤ†
0

)(
1̂− i

h̄
εĤ0

)
= 1̂

⇒ 1̂ +
i
h̄

ε(Ĥ†
0 − Ĥ0) +O(ε2) = 1̂

⇒ (Ĥ†
0 − Ĥ0) = 0

⇒ Ĥ†
0 = Ĥ0.

(2.8)

Eq. (2.8) results in the condition for Hermiticity, meaning that Ĥ0 is an observable of Q. In fact,
this is the Hamiltonian of the system, described in the next section.

We can also use the infinitesimal evolution to see
|ψ(t)〉 = Û(t) |ψ(t0)〉

⇒ |ψ(ε)〉 = Û(ε) |ψ(t0)〉

⇒ |ψ(ε)〉 =
(

1̂− ε
i
h̄

Ĥ0

)
|ψ(t0)〉

⇒ |ψ(ε)〉 = |ψ(t0)〉 − ε
i
h̄

Ĥ0 |ψ(t0)〉

⇒ |ψ(ε)〉 − |ψ(t0)〉
ε

= − i
h̄

Ĥ0 |ψ(t0)〉 .

(2.9)

Taking the limit as ε→ 0, the left hand side of the final line of Eq. (2.9) is the definition of the
derivative of the wavefunction, d|ψ(t)〉

dt . Taken together, we have

∂

∂t
|ψ(t)〉 = −i

h̄
Ĥ0 |ψ(t0)〉 , (2.10)

where |ψ(t)〉 is the wavefunction at time t, |ψ(t0)〉 is the wavefunction at t0, such that t > t0, h̄ is
the reduced Planck constant and Ĥ0 is the Hamiltonian of Q. For brevity we generally refer to
t0 = 0, and absorb h̄ into Ĥ0, which will later manifest in the Hamiltonian scalar parameters.
Eq. (2.10) is the most general form of Schrödinger equation, otherwise known as the time-dependent
Schrödinger equation; we include it as Postulate 6 when describing the fundamentals of QM
(Appendix B.2), since it can be seen as an irreducible equation of motion which is essential to
the description of quantum systems.

As mentioned, we presented this argument in a nonstandard order: we started with Eq. (2.2),
which we can now consider the solution to the Schrödinger equation, specifically

|ψ(t)〉 = Û(t) |ψ(0)〉
=⇒ Û(t) = e−iĤ0t.

(2.11)

3 We do restrict Ĥ0 to the same dimension as the Hilbert space in question; the concept of Hilbert space will be
defined in Section 2.2, but is not needed in this discussion.
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2.2 quantum information

Û(t) then describes the unitary evolution of the wavefunction of a quantum system according to
its Hamiltonian, Ĥ0.

2.1.1 Hamiltonians

In the previous section we introduced the Hamiltonian of Q as the generator of its time evolution
dynamics; Hamiltonians are of primary importance in this thesis, so it is worth pausing to
consider their physical meaning. We saw in Eq. (2.8) that Ĥ0 is Hermitian; the Hamiltonian is
the observable operator (see Postulates 2 to 3 in Appendix B.2) associated with the system’s total
energy, i.e. the permitted energy levels of the system are given by the eigenfunctions of Ĥ0.

The quantum Hamiltonian, Ĥ0, is analogous to the classical Hamiltonian, which captures all
the interactions of a given classical system which contribute to its time evolution. Knowing
the classical Hamiltonian and the initial conditions – position and momentum – Hamilton’s
equations of motion allow for the calculation of those quantities for the particle in question an
infinitesimal time later [42]. Likewise, knowledge of the initial wavefunction, |ψ(t0)〉, and the
system’s quantum Hamiltonian, Ĥ0, the quantum equation of motion – namely the Schrödinger
equation, Eq. (2.10) – permits the calculation of the wavefunction at later times. As such the
Hamiltonian must consist of all processes which influence the evolution of Q; we will later break
the Hamiltonian into independent terms which each correspond to unique physical interactions Q
is subject to, in Section 5.1. We can think that each process/interaction Q undergoes contributes
to its total energy, giving intuition as to why its eigenvalues are the energy levels.

Hamiltonians describe closed quantum systems, i.e. where all processes and interactions which
influence Q are accounted for. Realistic quantum systems are influenced by a myriad of proximal
systems, and it is therefore usually infeasible to analytically account for them all. Instead, open
quantum systems’ dynamics can, in some cases, be described by Lindbladian operators, which
encompass the Hamiltonian form. The Lindblad master equation is a generalisation of the
Schrödinger equation, providing the equation of motion for open quantum systems [43, 44]. In
this thesis we only consider closed models for quantum systems; for meaningful impact of the
techniques presented here, it will be necessary to expand them to account for the open system
dynamics of realistic experiments. We do, however, show initial progress towards this endeavour
by modelling a physical system through a closed Hamiltonian in Chapter 9.

2.2 quantum information

The wavefunction for a physical system, Q, is also known as its state, a complete mathematical
description of the system [45]. States are vectors4 of complex numbers; the valid state space

3 Aside: the author shares a hometown with the mathematician for whom it is named, William Rowan Hamilton.
It is hoped that, after another 150 years, the next physicist from Trim, Co. Meath, Ireland might profitably use
knowledge of Hamiltonians on a functional quantum computer.
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2.2 quantum information

for Q is its Hilbert space, H, which is a generalisation of Euclidean vector space, i.e. |ψ〉 ∈ H.
The Hilbert space defines the overlap between any two vectors as the inner product, 〈ψ|φ〉 (see
Appendix B.1). In general5, a state can be seen as a superposition across a set of orthonormal
states, often represented over the system’s eigenstates, {|vi〉}:

|ψ〉 = ∑
i

αi |vi〉 (2.12a)

subject to ∑
i
|αi|2 = 1, αi ∈ C. (2.12b)

The cornerstone of QM is the effect of measurement on quantum systems: in general Q can be
seen as occupying a multitude of eigenstates as in Eq. (2.12a); observing the system forces |ψ〉
into definite occupation of a measurement basis state, where the probability that it is measured in
each eigenstate |vi〉 is given by |αi|2, according to Born’s rule [7]. αi are hence named probability
amplitudes since they inform the probability of measuring the corresponding eigenstate.

For a single particle, when the state, Eq. (2.12a), has two available eigenstates, e.g. the
horizontal (H) and vertical (V) polarisation of a single photon, we can designate Q as a two-level
computational platform, called a qubit6, analogous to the workhorse of classical computation,
the bit. A qubit’s state vector can then be written as a sum over the two available eigenstates,
where we assign vectors to the eigenstates as

|H〉 = |v1〉 =
(

1
0

)
=: |0〉 ;

|V〉 = |v2〉 =
(

0
1

)
=: |1〉 .

(2.13)

The state of a qubit is then given by

|ψ〉 = α1 |v1〉+ α2 |v2〉 , (2.14)

where αi ∈ C and |α1|2 + |α2|2 = 1.
In general, a qubit requires two orthogonal state vectors to define a basis; we list a number of

the usual special cases:

X-basis =





|+〉 = 1√
2
(|0〉+ |1〉)

|−〉 = 1√
2
(|0〉 − |1〉)

(2.15a)

4 We immediately use Dirac notation to represent the state; it is defined in Appendix B.6.
5 We expand on this brief description in Appendix B.3.
6 Here we describe ideal, logical qubits as the foundation of computation. In reality, physical qubits are beset by

errors, demanding error correction routines such that multiple particles are needed in order to attain a single logical
qubit.
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2.2 quantum information

|+〉

|−〉

|i〉

|−i〉

|0〉

|1〉

X

|+〉

|−〉

|i〉

|−i〉

|0〉

|1〉

Y

|+〉

|−〉

|i〉

|−i〉

|0〉

|1〉

Z

Figure 2.1: Bloch sphere representation of bases, where each pair of basis states are shown by blue and
green vectors. The X-basis has basis vectors {|+〉 , |−〉}; Y-basis has {|i〉 , |−i〉} and Z-basis
has {|0〉 , |1〉}.

Y-basis =





|i〉 = 1√
2
(|0〉+ i |1〉)

|−i〉 = 1√
2
(|0〉 − i |1〉)

(2.15b)

Z-basis =

{
|0〉
|1〉 (2.15c)

A visual tool for representing qubits is the Bloch sphere, which presents orthogonal basis states
as parallel unit vectors of opposite direction: we show each of the bases of Eq. (2.15) in Fig. 2.1.

We can make two remarks about basis states for a single qubit:
• Basis states from one basis can be seen as superpositions with respect to alternative bases

– e.g. in the X-basis, |+〉 is a basis vector, but in the Z-basis, |+〉 = |0〉+|1〉√
2

is a
superposition over basis vectors.

• Bases are local rotations of each other

– rotating the X-basis through an angle π/2 about the Y-axis results in the Z-axis.
As we alluded to in Section 2.1, by imposing mathematical structure on quantum systems’

states, i.e. representing Q as a state vector at any time, then operations which alter the state of
the system must be matrices, which we will call operators. In general an n-dimensional vector is
rotated by an n× n matrix; therefore to rotate the one-qubit state, given by a two-dimensional
vector, we require a 2× 2 operator. One-qubit operators have the effect of rotating the state
vector, which we can again visualise on the Bloch sphere. By thinking of qubits generically
with respect to any basis, we can encode information in the qubit’s amplitudes, by performing
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2.2 quantum information

operations (or gates) upon the qubit, we change the information, i.e. we can design information
processing techniques leveraging the infrastructure – states, operators and measurement – of
QM.

We introduce a set of special one-qubit operators, the Pauli matrices,

σ̂x =

(
0 1
1 0

)
; (2.16a)

σ̂y =

(
0 −i
i 0

)
; (2.16b)

σ̂z =

(
1 0
0 −1

)
. (2.16c)

The Pauli matrices are used to define rotation operators about their respective axes, and hence
are very useful: we can break any rotation of a qubit into rotations of various angles, θ, about
the three axes of the Bloch sphere. Any single qubit operation can therefore be expressed as a
product of the rotation operators, R̂x, R̂y, R̂z, exemplified in Fig. 2.2 and defined for w ∈ {x, y, z}
as

R̂w (θ) = e−i θ
2 σ̂w = cos (θ/2) 1̂− i sin (θ/2) σ̂w. (2.17)

The Pauli matrices are observable; in particular, the eigenstates of σ̂z are the Z-basis states:
σ̂z |0〉 = |0〉 ; σ̂z |1〉 = − |1〉. Recalling the earlier claim that the two-level quantum system (e.g. H
and V polarisation of a photon) can be mapped to eigenstates of an obserable operator to form
a qubit, we term the Z-basis the computational basis. By defining the computational basis, we
ground abstract computational reasoning in the physical realisation: anywhere throughout this
thesis where the basis states {|0〉 , |1〉} are referenced, we mean the eigenstates of the physical
axis which is defined as the Z-axis for the system in question. In the computational basis, then,
a qubit can be specified as

|ψ〉 = α0 |0〉+ α1 |1〉 . (2.18)

The concepts of qubits representing quantum systems, as well as operators altering their states
and measurement collapsing those states, extend straightforwardly to multipartite systems by
merging Hilbert spaces through tensor products, as we show in Appendix B.3.1. While single
qubit states are spanned by the Pauli operators, multi-qubit states are spanned by the Pauli
group, G: n-qubit states are spanned by Gn =

(
C2)⊗n. Multipartite systems can exhibit the

strictly non-classical phenomenon of entanglement, where the constituent particles can not be
described independently, which we briefly detail in Appendix B.4.
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|+〉
|i〉

|−i〉

|0〉

|1〉

R̂x
(
−π

2

)
|0〉= |i〉

|+〉

|−〉

|i〉

|−i〉

|0〉

|1〉

R̂y
(π

2

)
|0〉= |+〉

Figure 2.2: Rotations on Bloch sphere. The initial and final states are shown in blue and green respectively,
while intermediate states are shown in black. Left, The Z-basis unit vector, |0〉, is rotated
about the X-axis, resulting in the unit vector along the Y-axis. Right, The Z-basis unit vector,
|0〉, is rotated about the Y-axis, resulting in the unit vector along the X-axis.

−1.0 −0.5 0.0 0.5 1.0
α1

−1.0

−0.5

0.0

0.5

1.0

〈 ψ
|Â
|ψ
〉

σ̂x

σ̂y

σ̂z

± 1√
2

Figure 2.3: Expectation values of the observable Â ∈ {σ̂x, σ̂y, σ̂z} for |ψ〉 = α0 |0〉+ α1 |1〉. Coefficients are

real, varying α1 ∈ (−1, 1), such that α0 =
√

1− α2
1.
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2.3 quantum simulation and computation

2.2.1 Expectation values

Upon measurement, the state vector of Q has amplitude associated with only one eigenstate.
On average, however, the eigenstate to which it would collapse encodes statistical insight on
the state prior to measurement. In other words, if we prepared |ψ〉 and measured it – via some
observable, Â – and repeat the procedure N times, then as N → ∞, the average outcome is the
expectation value for the system.

〈Â〉 = 〈ψ|Â|ψ〉 = ∑
i

αi 〈vi|Â|vi〉 , (2.19)

where 〈Â〉 is the expectation value (average) for the observable Â; |vi〉 are the eigenstates of
Â, and αi ∈ C are the probability amplitudes associated with each |vi〉 when the state |ψ〉 is
represented as in Eq. (2.12a). We show some examples of expectation values for the observable
Pauli matrices in Fig. 2.3.

An underlying theme of this thesis is to flip the usual logic: instead of using knowledge of the
system to derive the expectation value, per Eq. (2.19), we will estimate expectation values, either
through experiment or simulation, and use them to infer the structure of the observable. This
trick enables machine learning routines to reverse engineer the processes Q is subject to, as we
will describe in Part II.

2.3 quantum simulation and computation

Relying on the premise and language of quantum information processing – states, qubits,
operators, measurements and expectation values – the growing field of quantum technology
aims to exploit the non-classical statistics yielded by quantum systems in order to retrieve
outcomes beyond the capability of their classical counterparts [46]. Applications range from
enhanced sensing and metrology [47, 48], to highly-secure communication and cryptography
protocols [49–51]. The initial motivation for the development of quantum technologies, however,
was the observation that simulating nature at a quantum level would require exponential
resources on a classical device, and is therefore only feasible given controllable quantum
systems, which can accurately emulate their true dynamics [13, 52–54].

The notion of controlling quantum systems to mimic the dynamics of natural quantum
systems is tantamount to quantum simulation [14, 55]. In particular, simulating quantum systems
is believed to be of interest for quantum chemistry [18, 56, 57], for example leading to advances
in the simulation of molecular dynamics [58, 59]. More generally, however, this led to research
into a wider domain of calculations called quantum computation which considers the information
processing capability of controllable quantum systems beyond merely simulating quantum
systems. Then, universal quantum computers (or, quantum Turing machines), assume access to
logical qubits and operations (or gates) for the implementation of quantum circuits [60]. This
ignited interest in quantum algorithms, which aim to provide some provable advantage [17,61–64].
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2.3 quantum simulation and computation

Indeed, it was found that the space of problems addressible by such devices goes beyond the
classical counterpart, suggesting there exists a class of quatum algorithms which can offer
significant advantage over any feasible algorithm on classical hardware [65].

Of course, while the advances in algorithmic quantum computation promise huge impact,
they are tempered by contemporary experimental constraints, which must deal with the reality
that construction and control of quantum devices is a significant challenge. In constructing
quantum computers (QCs) and dealing with their output, we must account for physical effects
which lead to errors, requiring expensive error mitigation schemes in order to be reliable [66, 67].
Furthermore, there are a number of criteria a QC must meet before it can be deemed reliable [68].

Any two-level quantum system can be used as a qubit, so a range of platforms have emerged
in attempts to fulfil the potential of quantum computation [69]; here we provide an incomplete
list of quantum architectures together with their primary advantages and limitations.

photonic qubits (linear optical QCs) [70].

– existing infrastructure for commercial production of photonics-based technologies suggests
the relatively straightforward fabrication of integrated photonic devices at the scale of
millions of degrees of freedom [71];

– photons do not decohere so are useful for encoding information [72];

– photons do not interfere [39, 73], making multi-qubit gates difficult to achieve, so informa-
tion processing must be mediated by non-trivial measurement schemes [74];

– they are liable to a unique error mechanism – photon loss – necessitating novel quantum
error correcting codes [75];

– on-demand single photon generation has not yet been demonstrated, although there is
significant progress in the area of photon generation [76];

– alternative resource generation is possible through multiplexing, i.e. combining numerous
probabilistic photon sources, but this imposes stringent hardware requirements [77].

superconducting qubits [78, 79]

– relatively straightforward to control and couple with each other, enabling high-fidelity
two-qubit gates, e.g. 99.7% reached in [80];

– difficult to engineer substantial coherence times, although there has been significant recent
progress [81, 82], e.g. T1 ≈ O(ms) in [83];

– require cryogenic temperatures for operation, demanding expensive and cumbersome
infrastructure [78];

– arbitrary qubit connectivity at scale is yet to be demonstrated [79];
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2.3 quantum simulation and computation

– methods for the fabrication of medium-to-large scale devices required for fault tolerant
quantum computation are not yet known [84].

ion traps [85, 86]

– full connectivity between pairs of qubits [87];

– high two qubit gate fidelities, e.g. 99.9% in [88];

– very high coherence times, e.g. O(10 min) in [89];

– straightforward state preparation and readout, e.g. 99.99% readout fidelity in [90];

– long gate-times, e.g. O(µs) in [91];

– uncertain scalability [92].

The ever-increasing space of quantum hardware contenders has led to a growing eco-system for
quantum software [93], promising a wide range of applications in the era of noisy intermediate
scale quantum devices [94]. Following numerous proposals [95], recent efforts have married
state-of-the-art hardware with bespoke algorithms in order to achieve quantum advantage [15,16].
Evidently there is vast effort in bringing quantum computational resources to reality; in this
thesis, however, we are not concerned with the architecture underlying our presumed quantum
simulator – we perform simulations only on classical hardware. In principle, however, any
quantum simulator – universal or otherwise – capable of implementing the time evolution
operator, Eq. (2.11), can be called upon as a co-processor by the algorithms presented.

Our restriction to classical resources leads to a few remarks:
• given access to a fault-tolerant QC/simulator, the algorithms described would enjoy

considerable speedup:

– the classical bottleneck is the calculation of the time evolution dynamics, Eq. (2.11),
according to the matrix exponential, of dimension 2n, where n is the dimension of the
system;

– it is believed that the same calculation can be performed in polynomial time on a
QC [14, 96–99].

• the results achieved in this thesis are limited by the capability of classical computers in
simulating quantum systems

– we study only up to 8-qubit systems, whereas it would be of interest to extend
these methods to higher dimensions, which is expected to be feasible when reliable
quantum simulators/computers are available.

The remit of this thesis – given these limitations – is therefore to robustly test the presented
algorithms, and provide benchmarks achieved through classical facilities, against which the
same algorithms can be run in conjunction with quantum hardware.
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3
M A C H I N E L E A R N I N G

Machine learning (ML) is the application of statistics, algorithms and computing power to
discover meaning and/or devise actions from data. ML has become an umbrella term, en-
compassing the family of algorithms which aim to leverage computers to learn without being
explicitly programmed, as opposed to the more general artificial intelligence (AI), which seeks
to make computers behave intelligently, admitting explicit programs to achieve tasks [100]. Its
history is therefore imprecise since a number of early, apparently unrelated algorithms were
proposed independently, which now constitute ML routines [101, 102]. Nevertheless, the field
of ML has been advancing rapidly since the second half of the 20th century [103], especially
recently due to the availability of advanced hardware such as graphics processing units (GPUs),
facilitating significant progress through an ever-increasing arsenal of powerful open source
software [104–106].

Throughout this thesis, we endeavour to combine known methods from the ML literature
with capabilities of quantum computers (QCs)1. Typical ML algorithms, which rely on central
processing units (CPUs) or GPUs, are deemed classical machine learning, in contrast with
quantum machine learning (QML), where QCs are central to processing the data. Similarly to
the remit of Chapter 2, here we do not provide an exhaustive account of ML algorithms; we
describe only the concepts which are used in later chapters, referring readers to standard texts
for a wider discussion [103, 107].

3.1 classical machine learning

The first step in any ML application is to consider the ensemble of known algorithms, with
respect to the available data. Classical ML is usually described in three categories: supervised
learning, unsupervised learning and reinforcement learning. These categories are broadly based on
the format of data on which the insight can be built; we will briefly describe each to provide
context to discussions throughout this thesis. Later in this thesis we will use the word model
for descriptions of quantum systems, but here model refers to the mapping between inputs and
outputs, devised by the ML algorithm.

3.1.1 Supervised machine learning

Models are trained using labelled data, i.e. each training sample has a known label yi – or, a set
of feature vectors {~xi} are associated with the set of corresponding classes {yi} [108]. The output

1 Or simulated QCs, in this thesis.
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3.1 classical machine learning

is a predictive tool which aims to reconstruct the classes of unseen feature vectors: in general,
we can view the role of ML in this setting as distilling the function f such that

f : ~xi 7−→ yi ∀(~xi, yi). (3.1)

There are a number of families of algorithms even within the broad category of supervised
ML, we define them as follows.

classification

Algorithms that aim to produce models which can assign unseen instances to the most
appropriate label, from a fixed set of available labels [109].

– For example, labels indicate animals’ species, and the feature vector for each sample (data
point) encodes the animals’ height, weight, number of legs, etc.

regression

Models which capture the formulaic relationship – either linear or polynamial – between
numerical features and a target scalar value, by determining coefficients for each feature.

– For example, y is the salary of employees in a company, and the feature vector consists of
the individual employees’ age, seniority, experience in years, etc.

neural networks

Universal function approximators2. By invoking a set of linear and non-linear transformations
on input data, the network is a function of some paramterisation w; neural networks aim to
find the optimal network, w′, such that Eq. (3.1) is satisfied, f (w′) : ~xi 7−→ yi.

– Usually used for classification.

– For example, input neurons3 encode the pixel values of images. The neural network can be
used to classify the objects it detects within the image.

support vector machines

Distinguish similar data points by projecting data into higher dimensional space, and
therein finding the hypersurface which separates classes [111].

– Usually used for classification tasks.

– For data D ∈ Rn, a hypersurface in Rn−1, can be drawn arbitrarilily through the space (e.g.
a 2D plane in a 3D space).

– Unseen data can then be classified by which partition they reside in when projected into
the n-dimensional space.

2 Including deep learning networks [110].
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3.1 classical machine learning

– The task of the support vector machine is to orient the hypersurface in such a way as to
separate distinct classes.

Supervised ML algorithms rely on the existence of a body of labelled samples – the dataset D
– upon which the model can be trained. Training is typically performed on a subset of the data,
Dt, usually 80% of samples chosen at random. The remaining (20%) of samples, Dv, are retained
for the evaluation of the resultant model: d ∈ Dv are not trained upon, so do not contribute to
the structure of f as returned by the algorithm. The model therefore can not overfit, i.e. simply
recognise particular samples and label them correctly, without any meaningful inference. The
evalutation thus captures how the model can be expected to perform on future, unlabelled data.

3.1.1.1 Performance metrics

The fair assessment of supervised methods can be achieved through a number of performance
metrics. In each supervised ML algorithm, the machine attempts to learn the structure of f
that optimises some internal objective function (OF), e.g. minimising the average distance
between predicted and target labels for regression, ∑

d∈Dt

yd − y′d. To assess the resultant model,

we introduce a number of performance metrics, which aim to measure serveral perspectives of the
model’s efficacy, by considering the model’s predictions with respect to Dv.

By definition of the data format, it is relatively straightforward to define metrics for supervised
routines: the classes assigned to feature vectors, y′i, can be quantitatively assessed with respect to
their true class, yi. For example, in binary classification, the output of the model is either correct or
incorrect, allowing us to meaningfully assess its average performance. Likewise, for numerical
targets, the difference

∣∣yi − y′i
∣∣ for each sample cumulatively indicate the strength of the model.

There are a large number of quantities and performance metrics against which to judge
models’ outputs. In binary classification, we care about whether the model predicts that a given
feature is present, and whether it predicts features incorrectly. For example, the model aims to
classify whether or not a dog is present in an image. These type of binary predictions have four
outcomes, which can be summarised in a confusion matrix (Fig. 3.1), defined as in Table 3.1.

We can use the concepts of Table 3.1 to define a series of rates which characterise the model’s
predictions.

accuracy The overall rate at which the algorithm predicts the correct result.

accuracy =
TP + TN

TP + TN + FN + FP
(3.2a)

precision Positive predicitve rate. Of those predicted to have the feature of interest, what
percentage actually have the feature.

precision =
TP

TP + FP
(3.2b)

3 The term neuron, also known as node or unit, derives from the motivation for this class of algorithm: the cells in the
brain used for processing information.
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Figure 3.1: Confusion matrix showing the meaning of true positives, true negatives, false positives and
false negatives.

y has feature y′ has feature
True positives (TP) X X
False positives (FP) × X
True negatives (TN) × ×
False negatives (FN) X ×

Table 3.1: Classification metrics. We define classification outcomes based on whether the considered
feature was present and/or predicted.

sensitivity True positive rate (also known as recall). Of those which actually have the feature,
what percentage are predicted to have the feature.

sensitivity =
TP

TP + FN
(3.2c)

specificity True negative rate. Of those which do not actually have the feature of interest, how
many are predicted not to have the feature.

specificity =
TN

TN + FP
(3.2d)

Each metric has clear advantages, but consider also their drawbacks:
• Accuracy can be extremely misleading. For example, consider a dataset of 10,000 samples,

of which only 100 contain the feature of interest. A binary model which predicts every
instance as False will achieve TN = 9, 900, FN = 100, receiving an overall accuracy = 99%,
despite not having found a single positive sample. This is clearly not useful in identifying
the minority of cases of actual interest.
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3.1 classical machine learning

• Sensitivity can be inflated by over-fitting to positive cases. That is, by predicting the feature
as present in all cases, all true instances of the feature will be found, however all False

instances will be labelled as having the feature, so the model has not helped separate the
data. The model will yield a high rate of true positives (TP) but also a high rate of false
positives (FP).

• Precision can be high for extremely selective models, i.e. those which are conservative in
predicting the presence of the feature. By predicting relatively few positive instances, it
can ensure that a high proportion of its predictions are correct. The absolute number of
instances identified, however, is relatively low as a proportion of the total number in the
dataset.

• Specificity, similar to sensitivity, can easily mislead by identifying very few instances as
having the target feature. Then, it will correctly predict most non-present instances as
False, but will not identify the few instances of interest.

Clearly, the performance metric must be chosen with due consideration for the application;
e.g. in testing for a medical condition, rather than incorrectly telling a patient they do not
have the condition because the model predicted they were feature-negative, it is preferable to
incorrectly identify some patients as feature-positive (since they can be retested). In this case,
high accuracy is crucial, at the expense of precision. It is appropriate to blend together these
metrics, in order to derive performance metrics which balance the priorities of the outcomes. In
general – including in this thesis – the most important aspects of a ML algorithm are precision
and sensitivity: a model which performs well with respect to both of these is sensitive to the
feature, but precise in its predictions. A quantity which captures both of these is the Fβ-score,

fβ =
(

1 + β2
) precision× sensitivity
(β2 × precision) + sensitivity

, (3.3)

where β ∈ R is the relative weight of priority of sensitivity with respect to precision. In particular,
considering precision and sensitivity as equally important, i.e. β = 1, we have the F1-score,

f1 =
2× precision× sensitivity

precision + sensitivity
. (3.4)

For examples of how F1-score balances these considerations, see Table 3.2.

3.1.2 Unsupervised machine learning

Contrary to supervised algorithms, unsupervised methods operate on unlabelled data, D. This is
often summarised as finding structure within unstructured data. Although we do not utilise
these methods in this thesis, we briefly summarise them here for completeness; again, we can
further compartmentalise methods under this umbrella as follows [112].

clustering
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True positives False negatives False positives Precision Sensitivity F1-score

500 500 1000 33 50 (2×33×50
33+50 ) = 37

500 500 500 50 50 (2×50×50
50+50 ) = 50

1000 0 1000 50 100 (2×50×100
50+100 ) = 67

1000 0 0 100 100 (2×100×100
100+100 ) = 100

Table 3.2: Examples of how F1-score behaves for varying true positives, false negatives and false positives.

Finding datapoints which are similar to each other, according to some distance metric.

– For example, online retailers grouping together customers with similar preferences, in
order to tailor advertising campaigns.

dimensionality reduction

Reducing the feature vector of each sample in a dataset to its essential components, which
may be amalgamations of original features, while retaining structure within the data.

– This can be used for visualisation to allow for inspection of complex datasets, e.g. plotting
users of a social network as nodes on a 2D map, where distinct social groups are kept
distant.

association learning

Discover correlations among data.

– For instance, a supermarket may find that purchasers of certain products are likely also
to buy others, providing actionable insight. For example, purchases involving bread also
include butter in 50% of cases, so positioning these nearby may increase sales by reminding
consumers of their compatibility.

semi-supervised learning

Combine elements of supervised and unsupervised algorithms, to achieve a task beyond
the remit of either alone. This often means classifying data where only occur a small subset
of the total dataset is labelled.

– e.g. in facial recognition, a clustering algorithm finds similarities between individual
people in photos, and identifies a single person present across a number of photos, and
associates those photos together. It combines this with a small set of photos for which
people have been tagged, locates the same person and automatically tags them in the wider
set of photos.
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3.2 quantum machine learning

3.1.3 Reinforcement learning

A third category of ML algorithms are reinforcement learning. These are methods where an
agent interacts with some environment, and refines a policy for reacting to different stimuli. As
such, the agent can, in principle, deal with a wide array of situations. These methods underly
technologies such as self-driving cars, which inspect their surroundings through sensors; compute
an action according to the policy, and implement that action through actuators. Following an
action, the agent senses whether that action was beneficial or detrimental, and receives a reward
or punishment accordingly. Highly rewarded actions are likely to be repeated in future, allowing
the agent to learn what response is appropriate to situational parameters, e.g. a self-driving car
braking at a red light is rewarded, while braking at a green light is punished.

The concept of a machine’s agency is an ongoing discussion in the ML community [113, 114],
and will be important in this thesis when we define our model learning protocol as an agent; we
will revisit the concept in Section 5.5.1.

3.2 quantum machine learning

A growing domain is the development of ML algorithms which run on quantum hardware,
or exploit data from quantum systems; generally referred to as quantum machine learning
(QML) [115,116]. There are a number of methodologies which are referred to as QML; for clarity,
we define the main branches here, as shown in Fig. 3.2.

classical machine learning

Standard ML as described in Section 3.1, i.e. where the processors are CPUs or GPUs, and
the applications are not of specific interest to problems in the quantum domain. Recently,
this branch has encompassed quantum inspired ML, which still target classical problems,
but use subroutines which were orginally found in the context of QML [117].

quantum enhanced machine learning

A quantum co-processor is leveraged on classical data for some provable speedup, i.e.
data that could otherwise be processed purely classically, is encoded, loaded onto and
processed by quantum hardware. The quantum counterparts of classical ML algorithms
aim to solve the same problems, e.g. as neural networks [118,119] and principal component
analysis [120].

classical learning for quantum systems

Classical processors are employed to extract insight on problems arising from quantum
systems, e.g. data is taken from a quantum system and analysed via purely classical
methods. For instance, methods which aim to represent quantum states efficiently by
leveraging neural networks [121, 122].
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Figure 3.2: Types of quantum machine learning.

complete quantum machine learning

Data of a quantum nature is processed – at least partially – by quantum processors. The
most common technique here is variational quantum eigensolver (VQE), which simulates
quantum systems on QCs, in order to retrieve quantum systems’ ground states [123].
The algorithm relies on a classical optimisation routine, but was devised explicitly for
implementation on quantum hardware.

The algorithms described in Part II and the applications in Parts III to IV can be described as
classical learning for quantum systems. This is because the data upon which the applications are
built represent quantum systems, but are processed through classical ML algorithms in order
to derive insight about those systems. We caveat that it is feasible, and indeed the long term
intention of such algorithms, to run in conjunction with a quantum co-processor, which would
represent and evolve quantum systems, but all processing presented here are through strictly
classical architecture.

3.3 genetic algorithms

In later chapters (Chapter 8 and Chapter 10) we will use a class of optimisation techniques
known as evolutionary algorithms [124, 125]. In particular, genetic algorithms (GAs) are central
to our primary applications. Here we describe genetic algorithms (GAs) in general terms for
reference throughout.

GAs work by assuming a given problem can be optimised, if not solved, by a single candidate
among a fixed, closed space of candidates, called the population, P . A number of candidates
are sampled at random from P into a single generation, and evaluated through some objective
function (OF), which assesses the fitness of the candidates at solving the problem of interest.
Candidates from the generation are then mixed together to produce the next generation’s
candidates: this crossover process aims to combine only relatively strong candidates, such that
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3.3 genetic algorithms

the average candidates’ fitness improve at each successive generation, mimicking the biological
mechanism whereby the genetic makeup of offspring is an even mixture of both parents through
the philosophy of survival of the fittest. The selection of strong candidates as parents for future
generations is therefore imperative; in general parents are chosen according to their fitness as
determined by the OF. Building on this biological motivation, much of the power of GAs comes
from the concept of mutation: while offspring retain most of the genetic expressions of their
parents, some elements are mutated at random. Mutation is crucial in avoiding local optima of
the OF landscape by maintaining diversity in the examined subspace of the population.

GAs are not defined either as supervised or unsupervised methods; this designation depends
on the OF. If candidates are evaluated with respect to labelled data, we can consider that GA
supervised, otherwise unsupervised. Pseudocode for a generic GA is given in Algorithm 1, but
we can informally define the procedure as follows. Given access to the population, P ,

1. Sample Nm candidates from P at random

(a) call this group of candidates the first generation, µ.

2. Evaluate each candidate γj ∈ µ

(a) each γj is assigned a fitness, gj;

(b) the fitness is computed through an OF, g acting on the candidate, i.e. gj = g(γj).

3. Map the fitnesses of each candidate, {gj}, to selection probabilities for each candidate, {sj}
(a) e.g. by normalising the fitnesses, or by removing some poorly-performing candidates

and then normalising.

4. Generate the next generation of candidates

(a) reset µ = {};
(b) Select pairs of parents,

{
γp1 , γp2

}
, from µ

i. each candidate’s probability of being chosen is given by their sj;

(c) cross over
{

γp1 , γp2

}
to produce children candidates, {γc1 , γc2}

i. mutate γc1 , γc2 according to some random probabilistic process;

ii. keep γci only if it is not already in µ, to ensure Nm unique candidates are tested
at each generation;

(d) until |µ| = Nm, iterate to step (b).

5. Until the Nth
g generation is reached, iterate to step 2..

6. The strongest candidate on the final generation is deemed the solution to the posed
problem.

Candidates are manifested as chromosomes, i.e. strings of fixed length, whose entries, called
genes, each represent some proposed element of the system. In general, genes can have contin-
uous values, although usually, and for all purposes in this thesis, genes are binary, capturing
simply whether or not the gene’s corresponding feature is present in the chromosome.
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Algorithm 1: Genetic algorithm

Input: P // population of candidate solutions to given problem

Input: g() // function to compute objective function

Input: map g to s() // function to map fitness to selection probability

Input: select parents() // function to select parents among generation

Input: crossover() // function to cross over two parents to produce offspring

Input: mutate() // function to mutate offspring probabilistically

Input: Ng // number of generations

Input: Nm // number of candidates per generation

Output: γ′ // strongest candidate

µ← sample (P , Nm)
for i ∈ 1, ..., Ng do

for γj ∈ µ do
gj ← g(γj) // assess fitness of candidate

end
{sj} ← map g to s({gj}) // map fitnesses to normalised selection probability

µc = arg max
sj

{γj} // record champion of this generation

µ← {} // empty set for next generation

while |µ| < Nm do
p1, p2 ← select parents({sj}) // choose parents based on candidates’ sj

c1, c2 ← crossover(p1, p2) // generate offspring candidates based on parents

c1, c2 ← mutate(c1, c2) // probabilistically mutate offspring

for c ∈ {c1, c2} do
if c /∈ µ then

µ← µ ∪ {c} // keep if child is new

end
end

end
end
γ′ ← arg max

sj

{γj ∈ µ} // strongest candidate on final generation

return γ′
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Figure 3.3: Depiction of the knapsack problem. Left, A knapsack which can hold any number of objects
but is constrained by the total weight it can support, wmax = 50. Centre, A set of objects are
available, each with associated weight, w, and value v. The objective is to find the subset of
objects which maximise the total value, while not exceeding the capacity of the knapsack.
Right, An example chromosome, i.e. candidate γj, where the bits of the chromosome indicate
whether the corresponding object is included, allowing for calculation of the total weight wj
and value vj of the candidate solution.

3.3.1 Illustrative example: knapsack problem

One commonly referenced combinatorial optimisation problem is the knapsack problem, which
we will use to elucidate the abstract concepts described so far, and introduce further concepts
with immediate illustration. The knapsack problem is stated as: given a set of objects, where
each object has a defined weight and value, determine the set of objects to pack in a knapsack
which can support a limited weight, such that the value of the packed objects is maximised. Say
there are n objects; we can write the vector containing the values of those objects as ~v, and the
vector of their weights as ~w. We can then represent configurations of objects – i.e. candidate
solutions to the problem – as vectors ~γj, whose elements are binary, and simply indicate whether
or not the associated object is included in the set. The candidate vector ~γj is equivalent to the
chromosome γj. For example, with n = 6,

~γj = (1 0 0 0 0 1) =⇒ γj = 100001 (3.5)

indicates a set of objects consisting only of those indexed first and last, with none of the
intermediate objects included.

The fitness of any candidate is then given by the total value of that configuration of objects,
vj = ~v · ~γj, but candidates are only admitted if the weight of the corresponding set of objects is
less than the capacity of the knapsack4 i.e. wj = ~w · ~γj ≤ wmax.

4 Note there are alternative strategies to dealing with candidates who violate the weight condition, such as to impose
a penalty within the OF, but for our purposes let us assume we simply disregard violators.
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Value Weight Valid
Name Candidate

γ1 110011 117 58 No
γ2 101010 113 33 Yes
γ3 011110 99 36 Yes
γ4 011011 95 39 Yes
γ5 111000 89 30 Yes
γ6 010111 88 54 No
γ7 100010 87 31 Yes
γ8 110001 78 48 Yes
γ9 011101 75 46 Yes
γ10 110000 63 28 Yes
γ11 000011 54 30 Yes
γ12 000101 34 37 Yes

Table 3.3: Candidate solutions to the knapsack problem for randomly generated chromosomes.

For example where each individual object has value < 50 and weight < 25 and wmax = 50,
recalling γj = 100001, say,

~v = (48 15 26 19 39 15) =⇒ vj = ~γj ·~v = 48 + 15 = 63; (3.6a)

~w = (21 7 2 17 10 20) =⇒ wj = ~γj · ~w = 21 + 20 = 41. (3.6b)

We can hence assess the fitness of γj as 63 and deem it a valid candidate since it does not
exceed the weight threshold. We can likewise compute the total weight and value of a series
of randomly generated candidates, and deem them valid or not. Table 3.3 shows a set of 12

randomly generated candidates, of which ten are valid.
The strongest (valid) candidates from Table 3.3 are 101010, 011110. We can combine these two

strong candidates in order to produce further candidates: by merging the first half of the first
candidate with the second half of the second candidate5, we get the child candidate γc = 101110,
from which we can see vc1 = 132, wc1 = 50, i.e. by combining two strong candidates we produce
the strongest-yet-seen valid candidate.

By repeating this procedure, it is expected to uncover candidates which optimise vj while
maintining wj ≤ wmax, or at least to produce near-optimal solutions, using far less time/resources
than brute-force evaluation of all candidates, which is usually sufficient. For instance, with
n = 100 objects, there are 2100 ≈ 1030 candidates to consider; the most powerful supercomputers
in the world currently claim on the order of Exa-FLOPs, i.e. 1018 operations per second, of

5 This process is described as a one-point crossover in Section 3.3.3 with this example shown in Fig. 3.5.
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Figure 3.4: Roulette wheels showing selection probability sj for corresponding candidates γj. Colours
here only distinguish candidates, they do not encode any information. a, All valid candidates
are assigned selection probability based on their value in Table 3.3. b, The set of potential
parents is truncated to include only the strongest five candidates. c, After one parent (γ2) has
been chosen, it is removed from the roulette wheel and the remaining candidates’ probabilities
are renormalised for the selection of the second parent.

which say O(1000) operations are required to test each candidate, meaning 1015 candidates can
be checked per second in a generous example. This would still require 1012 seconds to solve
absolutely, so it is reasonable in cases like this to accept approximately optimal solutions6.

3.3.2 Selection mechanism

A key subroutine of every GA is the mechanism through which it nominates candidates from
generation µ as parents to offspring candidates in µ + 1 [126]. All mechanisms have in common
that they act on a set of candidates from the previous generation, where each candidate, γj, has
been evaluated and has fitness value, gj. Among the viable schemes for selecting individual
parents from µ are

• Rank selection: candidates are selected with probabilty proportional to their ranking
relative to the fitness of contemporary candidates in the same generation;

• Tournament selection: a subset of k candidates are chosen at random from µ, of which the
candidate with the highest fitness is taken as the parent;

• Stochastic universal sampling: candidates are sampled proportional to their fitness, but
the sampling algorithm is biased to ensure high-fitness candidates are chosen at least once
within the generation.

We will only detail the mechanism used in later applications within this thesis: fitness
proportional selection, known as roulette selection [126]. This is a straightforward strategy where
we directly map candidates’ fitness, gj to a selection probability, sj, simply by normalising {gi},

6 Simply put: in machine learning, good enough is good enough. We will adopt this philosophy for the remainder of
this thesis and life.
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Parent 1 Parent 2 κ sij
γ2 γ3 2 11, 187 (= 113× 99)
γ2 γ3 3 11, 187
γ2 γ3 4 11, 187
γ2 γ4 2 10, 735 (= 113× 95)
γ2 γ4 3 10, 735
γ2 γ4 4 10, 735

...
γ5 γ7 2 7, 743 (= 89× 87)
γ5 γ7 3 7, 743
γ5 γ7 4 7, 743

Table 3.4: Example of parent selection database. Pairs of parents are selected together, with the (unnor-
malised) selection probability, sij, given by the product of the individual candidates’ fitnesses.
Pairs of parents are repeated in the database for differing κ, and all κ are equally likely.

allowing us to visualise a roulette wheel of uneven wedges, each of which correspond to a
candidate. Then we need only conceptually spin the roulette wheel to select the first parent, γp1 .
We then remove γp1 from the set of potential parents, renormalise the remaining {sj}, and spin
the wheel again to choose the second parent, γp2 . The roulette selection is shown in Fig. 3.4.

In practice, we repeat the roulette selection process outlined until the next generation is filled,
usually we have |µ| = Nm, and desire that every generation should contain Nm candidates, so
we repeat the roulette selection Nm/2 times per generation, since every pair of parents yields two
offspring. It is important that meaningful differences in fitness are reflected by the selection
probability, which is difficult to ensure for large Nm, e.g. with 20 candidates, the strongest
candidate is only a marginally more probable parent than the worst – this effect is amplified
for larger Nm. We therefore wish to reduce the set of potential parents to ensure high quality
offspring: we truncate µ with rate τ to retain only the τNm highest-fitness candidates as selectable
parents.

3.3.3 Reproduction

When a pair of parents have been nominated by the selection mechanism above, it remains
to use those parents to reproduce, i.e. to produce offspring which should inherit and improve
upon the properties of their parents. Here we use a one-point crossover, whereby the two parent
chromosomes are mixed together to form two offspring, about a single point, κ. For candidates
of n genes, γc1 is produced when the first κ genes of γp1 are conjoined with the latter n− κ

genes of γp2 ; likewise γc2 consists of the first n− κ genes of γp2 conjoined with the latter κ genes
of γp1 . Often κ is restricted to the midpoint of the chromosomes, although in general it need not
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Figure 3.5: Crossover and mutation of chromosomes. Two parents,
{

γp1 , γp2

}
, are nominated from the

process in Fig. 3.4. They are then crossed-over via a one-point crossover with crossing point
κ = 3, resulting in children candidates {γc1 , γc2}. One child chromosome is mutated to yield a
new candidate, γ′c2

. The candidates added to the next generation are then {γc1 , γ′c2
}.

be: we will instead consider κ ∈
(n

4 , 3n
4

)
, e.g. with n = 12, κ ∈ (3, 9). The one-point crossover is

shown for n = 6 with κ = 3 in Fig. 3.5, recalling the chromosome structure from Fig. 3.5.
By allowing κ other than the midpoint, we drastically increase the number of combinations

of parents available for reproduction. Finally, then, parent selection is done by constructing
a database of pairs of potential parents with all available crossover points, with selection
probability given by the product of their individual fitnesses. This is conceptually equivalent to
selection via roulette wheel as above. Recalling the fitnesses (values) of Table 3.3, we generate
the parent selection database in Table 3.4.

The GA maintains diversity in the subspace of P it studies, by mutating some of the newly
proposed offspring candidates. Again, there are a multitude of approaches for this step [127],
but for brevity we only describe the one used in this thesis. For each proposed child candidate,
γc, we probabilistically mutate each gene: with some mutation rate rm, a mutation occurs and
the child is replaced by γ′c; that is, γ′c is added to the next generation, and γc is discarded. With
probability 1− rm a mutation does not occur, so γc is passed to the subsequent generation. rm is
a hyperparameter of the GA: the performance of the algorithm can be optimised by finding the
best rm for a given problem.

3.3.4 Candidate evaluation

Within every generation of the GA, each candidate must be evaluated, so that the relative
strength of candidates can be exploited in constructing candidates for the next generation. In
the example of the knapsack problem, candidate solutions were evaluated by the value of their
contents, but also by whether they would fit in the knapsack. Identifying the appropriate
method by which to evaluate candidates is arguably the most important aspect of designing a
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GA: while the choice of hyperparameters (Ng, Nm, τ, rm) dictate the efficacy of the search, the lack
of an effective metric by which to distinguish candidates would render the procedure pointless.
Considerations are hence usually built into the objective function; GA implementations later
in this thesis therefore demand we design objective functions with respect to the individual
application.
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Part II

A L G O R I T H M S



O V E RV I E W A N D C O N T R I B U T I O N

This part details the algorithms which form the basis for the research conducted in this thesis.
The corresponding software is a primary outcome of this thesis [2–4].

Chapter 4 introduces quantum Hamiltonian learning (QHL), an algorithm for the optimisation
of Hamiltonian parameters when the form of the model describing a system of interest is known.
This is not presented as new work, but rather as a bedrock for later discussions. The analysis
and figures presented in this chapter are unique to this thesis but do not necessarily offer novel
insights.

Chapter 5 builds upon QHL by posing the question: without assuming access to the model
describing the target system, can we combine model training algorithms, in particular QHL,
with model recovery methodologies, to learn the Hamiltonian model governing the system, and
hence uncover the physics of quantum systems. This motivation leads to the Quantum Model
Learning Agent (QMLA): a machine learning framework for reverse engineering models of
quantum systems from their data. This protocol was initially devised by Dr. Raffaele Santagati,
and developed together with myself and Drs. Andreas Gentile, Stefano Paesani, Nathan Wiebe
and Chris Granade. The protocol has been published in [1], and applied to numerous case
studies, which are described in later Parts.

Chapter 6 describes the implementation of QMLA through an open source software package.
I was the principal designer and programmer of the codebase described, which constitutes a
large portion of the output of my research. The results presented in Part III, Part IV are all
achieved through this framework.

34



4
Q UA N T U M H A M I LT O N I A N L E A R N I N G

First suggested in [128] and since developed [129,130] and implemented [131], quantum Hamilto-
nian learning (QHL) is a machine learning algorithm for the optimisation of a given Hamiltonian
parameterisation against a quantum system whose model is known a priori. Given a target
quantum system, Q, known to be described by some Hamiltonian Ĥ(~α), QHL optimises~α. This
is achieved by interrogating Q and comparing its outputs against proposals~αp. In particular,
an experiment is designed, consisting of an input state, |ψ〉, and an evolution time, t. This
experiment is performed on Q, whereupon its measurement yields the datum d ∈ {0, 1} – i.e.
the eigenstate |d〉 ∈ {|0〉 , |1〉} is observed – according to the expectation value |〈ψ| e−iĤ0t |ψ〉|2.
Then, on a trusted (quantum) simulator, proposed parameters ~αp are encoded to the known
Hamiltonian, and the same probe state is evolved for the chosen t and projected on to |d〉, i.e.
|〈d| e−iĤ(~αp)t |ψ〉|2 is computed. The task for QHL is then to find ~α′ for which this quantity is
close to 1 for all values of {|ψ〉 , t}, i.e. the parameters input to the simulation produce dynamics
consistent with those measured from Q.

The procedure is as follows. A prior probability distribution Pr (~α) in a parameter space
of dimension |~α| is initialised to represent the constituent parameters of ~α. Pr (~α) is typically
a multivariate normal (Gaussian) distribution; it is therefore necessary to pre-suppose some
mean and standard deviation for each parameter in~α. This imposes prior knowledge on the
algorithm whereby the programmer must decide the range in which parameters are likely to fit:
although QHL is generally robust and capable of finding parameters outside of this prior, the
prior must at least capture the order of magnitude of the target parameters. It is important to
understand, then, that QHL removes the prior knowledge of the precise parameter representing
an interaction in Q, but does rely on a ball-park estimate thereof from which to start.

In short, QHL samples parameter vectors~αp from Pr (~α), simulates experiments by computing
the likelihood |〈d| e−iĤ(~αp)t |ψ〉|2 for experiments {|ψ〉 , t} designed by a QHL heuristic subroutine,
and iteratively improves the probability distribution of the parameterisation Pr (~α) through
standard Bayesian inference. A given set of {|ψ〉 , t} is called an experiment, since it corresponds to
preparing, evolving and measuring Q once1. QHL iterates for NE experiments. The parameter
vectors sampled are called particles: there are NP particles used per experiment. Each particle
used incurs one further calculation of the likelihood function – this calculation, on a classical
computer, is exponential in the number of qubits of the model under consideration (because
each unitary evolution relies on the exponential of the 2n × 2n Hamiltonian matrix of n qubits),
Eq. (2.11). Likewise, each additional experiment incurs the cost of calculation of NP particles, so

1 Experimentally, this may involve repeating a measurement many times to determine a majority result and to
mitigate noise.
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the total cost of running QHL to train a model is ∝ NeNp. It is therefore preferable to use as few
particles and experiments as possible, though it is important to include sufficient resources that
the parameter estimates have the opportunity to converge. Access to a fully operational, trusted
quantum simulator admits an exponential speedup by simulating the unitary evolution instead
of computing the matrix exponential classically, via quantum algorithms for time dynamics
simulations [20, 132, 133].

4.1 bayes’ rule

Bayes’ rule is used to update a probability distribution describing hypotheses, Pr(hypothesis),
when presented with new information (data). That is, the probability that a hypothesis is true is
replaced by the initial probability that it was true, Pr(hypothesis), multiplied by the likelihood
that the new data would be observed were that hypothesis true, Pr(data|hypothesis), normalised
by the probability of observing that data in the first place, Pr(data). It is stated as

Pr(hypothesis|data) =
Pr(data|hypothesis)× Pr(hypothesis)

Pr(data)
. (4.1)

We wish to represent our knowledge of Hamiltonian parameters with a distribution, Pr(~α): in
this case hypotheses~α attempt to describe data, D, measured from the target quantum system,
from a set of experiments E , so we can rewrite Bayes’ rule as

Pr(~α|D; E) = Pr(D|~α; E) Pr(~α)
Pr(D|E) . (4.2)

We can consider Eq. (4.2) at the level of single particles, i.e. individual vectors ~α in the
parameter space, sampled from Pr(~α):

Pr(~αp|d; e) =
Pr(d|~αp; e) Pr(~αp)

Pr(d|e) (4.3)

where
• e are the experimental controls of a single experiment, e.g. evolution time and input probe

state;

• d is the datum, i.e. the (usually) binary outcome of measuring Q under conditions e;

• ~αp is the hypothesis, i.e. a single parameter vector, called a particle, sampled from Pr(~α);

• Pr(~αp|d; e) is the updated probability of this particle following the experiment e, i.e. ac-
counting for new datum d, the probability that~α =~α0;

• Pr(d|~αp; e) is the likelihood function, i.e how likely it is to have measured the datum d
from the system assuming~αp are the true parameters and the experiment e was performed;

• Pr(~αp) is the probability that~αp =~α0 according to the prior distribution Pr(~α), which we
can immediately access;
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4.2 sequential monte carlo

• Pr(d|e) is a normalisation factor, the chance of observing d from experiment e irrespective
of the underlying hypothesis such that ∑{d} Pr(d|e) = 1.

In order to compute the updated probability for a given particle, then, all that is required is a
value for the likelihood function. This is equivalent to the expectation value of projecting |ψ〉
onto |d〉, after evolving Ĥ(~αp) for t, i.e.

Pr(d|~α; e) = |〈d| e−iĤ(~αp)t |ψ〉|2, (4.4)

which can be simulated clasically or using a quantum simulator (see Section 4.3). It is necessary
first to know the datum d (either 0 or 1) which was projected by Q under experimental conditions.
Therefore we first perform the experiment e on Q (preparing the state |ψ〉 evolving for t and
projecting again onto 〈ψ|) to retrieve the datum d. d is then used for the calculation of the
likelihood for each particle sampled from Pr(~α). Each particle’s probability can be updated
by Eq. (4.3), allowing us to redraw the entire probability distribution. We can hence compute
a posterior probability distribution by performing this routine on a set of NP particles: we
hypothesise NP parameterisations~αi sampled from Pr(~α), and update their Pr(~αi) in proportion
to their likelihood. In effect, hypotheses (particles) which are found to be highly likely are given
increased credence, while those with low likelihood have their credence decreased.

4.2 sequential monte carlo

In practice, QHL samples from and updates Pr(~α) via sequential Monte Carlo (SMC). SMC
samples the NP particles from Pr(~α), and assigns each particle a weight, w0 = 1/Np. Each
particle corresponds to a unique position in the parameters’ space, i.e. ~αp. Following the
calculation of the likelihood, Pr(d|~αp; e), the weight of particle p is updated from its initial value
of wold

p by Eq. (4.5).

wnew
p =

Pr(d|~αp; e)× wold
p

∑
p

wp Pr(~αp|d; e)
. (4.5)

In this way, strong particles – with high Pr(d|~αp; e) – have their weight increased, while
weak particles (low Pr(d|~αp; e)) have their weights decreased, and the sum of weights remains
normalised. Within a single experiment, the weights of all NP particles are updated: we
simultaneously update sampled particles’ weights as well as Pr(~α). The procedure of updating
particles’ weights iterates for the subsequent experiment, using the same particles: we do not
redraw NP particles for every experiment. Eventually, the sum of the weights of the particles falls
below a threshold, rt, meaning that only that fraction of particles have reasonable likelihood of
being~α0. At this stage, SMC resamples2, i.e. selects new particles, according to the updated Pr(~α).
Then, the new particles are in the range of parameters which is known to be more likely, while
particles in the region of low-weight are effectively discarded. Usually, we set rt = 0.5, although
this hyperparameter can have a large impact on the rate of learning, so can be optimised in
particular circumstances, see Fig. 4.2.
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Figure 4.1: Quantum Hamiltonian learning (QHL) via sequential Monte Carlo (SMC). The studied model

has two terms, {σ̂x, σ̂y} with true parameters αx = 0.9, αy = 0.15 (dahsed lines), with resources
Ne = 500, Np = 2000 for training the model. Crosses represent particles, while the distribution
Pr(αp) for each parameter can be seen along the top and right-hand-sides of each subplot.
Both parameters are assigned a uniform probability distribution U (0, 1), representing our
prior knowledge of the system. a, SMC samples NP particles from the initial joint probability
distribution, with particles uniformly spread across the unit square, each assigned the starting
weight w0. At each experiment e, each of these particles’ likelihood is computed according
to Eq. (4.3) and its weight is updated by Eq. (4.5). b, after 9 experiments, the weights of the
sampled particles are sufficiently informative that we know we can discard some particles
while most likely retaining the true parameters. c, SMC resamples according the current
Pr(~α), i.e. having accounted for the experiments and likelihoods observed to date, a new
batch of NP particles are drawn, and each reassigned weight w0, irrespective of their weight
prior to resampling. d-e, After further experiments and resamplings, SMC narrows Pr(~α)
to a region around the true parameters. f, The final posterior distribution consists of two
narrow distributions centred on αx and αy. By taking the mean of the posterior distribution,
we approximate the parameters of interest as~α′.



4.3 likelihood

This procedure is easiest understood through the example presented in Fig. 4.1, where a
two-parameter Hamiltonian is learned starting from a uniform distribution. Np = 2000 particles
are used to propose hypotheses distributed evenly throughout the parameter space, each of
which are subject to weight updates as outlined above. In this example, after 9 experiments the
particles around the diagonal (x = y) are deemed unlikely, while clusters form in the opposite
corners where the algorithm finds the hypotheses credible. Before the tenth experiment, the
algorithm resamples, i.e. reassigns weights based on the present Pr(~α). The algorithm iteratively
reassigns weight to particles based on their likelihoods, redraws Pr(~α) and resamples. We show
the state of the particles after 50, 100 and 500 experiments, with the overall result of a highly
peaked parameter distribution, whose mean is near the target parameters.

4.3 likelihood

The fundamental step within QHL is the calculation of likelihood, which enables updates of
the probability distribution in Eq. (4.3). The key to the learning algorithm is that likelihood can
be retrieved from the Born rule, which captures how likely a given a quantum system is to be
measured in an eigenstate. When we have retrieved a datum, d, from Q, we can compute the
probability that Q would be measured in the corresponding eigenstate |d〉 – this probability
serves as the likelihood, and is given by Eq. (4.4).

In some cases, it is feasible to derive the closed form of the likelihood, for example as a simple
expression in terms of the Hamiltonian parameters, which we will exemplify in Section 4.3.2.
Closed form likelihoods allow for rapidly testing hypothetical parameters for comparison against
the observed data, so QHL can feasibly be run with high NE, NP. In general, however, it is
not possible to derive the closed form of the likelihood, and instead the likelihood must be
computed through Eq. (4.4), which can be done either on a classical or quantum simulator.
The case where the likelihood is computed on a quantum simulator is referred to as quantum
likelihood estimation (QLE) [130, 131], and can leverage any algorithm for the calculation of
Hamiltonian dynamics to achieve quantum speedup [14, 20, 98].

In this thesis, we do not implement the presented algorithms on quantum hardware, instead
investigating their performance using idealised classical simulations, i.e. classical likelihood
estimation (CLE). The reliance on classical resources demands that Eq. (4.4) be computed
explicitly, notably involving the matrix exponential e−iĤ(~αp)t. Since the Hamiltonian matrix
scales with the size of the simulated system, running QHL for an n-qubit systems requires
exponentiation of its 2n × 2n Hamiltonian matrix, in order to compute the exact likelihoods
required for learning. This overhead restricts the applicability of CLE: n = 11-qubit systems’
Hamiltonians exhaust the memory capacity of most conventional classical computers. In practice,
QHL is limited by the computation of the total NeNp matrix exponentials required for training:

2 Particles are resampled according to a resampling algorithm. Throughout this thesis, we always use the Liu-West
resampling algorithm [134].
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we will only entertain systems which can be represented by Hamiltonians of up to n = 8 qubits.
In principle, larger systems could be condensed for simulation on available classical resources,
or those resources used more efficiently [135], but the remit of this thesis can be fulfilled with
demonstrations in the domain n ≤ 8 qubits, so we do not endeavour to find the most effective
classical strategies.

Adopting the notation used by QInfer [136], upon which our software builds, the expectation
value for the unitary operator is given by

Pr(0) = |〈ψ| e−iĤpt |ψ〉|2 = l(d = 0|Ĥp; e). (4.6)

In Eq. (4.6), the input basis is assigned the measurement label d = 0, and this Pr(0) is the
probability of measuring d = 0, i.e. measuring the same state as was prepared as input. We
assume a binary outcome model3, i.e. that the system is measured either in |ψ〉 (labelled d = 0),
or it is not (|ψ⊥〉 , d = 1); the likelihood for the latter case is

Pr(1) = l(d = 1|Ĥp; e) = ∑
{|ψ⊥〉}

| 〈ψ⊥| e−iĤpt |ψ〉 |2 = 1− Pr(0). (4.7)

Usually we will refer to the case where Q is projected onto the input state |ψ〉, so the terms
likelihood, expectation value and Pr(0) are synonymous, unless otherwise stated.

4.3.1 Interactive quantum likelihood estimation

A fundamental result in quantum mechanics (QM) – the Loschmidt echo (LE) – shows that
marginally differing Hamiltonians produce exponentially diverging evolutions, undermining
the basis of QLE, i.e. that the likelihood function can inform Bayesian updates to a paramater
distribution. The LE concerns the result when Q is prepared in some initial state |ψ〉, evolved
forward in time by some Ĥ+, then evolved backwards4 in time by Ĥ−, and projected back onto
|ψ〉. The Loschmidt echo – or the fidelity – is given by

M(t) =
∣∣∣〈ψ|e+iĤ−te−iĤ+t|ψ〉

∣∣∣
2

. (4.8)

M(t) is dictated by the similarity between the two Hamiltonians. If Ĥ+ = Ĥ−, then M(t) = 1,
while ‖Ĥ+− Ĥ−‖2 > 0 yields M(t) < 1, indicating disagreement between the two Hamiltonians.
The fidelity is characterised by a number of distinct regions, depending on the evolution time, t:

M(t) ∼





1−O(t2), t ≤ tc

e−O(t), tc ≤ t ≤ ts

1/‖Ĥ‖, t ≥ ts

(4.9)

3 In principle the output does not have to be binary, so we sum over the general set {|ψ⊥〉} of eigenstates orthogonal
to |ψ〉 in Eq. (4.7).

4 Equivalently and in practice, evolved forward in time for (−Ĥ−).
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where ‖Ĥ‖ is the dimension of the Hamiltonians, and tc, ts are bounds on the evolution time
marking the transition between the parabolic decay, asymptotic decay and saturation of the echo [137].
tc and ts generally depend on the similarity between Ĥ+ and Ĥ−: intuitively, as ‖Ĥ+ − Ĥ−‖2
decreases, the echo does not saturate until higher evolution times.

Recall that the Bayesian updates to the parameter distribution relies on good hypotheses
receiving likelihood le ≈ 1, and weak hypotheses receiving le ≈ 0. The LE tells us that there is a
small range of evolution times (t . tc) for which even good particles may expect le ≈ 1. We can
exploit this effect, however: by designing experiments with t ≈ tc, the likelihood is extremely
sensitive to the parameterisation, in that only particles close to the precise parameters will give
a high likelihood in this regime. This is the basis of the particle guess heuristic, described in
Section 4.6.1.

We can relate the LE to the likelihood, Eq. (4.4), by supposing Ĥ− = 1̂. It is inescapable
that the likelihoods are exponentially small if the evolution times are not short; experimentally,
exponentially small expectation values demand an exponential number of measurements to
approximate accurately. Furthermore, short-time experiments are known to be uninformative
[129, 138]. Together, these problems render QLE unscalable. We overcome these inherent
problems by using a modification of QLE: interactive quantum likelihood estimation (IQLE), the
key to which is invoking a likelihood function other than Eq. (4.4) [130].

In effect, the LE guarantees that, for most t, if Ĥ− 6≈ Ĥ+, then M(t) � 1, while Ĥ− ≈ Ĥ+

gives M(t) ≈ 1. This can be exploited for learning: by taking Ĥ+ as either Ĥ0 (the true system)
or Ĥ(~α) (particle/hypothesis), and sampling Ĥ− from Pr (~α), we can adopt Eq. (4.8) as the
likelihood function. Thus, both Ĥ0 and Ĥ(~α) have been evolved for arbitrary t, and unevolved
by a common unitary, eiĤ+t. The likelihood that they are both measured in the same eigenstate
is still a function of the overlap between the hypothesis and the true parameters, but here the
informative difference between them is not drowned out by the chaotic effects captured by the
LE, as it had been in QLE.

Importantly, IQLE can only be used where we can reliably reverse the evolution for the
system under study. In order that the reverse evolution is reliable, it must be performed
on a trusted simulator, restricting IQLE to cases where a coherent quantum channel exists
between the target system and a trusted simulator. This automatically excludes any open
quantum systems, as well as most realistic experimental setups, although such channels can be
achieved [139]. The remaining application for IQLE, and correspondingly QHL in this regime,
is in the characterisation of untrusted quantum simulators, which can realise such coherent
channels [131]. In order to examine realistic systems, then, we will rely solely on QLE; for
example QLE is sufficient for training models in our tests to characterised a real quantum system
in Chapter 9.
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4.3.2 Analytical likelihood

For some Hamiltonians, we can derive an analytical likelihood function to describe their
dynamics [140, 141]. For instance, the Hamiltonian for an oscillating electron spin in a nitrogen-
vacancy centre is given by

Ĥ(ω) =
ω

2
σ̂z, (4.10)

where ω is the Rabi frequency of the spin. Then, recalling that σ̂zσ̂z = 1̂, so σ̂2k
z = 1̂ and

σ̂2k+1
z = σ̂z, using MacLaurin expansion, the unitary evolution of Eq. (4.10) is given by

U = e−iĤ(ω)t = e−i ωt
2 σ̂z = cos

(
ωtσ̂z

2

)
− i sin

(
ωtσ̂z

2

)

=

(
∞

∑
k=0

(−1)k

(2k)!

(
ωt
2

)2k
σ̂2k

z

)
− i

(
∞

∑
k=0

(−1)k

(2k + 1)!

(
ωt
2

)2k+1

σ̂2k+1
z

)

=

(
∞

∑
k=0

(−1)k

(2k)!

(
ωt
2

)2k
)

1̂− i

(
∞

∑
k=0

(−1)k

(2k + 1)!

(
ωt
2

)2k+1
)

σ̂z

= cos
(

ωt
2

)
1̂− i sin

(
ωt
2

)
σ̂z

(4.11)

Then, evolving a probe |ψ0〉 and projecting onto a state |ψ1〉 gives

〈ψ1|U |ψ0〉 = cos
(

ωt
2

)
〈ψ1|ψ0〉 − i sin

(
ωt
2

)
〈ψ1|σ̂z|ψ0〉 . (4.12)

By initialising and projecting into the same state, say |ψ0〉 = |ψ1〉 = |+〉, and recalling σ̂z |+〉 =
|−〉, we have

〈ψ1|ψ0〉 = 〈+|+〉 = 1
〈ψ1|σ̂z|ψ0〉 = 〈+|−〉 = 0

=⇒ 〈ψ1|U|ψ0〉 = cos
(

ωt
2

)
.

(4.13)

If the system measures in |+〉, we set the datum d = 0, otherwise d = 1. From Born’s rule, and
in analogy with Eq. (4.4), we can formulate the likelihood function, where the hypothesis is the
single parameter ω, and the sole experimental control is t,

Pr(d = 0|ω; t) = |〈ψ1|U|ψ0〉|2 = cos2
(

ωt
2

)
; (4.14a)

Pr(d = 1|ω; t) = 1− cos2
(

ωt
2

)
= sin2

(
ωt
2

)
. (4.14b)

This analytical likelihood will underly the simulations used in the following introductions,
except where explicitly mentioned.
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4.4 total log total likelihood

We have already used the concept of likelihood to update our parameter distribution during
SMC; we can consolidate the likelihoods of all particles with respect to a single datum, d, from a
single experiment e, in the total likelihood (TL),

le = ∑
p∈{p}

Pr(d|~αp; e)× wold
p , (4.15)

where wold
p are the particle weights for the particle with parameterisation~αp. For each experiment,

we use TL as a measure of how well the distribution performed overall, i.e. we care about how
well all particles, {p}, perform as a collective, representative of how well Pr(~α) approximates
the system, equivalent to the normalisation factor in Eq. (4.5) [142].

Note, we know the initial weights are normalised,

w0
p =

1
Np

=⇒
Np

∑
p

w0
p = 1, (4.16)

so we can see

Pr(d|~αp; e) ≤ 1 =⇒ Pr(d|~αp; e)× wold
p ≤ wold

p

=⇒ ∑
{p}

Pr(d|~αp; e)× wold
p ≤ ∑

{p}
wold

p ≤
Np

∑
p

w0
p;

=⇒ le ≤ 1.

(4.17)

Eq. (4.17) essentially says that a good batch of particles, where on average particles perform
well, will mean that most wi are high, so le ≈ 1. Conversely, a poor batch of particles will have
low average wi, so le ≈ 0.

le are strictly positive, and because the natural logarithm is a monotonically increasing function,
we can equivalently work with ln (le) – the log total likelihood (LTL) – since ln(la) > ln(lb) ⇐⇒
la > lb. LTL are also beneficial in simplifying calculations, and are less susceptible to system
underflow, i.e. very small values of l will exhaust floating point precision, but ln(l) will not.

In order to assess the quality of a model, Ĥi, we can consider the performance of a set of
particles throughout a set of experiments E , through its total log total likelihood (TLTL),

Li = ∑
e∈E

ln(le). (4.18)

The set of experiments on which Li is computed, E , as well as the particles whose sum
constitute each le, can be the same experiments on which Ĥi is trained, Ei, but in general need
not be. That is, Ĥi can be evaluated by considering different experiments than those on which it
was trained. For example, Ĥi can be trained with Ei to optimise~α′i, and thereafter be evaluated
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using a different set of experiments Ev, such that Li is computed using particles sampled from
the distribution after optimising~α, Pr(~α′i), and may use a different number of particles than the
training phase.

Perfect agreement between the model and the system would result in le = 1⇒ ln(le) = 0, as
opposed to imperfect agreement where le < 1⇒ ln(le) < 0. In all cases Eq. (4.18) is negative,
and across a series of experiments, strong agreement gives low |Li|, whereas weak agreement
gives large |Li|.

4.5 parameter estimation

QHL is a parameter estimation algorithm, so here we introduce some methods to evaluate its
performance, which we can reference in later sections of this thesis. The most obvious measure
of the progression of parameter estimation is the error between the true parameterisation,~α0,
and the approximation ~α = mean (Pr(~α)), which can be captured by a large family of loss
functions. Among others, we use the quadratic loss (QL), which captures this error through the
sum of the square difference between each parameters’ true and estimated values symetrically.
We can record the QL at each experiment of our training regime and hence track its over- or
under-estimation. The QL is given by

LQ(~α) = ‖~α0 −~α‖2 (4.19)

where ~α0 is the true parameterisation and ~α a hypothesis distribution. An example of the
progression of QL throughout QHL is shown in Fig. 4.2.

4.5.1 Volume

We also care about the range of parameters supported by Pr(~α) at each experiment: the volume
of the particle distribution can be seen as a proxy for our certainty that the approximation
mean (Pr(~α)) is accurate. For example, for a single parameter ω, our best knowledge of the
parameter is mean (Pr(ω)), and our belief in that approximation is the standard deviation of
Pr(ω); we can think of volume as an n-dimensional generalisation of this intuition [136, 143].

In general, a confidence region, defined by its confidence level κ, is drawn by grouping
particles of high particle density, P , such that ∑

p∈P
wp ≥ κ. We use the concept of minimum

volume enclosing ellipsoid to capture the confidence region [143], calculated as in [144], which are
characterised by their covariance matrix, Σ, which allows us to calculate the volume,

V(Σ) =
π|~α|/2

Γ(1 + |~α|
2 )

det
(

Σ−
1
2

)
, (4.20)

where Γ is the Gamma function, and |~α| is the cardinality of the parameterisation. This quantity
allows us to meaningfully compare distributions of different dimension, but we must be cautious
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Figure 4.2: Parameter learning for the analytical likelihood, Eq. (4.14), for varying numbers of particles
NP, with Ne = 500. For Np = 2000, we show the resampler threshold set to r = 0.5 and
r = 0.9. The parameter estimate, i.e. ω̄, the mean of the posterior distribution after each
experiment, approaching ω0 = 7.75 (dashed line), where the prior is centred on ω = 50± 25.
For the same experiments, the volume, V, quadratic loss, LQ, and evolution time, t, are shown.
Implementation details are listed in Table A.1.

of drawing strong comparisons between models based on their volume alone, for instance
because they may have started from vastly different prior distributions.

Within SMC, we assume the credible region is simply the posterior distribution, such that
we can take Σ = cov(Pr(~α)) after each experiment, and hence track the uncertainty in our
parameters across the training experiments [128]. We use volume as a measure of the learning
procedure’s progress: slowly decreasing or static volume indicates poor learning, e.g. the blue
and green models in Fig. 4.2, possibly highlighting poor experiment design. Exponentially
decreasing volume indicates that the parameters’ estimation is improving, e.g. the first 300

experiments for the red model in Fig. 4.2, whereas converged volume (the latter 200 experiments)
indicate the learning has saturated and there is little benefit to running further experiments in
the current regime.
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4.6 experiment design heuristic

A key consideration in QHL is the choice of experimental controls implemented in attempt
to learn from the system. The experimental controls required are dictated by the choice of
likelihood function used within SMC, though typically there are two primary controls we will
focus on: the evolution time, t, and the probe state evolved, |ψ〉. The design of experiments
is handled by an experiment design heuristic (EDH), whose structure can be altered to suit
the user’s needs, with respect to the individual target system. Usually, the EDH attempts to
exploit the information available, adaptively accounting for some aspects of the inference process
performed already. In some cases, however, there may be justification to employ a non-adaptive
schedule, for instance to force QHL to train upon a full set of experimental data rather than
a subset, as an adaptive method may advise. We can categorise each EDH as either online or
offline, depending on whether it accounts for the current state of the inference procedure, i.e. the
posterior. The EDH is modular and can be replaced by any method that returns a valid set of
experimental controls, so we can consider numerous approaches, for instance those described
in [145, 146].

4.6.1 Particle guess heuristic

The default EDH is the particle guess heuristic (PGH) [130], an online method which attempts
to design the optimal evolution time based on the posterior at each experiment. Note PGH does
not specify the probe, so is coupled with a probe selection routine to comprise a complete EDH.

The principle of PGH is that the uncertainty of the posterior limits how well the Hamiltonian
is currently approximated5, and therefore limits the evolution time for which the posterior
can be expected to reasonably mimic Ĥ0. For example, consider Eq. (4.10) with a single
parameter ω0 = 10, and current {mean (Pr(ω)) = 9, std (Pr(ω)) = 2}: we can expect that the
approximation ω′ = mean (Pr(ω)) is valid up to tmax ≈ 1/std(Pr(ω)). Fig. 4.3 shows the difference
in likelihood between the system and proposed parameters, for parameters within the prior. For
t < tmax, parameters within the prior all perform reasonably well; while for t > tmax, the prior
does not provide a reliable estimation of the true likelihood. Experiments using evolution time
t ≈ tmax, however, provide a sensitive test of hypothesis within the prior: those values which
are closer to ω0 than ω′ perform drastically better than those further away. We can exploit this
insight directly by sampling particles throughout the prior: values around the true parameter,
i.e. ω′ < ω < ω0, will be seen to outperform ω < ω′, and will therefore be assigned higher
weight (see Eq. (4.5)), allowing us to redraw Pr(ω) based on meaningful data. In short, we can
learn effectively from likelihoods based on experiments where t ≈ tmax.

Then, it is sensible to use t ≈ tmax as the bespoke design with respect to a given prior, for
two main reasons: (i) smaller times are already well explained by the posterior, so offer little

5 The reasoning behind limiting the evolution time according to the posterior distribution is rooted in the effect of
the Loschmidt echo, described in Section 4.3.1.
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Figure 4.3: Difference in likelihood between true and proposed parameters. The likelihood is given by
Eq. (4.14); the true parameter is ωo = 10 (red). The prior distribution (blue) is characterised
by a Gaussian, Pr(ω) = 9± 2 (arbitrary units). The difference between the true likelihood,
l0, and likelihood for proposed parameters, l, is given for values of ω, for varying proposal
experiments, i.e. evolution times. tmax = 1.26/std(Pr(ω)) (green), t = tmax/2 (purple), t = 2tmax

(orange) are shown.

opportunity to learn; (ii) tmax is at or near the threshold which particles sampled from the
posterior can comfortably explain, so it will expose the relative difference in likelihood between
the posterior’s better and worse particles, providing a capacity to learn. Informally, as the
uncertainty in the posterior shrinks, PGH selects larger times to ensure the training is based on
informative experiments while simultaneously increasing certainty about the parameters. In the
one-dimensional case, this logic can be used to find an optimal time heuristic, where experiment
k is assigned tk = 1.26/std(Pr(ω)) [141].

For a general multidimensional parameterisation, rather than directly using the inverse of the
standard deviation of Pr (~α), which relies on the expensive calculation of the covariance matrix,
PGH uses a proxy whereby two particles are sampled from Pr (~α). The experimental evolution
time for experiment k is then given by

tk =
1

‖~αi −~αj‖
, (4.21)

where~αi,~αj are distinct particles sampled from P where P is the set of particles under consider-
ation by SMC after experiment k− 1, which had been recently sampled from Pr (~α).
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4.6.2 Alternative experiment design heuristics

The EDH can be specified to the requirements of the target system; we test four examples
of customised EDHs against four target Hamiltonians. Here the EDH must only design the
evolution time for the experiment, with probe design discussed in the next section. The heuristics
tested are:

• Random(0, tmax): Randomly chosen time up to some arbitrary maximum, we set tmax =
1000 (arbitrary units). This approach is clearly subobtimal, since it does not account
whatsoever for the knowledge of the training so far, and demands the user choose a
suitable tmax, which can be not guaranteed to be meaningful.

• t list: forcing the training to consider a set of times decided in advance. For instance,
when only a small set of experimental measurements are available, it is sensible to train
on all of them, perhaps repeatedly. We test uniformly spaced times t ∈ (0, tmax], and cycle
through the list twice, aiming first to broadly learn the region of highest likelihood for
all times, and then to refine the approximation. Again this EDH fails to account for the
performance of the trainer so far, so may use times either far above or below the ability of
the parameterisation.

• (9/8)k: An early attempt to match the expected exponential decrease in volume from the
training, was to set tk = (9/8)k [128]. Note we increment k after 10 experiments in the
training regime, rather than after each experiment, which would result in extremely high
times which flood CPU memory.

• PGH: as described in Section 4.6.1.
We demonstrate the influence of the EDH on the training procedure by testing models6 of

various complexity and dimension in Fig. 4.4. In particular, we first test a simple 1-qubit model,
Eq. (4.22a); followed by more complicated 1-qubit model, Eq. (4.22b); as well as randomly
generated 5-qubit Ising, Eq. (4.22c), and 4-qubit Heisenberg models, Eq. (4.22d). Each Ĥi have
randomly chosen parameters implicitly assigned to each term.

Ĥ1 = σ̂z
1 (4.22a)

Ĥ2 = σ̂x
1 + σ̂

y
1 + σ̂z

1 (4.22b)

Ĥ3 = σ̂z
1 σ̂z

3 + σ̂z
1 σ̂z

4 + σ̂z
1 σ̂z

5 + σ̂z
2 σ̂z

4 + σ̂z
2 σ̂z

5 + σ̂z
3 + σ̂z

4 + σ̂z
3 + σ̂z

5 (4.22c)

Ĥ4 = σ̂z
1 σ̂z

2 + σ̂z
1 σ̂z

3 + σ̂x
2 σ̂x

3 + σ̂z
2 σ̂z

3 + σ̂x
2 σ̂x

4 + σ̂z
3 σ̂z

4 (4.22d)

6 Note the models designed here are not intended to represent physically meaningful situations, but merely to serve
as examples of simulatable Hamiltonians.
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Figure 4.4: The volume (top) and evolution times (bottom) of various models when trained through QHL
using different EDHs. We show models of various complexity and dimension, each trained
using four heuristics, outlined in the main text. Implementation details are listed in Table A.1.

We show the performance of each of the listed EDHs in Fig. 4.4. The general trend reveals that,
although some individual models benefit from bespoke EDHs, the PGH is generically applicable
and usually facilitates a reasonable level of training, without providing advantage to any model.
We will have cause to use alternative EDHs in particular circumstances, but we adopt PGH as
the default EDH throughout this thesis, unless otherwise stated.

4.7 probe selection

A final consideration about training experiments within QHL is the choice of input probe state,
|ψ〉, which is evolved in the course of finding the likelihood used during the Bayesian update. We
can consider the choice of probe as an output of the EDH, although previous work has usually
not considered optimising the probe, instead usually setting |ψ〉 = |+〉⊗n for n qubits [131, 141].
In principle it is possible for the EDH to design a new probe at each experiment, although a more
straightforward approach is to compose a set of probes offline, Ψ = {|ψ〉}, of size Nψ = |Ψ|.
Then, a probe is chosen at each experiment from Ψ, allowing for the same |ψ〉 to be used for
multiple experiments within the training, e.g. by iterating over Ψ. Ψ can be generated with
respect to the individual learning problem as we will examine later7, but it is usually sufficient

7 In Section 9.4.
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Figure 4.5: Training through QHL with varying probes. Top, Probes used, Ψ = {|0〉⊗n} (blue); Ψ =

{|+〉⊗n} (orange); Ψ constructed from tomographic probes (green); Ψ random (red). We
show the 1-qubit probes on the Bloch sphere, though probes are constructed up to n-qubits
in each case. Bottom, Volume of various models, listed in Eq. (4.22), trained through QHL
using different initial probe sets. In each case the probes are generated for arbitrary numbers
of qubits; for |0〉 , |+〉, the number of probes generated is Nψ = 1, and for |t〉 , |r〉, Nψ = 40.
Implementation details are listed in Table A.1.

to use generic strategies which should work for all models; some straightforward examples
are

i. |0〉 : Ψ = {|0〉⊗n}, Nψ = 1;

ii. |+〉 : Ψ = {|+〉⊗n}, Nψ = 1;

iii. |t〉 : Ψ is a random subset of probes generated by combining tomographic basis states,
Nψ = 40;

iv. |r〉 : |ψ〉 are random, separable probes, Nψ = 40.
Recalling the set of models from Eq. (4.22), we test each of these probe construction strategies

in Fig. 4.5. We can draw a number of useful observations from these simple tests:
• Training on an eigenstate – as in the case for Ĥ1 and Ĥ3 using |0〉 – yields no information

gain. This is because all particles give likelihoods l = 1, so no weight update can occur,
meaning the parameter distribution does not change when presented new evidence.
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• Training on an even superposition of the model’s eigenstates – e.g. |+〉 for Ĥ1 – is
maximally informative: any deviations from the true parameterisation are registered most
dramatically in this basis, providing the optimal training probe for this case.

• These observations are reinforced by Fig. 4.5(c), where a 5-qubit Ising model also fails to
learn from one of its eigenstates, |0〉⊗5. Of note, however, is that |+〉⊗5 is not the strongest
probe here: the much larger Hilbert space here can not be scanned sufficiently using a
single probe; using a larger number of probes is more effective, even if those are randomly
chosen. It is reasonable to presume the optimal set of training probes for any given model
would be the set of probes spanned by sums of that model’s eigenstates, since these will
most radically encode the unitary evolution.

• In general the tomographic and random probe sets perform reliably, even for complex
models.

It is an open challenge to identify the optimal probe for training any given model; the design
of informative probes could be built into the EDH in principle, e.g. a set of probes could be
generated of even superpositions of the candidate’s eigenstates. However, for model comparison
purposes in general, it is helpful to have a universal set of probes, Ψ, upon which all models are
trained. The use of Ψ minimises systematic bias towards particular models, which might arise
from probes which serve as favourable bases for a subset of models, for example |+〉 in Fig. 4.5(a).
Careful consideration should be given to Nψ in the choice of the probe generator, since it is
important to ensure probes robustly test the parameterisation across the entire Hilbert space. It
is also necessary that SMC has sufficient opportunity to learn within a given subspace before
moving to the next, so that slight deviations in Pr(~α) due to a single probe are not immediately
reversed because a distant probe is immediately invoked. We can mitigate this concern by
instructing the EDH to repeatedly select a probe from Ψ for a batch of successive experiments,
before moving to the next available probe. Unless otherwise stated, for the remainder of this
thesis we will adopt the random probe generator as the default mechanism for selecting probes,
iterating between probes after batches of 5 experiments.
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5
Q UA N T U M M O D E L L E A R N I N G A G E N T

A model is the mathematical description of a quantum system of interest, Q. In Chapter 4, we
discussed a number of systems in terms of their Hamiltonian descriptions, although in general
the description of a quantum system need not be Hamiltonian, e.g. Lindbladian models describe
open quantum systems, so we will generically refer to the model of Q throughout.

Quantum Model Learning Agent (QMLA) is an algorithm that builds upon the concept at the
heart of Chapter 4, i.e. applying machine learning (ML) to the characterisation of Hamiltonians.
The extension, and central question of QMLA is: if we do not know the structure of the model
which describes a target quantum system, can we still learn about the physics of the system?
That is, we remove the assumption about the form of the Hamiltonian model, and attempt to
uncover which terms constitute the Hamiltonian, and in so doing, learn the interactions the
system is subject to.

For the remainder of this thesis, our objective is to learn the model underlying a series of
target quantum systems. We will first introduce some concepts which will prove useful when
discussing QMLA, before describing the protocol in detail in Section 5.3.

5.1 models

Models are simply the mathematical objects which can be used to predict the behaviour of a
system. In this thesis, models are synonymous with Hamiltonians, composed of a set of terms,
T = {t̂}, where each t̂ is a matrix. Each term is associated with a multiplicative scalar, which
may be referred to as that term’s parameter: we impose order on the terms and parameters such
that we can succinctly summarise any model as

Ĥ = (α0 . . . αn)




t̂1
...

t̂n


 =~α · ~T, (5.1)

where~α,~T are the model’s parameters and terms, respectively.
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5.2 bayes factors

For example, a model which is the sum of the (non-identity) Pauli operators is given by

Ĥ = (αx αy αz) ·



σ̂x
σ̂y
σ̂z




= αxσ̂x + αyσ̂y + αzσ̂z

=

(
αz αx − iαy

αx + iαy αz

)
.

(5.2)

Through this formalism, we can say that the sole task of quantum Hamiltonian learning (QHL)
was to optimise~α, given ~T. The principal task of QMLA is to identify the terms ~T which are
supported by the most statistical evidence as describing a target system Q. In short, QMLA
proposes candidate models, Ĥi, as hypotheses to explain Q; we train each model independently
through a parameter learning routine, and finally nominate the model with the best performance
after training. In particular, QMLA uses QHL as the parameter learning subroutine, but in
principle this step can be performed by any algorithm which learns ~α for given ~T, [147–155].
While discussing a model Ĥi, their training then simply means the implementation of QHL1,
where Ĥi is assumed to represent Q, such that~αi is optimised as well as it can be, even in the
case it is entirely inaccurate, Ĥi 6≈ Ĥ0.

5.2 bayes factors

We can use the tools introduced in Section 4.4 to compare candidate models. Of course it is
first necessary to ensure that each model has been adequately trained: while inaccurate models
are unlikely to strongly capture the system dynamics, they should first train on the system to
determine their best attempt at doing so, i.e. they should undergo the process in Chapter 4. It is
statistically meaningful to compare models via their total log total likelihood (TLTL), Li, if and
only if they have considered the same data, i.e. if models have each attempted to account for the
same set of experiments, E [156].

We can then exploit direct pairwise comparisons between models, by imposing that both
models’ TLTL are computed based on any shared set of experiments E , with corresponding
measurements D = {de}e∈E . Pairwise comparisons can then be quantified by the Bayes factor
(BF),

Bij =
Pr(D|Ĥi; E)
Pr(D|Ĥj; E)

. (5.3)

Intuitively, we see that the BF is the ratio of the likelihood, i.e. the performance, of model Ĥi’s
attempt to account for the data set D observed following the experiment set E , against the same
likelihood for model Ĥj. BFs are known to be statistically significative of the stronger model

1 Or the chosen parameter learning subroutine.
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5.2 bayes factors

from a pair when both models attempt to explain observed data, while favouring models of low
cardinality, thereby suppressing overfitting models.

We have that, for independent experiments, and recalling Eq. (4.15),

Pr(D|Ĥi; E) = Pr(dn|Ĥi; en)× Pr(dn−1|Ĥi; en−1)× · · · × Pr(d0|Ĥi; e0)

= ∏
e∈E

Pr(de|Ĥi; e)

= ∏
e∈E

(le)i.

(5.4)

We also have, from Eq. (4.18)

Li = ∑
e∈E

ln ((le)i)

=⇒ eLi = exp

(
∑
e∈E

ln [(le)i]

)
= ∏

e∈E
exp (ln [(le)i]) = ∏

e∈E
(le)i.

(5.5)

So we can write

Bij =
Pr(D|Ĥi; E)
Pr(D|Ĥj; E)

=

∏
e∈E

(le)i

∏
e∈E

(le)j
=

eLi

eLj
(5.6)

=⇒ Bij = eLi−Lj (5.7)

This is simply the exponential of the difference between two models’ TLTLs when presented
the same set of experiments. Intuitively, if Ĥi performs well, and therefore has a high TLTL,
Li = −10, and Ĥj performs worse with Lj = −100, then Bij = e−10−(−100) = e90 � 1. Conversely
for Li = −100,Lj = −10, then Bij = e−90 � 1. Therefore |Bij| is the strength of the statistical
evidence in favour of the interpretation





Bij > 1 ⇒ Ĥi favoured over Ĥj

Bij < 1 ⇒ Ĥj favoured than Ĥi

Bij = 1 ⇒ Ĥi, Ĥj equally favoured.

(5.8)

Throughout this thesis, Eq. (5.8) will be used to inform algorithmic preferences towards
models based on pairwise comparisons. For example, for a fixed set of models, we can compute
BFs between all pairs of models, and allocate a single point to the favoured model from each
comparison, after which we can deem the model with most points as the best model from the
set.

54



5.2 bayes factors

5.2.1 Experiment sets

As mentioned, it is necessary for the TLTL of both models in a BF calculation to refer to the same
set of experiments, E . There are a number of ways to achieve this, which we briefly summarise
here for reference later.

During training (the QHL subroutine), candidate model Ĥi is trained against Ei, designed
by an experiment design heuristic (EDH) to optimise parameter learning specifically for Ĥi;
likewise Ĥj is trained on Ej. The simplest method to compute the BF is to enforce E = Ei ∪ Ej in
Eq. (5.3), i.e. to cross-train Ĥi using the data designed specifically for training Ĥj, and vice versa.
This is a valid approach because it challenges each model to attempt to explain experiments
designed explicitly for its competitor, at which only truly accurate models are likely to succeed.

A second approach builds on the first, but incorporates burn–in time in the training regime:
this is a standard technique in the evaluation of ML models whereby its earliest iterations are
discounted for evaluation so as not to skew its metrics, ensuring the evaluation reflects the
strength of the model. In BF, we achieve this by basing the TLTL only on a subset of the training
experiments. For example, the latter half of experiments designed during the training of Ĥi, E ′i .
This does not result in less predictive BF, since we are merely removing the noisy segments of
the training for each model, e.g. the first half of experiments in Fig. 4.2. Moreover it provides a
benefit in reducing the computational requirements: updating each model to ensure the TLTL is
based on E ′ = E ′i ∪ E ′j requires only half the computation time, which can be further reduced by
lowering the number of particles used during the update, N′p, which will give a similar result as
using NP, assuming the posterior has mostly converged2.

A final option is to design a set of evaluation experiments, Ev, that are valid for a broad variety
of models, and so will not favour any particular model. Again, this is a common technique in
ML: to use one set of data for training models, and a second, unseen dataset for evaluation.
This is a favourable approach: provided for each model we compute Eq. (4.18) using Ev, we can
automatically select the strongest model based solely on their TLTLs, meaning we do not have
to perform further computationally-expensive updates, as required to cross-train on opponents’
experiments during BF calculation. However, it does impose on the user to design a fair Ev,
requiring unbiased probe states {|ψ〉} and times {t} on a timescale which is meaningful to the
system under consideration. For example, experiments with t > T2, where T2 is the decoherence
time of the system, would result in measurements which offer little information, and hence it
would be difficult to extract evidence in favour of any model from experiments in this domain.
It is difficult to know, or even estimate, such meaningful time scales a priori, so it is difficult
for a user to design Ev. Additionally, the training regime each model undergoes during QHL is
designed to provide adaptive experiments that take into account the specific model entertained,
to choose an optimal set of evolution times, so it is likely that the set of times in Ei is reasonable
by default. This approach would be favoured in principle, in the case where such constraints

2 We will verify this claim in Section 8.1.2.1, in the context of real examples.
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can be accounted for, e.g. an experiment repeated in a laboratory where the available probe
states are limited and the timescale achievable is understood.

5.3 quantum model learning agent protocol

Given a target quantum system, Q, described by some true model, i.e. its Hamiltonian Ĥ0, QMLA
distills a model Ĥ′ ≈ Ĥ0. We can think of QMLA as a forest search algorithm3: consisting of
a number of trees, each of which can have an arbitrary number of branches, where each leaf
on each branch is an individual model. QMLA is the search for the leaf in the forest with the
strongest statistical evidence of representing Q. Each tree in the QMLA forest corresponds to
an independent model search, structured according to a bespoke exploration strategy (ES), which
we detail in Section 5.4.

In short, the components of the iterative model search for a given ES, depicted in Fig. 5.1(a-d),
are

branches

A set of candidate models, {Ĥi}, are held together on a branch, µ.

training

Each model Ĥi ∈ µ is trained according to a parameter learning subroutine.

consolidation

The performance of candidates in µ are ranked relative to each other, such that some
models are favoured over others, for instance through selection of a branch champion, Ĥµ

C.
Consolidation can rely on any statistical test, with BFs providing a robust platform to
distinguish any pair of candidates.

spawn

A set of new models are constructed, accounting for the consolidation stage immediately
beforehand, i.e. leveraging the best-yet-known models to construct improved hypotheses.

Multiple model searches can proceed in parallel, and they are each assigned an independent
exploration tree (ET), S. Following the iterative model generation procedure, the protocol selects
the strongest considered candidate, for instance by consolidating the set of branch champions,
{Ĥµ

C}, resulting in the nomination of a single tree champion, Ĥ′S, Fig. 5.1(e). The final step of
QMLA is then to consolidate the set of champion models from all ETs, {Ĥ′S}, in order to declare
a global champion model, Ĥ′, Fig. 5.1(f).

3 Note QMLA is not a random forest, where decision trees are added at random, because in QMLA trees are highly
structured and included manually.
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5.3 quantum model learning agent protocol

Figure 5.1: Schematic of Quantum Model Learning Agent (QMLA). a-d, Model search phase within an
exploration strategy (ES). a, Models are placed as (empty, purple) nodes on the active branch µ,
where each model is a sum of terms t̂k multiplied by corresponding scalar parameters αk. b,
Each active model is trained according to a subroutine such as quantum Hamiltonian learning
to optimise ~αi, resulting in the trained Ĥ(~α′i) (filled purple node). c, µ is consolidated, i.e.
models are evaluated relative to other models on µ, according to the consolidation mechanism
specified by the ES. In this example, pairwise Bayes factors, Bij, between Ĥi, Ĥj are computed,
resulting in the election of a single branch champion Ĥµ

C (bronze). d, A new set of models are
spawned according to the chosen ES’s model generation strategy. In this example, models are
spawned from a single parent. The newly spawned models are placed on the next branch,
µ + 1, iterating back to (a). e-f, Higher level of entire QMLA procedure. e, The model search
phase for a unique ES is presented on an exploration tree. Multiple ES can operate in parallel,
e.g. assuming different underlying physics, so the overall QMLA procedure involves a forest
search across multiple ETs. Each ES nominates a champion, Ĥ′S (silver), after consolidating its
branch champions (bronze). f, Ĥ′S from each of the above ETs are gathered on a single branch,
which is consolidated to give the final champion model, Ĥ′ (gold).
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5.4 exploration strategies

QMLA is implemented by running Nt ETs concurrently, where each ET corresponds to a unique
model search and ultimately nominates a single model as its favoured approximation of Ĥ0. An
exploration strategy (ES) is the set of rules which guide a single ET throughout its model search.
We elucidate the responsibilities of ESs in the remainder of this section, but in short they can be
summarised as:

i. model generation: combining the knowledge progressively acquired on the ET to construct
new candidate models;

ii. decision criteria for the model search phase: instructions for how QMLA should respond at
predefined junctions, e.g. whether to cease the model search after a branch has completed;

iii. true model specification: detailing the terms and parameters which constitute Ĥ0 (in the
case where Q is simulated);

iv. modular functionality: subroutines called throughout QMLA are interchangeable such that
each ES specifies the set of functions to achieve its goals.

QMLA acts in tandem with one or more ESs, through the process depicted in Fig. 5.2. In
summary: QMLA sends a request to the ES for a set of models; the ES designs models and
places them as leaves on a new branch on its ET, and returns the set H; QMLA trains the models
in H; QMLA consolidates H; QMLA informs the ES of the results of training/consolidation of
H; ES decides whether to continue the search, and informs QMLA.

5.4.1 Model generation

The main role of any ES is to design candidate models to test against Ĥ0. This can be done
through any means deemed appropriate, although in general it is sensible to exploit the
information gleaned so far in the ET, such as the performance of previous candidates and
their comparisons, so that successful models are seen to spawn new models, e.g. by combining
previously successful models, or by building upon them. Conversely, model generation can be
completely determined in advance, or entirely random. This alludes to the central design choice
in composing an ES: how broad and deep should the searchable model space be, considering
that adequately training each model is expensive, and that model comparisons are similarly
expensive. The size of the model space can usually be easily found by assuming that terms
are binary – either the interaction they represent is present or not. If all possible terms are
accounted for, and the total set of terms is T , then there are 2|T | available candidates in the
model space. The model space encompasses the closed4 set of models construable by the set of
terms considered by an ES. Because training models is slow in general, a central aim of QMLA is
to search this space efficiently, i.e. to minimise the number of models considered, while retaining
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Figure 5.2: Interface between Quantum Model Learning Agent (QMLA) and a single exploration strategy
(ES). The main components are the ES, model training subroutine, target quantum system
Q, and (quantum) simulator. The main steps of the algorithm, shown in red with arrows
denoting data transferred during that step, are as follows. 1, QMLA retrieves decision
infrastructure from ES, such as the consolidation mechanism and termination criteria. 2,
models are designed/spawned; 2a, QMLA signals to ES requesting a set of models, passing
the results of the previous branch’s models if appropriate. 2b, ES spawns new models, H; 2c,
ES passes H to QMLA. 3, QMLA assigns a new branch (µ ← µ + 1) and places the newly
proposed models upon it. 4, Model training subroutine (here quantum Hamiltonian learning),
performed independently for each model Ĥi ∈ µ; 4a, QMLA passes Ĥi to the model trainer;
4b, construct a prior distribution Pri(~α) describing the model’s parameterisation~αi; 4c, design
experiment e to perform on Q to optimise ~αi; 4d, perform e on Q to retrieve a datum d; 4e,
simulate e for particles {~α1, . . . ,~αNp} sampled from Pri(~α) to retrieve likelihoods for each

particle {l j
e}j∈(1,...NP); 4e, update the prior Pri(~α) based on {(d, l j

e)}j∈(1,...,NP). 5, Evaluate and
rank Ĥi ∈ µ according to the ES’s consolidation mechanism. 6, Check ES’s termination criteria;
if reached, proceed to (7), otherwise return to (2). 7, Nominate champion model, Ĥ′S.

59



5.4 exploration strategies

high quality models and providing a reasonable prospect of uncovering the true model, or a
strong approximation thereof.

5.4.2 Decision criteria for the model search phase

Further control parameters, which direct the growth of the ET, are set within the ES. At several
junctions within Algorithms 2 to 3, QMLA queries the ES in order to decide what happens next.
Here we list the important cases of this behaviour.

parameter-learning settings

– such as the prior distribution to assign each parameter during QHL, and the parameters
needed to run sequential Monte Carlo (SMC);

– the time scale on which to examine Q;

– the input probes to train upon, Ψ, described in Section 4.7.

branch consolidation strategy

– How to consolidate models within a branch. Some examples used in this work are:

∗ a points-ranking, where all candidates are compared via BF, and points are assigned to the
favoured model in each case, according to Eq. (5.8);

∗ ranking reflecting each model’s log-likelihood (Eq. (5.5)) after training;

∗ models are ranked according to some objective function, as in the case of genetic algorithms
(GAs) which we detail in Chapter 8.

model search termination criteria

– For example, instruction to stop after a fixed number of iterations, or when a certain fitness
has been reached.

champion nomination

– when a single ET is explored, identify a single champion model from the branch champions,
{Ĥµ

C};
– if multiple ETs are explored, the mechanism to compare champions across trees, {Ĥ′S}.

4 It is feasible to define an ES which uses an open model space, that is, there is no pre-defined T , but rather the ES
determines models through some other heuristic mechanism. In this thesis, we do not propose any such ES, but
note that the QMLA framework facilitates the concept, see Chapter 6.
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5.4.3 True model specification

It is necessary also to specify details about the true model, Ĥ0, at least in the case where QMLA
acts on simulated data. Within the ES, we can set ~T0 as well as~α0. For example where the target
system is an untrusted quantum simulator to be characterised, Su, by interfacing with a trusted
(quantum) simulator St, we decide some Ĥ0 in advance: the model training subroutine calls
for likelihoods, those corresponding to Ĥ0 are computed Su, while particles’ likelihoods are
computed on St.

5.4.4 Modular functionality

Finally, there are a number of fundamental subroutines which are called upon throughout the
QMLA algorithm. These are written independently such that each subroutine has a number of
available implementations. These can be chosen to match the requirements of the user, and are
set via the ES.

model training procedure

Subroutine used to optimise parameters for candidate models.

– i.e. whether to use QHL or quantum process tomography, etc.

– In this work we always use QHL.

likelihood function

The method used to estimate the likelihood for use during quantum likelihood estimation
(QLE) within QHL, which ultimately depends on the measurement scheme.

– The role of these functions is to compute the probability of measuring each experimental
outcome.

– These functions compute the expectation value of the unitary operator, e−iĤt, corresponding
to the dynamics of either Q or the hypothesis model.

– By default, we use projective measurement back onto the input probe state, |〈ψ| e−iĤt |ψ〉|2.

– In the usual case where Q has binary outcomes, we label one outcome – say, measurement
in the |+〉 state – as d = 0 and compute Pr(0) so that the likelihood, expectation value and
Pr(0) refer to the same quantity, see Section 4.3.

– It is possible instead to implement any measurement procedure, for example an experi-
mental procedure where the environment is traced out, as we address in Chapter 9.
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probe

Defining the input probes to be used during training, Ψ, see Section 4.7.

– In general it is preferable to use numerous probes in order to avoid biasing particular
terms.

– In some cases we are restricted to a small number of available input probes, e.g. to match
experimental constraints.

experiment design heuristic

The method through which to design bespoke experiments to maximise the information
on which models are individually trained, described in Section 4.6.

– In particular, in this work the experimental controls consist solely of {|ψ〉 , t}.
– Currently, probes are generated offline, but in principle it is feasible to choose optimal

probes based on available or hypothetical information. For example, probes can be chosen
as a normalised sum of the candidate model’s eigenvectors.

– Choice of t has a large effect on how well the model can train. By default, times are chosen
proportional to the inverse of the current uncertainty in~α to maximise Fischer information,
through the multi-particle guess heuristic described in Section 4.6.1 [130].

∗ Alternatively, evolution times may be chosen from a fixed set in order to force QHL to
reproduce the dynamics within those times’ scale. For instance, if a small amount of
experimental data is available offline, it is sensible to train all candidate models against the
entire dataset.

model training prior

Specify the structure of the prior distribution, e.g. Fig. 4.1(a).

– Set the initial mean and standard deviation of each parameter separately to define the
prior multi-dimensional Pr(~α).

5.4.5 Exploration strategy examples

To solidify the concept of ESs, and how they affect the overall reach and runtime of a given ET,
consider the following examples, where each strategy specifies how models are generated, as well
as how trained models are consolidated within a branch. Recall that all of these strategies rely
on QHL as the model training subroutine, so that the run time for training, is tQHL ∼ NeNptU(n),
where tU(n) is the time to compute the unitary evolution via the matrix exponential for an
n-qubit model. All models are trained using the default likelihood in Eq. (4.4). Assume the
conditions
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• all models considered are represented by 4-qubit models;

– tU(4) ≈ 10−3sec.

• each model undergoes a reasonable training regime;

– Ne = 1000, Np = 3000;

– =⇒ tQHL = Ne × Np × tU(4) = 3000s ≈ 1h;

• Bayes factor calculations use

– Ne = 500, Np = 3000

– =⇒ tBF ≈ 2× 500× 3000× 10−3 ≈ 1h;

• there are 12 available terms

– allowing any combination of terms, this admits a model space of size 212 = 4096

• access to 16 computer cores to parallelise calculations over

– i.e. we can train 16 models or perform 16 BF comparisons in 1h.
Then, consider the following model generation/comparison strategies.

a. Predefined set of 16 models H, with BF comparisons between every pair of models

(i) Training takes 1h, and there are (16
2 ) = 120 comparisons spread across 16 processes,

requiring 8h

(ii) total time is 9h.

b. Generative procedure for model design, comparing every pair of models, running for 12

branches

(i) One branch takes 9h =⇒ total time is 12× 9 = 108h;

(ii) total number of models considered is 16× 12 = 192.

c. Generative procedure for model design, where less model comparisons are needed (say
one third of all model pairs are compared), running for 12 branches

(i) Training time is still 1h

(ii) One third of comparisons, i.e. 40 BF to compute, requires 3h

(iii) One branch takes 4h =⇒ total time is 36h

(iv) total number of models considered is also 192.
These examples illustrate some of the design decisions involved in composing an ES, namely

whether timing considerations are more important than thoroughly exploring the model space.
They also show considerable time–savings in cases where it is acceptable to forego all model
comparisons. The approach in (a) is clearly limited in its applicability, mainly in that there
is a heavy requirement for prior knowledge, and it is only useful in cases where we either
know Ĥ0 ∈ H, or would be satisfied with approximating Ĥ0 as the closest available Ĥj ∈ H.
On the opposite end of this spectrum, (c) is an excellent approach with respect to minimising
prior knowledge required by the algorithm, although at the significant expense of testing a
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much larger number of candidate models. There is no optimal strategy: each use case demands
particular considerations, and the amount of prior information available informs how wide the
model search should reach.

5.5 generality

Several aspects of QMLA are deliberately vague in order to facilitate generality.

Model

Any description of a quantum system which captures the interactions it is subject to.

– Here we exclusively consider Hamiltonian models, but Lindbladian models can also be
considered as generators of quantum dynamics.

model training

Any subroutine which can train a given model, i.e. optimise a given parameterisation
under the assumption that it represents the target system.

– Currently only QHL has been implemented, although for example tomography is valid in
principle, with its own advantages and disadvantages. Overall QHL is found to fulfil the
remit of model training with a balance of efficiency and rigour [1].

– QHL relies on the calculation of a characteristic likelihood function; this too is not restricted
to the generic form of Eq. (4.4) and can be replaced by any form which represents the
likelihood that experimental conditions e result in measurement datum d. We will see
examples of this in Chapter 9 where we trace out part of the system in order to represent
open systems.

consolidation

As rigorous as desired by the user.

– Consolidation occurs at the branch level of each ET, but also in finding the tree champion,
and ultimately the global champion.

– In practice, we use either BF or a related concept such as TLTL which are statistically
significative. However, in Chapter 8 we will consider a number of alternative schemes for
discerning the strongest models.
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Figure 5.3: Learning agents. Left, definition of a learning agent, where an environment is affected by
actuators which realise a problem instance, designed by a problem generator, through some
performance element. The result of the agent’s action is detected by sensors, which the critic
interprets with respect to the agent’s learning goals, by providing feedback to the learning element.
Right, mapping of the concept of a learning agent on to an individual model. A target
quantum system, Q, is queried by performing some experiment e, designed by an experiment
design heuristic, and implemented by evolving a probe state |ψ〉 for time t. The systems is
measured, and the datum d is sent to the likelihood function, which sends the likelihood
Pr(d|~α, t) to the weight update (and the parameter distribution update), before designing
another experiment.
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5.5.1 Agency

While the concept of agency is contentious [113], we can view our overall protocol as a multi-
agent system [114], or even an agent based evolutionary algorithm [157], because any given
ES satisfies the definition, the population of individuals can be considered as a population of agents,
where we mean the population of models present on a given ET. More precisely, we can view
individual models as learning agents according to the criteria of [103], i.e. that a learning agent
has

• a problem generator: designs actions in an attempt to learn about the system – this is
precisely the role of the EDH;

• a performance element: implements the designed actions and measures the outcome – the
measurement of a datum following the experiment designed by the EDH;

• a critic: the likelihood function informs whether the designed action (experiment) was
successful;

• a learning element: the updates to the weights and overall parameter distribution improve
the model’s performance over time.

We depict this analogy in Fig. 5.3.
Overall, the QMLA model search can be regarded as an unsupervised ML algorithm, since

the true model is unknown. However, the flexibility of the ES paradigm permits any model
design mechanism: in general we can say the model search – and the model training subroutine
– is guided by the environment, i.e. it learns whether subspaces of candidates are effective from
interaction with the system. We are therefore justified in labelling the entire procedure as the
quantum model learning agent.

5.6 algorithms

We conclude this chapter by listing the algorithms used most frequently, in order to clarify each
of their roles, and how they interact. Algorithm 2 shows the overall QMLA algorithm, which is
simplified greatly to a loop over the model search of each ES. The model search itself is listed in
Algorithm 3, which contains calls to subroutines for model learning (QHL, Algorithm 6), branch
consolidation (which can be based upon BF, Algorithm 7) and centers on the generation of new
models, an example of which – based on a greedy search prerogative – is given in Algorithm 5.
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Algorithm 2: Quantum Model Learning Agent

Input: Q // some physically measurable or simulatable quantum system

Input: S // set of exploration strategies

Output: Ĥ′ // champion model

Hc ← {}
for S ∈ S do

Ĥ′S ← model search(Q, S) // run model search for this ES, e.g. Algorithm 3

Hc ←Hc ∪ {Ĥ′S} // add ES champion to collection

end
Ĥ′ ← final champion(Hc)

return Ĥ′

Algorithm 3: Exploration strategy subroutine: model search

Input: Q // some physically measurable or simulatable quantum system

Input: S // exploration strategy: collection of rules/subroutines

Output: Ĥ′S // exploration strategy’s nominated champion model

ν← {}
Hc ← {}
while !S.terminate() do

µ← S.generate models(ν) // spawn new models, e.g. Algorithm 5

for Ĥi ∈ µ do
Ĥ′i ← S.train(Ĥi) // train candidate model, e.g. Algorithm 6

end
ν← S.consolidate(µ) // consolidate set of models, e.g. pairwise via Algorithm 4

Ĥµ
c ← S.branch champion(ν) // use ν to select a branch champion

Hc ←Hc ∪ {Ĥµ
c } // add branch champion to collection

end
Ĥ′S ← S.nominate champion(Hc)

return Ĥ′S
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Algorithm 4: Exploration strategy subroutine: consolidate (points per Bayes factor win)

Input: µ // information about models considered to date

Input: b // threshold for sufficient evidence that one model is favoured

Input: BF() // function to compute the BF between Ĥj and Ĥk, Algorithm 7

Output: Ĥk′ // favoured model within µ

H← extract models(µ)
for Ĥj ∈H do

sj = 0 // initialise score for each model

end
for Ĥj, Ĥk ∈H // pairwise Bayes factor between all models in the set

do
B← BF(Ĥj, Ĥk)

if B > b // increase score of winning model

then
sj ← sj + 1

else if B < 1/b then
sk ← sk + 1

end
k′ ← maxk{sk} // find which model has most points

return Ĥk′

Algorithm 5: Exploration strategy subroutine: generate models (greedy spawn)

Input: ν // information about models considered to date

Input: T // set of terms to search

Output: H // set of candidate models

Ĥµ
C ← top model(ν) // find previous branch champion

{t̂µ
c } ← get terms(Ĥµ

C) // extract terms of branch champion

T ′ ← T \ {t̂µ
c } // remove terms of branch champion

H← {}
for t̂ ∈ T ′ do

Ĥi ← Ĥµ
C + t̂ // add one term to the branch champion

H←H∪ {Ĥi}
end
return H
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Algorithm 6: Quantum Hamiltonian Learning

Input: Q // some physically measurable or simulatable quantum system, described by Ĥ0

Input: Ĥi // Hamiltonian model attempting to reproduce data from Ĥ0
Input: Pr (~α) // probability distribution for ~α =~α0
Input: NE // number of experiments to iterate learning procedure for

Input: NP // number of particles to draw from Pr (~α)
Input: Λ(Pr (~α)) // experiment design heuristic

Input: RS(Pr (~α) , Np) // resampling algorithm for redrawing Np particles from Pr(~α)
Output: ~α′ // estimate of Hamiltonian parameters

P ← RS(Pr (~α) , Np) // sample particles from prior

for p ∈ P do
wp ← 1/Np // set weights for each particle

end

for e ∈ {1→ Ne} do
t, |ψ〉 ← Λ(Pr (~α)) // design an experiment

d← prepare Q in |ψ〉, evolve and measure after t // datum

for p ∈ P do
~αp ← parameter vector corresponding to p
Pr(d|~αp; t)← |〈d| e−iH(~αp)t |ψ〉|2 // likelihood

wp ← wp × Pr(d|~αp; t) // weight update

end

if 1/ ∑p w2
p < Np/2 // check whether to resample (are weights too small?)

then
P ← RS(Pr (~α) , Np) // redraw particles via resampling algorithm

for p ∈ P do
wp ← 1/Np // set weights for each particle

end
end

end

~α′i ← mean(Pr (~α))←~α′

return~α′
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Algorithm 7: Bayes Factor calculation

Input: Q // some physically measurable or simulatable quantum system.

Input: Ĥj, Ĥk // Hamiltonian models to compare

Input: Prj(~α), Prk(~α) // posterior distribution following training for Ĥj, Ĥk
Input: N′p // number of particles to draw from posteriors for evaluation

Input: Ej, Ek // experiments on which Ĥj and Ĥk were trained during QHL

Output: Bjk // Bayes factor between two candidate Hamiltonians

E = {Ej ∪ Ek} // common experiments for fair comparison

for Ĥi ∈ {Ĥj, Ĥk } do
Li = 0 // total log total likelihood for Ĥi
for e ∈ E do

e← t, |ψ〉 // assign evolution time and probe from experiment control set

d← Prepare Q in |ψ〉, evolve and measure after t // datum

P ← sample(Pri(~α), N′p) // sample from Ĥi’s posterior

le ← 0 // total likelihood for Ĥi on this experiment

for~αp ∈ P do

Pr(d|Ĥi, t)←
∣∣∣〈d| e−iĤi(~αp)t |ψ〉

∣∣∣
2

// likelihood for particle ~αp on e

le ← le + Pr(d|Ĥi, t) // add le to total likelihood

end
Li ← Li + ln(le) // add ln(le) to total log total likelihood

end
end
Bjk ← exp

(
Lj −Lk

)
// Bayes factor between models

return Bjk
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6
S O F T WA R E

All of the details in Chapter 4 and Chapter 5 are implemented in the Quantum Model Learning
Agent (QMLA) software framework, a (mostly) Python codebase which underlies all of the
arguments, results and figures in this thesis [3]. The codebase is designed to simplify the process
of running QMLA or quantum Hamiltonian learning (QHL) on novel systems. In particular, the
core QMLA algorithm can support a wide range of exploration strategys (ESs), allowing for the
design of bespoke ESs to account for the specific requirements of any given target system, Q. In
this chapter we give an overview of the QMLA software, implementation and instructions for
its use. We do not introduce new mathematical, physical or algorithmic concepts, so readers
interested in applications of the techniques may prefer to skip to Part III.

6.1 implementation

In this section we describe the technical details of the implementation of the algorithm described
in Chapter 5, as well as a number of relevant subroutines. These discussions aim first to
familiarise readers with some fundamental programming conventions, and then describe how
we can leverage those concepts to construct the QMLA infrastructure.

6.1.1 Object oriented programming

We first introduce the concepts of object-oriented programming, and in particular inheritance
between objects, since this will feature in later discussion about the implementation of QMLA
and ESs. Python is a robust object-oriented language [158], meaning that we can frame concepts
as objects, permitting actions to be performed to/by them. In particular, objects in Python are
formulated as classes, which can have associated attributes and methods. For example, we can
encode the concept of a Footballer as a class, such that the player object holds attributes such as
number of games played and goals scored in a season; the player objects also has methods which
achieve specific calculations, e.g. to summarise their record. We can then utilise the Footballer

class to store information about an individual player, by making an instance of the class.
A fundamental concept in object-oriented programming is inheritance between objects, such

that a child object inherits properties of its parent. In general, a parent object can be thought of
as an abstract concept, which provides basic functionality and reasonable default properties,
while a child object can incorporate specific requirements. For example, an Athlete class can
act as a parent to the Footballer class, where the Athlete class holds core information such as
date of birth. This allows for the Athlete class to be recycled as the base class for other child
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classes which have the same underlying requirements, e.g RubgyPlayer. We list this example in
Listings 6.1 to 6.2.

c l a s s Athle te ( ) :

def i n i t (
s e l f ,
name ,
bir th day ,
birth month ,
b i r t h y e a r ,

) :
# Use i n f o r m a t i o n g i v e n
s e l f . name = name
s e l f . d a t e o f b i r t h = datetime . date (

b i r t h y e a r , birth month , b i r th day
)

def age ( s e l f , round down=True ) :
# Method t o compute t h i s a t h l e t e ’ s age
d a y s s i n c e b i r t h = (

datetime . date . today ( )
− s e l f . d a t e o f b i r t h

)
age = d a y s s i n c e b i r t h . days / 365

i f round down :
age = i n t ( age )

return age

def summary ( s e l f ) :
# Method t o summarise t h i s a t h l e t e
summary = ”{name} i s a {age}−year old a t h l e t e . ” . format (

name = s e l f . name ,
age = s e l f . age ( )

)
print ( summary )
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bob = Athle te (
name= ’ Bob ’ ,
b i r th day = 11 ,
birth month = 11 ,
b i r t h y e a r = 1993 ,

)
bob . summary ( )

Listing 6.1: Parent class, encoding the concept of an athlete. Programmed in Python.

c l a s s F o o t b a l l e r ( Athle te ) :
def i n i t (

s e l f ,
footed ,
team ,
s i z e = ’medium ’ ,
* * kwargs

) :
# Pass arguments t o t h e p a r e n t c l a s s
super ( ) . i n i t ( * * kwargs )

# Use i n f o r m a t i o n g i v e n
s e l f . team = team
s e l f . footed = footed
s e l f . s i z e = s i z e

# D e f a u l t a t t r i b u t e s
s e l f . goa l s scored = 0

def summarise ( s e l f ) :
# Overwr i t e p a r e n t ’ s summarise method
# with method s p e c i f i c t o F o o t b a l l e r s
summary = (

”{ s i z e } {player } plays f o r {team} and has scored {
num goals} goals . ” . format (

s i z e = s e l f . s ize ,
player = s e l f . name ,
team = s e l f . team ,
num goals = s e l f . goa l s scored

)
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)
print ( summary )

def r e c o r d g o a l s ( s e l f , num new goals ) :
# Method t o r e c o r d t h a t t h e F o o t b a l l e r
# has s c o r e d a number o f new g o a l s
s e l f . goa l s scored += num new goals

# Make an i n s t a n c e o f F o o t b a l l e r t o r e p r e s e n t an i n d i v i d u a l
mickey = F o o t b a l l e r (

name = ’ Mickey ’ ,
footed = ’ l e f t ’ ,
team = ’QECDT−FC ’ ,
b i r th day = 11 ,
birth month = 11 ,
b i r t h y e a r = 1993 ,
s i z e = ’ Big ’

)
# C a l l t h e methods on t h e i n s t a n c e
mickey . r e c o r d g o a l s ( num new goals = 10 )
mickey . summarise ( )

Listing 6.2: Child class, encoding the concept of a footballer, which adopts the abstract representation of
an athlete. Programmed in Python.

6.2 python framework

A driving motivation for the development of QMLA is generality: we endeavour to make
QMLA applicable to any target quantum system, Q. We provide a framework, where users
can tailor the inputs and methodology to their needs. The main components of the framework
are depicted in Fig. 6.1, broadly grouping concepts as part of its infrastructure, algorithm or
application. In short, users need only specify the elements of the framework in the application
segment, without concern for the underlying mechanics of QMLA. In particular, users interface
with the framework through the design of a bespoke ES, described next.

6.2.1 Application

The application of QMLA refers to the choice of target system, Q, and how QMLA searches the
model space in attempt to uncover its model. As outlined in Section 5.4, ESs play the role of
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Figure 6.1: Overview of important objects in the QMLA framework. The objects’ colour encodes its type:
red objects are data/properties, blue are functions/methods and green are classes. Objects are
grouped broadly, with double lines showing communication channels between (groups of)
objects. Infrastructure, functions for the implementation of model training/comparisons on
a remote compute server, Section 6.2.3. Algorithm, implementation of the iterative proce-
dures and decision-making laid out in Chapter 5. The algorithmic controls are detailed in
Section 6.2.2. Application, inter-changeable data/functionality for the unique requirements
of a given target system, Section 6.2.1. Users wishing to customise QMLA must choose a
valid implementation for each object in this segment but need not alter any of the underlying
framework.
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defining QMLA’s objectives, guiding the steps it takes, and designing the models to be tested.
We facilitate the study of any system by providing a robust ExplorationStrategy base class, with
all of the functionality expected of a generic ES, allowing users to inherit and build upon it. In
particular, ESs allow users to specify the implementation of aspects listed in Section 5.4, as well
as further details.

6.2.1.1 Modular functionality

The most crucial methods1 of the ES class are modular, described in Section 5.4.4, meaning that
they can be directly replaced, provided the alternative method fulfils the same role. Our base ES
class uses sensible defaults for this modular functionality, but this flexible mechanism allows for
adapting QMLA by choosing an approach for each of the following subroutines.

• Likelihood function. As described in Section 4.3, the likelihood is the means by which
QHL trains candidate models. By default, QHL calls a subroutine to compute Eq. (4.4).
This can be replaced by any function which, given a Hamiltonian, evolution time and
probe state, returns the likelihood, according to the desired experiment for simulation. For
example, in Chapter 9, the data on which models are trained comes from experimental
measurements, so we replace the likelihood function with a calculation corresponding to
the experimental procedure.

• Probe generation. The training phase requires a set of probes against which to optimise
individual models, as examined in Section 4.7. Users may wish to specify the design of
such probes, for example to match experimental constraints which restrict the realisable
probes in the performance of the experiment. Alternatively, it may be feasible to design
probes which increase the information gained per experiment, enabling faster learning.

• Experiment design heuristic (EDH). The choice of EDH greatly influences how the training
will perform, see Section 4.6. We provide a base class implementing particle guess heuristic
(PGH), as well as child classes for each of the EDHs listed in Section 4.6.2.

• Prior. The method of drawing the prior distribution can be replaced, for example, with
a method for constructing a uniform distribution on each parameter. A key input to the
procedure is the initial knowledge the user has about the system, which is encoded in the
prior, for instance varying orders of magnitude of the viable terms.

Additionally, applications require a series of settings for the model training phase, such
as the hyperparameters required by the resampling algorithm, [134], as well as detailing the
true model, Ĥ0, in the case where Q is simulated. We can also direct QMLA to perform ES-
specific analyses to examine its internal performance, although this is generally required during
development/testing, and less useful thereafter.

1 The words method and function are mostly interchangeable, although methods are specifically associated with a
class, while functions are stand-alone.
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6.2.2 Algorithm

The algorithm layer of Fig. 6.1 implements the core steps of QMLA, as shown in Fig. 5.1, by
running a set of exploration trees (ETs), each of which communicate with a unique ES. The core
QMLA class manages the database of models and their comparisons, and decides how to react
at certain stages, by consulting the decision criteria set by the ES.

The implementation of QMLA seeks to separate the organisation of the model search from
the cumbersome calculations which enable the search. We can offload those calculations to a
compute cluster (server) to run in parallel, allowing for significant speedup of the entire QMLA
procedure, limited by Amdahl’s law. Amdahl’s law stipulates that the speedup available to any
program due to parallelisation is limited by the portion of the program which is inherently
parallelisable, versus inherently serial [159]. In QMLA, all the model training and model
comparison subroutines can be run in parallel, while only the administrative steps of the core
QMLA algorithm are inherently serial, so QMLA can benefit greatly from parallelism.

While there are a number of strategies for parallelising code over a cluster of individual
processes2, we use the master-worker strategy, where one process acts as the master, determining
which calculations are required at any given moment, then brokering self-contained tasks to
workers, which blindly solve a small problem, without knowledge of the wider context or
algorithm [160]. The mapping here is trivial: the master of our algorithm is QMLA, while
workers can be used for the tasks of training and comparing models. QMLA distributes tasks to
worker processes in a server, i.e. we assume that QMLA is run on a machine with Nc available
parallel processes3. One process is designated for the QMLA class alone, e.g. for the ranking of
models and determination of the next models to tests, while the remaining Nc − 1 processes
lay dormant until QMLA requests that they perform a task. The role of QMLA is to collate the
outcome of those calculations in conjunction with the set of exploration trees (ETs), until each
ET is deemed complete, and then to consolidate the set of ET champions, ultimately setting
the global champion, Ĥ′. Thereafter it can perform some analysis; see Section 6.3.1 for further
details.

QMLA and all workers have shared access to a database, through which they communicate
data pertaining to individual tasks [161]. We use a simple task queue for the distribution of jobs:
QMLA adds tasks to the queue and any available worker can take the next job and compute
it [162]. The queue can be accessed by only one thread at a time, to ensure tasks are not
duplicated. There are two types of task for workers:

• to train a candidate model, Ĥi: the worker first requests some essential information about
the model from the database, e.g. the name, terms and prior associated with the model,
packaged in Mi; following completion, the worker compresses the result, Ri, and sends it
to the database for storage.

2 Each process is a single CPU.
3 Note when running in serial (e.g. running locally on a personal machine), it is valid to simply set Nc = 1.
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Database

Quantum 
M odel 

Learning 
Agent

Database

M 5

R5 

R1,R 2 

C1,2 

Figure 6.2: Parallel architecture for Quantum Model Learning Agent (QMLA). Left, QMLA generates
tasks – either to train (blue dumbbells) or compare (green scales) models – and places them
in a task queue. Worker processes (depicted as computers) retrieve those tasks and compute
them in parallel, and interact with a database. Right, Distributed tasks occurring in parallel,
with each process communicating with the database. The left-hand process assumes the task of
training the model with ID 5, Ĥ5: it first queries the database for a packet of core information,
M5, which informs the model training procedure, for example the terms and parameters of Ĥ5.
After training, it sends a packet, R5, summarising the result of Ĥ5’s training. The right-hand
process compares two models with IDs 1 and 2, by first retrieving the results packets R1, R2,
then storing the comparison C1,2 on the database.
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• to compare two models, Ĥi, Ĥj: the worker retrieves Ri, Rj from the database, performs the
calculation, and returns the compressed outcome of the comparison, Cij, to the database.

The QMLA class copies the compressed results packets Ri and Cij, in order to account for
the results in its decision-making. It is worth noting that tasks are completely independent, so
some worker processes may compute comparisons while others train models simultaneously,
although the comparison between Ĥi, Ĥj can not begin until both Ri, Rj are available. To ensure
tasks are not launched in advance of their dependencies, we enforce a blocking protocol, whereby
new batches of jobs are not released until the master receives all the results of jobs on which the
new tasks depend: QMLA simply waits until all models on a given branch have been trained
before queuing comparisons on that branch.

Models are assigned a unique ID upon creation, and are uniquely described by their name,
represented as a string in the QMLA class, such that newly proposed models can be checked
against the set of previously considered models before being added to the database. QMLA
can hence check whether a proposed model, Ĥi, has already been trained, in which case it does
not resubmit the model, but instead relies on the existing result, Ri. Likewise QMLA can check
for the presence of any comparison result, Cij, before submitting the comparison as a new task,
ensuring we do not duplicate expensive calculation. We depict the structure of this parallel
architecture, and the master-worker strategy, in Fig. 6.2.

6.2.3 Infrastructure

The infrastructure enabling the distribution of QMLA’s tasks across a set of worker processes
can be summarised as:

• a set of classes representing the objects on which we must perform expensive calculations;

• functions to launch those calculations independently of any other calculation;

• a database which can be accessed by all workers as well as the QMLA master class.
We need a series of distinct classes to represent models, for use in each stage of QMLA:

a trainable class is used for the parameter optimisation, while comparable classes are used for
computing Bayes factors (BFs). Crucially, this separation allows us to perform data-heavy
calculations independently, e.g. on a remote process within a compute cluster, and discard the
class instance used for the calculation and the large amount of data it generates, while only the
relatively small storage class is retained by QMLA for later use.

The tasks which actually implement the calculations (Section 6.2.2) are captured by standalone
remote functions. These functions receive instructions such as train model 10; they then contact the
database for the set of shared settings, such as NE, NP and the set of probes, before performing
the task, and then send the compressed result, R10, to the database for storage. To achieve this
separation between calculation and analysis, we use a redis database [161], which holds the
core implementation settings, e.g. NE, NP and the set of probes to train upon, as well as the
compressed summaries of the outcomes of tasks.
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6.3 usage

Several aspects of QMLA are probabilistic. Firstly, the Bayesian updates within model training
– i.e. QHL – relies on likelihoods which implicitly depend on the measurement datum of a
quantum system. In the case where the projective measurement finds Q in a less-likely eigenstate,
i.e. one with lower probability immediately prior to measurement, the likelihoods will indicate
poor outcomes from good hypotheses, resulting in misguided posterior distributions. It is thus
possible that the parameter learning will converge on incorrect values, or not converge at all even
given ample resources. Moreover, the model design subroutine is not guaranteed to exploit
the aspects of favoured models which are actually informative, e.g. given a favoured model
with four correct terms and two incorrect terms, the model generator may opt to build upon
the incorrect terms, in the common situation where it can not distinguish between helpful and
misleading constituent terms.

Overall then, it is pertinent to run the entire QMLA algorithm repeatedly and gather statistics
about its performance and outcomes, rather than making definitive claims about Q based on a
single implementation. We say that a single implementation of QMLA is an instance, and Nr
instances are grouped in a run. Instances can be realised in parallel, each relying on the master-
worker parallel structure laid out above. We are primarily concerned with the performance of
the run instead of any individual instance. For example, for each model, Ĥi, in the model space,
we can interpret its win rate – the fraction of instances for which QMLA finds Ĥ′ = Ĥi – as
evidence for that Ĥ0 = Ĥi. For the sake of evaluating QMLA itself, as in Part III, we can use the
win rate of Ĥ0 as indication of the overall success rate, i.e. the fraction of instances within a run
where QMLA identifies precisely Ĥ′ = Ĥ0. Note, however, that neither the win rate nor success
rate are singularly informative of QMLA’s performance: in some cases, we can deem QMLA
successful even if it does not identify Ĥ0 exactly, e.g. if it finds the majority of terms present in
T0 from a large space, i.e. a high F1-score, see Section 8.1.2.

The QMLA codebase is available at [3], with complete documentation including a tutorial
at [4]. We show how to design a custom ES and incorporate it within QMLA, and deploy the
computation on a cluster in Appendix C.

6.3.1 Outputs and analysis

When a run is launched, QMLA generates a results directory unique to that run, identified by the
time and date of its launch, in which all the pertinent information for that run, including raw
data and figures, are stored. It includes an analyse.sh script to generate analysis after all instances
have completed4. QMLA provides a large amount of analytics to assess the performance of
the protocol. These range from big picture perspectives such as the win rate across the entire
run, to focusing on internal metrics for training individual models. Some of these analyses are
generated by default, while others are optional depending on the level of detail the user requires.
A number of sub-directories are produced in the results directory, each containing data/figures
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from a different view of the run; these are listed in Appendix A. Results are categorised across
the levels of the framework, the most important of which are:

Run

Results across a number of instances.

– Win rates for all models which are found as champion model at least once.

– Average dynamics reproduced by champion models.

Instance

Performance of a single instance.

– Models generated and the branches on which they reside.

Model

Individual model performance within an instance.

– Parameter estimation through QHL.

pairwise comparisons

Direct comparison of models’ performance.

– Dynamics of both candidates (with respect to a single basis).

Exploration strategy

Analysis specific to the ES.

– For example, model generation metrics.

Most plots used in this thesis are generated directly by the QMLA framework5; complete
details for reproducing each figure are listed in Table A.1, with further details for navigating
QMLA’s outputs in Appendix A. Examples of some of the available analyses, as well as a
demonstration for customising the QMLA software is given in Appendix C.

4 Note this script is not run automatically since, on remote servers, instances finish independently without any
central process noticing. Therefore this script must be run by the user when the run is complete.

5 Figures presented in this thesis are minor modifications of figures available for automatic analysis in QMLA.
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Part III

T H E O R E T I C A L S T U D Y



O V E RV I E W A N D C O N T R I B U T I O N

In this part, we examine a series of theoretical quantum systems, to assess the usefulness of the
Quantum Model Learning Agent (QMLA) protocol described in Part II. The results presented
here will be made public in [2].

We begin in Chapter 7 with ideal systems described by lattice models under standard for-
malisms, i.e. Ising, Heisenberg and Hubbard models. This serves as a first test of the QMLA
framework under reasonably straightforward conditions, where a small number of candidate
models are proposed in advance, with the true model guaranteed to be among them. We then
show that QMLA is also capable of classifying the family to which a target system belongs,
i.e. whether it should be considered within Ising, Heisenberg or Hubbard formalisms. The
initial idea for this chapter was proposed by Dr. Raffaele Santagati, and refined together with
Dr. Andreas Gentile and myself. I modified the QMLA software for this application, ran the
instances and analysed the data. The figures presented are my own.

In Chapter 8 we consider more general application of the QMLA protocol, searching through
model spaces comprising over 250,000 valid candidate models. We explore these spaces efficiently
by incorporating a genetic algorithm within QMLA. I proposed genetic algorithms for the study
of large model spaces, and performed the initial hyperparameter tuning. I devised the numerous
objective functions considered, and in particular the combination of Bayes factors with Elo
ratings for a bespoke objective function which takes advantage of QMLA’s core strengths. I built
the genetic algorithm infrastructure into the QMLA software, ran the instances presented, and
analysed the data. The figures presented are my own.

84



7
P R E S C R I B E D M O D E L S E T S

A sensible first case study for Quantum Model Learning Agent (QMLA) is to search within a
closed space of models targeting some typical quantum systems; in particular we consider Ising,
Heisenberg and Hubbard formalisms as a test-bed for the QMLA framework. We can prescribe
a set of models for QMLA to consider, H, from which it will choose a champion model, Ĥ′.
By including the true model, Ĥ0 ∈H, then QMLA should perform well at retrieving Ĥ′ = Ĥ0,
provided its core assumptions are reliable, i.e. that model training, comparison and selection are
feasible on meaningful models.

This application can be useful, for example, for expedited device calibration: suppose we wish
to characterise a new, untrustued quantum simulator/device, Su, and we have access to a trusted1

simulator, St. In order to perform this calibration, we treat Su as the system, Q, i.e. we call upon
it to retrieve the datum d in Eq. (4.4), where the calculation of the likelihoods for each particle
are computed through St. If Su is reliable, the data from its calculations will be consistent with
some Ĥ0 of our choosing. Conversely, miscalibrations can manifest as imperfectly implemented
gates/steps in the calculation of the system’s likelihood, and so would result in data inconsistent
with Ĥ0. Therefore, if we can prescribe the most likely miscalibrations, it may be feasible to
compose a set of models, H, which represent those cases, and search for Ĥ′ only within H, to
identify the dominant error mechanism(s). For example, by encoding in Ĥ0 the connections
between every pair of qubits on the device, we can compose candidate models of restricted
connectivity, for instance where some pairs of qubits are disconnected, and hence discover
whether the device allows arbitrary two-qubit gates, and which pairs are disallowed.

In this chapter we perform such a study of the QMLA framework itself, by manually defining
target and candidate models in simulation, given by lattice structures. We test the protocol
by varying the physical systems it aims to represent, and finish by demonstrating that QMLA
can classify the family of models underlying the target system, when allowed explore several
families.

7.1 lattices

In each case examined in this chapter, QMLA will aim to identify the true model, Ĥ0, determined
by a series of target systems, Q. Q represents some physical configuration; we specify the
configuration of all models through unique lattices. The goal of QMLA is then to identify the
structure of the true lattice, while the set of viable models are specified by alternative lattices.
Due to simulation constraints, because we train models through exact unitary evolution, we are

1 Note: here a classical computer can fulfil the role of the trusted simulator.
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restricted to 8-qubit Hamiltonians, so we only consider lattices which can be simulated in this
limit. The exploration strategy (ES) in this chapter is then simply to propose a set of models
H, with no further model generation, and perform comparisons between all pairs of models
through Bayes factors (BFs).

Connectivity between lattice sites is achieved within the specific Hamiltonian formalisms
introduced in the following sections, although in general we write C = {〈k, l〉} as the set of
connected pairs 〈k, l〉, such that the Hamiltonian for a given lattice can be thought of as some
function of its configuration, Ĥ (~α, C), where~α is the usual vector of multiplicative parameters
corresponding to each term in the Hamiltonian. Then, we can specify candidate models only by
their C, e.g. a 3-site chain can be summarised by C = {〈1, 2〉, 〈2, 3〉}, whereas a fully connected
3-site lattice (i.e. a triangle) is given by C = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉}. We can then summarise the set
of candidate models through the descriptions of lattice configurations, corresponding to those
depicted in Fig. 7.1:

a. 2-site chain;

b. 3-site chain;

c. 3-site fully connected (triangle);

d. 4-site fully connected (square);

e. 4-site linearly connected (loop);

f. 4-site chain;

g. 5-site chain;

h. 6-site chain;

i. 5-site fully connected (pentagon);

j. 6-site partially connected (grid).
We will use this set of lattice configurations throughout the remainder of this chapter.

7.2 ising model

The quantum Ising model – otherwise known as the transverse field Ising model, hereafter
simply the Ising model – is one of the most studied concepts in all of physics, representing
electrons on a lattice of N sites, where each electron can have spin up or down [163–165].
Interactions2 between spins 〈k, l〉 have strength Jkl, and the transverse magnetic field acts on
spin k with strength hk. The Ising model is usually stated as

ĤI(C) = ∑
〈k,l〉∈C

Jkl σ̂z
k σ̂z

l +
N

∑
k=1

hkσ̂x
k . (7.1)

2 The Ising model usually considers only nearest neighbour interaction. Here we present the more general 〈k, l〉
which can connect any pair of sites, and specify pairs in the set C.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7.1: Lattices used for prescribed models test for QMLA. Lattices are characterised by the connec-
tivity of their sites; dotted lines show connection between pairs of sites.

The interaction term3 indicates the class of magnetism of the pair’s interaction, i.e.




Jkl < 0, ferromagnetic;
Jkl > 0, antiferromagnetic;
Jkl = 0, noninteracting.

(7.2)

If all interaction pairs are described by the same case in Eq. (7.2), the entire system can be seen
as belonging to that class of magnetism.

7.2.1 Note on optimising the Ising model

Many treatments of the Ising model seek to find the ground state of the system by optimising the
configuration of spins in the system. This involves treating the Ising model classically, effectively
by neglecting the transverse magnetic field term (hk → 0), such that the ground state is found
by minimising the energy function is given by

EI = 〈ψ|HI |ψ〉 = ∑
〈k,l〉∈C

Jkl 〈ψ|σ̂z
k σ̂z

l |ψ〉 , (7.3)

where |ψ〉 = |ψ1〉 ⊗ |ψ2〉 · · · ⊗ |ψN〉.
This optimisation relies on the relationship between the Ising model with its eigenvalues and

eigenstates: Eq. (7.3) consists only of σ̂z terms, and we have that

σ̂z |+〉 = +1 |+〉 ; σ̂z |−〉 = −1 |−〉 . (7.4)

3 Note: the terms Jkl is often presented as −Jkl in Eq. (7.1), such that Jkl > 0 indicates ferromagnetism. Here we keep
the parameter general, and set the sign implicitly when defining and learning the parameter, so Jkl > 0 corresponds
to ferromagnetism. This is a matter of convention and does not impact any of the further discussion.
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Then, for a single pair of spins 〈k, l〉, we have

〈+k +l| σ̂z
k σ̂z

l |+k +l〉 = 〈+k +l| (+1)(+1) |+k +l〉 = +1,
〈+k −l| σ̂z

k σ̂z
l |+k −l〉 = 〈+k −l| (+1)(−1) |+k −l〉 = −1,

〈−k +l| σ̂z
k σ̂z

l |−k +l〉 = 〈−k +l| (−1)(+1) |−k +l〉 = −1,
〈−k −l| σ̂z

k σ̂z
l |−k −l〉 = 〈−k +l| (−1)(1) |−k −l〉 = +1.

(7.5)

So, by restricting the individual spins to |ψk〉 ∈ {|+〉 , |−〉}, we can equivalently consider every
spin sk in the system as a binary variable sk ∈ {±1}, i.e. sksl = ±1 in Eq. (7.5), such that the
energy function,

EI(S) = 〈ψ|ĤI |ψ〉 = ∑
〈k,l〉∈C

Jkl sksl, (7.6)

can be minimised by optimising the configuration S = s1, . . . , sN, when the interaction terms
{J〈k,l〉} are known. The optimal configuration S0 can then be mapped to a state vector |ψ0〉, i.e.
the ground state of the system.

While this task can be greatly simplified by the reduction in Eq. (7.5), meaning we do not
have to compute any unitary evolution to evaluate Eq. (7.6), it is still an expensive optimisation,
because effectively it is a search over {|ψ〉}, so the search space has 2N candidates [164,166]. This
allows for a straightforward mapping between ground state search and solving combinatorial
optimisation algorithms, namely MAX-CUT, known to be NP-complete [167], allowing for
proposed advantage in mapping computationally challenging problems to quantum hardware
[168]. This mapping underlies ongoing research into quantum annealing as a computational
platform capable of providing advantage for a specific family of problems [169–171].

Crucially, our goal is not to find the ground state of Q, but instead to find the generator of its
dynamics. Therefore, we treat the Ising model quantum mechanically: instead of treating Eq. (7.1)
as the underlying mechanism for a cost function to be optimised, i.e. Eq. (7.6), we use quantum
operators and do not necessarily restrict the probe state |ψ〉, allowing us to use Eq. (7.1) within
the likelihood function Eq. (4.4).

7.2.2 Ising model cases

We consider two cases: firstly, where it is assumed that the strength of interactions {Jk,l, hk} are
uniform (given by J, h); and secondly, where each interaction is assigned a unique parameter
(Jkl, hk). In the first case, we can represent the Ising model for a given lattice configuration C as

Ĥ(C) = J ∑
〈k,l〉∈C

σ̂z
k σ̂z

l + h
N

∑
k=1

σ̂x
k , (7.7)

allowing for the compact representation, following Section 5.1,

~αI = (J h); (7.8a)
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~TI =




∑
〈k,l〉∈C

σ̂z
k σ̂z

l

N
∑

k=1
σ̂x

k


 . (7.8b)

In the more general second case, termed the fully parameterised Ising model, we instead have
the parameter and term sets

αI = {Jk,l, hk}〈k,l〉∈C ; (7.9a)

TI = {σ̂z
k σ̂z

l , σ̂x
k }〈k,l〉∈C . (7.9b)

with unique parameters Jkl associated with each interaction term σ̂z
k σ̂z

l , and hk associated with
each field term, σ̂k. We summarise these cases in Table 7.1.

J〈k,l〉 hk
Standard J h

Fully parameterised J〈k,l〉 hk

Table 7.1: Forms of Ising model. Varying whether parameters J〈k,l〉, hk are shared across terms result in
distinct models.

We first construct models under each of these forms to verify quantum Hamiltonian learning
(QHL) is capable of learning in this regime: we train using the standard Ising model (Eq. (7.8) as
Ĥ0 in Fig. 7.2), and separately using the fully parameterised model (Eq. (7.9) as Ĥ0 in Fig. 7.3).
Ultimately, these two cases give the same Hamiltonian when we set J〈k,l〉 = J; hk = h ∀k, l. The
fully parameterised model will learn the same parameters as the standard Ising model, and we
can take the BF between them to determine which parameterisation is favourable. Encouragingly,
both models learned the parameters to high precision, although neither model converged, i.e.
the volume continues to reduce exponentially in both cases. This outcome is common: training is
not guaranteed to converge4, so it can be impractical to seek saturation in the training phase for
every model, since this may require a very large number of experiments and particles. It would
be preferable for each model’s parameterisation to have converged before comparing them, but
this is infeasible due to the indefinite resources required; in practice, model comparisons must
rely on limited training schedules which are presumed to reflect the overall ability of the models
to capture Q’s dynamics. We will see throughout this thesis5 that the choice of such training
resources, namely NE, NP, has a large impact on the outcome of QMLA, for example through
misleading comparisons between models in the case where the better model’s training was
under performant. This capacity for error is mitigated by combining many instances together in

4 When the model being trained is Ĥ0, the volume may not saturate until numerical precision is reached [130].
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Figure 7.2: Quantum Hamiltonian learning for the standard Ising model, where terms are grouped by
their functionality, as in Eq. (7.1). a-b, the parameter estimates’ progression against training
experiments, with the corresponding term labelling the y-axis. The parameters and volume
are presented in arbitrary units of energy. c, the volume of the parameter distribution at
each experiment, as well as the evolution time chosen by the experiment design heuristic.
Implementation details are listed in Table A.1.

a QMLA run, such that any conclusions drawn rely on the average performance, where strong
models are likely to perform better overall, even given access to limited resources.

The dynamics produced by both models are shown in Fig. 7.4: the dynamics are almost
indistinguishable by eye, but the standard Ising model, which in this case is Ĥ0, outperforms the
fully parameterised model, by a BF of B = 1019. This serves as a good sanity check, confirming
our expectation that the BF will favour the simpler model (i.e. fewer parameters) even when both
models are trained to a high precision to very similar parameters, and are difficult to distinguish
through human intuition6.

5 Including Section 7.7 where we study the effect of varying resources on QMLA’s outcome in the context of lattice
systems described here.

6 Here we have deliberately described the special case where models of more- and fewer-parameters are identical, and
the fewer-parameter-model can exactly reproduce the larger parameterisation. Had the true model been composed
of unequal {Jkl}, the under-parameterised model should not be preferred.
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Figure 7.3: Quantum Hamiltonian learning for the fully parameterised Ising model, where every interac-
tion between pairs of sites are assigned unique parameters, as in Eq. (7.9). a-f, the parameter
estimates’ progression against training experiments, with the corresponding term labelling the
y-axis. The parameters and volume are presented in arbitrary units of energy. g, the volume
of the parameter distribution at each experiment, as well as the evolution time chosen by the
experiment design heuristic (EDH). Implementation details are listed in Table A.1.
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Figure 7.4: Dynamics reproduced by Ising models using the standard form (blue, training shown in
Fig. 7.2) and the fully parameterised form (dotted green, training in Fig. 7.3), compared with
dynamics for the true system, Q (red dots). Ĥ0 for Q is given by the standard form, Eq. (7.1),
with parameters set arbitrarily to J = 0.8 and h = 0.2. The Bayes factor favours the standard
formalism over the fully parameterised, with a value of B = 1019. Implementation details are
listed in Table A.1.

7.3 heisenberg model

Generalising the Ising model, the Heisenberg Hamiltonian is another model for magnetic
systems consisting of a set of spins on a lattice [172]. It builds on the Ising model by additionally
considering the spins’ couplings about the x- and y-axes, generally stated as

ĤH(C) = ∑
〈k,l〉∈C

Jx
kl σ̂x

k σ̂x
l + ∑

〈k,l〉∈C
Jy
kl σ̂

y
k σ̂

y
l + ∑

〈k,l〉∈C
Jz
kl σ̂z

k σ̂z
l +

N

∑
k=1

hkσ̂z
k . (7.10)

We can consider a number of formulations of the Heisenberg model, by considering whether
the interaction parameters are completely unique for each pair of spins in each axis, or are
shared by pairs of spins. We list a number of prominent representations within the family of
Heisenberg models in Table 7.2.

Again, there are a number of possibile models to test, although we can reasonably expect
these to follow the same arguments as for the Ising model cases: increasing generality – at the
expense of larger parameter dimension – requires more resources to learn to a reasonable level.
We will consider the fully parameterised model in Chapter 8; here however we will focus on the
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7.4 hubbard model

Jx
kl Jy

kl Jz
kl hk

XXX Jx Jx Jx h
XXZ Jx Jx Jz h

XYZ (standard) Jx Jy Jz h
Fully parameterised Jx

kl Jy
kl Jz

kl hk

Table 7.2: Heisenberg model forms: varying whether the interaction parameters Jw
kl are shared among

pairs of spins give distinct descriptions, all of which are within the family of Heisenberg models.

more restrictive Heisenberg-XYZ model, such that the parameters and terms of interest are then
captured by Eq. (7.11).

~αH = (Jx Jy Jz h); (7.11a)

~TH =




∑
〈k,l〉∈C

σ̂x
k σ̂x

l

∑
〈k,l〉∈C

σ̂
y
k σ̂

y
l

∑
〈k,l〉∈C

σ̂z
k σ̂z

l

N
∑

k=1
σ̂z

k




. (7.11b)

7.4 hubbard model

Another representation of solid state matter systems is given by the Hubbard model [173–175].
The Hubbard model deals with systems of correlated fermions, allowing spins to hop between
sites and to localise on sites. Spins are correlated in this model because the spin on any site is
subject to the Coulomb interaction, i.e. a repulsive force due to the presence of another electron
on the same site, so it is energetically favourable for spins to arrange across sites. Note the
Hubbard model is synonymous with the Fermi-Hubbard (FH) model, which can be used to
distinguish the statistics from a set of fermions from the statistics of a similar set of bosons,
given by the Bose-Hubbard model. In this thesis we will not study the Bose-Hubbard model,
but will use the subscript FH to distinguish the (Fermi-)Hubbard model from the Heisenberg
model ĤH, Eq. (7.10). The Hubbard model is generally stated in second quantisation as

ĤFH(C) = − ∑
s∈{↑,↓}

∑
〈k,l〉∈C

ts
〈k,l〉

(
ĉ†

kscls + ĉ†
lscks

)
+

N

∑
k

Ukn̂k↑n̂k↓ +
N

∑
k

µk
(
n̂k↑ + n̂k↓

)
(7.12)
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7.4 hubbard model

where
• ĉks and ĉ†

ks are respectively the fermionic annihilation and creation operators for spin
s ∈ {↑, ↓} on site k;

• n̂ks = ĉ†
ks ĉks is the onsite term, i.e. a counting operator to count the number of spins s on

site k;

• ts
〈k,l〉 is the kinetic (hopping) term for spin s between sites k and l;

• Uk is the onsite (repulsion) energy for site k;

• µk is the chemical potential for k;

• N is the number of sites in the system.
Again, we can achieve differing physics by controlling whether the parameters are shared

(e.g. ts
〈k,l〉), with similar consequences to the Ising and Heisenberg models, where additional

parameterisation comes at the expense of slower/worse performance in training. We list a
subset of possible configurations in Table 7.3; again here we will use the standard form for the
remainder of this chapter, Eq. (7.13).

t↑〈k,l〉 t↓〈k,l〉 Uk µk

Standard t t U µ

Fully parameterised t↑〈k,l〉 t↓〈k,l〉 Uk µk

Table 7.3: Forms of Hubbard model. Varying whether parameters ts
〈k,l〉, Uk, µk are shared across sites gives

distinct models.

~αFH = (t↑ t↓ U µ); (7.13a)

~TFH =




∑
〈k,l〉∈C

(ĉ†
k,↑ ĉl,↑ + ĉ†

l,↑ ĉk,↑)

∑
〈k,l〉∈C

(ĉ†
k,↓ ĉl,↓ + ĉ†

l,↓ ĉk,↓)

N
∑

k=1
n̂k↑n̂k↓

N
∑

k=1

(
n̂k↑ + n̂k↓

)




. (7.13b)

7.4.1 Jordan Wigner transformation

In order that the Hubbard model is simulatable with qubits7, it must first undergo a mapping
from the fermionic representation to a spin system representation; such a mapping is given
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7.4 hubbard model

by the Jordan Wigner transformation (JWT) [176, 177]. We implement the JWT within QMLA
through OpenFermion’s fermilib package [178].

In second quantisation, the fermions on the lattice can occupy one (or a superposition of)
modes, for example, spin ↑ on the site indexed 3 is a mode. The system can then be given by a
state in the number basis,

|ψ f 〉 = |nm1 , nm2 , . . . , nmn〉 , (7.14)

where nmi is the number of fermions on mode mi and there are n modes in total.
ĉ†

mi
(ĉmi) is the creation (annihilation) operator on the mode mi: it acts on the system by

adding (removing) a fermion to (from) mi:

ĉ†
mi
|ψ f 〉 = |nm1 , . . . , nmi + 1, . . . , nmn〉 , (7.15a)

ĉmi |ψ f 〉 = |nm1 , . . . , nmi − 1, . . . , nmn〉 . (7.15b)

In the Hubbard model, we assign a mode for each combination of spin s ∈ {↑, ↓} with each
site k, i.e. the system is in the state

|ψFH〉 = |n1↑, n1↓, . . . , nN↑, nN↓〉 . (7.16)

In particular, since fermions obey the Pauli exclusion principle, i.e. every spin/site can be
occupied by at most one electron, and we can view them as two-level systems, so we have
nsk ∈ {0, 1}∀s, k. We therefore use a similar system to the number basis: a qubit registered as
|0〉 corresponds to an empty mode, while |1〉 holds a fermion. Empty lattices are thus given by
|0〉⊗2N. Then, in analogue with the annihilation and creation operators, we introduce operators
σ̂+, σ̂− such that

σ̂+ =

(
0 0
1 0

)
=⇒ σ̂+ |0〉 = |1〉 (7.17a)

σ̂− =

(
0 1
0 0

)
=⇒ σ̂− |1〉 = |0〉 (7.17b)

Then, to map the number basis of Eq. (7.16) to a state which can be prepared on qubits, the
JWT assigns a single qubit to each mode, where qubits are ordered simply by the site index and
spin type, as shown in Table 7.4. The JWT can be summarised by mapping – for the mode m
– the creation (annihilation) operator ĉ†

m (ĉm), to an operator which adds (removes) a spin to
(from) the corresponding state through the operator σ̂+

m (σ̂−m ).

ĉm → (σ̂z)⊗k−1 ⊗ σ̂− ⊗ (σ̂z)⊗2N−1 (7.18a)

ĉ†
m → (σ̂z)⊗k−1 ⊗ σ̂+ ⊗ (σ̂z)⊗2N−1 (7.18b)

7 Or simulations of qubits, as in this thesis.
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7.5 model learning for lattices

Mode Site Spin Qubit
1 1 ↑ 1
2 1 ↓ 2
3 2 ↑ 3
4 2 ↓ 4

...
2N − 1 N ↑ 2N − 1

2N N ↓ 2N

Table 7.4: Jordan Wigner mode/qubit indices.

For example, an empty 2-site lattice |ψ0〉 is acted on by a creation operator on mode 3,
corresponding to spin ↑ on site 2:

ĉ†
2↑ |0000〉 = ĉ†

3 |0000〉 = σ̂z
1 σ̂z

2 σ̂+
3 σ̂z

4 |0000〉 = |0010〉 . (7.19)

7.4.2 Half filled basis

In principle there can be 2N spins on a lattice of N sites, although in general we will restrict
to the case where there are N spins in the lattice, known as half-filling, such that Eq. (7.16) is
effectively projected into the subspace spanned by half-filled basis states. For example, with
N = 2

{|1100〉 , |1010〉 , |1001〉 , |0101〉 , |0110〉 , |0011〉} (7.20)

Therefore, in the design of probes for training Hubbard models, we can generate probes in
the subspace spanned by half-filled states.

7.5 model learning for lattices

Finally, then, we can use the model formalisms introduced in Sections 7.1 to 7.4 as first case
studies for QMLA, in conjunction with the set of lattices C shown in Fig. 7.1. Each C ∈ C can
specify a unique model under their standard forms: Eq. (7.8) for Ising, Eq. (7.11) for Heisenberg
and Eq. (7.13) for Hubbard models. We can then devise a simple ES (exploration strategy)
which only tests the models corresponding to lattices in C, with no further model generation,
Algorithm 8, and compares every pair of models through BFs, deeming the champion as that
which wins the largest number of comparisons, Algorithm 9.

For example, we adopt the fully connected four site lattice (Fig. 7.1(d)) as the true lattice
specifying Ĥ0, under the Ising formalism (Eq. (7.7)). We run QMLA by training the ten models
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7.5 model learning for lattices

Algorithm 8: Lattice exploration strategy: model generation

Input: C // set of lattice configurations

Output: {Ĥi} // set of models to test

H = { }
for C ∈ C do

Ĥi ← map lattice to model(C)
H←H∪ {Ĥi}

end
return H

Algorithm 9: Lattice exploration strategy: consolidation

Input: H // set of trained models

Output: Ĥ′ // favoured model

for Ĥi ∈H do
si ← 0 // score for every model

end
for Ĥi ∈H do

for Ĥj ∈H \ {Ĥi} do
Bij ← BF(Ĥi, Ĥj) // compute Bayes factor via Algorithm 7

if Bij > 1 then
si ← si + 1 // Ĥi’s score increases if it is favoured by the BF

end
end

end
Ĥ′ ← arg max

si

(
Ĥi
)

return Ĥ′
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Figure 7.5: QMLA for prescribed set of lattices under Ising formalism. The lattice indices correspond to
those in Fig. 7.1, indexed by the legend in (e), and the true system is given by lattice d. a-b,
the decrease in volume for each model’s training phase (in arbitrary energy units, spread over
two plots for readibility). c-d, trained models are used to reproduce dynamics, compared
with the dynamics of the true model (red dots). e, Heatmap of log10 Bij between every pair
of models. Each tile gives the BF between a pair of models,

(
Ĥi, Ĥj

)
. The BF is read as Ĥi

versus Ĥj, where Ĥi is the model on the y-axis and Ĥj is the model on the x-axis. log10 Bij > 0
(green) favours the model listed on the y-axis; log10 Bij < 0 (purple) favours the model listed
on the x-axis. Inset, the number of BF comparisons won by each lattice, i.e. the models’ scores.
Implementation details are listed in Table A.1.
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7.6 complete qmla run for lattice sets

corresponding to the ten lattices, Fig. 7.5(a-b); comparing the models predictive power, Fig. 7.5(c-
d), through BF (Fig. 7.5(e)), and choosing the model which wins the largest number of BF
contests. In this example, Ĥ0 is stronger than every alternative model according to the BFs,
where the lattice d wins all nine of its BF comparisons, and is hence determined as Ĥ′.

7.6 complete qmla run for lattice sets

In order to test QMLA robustly, we can use each of the lattices shown in Fig. 7.1 to specify Ĥ0, to
ensure the algorithm is capable of finding the underlying model of arbitrary complexity, within
the constraints of a prescribed model set8. Moreover, we can extend this test to the Heisenberg
and Hubbard formalisms; note that due to the overhead given by the JWT (Section 7.4.1), i.e.
the requirement of two qubits per site, we restrict study of the Hubbard model to lattices a− e
for practicality9. By running 10 independent QMLA instances for each lattice under each
formalism, we can gauge the success rate of the algorithm for distinguishing basic lattices from
each other. We present the result of these tests in Fig. 7.6, finding in all cases that QMLA
identifies Ĥ0 with success rates at least 70%. A general trend appears to emerge – especially
in the case of the Hubbard model – where target models of higher dimension are identified
less often. This can likely be attributed to the training resources provided: here models are
trained with Ne = 1000, Np = 4000, which are clearly sufficient for training models of few
qubits/parameters, but may not allow larger models to train well. In the next section we
investigate whether increasing NE, NP leads to higher success rates in general, and find a strong
correlation between training resources and QMLA success rate. We therefore expect that the
results for large target models could be improved by drastically increasing the training resources,
although for practicality, we do not perform such a test.

While there is compelling evidence that BFs can be used for model selection in general [179],
this straightforward test verifies that the BF is a fair mechanism by which to distinguish between
models in the context of candidate descriptions for quantum systems. In general it will not be
possible to prescribe the set of models to test, although this might serve as a straightforward
mechanism for the calibration of quantum devices. Suspected miscalibrations can be used in
the design of such a set of models, along with a target Ĥ0 which the device should be able to
implement. By testing such a prescribed set and determining Ĥ′, we can map the miscalibration
between the intended and actual operations. In the ideal case, where it is mostly believed the
device works, this application of QMLA may allow for fast, automated verification of the device:

8 The remainder of this thesis is dedicated to cases where we do not prescribe the model set, but instead generate
models dynamically.

9 The limitation of Hubbard models to 4-site lattices is due to the 6-qubit models required via the JWT. The primary
expense of simulation is the complete unitary evolution, requiring calculation of e−iĤit for each particle’s likelihood
calculation at every training experiment. Training becomes infeasible for systems requiring ' 9 qubits, whereas
moving to 5-site lattices would require 10-qubit models. We include a mixture of lattices up to 4 sites for the
Hubbard model, and some further models up to 6 sites for the Ising and Heisenberg models.
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Figure 7.6: Rates of success for QMLA under various conditions. Each lattice is set as the true model Ĥ0

for ten independent instances. In each instance, the ES considers the available lattices (a-j for
Ising and Heisenberg cases and a-e for the Hubbard case), and selects a champion model Ĥ′

as that most consistent with data generated by Ĥ0. The figure displays the rate at which each
lattice is correctly identified as Ĥ0 under standard Ising, Heisenberg and Hubbard formalisms.
Implementation details are listed in Table A.1.
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if QMLA finds Ĥ′ = Ĥ0 with high success given reasonable opportunity to miscompute, it may
be sufficient verification that the device behaves as desired, or at least part thereof.

Recall from Section 5.3 (and Fig. 5.1(e)) that QMLA can grow multiple exploration trees
(ETs) concurrently, each corresponding to a unique exploration strategy (ES). This functionality
permits ETs of different underlying physical assumptions, and can therefore be used to examine
alternative formalisms in parallel. For instance, in order to examine Q, we can independently
run ESs for each of the Ising, Heisenberg and Hubbard model families: QMLA first deems the
most appropriate model under each formalism, Ĥ′S, before consolidating {Ĥ′S} and declaring
the global champion model, Ĥ′. Ĥ′ therefore encodes which family best describes the system of
interest: even if the precise model is not found, Ĥ′ 6= Ĥ0, we can still classify the model family –
i.e. the underlying physical mechanism – which is most useful for describing Q.

Earlier in this chapter, we alluded to a fundamental question in the discussion of model
training and comparison through Bayesian inference, as underlies QHL: to what extent is a
trained model undermined by its limited training resources10, and what resources should be
granted in order to retrieve reliable outcomes? As usual in machine learning (ML) methods,
this represents a trade-off between the results of the algorithm against training time and
computational resources required. This question motivates the next section, where we examine
the role played by the numbers of training experiments and particles, in correctly identifying
models.

7.7 model family classification

We combine the task of family classification with non-exhaustive testing of the trade-off between
resources and outcomes. In this case, we vary the target model Ĥ0 as deriving again from
the lattices in Fig. 7.1, however we reduce the number of tested models in each case. ESs
corresponding to the Ising and Heisenberg model consider lattices (a-f), while the ES for the
Hubbard model only consider (a-c). Fig. 7.7 shows the rate at which the precise Ĥ0 is identified,
as well as the rate with which the family of Ĥ0 is classified, compared with increasing resources,
NE and NP. As expected, a clear trend demonstrates that the success rates scale with resources,
which we can leverage in practice in two core ways. First, we can ensure that the training
regime for models is sufficiently robust that we can reasonably expect models to have trained
well, and therefore model comparisons can be trusted. If QMLA does not give clear results,
then, we may expect a clearer outcome from increasing NE, NP. Secondly, we can mitigate the
unpredictable11 failures of QMLA by running many instances per run: one (or few instances) in
a scarce-resource training regime are prone to error, so in cases where we are unsure whether

10 Recall the main resources for model training: the number of experiments performed, NE, and the number of
particles used during QHL, NP.
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Figure 7.7: QMLA outcomes for varying training resources. Independent ESs are implemented for Ising,
Heisenberg and Hubbard families, with Ĥ0 cycling through lattices (a-f ) for the Ising and
Heisenberg cases, and (a-c) for the Hubbard case, where lattices’ connectivity are as depicted
in Fig. 7.1. Each lattice in each family is tested as Ĥ0 in five instances, so there are 75

instances per datapoint. The success rates are shown for QMLA identifying the correct model
precisely (blue), as well as classifying the correct model family (orange), against the numbers
of experiments and particles used to train each candidate model. Implementation details are
listed in Table A.1.

the resources provided are sufficient, we must run enough independent instances to overcome
these artefacts.

QMLA’s capacity to classify the family of model to which Q belongs suggests powerful
future applications of the framework, namely to automatically discover the type of physics
underlying systems of interest. For example, QMLA could be used to classify whether a sample
is ferromagnetic or antiferromagnetic; or further, is best described as a system of bosons or
fermions.

11 QMLA depends on several probabilistic processes which can cause misleading outcomes; these are highlighted in
Section 6.3.
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8
G E N E T I C E X P L O R AT I O N S T R AT E G Y

The Quantum Model Learning Agent (QMLA) framework lends itself easily to the family of
metaheuristic optimisation techniques called evolutionary algorithms, where individuals, sampled
from a population of candidates, are considered as solutions to the given problem. Candidates
are batched in generations, such that iterative generations aim to efficiently search the available
population by mimicking biological evolutionary mechanisms [124]. In particular, we develop
an exploration strategy (ES) which incorporates a genetic algorithm (GA) in the construction of
models; GAs are a subset of evolutionary algorithms where candidate solutions are expressed as
strings of numbers representing some configuration of the system of interest [180]. We describe
the concepts of GAs in Section 3.3, so we begin this chapter by describing the adaptations which
allow us to build a genetic exploration strategy (GES) within QMLA.

8.1 adaptation to qmla framework

Unlike the generic aspects of GAs described in Section 3.3, in the context of QMLA, we must
deviate from default mechanisms. The overarching goal of QMLA – to characterise some
black box quantum system, Q – proceeds by designing and performing experiments upon Q
which enable us to improve the modelling of Ĥ0. Nothing described so far provides a natural
objective function (OF), upon which GAs rely to assess the suitability of candidates relative to
contemporary candidates. We can not assume full knowledge of Ĥ0 while generating candidates
models, so we can not simply invoke some loss function with respect to the target model, for
example. Instead, we must devise schemes which exploit the knowledge we do have about each
candidate Ĥj, which is the primary challenge in building a GES. We propose and discuss a
number of options in Section 8.2. Common to all proposed OFs, however, is that candidates
should be trained before evaluation, so that their assessment is based on their actual power in
describing Q, rather than some initial parameterisation which may not capture their potential
capability. This is a tenet of QMLA: for each candidate Ĥj(~αj), we use a subroutine to optimise
~αj; as in earlier applications of QMLA, for this study we rely on quantum Hamiltonian learning
(QHL) as the parameter optimisation subroutine.

Ultimately, the conceived role of a GA within QMLA is to generate the sets of models to place
on successive branches1 of an exploration tree (ET) as depicted in Fig. 5.1. The apparatus within
QMLA which facilitates novel model generation techniques is the exploration strategy (ES). Here
we will design an ES which acts in cooperation with a GA. The ES specifies that consolidation
of a generation µ involves evaluating the fitness, gi, of each candidate, Ĥi, via the chosen OF.

1 Branches in QMLA and generations of the genetic algorithm are equivalent here.
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8.1 adaptation to qmla framework

The GA then maps {gi} of each Ĥi ∈ µ to a selection probability, and composes new candidates
via crossover, Section 3.3.3. Recall from Section 5.4.1, that we capture the space of available
terms as T , i.e. we list – in advance – the feasible terms which may be included in candidate
models2, with Nt = |T | the number of terms considered. QMLA is then an optimisation
algorithm, attempting to find the set T ′ which best represents the true terms T0. Note, this does
not require identification of the precise true model to be successful, as insight can be gained
from approximate models which capture the physics of Q. We introduce metrics for success in
Section 8.1.2. We recognise the limitations this structure imposes: we can only identify terms
which were conceived in advance; this may restrict QMLA’s applicability to entirely unknown
systems, where such a primitive set can not even be compiled.

The structure of the overall QMLA algorithm (recall Fig. 5.1) is unchanged. In a GES:
• Branches: models are still grouped in branches, here called generations.

• Training: models are still trained, again through QHL.

• Consolidation: all models are evaluated according to the OF (to be described in Section 8.2),
so branches are consolidated by ranking models according to their fitness.

• Spawning: new models are spawned through the GA by selecting pairs of parents for
crossover, with the resultant offspring models probabilistically mutated.

The design of any ES centres on the implementation of the generate models subroutine – we
summarise the GES’s method in Algorithm 10. We can restate the informal description of GAs3,
now in the context of QMLA, as

1. Sample Nm models from the total population, P , at random

(a) this is the first generation, µ.

2. Evaluate each model Ĥj ∈ µ

(a) train Ĥj through QHL;

(b) apply the objective function to assign the model’s fitness, gj.

3. Map the fitnesses of each model, {gj}, to selection probabilities for each model, {sj}
(a) e.g. by normalising the fitnesses, or by removing some poorly-performing models

and then normalising.

4. Generate the next generation of models

(a) Reset µ = {};
(b) Select pairs of parents, Ĥp1 , Ĥp2 , from µ

i. Each model’s probability of being chosen is proportional to their sj;

(c) Cross over Ĥp1 , Ĥp2 to produce children models, Ĥc1 , Ĥc2

i. mutate Ĥc1 , Ĥc2 according to some random probabilistic process;

2 Recall that models impose structure on sets of terms: Ĥj =~αj · ~Tj = ∑k∈{j} αk t̂k.
3 First stated on Page 25.
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ii. µ ← µ ∪ {Ĥci}, only if Ĥci is not already in µ, to ensure Nm unique models are
tested at each generation;

(d) until |µ| = Nm, iterate to step (b).

5. Until the Nth
g generation is reached, iterate to step 2..

6. The strongest model on the final generation is deemed the approximation to the system,
Ĥ′.

8.1.1 Models as chromosomes

We first need a mapping from models to chromosomes; this is straightforward given the
description of chromosomes as binary strings, exemplified in Section 3.3.1. We assign a gene to
every term in T , so that candidate models are succinctly represented by bit strings of length Nt.
We give an example of the mapping between models and chromosomes in Table 8.1. Given that
every model is contained in the space of bit strings spanned by Nt bits, we can say that there are
a total of 2Nt available models in the model space.

Model Chromosome

~T σ̂x
(1,2) σ̂z

(1,2) σ̂
y
(2,3) σ̂x

(2,3) σ̂
y
(2,3) σ̂x

(2,3)

γp1 (σ̂x
(1,2) σ̂z

(1,2) σ̂
y
(2,3)) 1 0 1 0 1 0

γp2 (σ̂z
(1,2) σ̂

y
(2,3) σ̂z

(2,3)) 0 0 1 0 1 1

γc1 (σ̂x
(1,2) σ̂z

(1,2) σ̂
y
(2,3) σ̂z

(2,3)) 1 0 1 0 1 1

γc2 (σ̂z
(1,2) σ̂

y
(2,3)) 0 0 1 0 1 0

γ′c2 (σ̂z
(1,2) σ̂x

(2,3) σ̂
y
(2,3)) 0 0 1 1 1 0

Table 8.1: Mapping between QMLA’s models and chromosomes used by a genetic algorithm. Example
shown for a three-qubit system with six possible terms, σ̂w

i,j = σ̂w
i σ̂w

j , w ∈ {x, y, z}. Model
terms are mapped to binary genes: if the gene registers 1 (0) then the corresponding term is
(not) present in the model. The top two chromosomes are parents, γp1 = 101010 (blue) and
γp2 = 001011 (green): they are mixed to spawn new models. We use a one–point cross over
about the midpoint: the first half of γp1 is mixed with the second half of γp2 , and vice versa, to
produce two new offspring chromosomes, {γc1 , γc2}. Mutation occurs probabilistically: each
gene has a 25% chance of being mutated, e.g. a single gene (red) flipping from 0→ 1 to mutate
γc2 to γ′c2

. The next generation of the genetic algorithm will then include {γc1 , γ′c2
} (assuming

γc1 does not mutate). To generate Nm models for each generation, Nm/2 parent couples are
sampled from the previous generation and crossed over.
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8.1.2 F1-score

We need a metric against which to evaluate models, and indeed the entire QMLA procedure.
We can gauge the performance of QMLA’s model search by the quality of candidate models
produced at each generation, so we introduce a metric to act as proxy for model quality: the
F1-score, denoted f . We define F1-score formally in this section, but in short, f ∈ (0, 1) indicates
the degree to which Ĥi captures the physics of the target system: f = 0 indicates that Ĥi shares
no terms with Ĥ0, while f = 1 is found uniquely for Ĥi = Ĥ0. We defined F1-score, as well as a
number of metrics in the field of classification in machine learning (ML), in Section 3.1.1.1; here
we modify those definitions to align with the nomenclature of QMLA.

We emphasise that the goal of this work is to identify the model which best describes quantum
systems, and not to improve on parameter-learning when given access to particular models,
since those already exist to a high standard [23, 129]. Therefore, in this context we can consider
the role of QMLA as a classification routine4, with the goal of classifying whether individual
terms t̂ from a set of available terms T = {t̂} are helpful in describing data which is generated
by Ĥ0, whose terms constitute T0. Candidate models Ĥi then have Ti. We can assess Ĥi using
standard metrics used regularly in the ML literature, which simply count the number of terms
identified correctly and incorrectly:

• true positives (TP): number of terms in T0 which are in Ti

• true negatives (TN): number of terms not in T0 which are also not in Ti

• false positives (FP): number of terms in Ti which are not in T0

• false negatives (FN): number of terms in T0 which are not in Ti.
These concepts – shown in Fig. 8.1 – allow us to define

• precision: how precisely does Ĥi capture Ĥ0, i.e. if a term is included in Ti how likely it is
to actually be in T0, Eqn 8.1a;

• sensitivity: how sensitive is Ĥi to Ĥ0, i.e. if a term is actually in T0, how likely Ti is to
include it, Eqn. 8.1b.

precision =
TP

TP + FP
(8.1a)

sensitivity =
TP

TP + FN
(8.1b)

Informally, precision prioritises that predicted terms are correct, while sensitivity prioritises
that true terms are identified. In practice, it is important to balance these considerations. Fβ-

4 The designation of QMLA as supervised, unsupervised, or otherwise depends upon the ES employed, Section 5.5.1.
The model search of this GES is unsupervised, but we use metrics from literature about classification, since we can
assess performance absolutely.
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Figure 8.1: Concepts used for classification. a, the set of available terms T containing individual terms
t̂1 to t̂10. The true model Ĥ0 is constructed from the set T0. Suppose a candidate Ĥ′ has the
set T ′. b, the confusion matrix for Ĥ′. Correctly classified terms are true positives and true
negatives (green), and incorrectly classified terms are false positives and true negatives (red).

score (Eq. (3.3)) is a measure which balances these, with weighting β in favour of sensitivity. In
particular, F1-score considers precision and sensitivity as equally important:

F1 =
2× (precision)× (sensitivity)

(precision + sensitivity)
=

TP
TP + 1

2(FP + FN)
=: f . (8.2)

We give an example of these quantities in Fig. 8.1, where TP = 3, TN = 4, FP = 1, FN = 2, giving
precision = 3/4 and sensitivity = 3/5, with a final f = 0.67, i.e. f is the average of the indicators
of model quality we care about.

We adopt F1-score as an indication of model quality because we are concerned both with
precision and sensitivity of the models QMLA predicts as representations of Q. We can use
F1-score to measure the success of the algorithm, by recording f for all models in all generations,
allowing us to see whether or not the approximation of the system is improving on average.
Of course in realistic cases we can not assume knowledge of To and therefore cannot compute
F1-score, but it is a useful tool in the development of the GES itself, or in cases where Ĥ0 is
known, such as when the target system is simulated, e.g. in the case of device calibration.
Our search for an effective OF can then be guided by seeking the method which most strongly
improves the average F1-score in test-cases. We will not use F1-score within the algorithm5, i.e.
to inform any steps taken by QMLA, but simply to assess its performance independently.

5 Except for meta-analysis in Section 8.1.3
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Algorithm 10: ES subroutine: generate models via genetic algorithm

Input: ν // information about models considered to date

Input: τ // truncation rate

Input: g(Ĥi) // objective function that can act on any model Ĥi
Input: rank() // function to rank models relative to each other

Input: truncate() // function to truncate set of models

Input: normalise() // function to normalise models’ scores

Input: roulette() // function to select models through roulette

Input: crossover() // function to crossover two parents to produce offspring

Input: mutate() // function to mutate offspring probabilistically

Output: H // set of models

Nm = |ν| // number of models

for Ĥi ∈ ν do
gi ← g(Ĥi) // model fitness via objective function

end

r ← rank({gi}) // rank models by their fitness

Ht ← truncate(r, Nm × τ) // truncate models by rank: only keep Nm × τ

s← normalise({gi}) ∀Ĥi ∈Ht // normalise remaining models’ fitnesses

H = {} // new batch of chromosomes/models

while |H| < Nm do
p1, p2 = roulette(s) // use s to select two parents via roulette selection

c1, c2 = crossover(p1, p2) // produce offspring models

c1, c2 = mutate(c1, c2) // probabilistically mutate

H←H∪ {c1, c2} // add new models to batch

end

return H
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8.1.2.1 Distinguishing F1-score through Bayes factors

We have so far relied on Bayes factor (BF) as the means by which to distinguish models’ ability
to explain data from Q. We conjecture that models of higher F1-score are usually statistically
better at predicting dynamics of Q than those of lower F1-score, and therefore BFs will favour
models of higher F1-score. Verifying this hypothesis will allow us to incorporate statistical tools
into the design of OFs; we can perform straightforward tests training models of equally spaced
F1-score, and computing BF between all pairs.

In Fig. 8.2, we show the relationships between F1-score and BF for various conditions. Firstly,
under a standard training regime with full BF comparisons between all pairs, we see that in
most cases, the model with higher F1-score is favoured by BF. Some comparisons near the
diagonals of Fig. 8.2 favour the model with lower F1-score, although in these cases we argue
that the difference in model quality is not overwhelming, since

∣∣ fi − f j
∣∣ / 0.1. In Fig. 8.2b, we

run a complete model training subroutine, but compute the BF based on fewer experiments and
particles (retaining a fraction N′p = 0.2Np, N′e = 0.2Ne for comparisons). This verifies an earlier
claim from Section 5.2.1: although the strength of evidence is weaker given reduced BF resources,
the direction of the evidence is usually the same, i.e. the insight is indicative of the true physics,
so we can save considerable compute time by trusting these restricted BF calculations. On the
other extreme, in Fig. 8.2(c), where models are trained with – and BFs based upon – even greater
resources than Fig. 8.2(a), we see a similar effect: adding resources strengthens the evidence, but
does not fundamentally change the outlook. Finally, in addition to reducing the resources used
per BF calculation, we reduce the number of comparisons computed in Fig. 8.2(d), as permitted
when rating models according to the OF to be described in Section 8.2.7, or similar measures
which can yield fitnesses from reduced data. Essentially we can see that the insight is largely the
same from the most and least expensive training/comparison strategies, and by leveraging the
available evidence (Fig. 8.2(d)), rather than brute-force computing as much evidence as possible
(Fig. 8.2(c)), we can achieve similar results. Note that the time saving reported between full and
partial connectivity between models scales with Nm: here, with Nm = 10, the former computes
45 BFs, while the latter computes 17; for Nm = 60, as used in full instances/runs presented in
this chapter, these rise to 1770 and 600 BFs computations respectively, so the benefit of the latter
scheme is amplified.

8.1.3 Hyperparameter search

Firstly we will validate our reasoning that F1-score is a sensible figure of merit, by directly
invoking it as the objective function. That is, we first implement a GA, using the mapping
between models and chromosomes outlined above, where we fix the numbers of sites d = 4, and
assume full connectivity between the sites, with x−, y− and z− couplings available, such that
there are Nt = 3× (4

2) = 18 terms in T , so that the total population is of size 218 chromosomes.
We can then sweep over the GA hyperparameters to find a suitable configuration: in Fig. 8.3
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Figure 8.2: Pairwise Bayes factor by F1-score. Each tile shows log10 Bij against the F1-score of the two
candidates Ĥi ( fi on the y-axis) and Ĥj ( f j on the x-axis). log10 Bij > 0 shown in green
(log10 Bij < 0 shown in purple) indicates statistical evidence that Ĥi (Ĥj) is the better model
with respect to the observed data. Visualisation is curtailed to log10 Bij = ±50. a, Models
are trained with Ne = 500, Np = 2500, and all available data is used in the calculation of
BFs. b, Ne = 500, Np = 2500 using only a fraction (0.2) of experiments/particles for BF
calculations. c, Ne = 1000, Np = 5000, using all available data in the calculation of BFs. d,
Ne = 500, Np = 2500, comparing only a subset of pairs of models through BFs, and using
only a fraction (0.2) of experiments/particles for those calculations. This pairwise comparison
strategy is used for the OF in Section 8.2.7. Inset, timings for each approach in seconds, with
t = 1hr marked vertically in blue. Implementation details are listed in Table A.1.
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Figure 8.3: Genetic algorithm hyperparameter sweep. Each tile shows the success rate of a run with
hyperparameter settings {Nm, Ng, rm, cutoff}, where the success rate is the percentage of 20

instances which found a random Ĥ0 using F1-score as objective function. Each subplot shows
the success rates for varying numbers of generations, NG ∈ {8, 16, 32, 64}, and numbers of
models per generation, Nm ∈ {8, 16, 32, 64}. A subplot is generated for ranges of the mutation
rate, rm and the number of generations for which the elite model is unchanged after which the
GA is cut off. Implementation details are listed in Table A.1.
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we show how the choice of parameters affect the success rate of precisely identifying the target
chromosome, which is chosen at random for each instance, and we run 20 instances of each
configuration. The studied hyperparameters6 are

i. number of generations, Ng;

ii. number of models per generation, Nm;

iii. mutation rate, rm;

iv. number of generations for which a candidate must reign as the strongest observed, before
the search terminates, the cutoff.

Naturally, we expect that running for more generations with more models per generation
will result in a more effective search in the model space, having examined NgNm models. We
must also consider, however, that – in realistic cases of QMLA – the total computation time
scales dramatically with these parameters, since training and comparing models are expensive
subroutines. Our goal is therefore to identify the set of hyperparameters which best searches
the model space while demanding the lowest {Ng, Nm}. We see that, unsurprisingly, the
GA performs poorly when run with few resources, but broadly the performances are similar
provided it is run with sufficient resources. We can bound the parameters rm ≥ 0.1, cutoff ≥
5, Nm ≥ 16, Ng ≥ 16 to ensure a reasonable search through the model space, without having to
consider a prohibitive number of models. We must bear in mind, however, that this parameter
sweep refers only to the trivial case where the F1-score is used as the OF, so we do not expect
such high success rates in realistic cases.

8.2 objective functions

We have alluded to the central problem in building a GA into QMLA: how to evaluate trained
candidate models in the absence of a natural objective function (OF). In Sections 8.2.1 to 8.2.7 we
will propose and analyse a number of potential OFs, some of which will underlie later studies
in this thesis. We conclude this study by comparing the proposed OFs and selecting one for
consideration in the remainder of this chapter; readers interested in the final application may
prefer to skip to Section 8.2.8.

We will show how each OF computes a fitness, gi, for candidate models, Ĥi. For examples of
each, we group together some demonstrative values in Table 8.2. For each Ĥi, we may refer to

• Li, total log total likelihood (TLTL), introduced in Section 4.4;

• ki, the model’s cardinality, i.e. number of terms in its parameterisation;

• Ei, the bespoke set of experiments composed by the experiment design heuristic (Sec-
tion 4.6) solely for training Ĥi;

• n = |Ei|, the number of samples (datapoints) used in training Ĥi.

6 These and further hyperparameters can be swept using code within the QMLA codebase, in the directory scripts/-

genetic alg param sweep.
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In Table 8.2, we consider six randomly generated exemplary models – of varying quality with
respect to the target, Ĥ0, listed in Eq. (8.3) – to demonstrate each OF’s outcomes.

Ĥ0 = σ̂z
(1,2)σ̂

z
(1,3)σ̂

z
(2,3)σ̂

z
(2,5)σ̂

z
(3,5);

Ĥa = σ̂z
(1,5)σ̂

z
(3,4)σ̂

z
(4,5);

Ĥb = σ̂z
(1,4)σ̂

z
(1,5)σ̂

z
(2,5)σ̂

z
(3,4);

Ĥc = σ̂z
(1,2)σ̂

z
(1,5)σ̂

z
(2,4)σ̂

z
(2,5)σ̂

z
(4,5);

Ĥd = σ̂z
(1,3)σ̂

z
(1,4)σ̂

z
(1,5)σ̂

z
(2,4)σ̂

z
(2,5)σ̂

z
(3,4)σ̂

z
(3,5);

Ĥe = σ̂z
(1,2)σ̂

z
(1,3)σ̂

z
(1,5)σ̂

z
(2,3)σ̂

z
(2,5)σ̂

z
(4,5);

Ĥ f = σ̂z
(1,2)σ̂

z
(1,3)σ̂

z
(2,3)σ̂

z
(2,4)σ̂

z
(2,5)σ̂

z
(3,4)σ̂

z
(3,5).

(8.3)

8.2.1 Inverse log-likelihood

Li, defined in Eq. (4.18), can be thought of as a measure of the ability of a given model to
reproduce a given dataset D from experiments E . This can be immediately interpreted as an
OF, provided each candidate model computes a meaningful total log total likelihood (TLTL),
requiring that they are all based on the same set of experiments, Ev, which are designed explicitly
for the purpose of model evaluation.

TLTL are negative and the strongest model has lowest |Li| (or highest Li overall), so the
corresponding OF for candidate Ĥi is

gL
i =
−1
Li

. (8.4)

In our tests, Eqn. 8.4 is found to be too generous to poor models, assigning them non-negligible
probability. Its primary flaw, however, is its reliance on Ev: in order that the TLTL is significant,
it must be based on meaningful experiments, the design of which can not be guaranteed in
advance, or at least risks introducing strong bias towards some models.

8.2.2 Akaike information criterion

A common metric in the general field of model selection is Akaike information criterion
(AIC) [181]. Incorporating TLTL, AIC objectively quantifies how well a given model accounts for
data from the target system, and explicitly punishes models which use extraneous parameters
by incurring a penalty on ki. AIC is given by

AICi = 2ki − 2Li. (8.5)
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Ĥa Ĥb Ĥc Ĥd Ĥe Ĥ f

Method

F1 0.0 0.2 0.4 0.5 0.7 0.8

k 3 4 5 7 6 7

le 0.86± 0.29 0.84± 0.29 0.77± 0.27 0.78± 0.29 0.79± 0.26 0.79± 0.26

Li -143 -152 -131 -150 -125 -124

Inverse log-likelihood
gL

i 0.00698 0.00659 0.00766 0.00669 0.00803 0.00804

% 23 0 25 0 26 26

Akaike Info Criterion

AIC 293 311 271 313 261 263

AICC 293 312 272 314 262 264

wA
i 1.81e-07 1.4e-11 0.00724 4.15e-12 1 0.334

gA
i 1.17e-05 1.03e-05 1.35e-05 1.01e-05 1.46e-05 1.43e-05

% 22 0 25 0 27 26

Bayesian Info Criterion

BIC 301 322 284 331 277 281

wB
i 5.49e-66 1.26e-70 1.97e-62 1.11e-72 8.43e-61 8.95e-62

gB
i 1.11e-05 9.65e-06 1.24e-05 9.11e-06 1.31e-05 1.27e-05

% 23 0 25 0 27 26

Bayes factor points
gp

i 0 2 3 2 3 5

% 0 13 20 13 20 33

Ranking
Ranking 6 4 3 5 2 1

gR
i 0 0.1 0.2 0 0.3 0.4

% 0 10 20 0 30 40

Elo rating
Rating 909 944 1042 1007 1011 1084

gE
i 0 35 133 98 102 175

% 0 0 26 19 20 34

Residuals
mean{r̃e

p} 0.132 0.146 0.114 0.138 0.0858 0.0715

gr
i 0.753 0.729 0.785 0.743 0.836 0.862

% 23 0 24 0 26 27

Table 8.2: Examples of how each objective function (OF), g as described in Section 8.2.1 to Section 8.2.7,
assign selection probability (denoted %) to the same set of candidate models, {Ĥi} listed in
Eq. (8.3), when attempting to learn data from Ĥ0. Intermediate quantities, e.g. wA

i , gp
i are

described in the section of the main text describing the corresponding OF. For each model we
first summarise its F1-score (Eq. (8.2)), number of terms k, median likelihood le (Eq. (5.5)), and
TLTL Li (Eq. (4.18)), We use n = 250 samples, i.e. Li is a sum of n likelihoods . The set of
models is truncated so that only the strongest four are assigned selection probability.



8.2 objective functions

In practice we use a slightly modified form of Eqn. 8.5 which corrects for the number of
samples n = |Ei|, called the Akaike information criterion corrected (AICC),

AICCi = AICi + 2ki
ki + 1

n− ki − 1
. (8.6)

Model selection from a set of candidates occurs simply by selecting the model with lowest
AICC. Following [181], by using Eqn. 8.6 as a measure of relative likelihood we retrieve selection
probability via the Akaike weights,

wA
i = exp

(
AICCmin − AICCi

2

)
, (8.7)

where AICCmin = mini{AICCi}.
Akaike weights impose strong penalties on models which do not explain the data well, but also

punish models with more parameters, i.e. potentially overfitting models, effectively searching for
the strongest and simplest model simultaneously. The level of punishment for poorly performing
models is likely too drastic: very few models will be in a range sufficiently close to AICCmin to
receive a meaningful Akaike weight, suppressing diversity in the model population. Indeed, we
can see from Table 8.2 that this results in most models being assigned negligible weight, which
is not useful for parent selection. Instead we compute a straightforward quantity related to AIC,

gA
i =

(
1

AICCi

)2

, (8.8)

where we square the inverse AICC to amplify the difference in quality between models, such
that stronger models are rewarded.

8.2.3 Bayesian information criterion

Related to the concept of AIC (Eqn. 8.5), is that of Bayesian information criterion (BIC),

BICi = ki ln(ni)− 2Li, (8.9)

where ki, ni and Li are as defined on Page 112. Analogously to Akaike weights, Bayes weights as
proposed in §7.7 of [182], are given by

wB
i = exp

(
−BICi

2

)
. (8.10)

BIC is harsher than AIC in its punishment of models’ cardinality ki, demanding substantial
statistical justification for the inclusion of more parameters. Again, this may be overly cumber-
some for our use case: with such a relatively small number of parameters, the punishment is
disproportionate. As with Akaike weights, rather than using Bayes weights directly, we opt for
an OF related to them,

gB
i =

(
1

BICi

)2

. (8.11)
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8.2.4 Bayes factor points

A cornerstone of model selection within QMLA is the calculation of BFs (see Section 5.2). We
can compute the pairwise BF between two candidate models, Bij, according to Eqn. 5.7. Bij can
be based on some evaluation dataset, Ev, but can also be calculated from Ei ∪ Ej: this is a strong
advantage since the resulting insight (Eqn. 5.8) is based on experiments which were bespoke to
both Ĥi, Ĥj. As such we can be confident that this insight accurately points us to the stronger of
two candidate models.

We can utilise this facility by computing the BF between all pairs of models in a set of Nm
candidates {Ĥi}, i.e. compute (Nm

2 ) BFs. Note that this is computationally expensive: in order
to train Ĥi on Ej requires a further |Ej| experiments, each requiring NP particles7, where each
particle corresponds to a unitary evolution and therefore the calculation of a matrix exponential.
The size of the model space is then quite a heavy disadvantage: examining Ng generations
requires Ng × (Nm

2 ) BF calculations for complete assessment.
In the case where all pairwise BF are performed, we can assign a point to Ĥi for every

comparison in which it is deemed superior, according to Eq. (5.8).

gp
i = ∑

j∈µ

bij, bij =

{
1, Bij > 1
0, otherwise.

(8.12)

This is a straightforward mechanism, but is overly blunt because it does not account for the
strength of the evidence in favour of each model. For example, a dominant model will receive
only a slightly higher selection probability than the second strongest, even if the difference
between them was Bij = 10100. Further, the unfavourable scaling make this an expensive method.

8.2.5 Ranking

Related to the BF points of the previous section, we can rank models in a generation based on
their number of BF points. BF points are assigned as in Eqn. 8.12, but instead of corresponding
directly to fitness, we assign models a rank R, i.e. the model with highest gp

i gets R = 1, and
the model with nth highest gp

i gets R = n. Note here we truncate µ, meaning we remove the
worse-performing models and retain only N′m models, before calculating R, because computing
R using all Nm models results in less distinct selection probabilities.

gR
i =

N′m − Ri + 1
N′m
∑

j=1
j

, (8.13)

where Ri is the ranking of Ĥi and N′m is the number of models retained after truncation. Eq. (8.13)
has a similar effect to Eq. (8.12) but awards higher selection probability to the strongest models.

7 Caveat the reduction in overhead outlined in Section 5.2.1.
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However, it too overlooks the nuanced perspective available through the total statistical evidence
gathered by the series of BFs.

8.2.6 Residuals

Recall at each experiment, NP particles are compared against a single experimental datum, d. By
definition, d is the binary outcome of the measurement on Q under experimental conditions e.
That is, d encodes the answer to the question: after time t under Hamiltonian evolution, did Q
project onto the basis we have labelled |d〉 (usually the same as the input probe state |ψ〉)?

In practice we often have access to the complete likelihood, i.e. rather than a binary value, we
have a number representing the probability that Q will project on to d = 0 for a given experiment
e, PrQ(0|e). The likelihood – in this case equivalent to the expectation value8 – for Q is usually

given by
∣∣∣〈ψ| e−iĤ0t |ψ〉

∣∣∣
2
. Likewise, we can simulate this quantity for each particle, Prp(0|e).

This allows us to calculate the residual between the system and individual particles’ likelihoods,
re

p; we can hence compute the mean residual across all particles in a single experiment, re:

re
p =

∣∣PrQ(0|e)− Prp(0|e)
∣∣

re = mean
p
{re

p}
(8.14)

Residuals capture how closely the particle distribution reproduced the dynamics from Q:
re

p = 0 indicates perfect prediction, while re
p = 1 is completely incorrect. We can therefore

maximise the quantity 1− r to find the best model, using the OF

gr
i = |1−mean

e∈E
{re}|2. (8.15)

This OF can be thought of in frequentist terms as similar to the residual sum of squares,
although instead of summing the residual squares, we take the average to ensure 0 ≤ r ≤ 1. gr

i
encapsulates how well the candidate model reproduces a particular set of dynamics from the
target system, as a proxy for how well that candidate describes the system. This is not always a
safe figure of merit: in most cases, we do not expect parameter learning to perfectly optimise
~αi. Reproduced dynamics alone can not capture the prospect that Ĥi = Ĥ0, but rather inform
statistical measures such as BF, that allow us to make qualified statements about the system.

This OF provides a useful test for QMLA’s GA: by simulating the case where parameters are
learned perfectly, such that we know that gr

i truly represents the ability of Ĥi to mimic Ĥ0, then
this OF guarantees to promote the strongest models, especially given that Ĥi = Ĥ0 =⇒ re

p =

0 ∀ {e, p}. In realistic cases, however, the non-zero residuals – even for strong Ĥi – may arise
from imperfectly learned parameters, rendering the usefulness of this OF uncertain. Finally, it

8 For consistency with QInfer [136] – on which QMLA’s code base builds – we call the expectation value for the
system PrQ(0); the same quantity can be computed for each particle, called Prp(0).
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does not account for the cardinality, ki, of the candidate models, which all ML protocols aim
to avoid in general; this could result in favouring severely overfitting models in order to gain
marginal improvement in residuals.

8.2.7 Bayes factor enhanced Elo ratings

A popular tool for rating individual competitors in sports and games is the Elo rating system,
e.g. used to rate chess players and soccer teams [183, 184], also finding application in the study
of animal hierarchies [185]. Elo ratings allow for evaluating the relative quality of individuals
based on incomplete pairwise competitions, e.g. despite two football teams having never played
against each other before, it is possible to quantify the difference in quality between those teams,
and therefore to predict a result in advance [186]. There is a direct parallel between these types
of competitions and QMLA: we similarly have a pool of individual competitors (models), which
we can place in direct competition, and quantify the comparative outcome through BF, in order
to determine the preferred candidate.

Elo ratings are transitive: given some inter-connectivity in a generation, we need not compare
every pair of models in order to make meaningful claims about which are strongest; it is sufficient
to perform a subset of comparisons, ensuring each individual undergoes robust competition. We
can take advantage of this transitivity to reduce the combinatorial overhead usually associated
with computing bespoke BFs between all models (i.e. using their own training data Ei instead
of a generic Ev). In practice, we map Nm models within a generation to vertices on a regular
graph of degree Nm/3, i.e. each model is connected to Nm/3 other models within µ. Models
which share an edge then undergo BF comparison. For example, with Nm = 60 this leads to
600 BF calculations, compared with 1770 calculations in the fully connected graph. While every
pair of models (Ĥi, Ĥk) are not directly connected, there is always a chain of length l ≤ lmax
edges between them. For Nm = 60, we find lmax = 2, e.g. for Ĥi, Ĥk disconnected, there are
comparisons {(Ĥi, Ĥj), (ĤjĤk)}.

The Elo rating scheme is a nonlinear points transfer system, as follows: upon creation, Ĥi
is assigned a rating Ri; every comparison with a competitor Ĥj results in Bij; Ri is updated
according to the known strength of its competitor, Rj, as well as the result Bij. The Elo update
ensures that winning models are rewarded for defeating another model, but that the extent of
that reward reflects the quality of its opponent. As such, this is a fairer mechanism than BF
points, which award a point for every victory irrespective of the opposition: if Ĥj is already
known to be a strong or poor model, then ∆Ri changes the credence of Ĥi proportional to the
latest evidence. It achieves this by first computing the expected result of a given comparison with
respect to each model, with an exponential response to the difference in their current ratings,

Ei =
1

1 + 10
Rj−Ri

400

; (8.16a)
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Ri Ei Si Bij log10(Bij) ∆Ri R′i
Model

Ĥa > Ĥb
Ĥa 1000 0.76 1 1e+100 100 0.24 1024.0

Ĥb 800 0.24 0 1e-100 100 -0.24 776.0

Ĥb > Ĥa
Ĥa 1000 0.76 0 1e-100 100 -0.76 924.0

Ĥb 800 0.24 1 1e+100 100 0.76 876.0

Table 8.3: Example of Elo rating updates. We have two models, where Ĥa is initially quantified as a
stronger candidate than Ĥb, i.e. has a higher starting Elo rating, Ri. We demonstrate the effect
when there is strong evidence9 in favour of either model through BF comparison, Bij ≈ O(10100).
In the first case, Ĥa defeats Ĥb, as firmly expected according to their initial ratings, so the
corresponding reward (cost) for Ĥa (Ĥb) is relatively small. In the second case, contrary to
prediction Ĥb outperforms Ĥa, so Ĥb receives a large share of Elo points from Ĥa.

Ei + Ej = 1, (8.16b)

Then, we find the binary score from the perspective of each model,
{

Bij > 1 ⇒ Si = 1; Sj = 0
Bij < 1 ⇒ Si = 0; Sj = 1

(8.17)

which is used to determine the change to each model’s rating,

∆Ri = η × (Si − Ei) . (8.18)

An important detail is the choice of η, i.e. the weight of the change to the models’ ratings. In
standard Elo schemes this is a fixed constant, but here – taking inspiration from football ratings
where η is the number of goals by which one team beat the other – we weight the change by the
strength of our belief in the outcome: η ∝ |Bij|. That is, similarly to the interpretation of Eqn.
5.8, we use the evidence in favour of the winning model to transfer points from the loser to the
winner, albeit we temper the effect by instead using η = log10(Bij), since BF can give very large
numbers. In total, then, following the comparison between models Ĥi, Ĥj, we can perform the
Elo rating update

R′i = Ri + log10(Bij)

(
Si −

1

1 + 10
Rj−Ri

400

)
. (8.19)

This procedure is easiest to understand by following the example in Table 8.3.
Finally, it remains to select the starting rating R0

i to assign models upon creation. Although
this choice is arbitrary, it can have a strong effect on the progression of the algorithm. Here

9 Note to achieve Bij = 10100 = eLi−Lj =⇒ Li −Lj = ln(10100) ≈ 7.
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we impose details specific to the QMLA GES: at each generation we admit the top two models
automatically for consideration in the next generation, such that strongest models can stay alive
in the population and ultimately win. These are called elite models, Ĥ1

e , Ĥ2
e . This poses the

strong possibility for a form of generational wealth: if elite models have already existed for
several generations, their Elo ratings will be higher than all alternatives by definition. Instead,
we would prefer that newly spawned models can overtake the Elo rating of elite models. To
resolve this, at each generation, all models – including Ĥ1

e , Ĥ2
e – are assigned the same initial

rating, R0
i = 1000.

In order to derive a meaningful selection probability for each candidate, we must first ground
the raw Elo rating at each generation µ: we subtract the lowest rating among the entertained
models, Rµ

min. This serves to ensure the range of remaining Ri represent only by the difference
between models as assessed within µ: a very strong model might have much higher Ri than
its contemporaries, but that difference was earned exclusively by comparison within µ, so it
is deserving of its higher fitness and therefore greater selection probability. We perform this
step before truncation10, so that the models remaining post-truncation all have non-zero fitness.
Finally, then, we name this OF the Bayes factor enhanced Elo ratings (BFEER): the fitness of each
model Ĥµ

i ∈ µ is attained directly from its rating Ri after undergoing Elo updates based on BFs
in the current generation, minus the minimum rating of any model in the same generation Rµ

min,

gE
i = Rµ

i − Rµ
min. (8.20)

The advantage of this OF is that it gives a meaningful value on the absolute quality of every
model, allowing us to determine the strongest, and importantly to find the relative strength
between models. Further, it exploits bespoke BFs, i.e. based on the considered models’ individu-
ally designed Ei, removing the impetus to design Ev which can evaluate models definitively. One
disadvantage is that it does not explicitly punish models based on their cardinality, however this
feature is partially embedded by adopting BF for the comparisons, which are known to protect
against overfitting [156].

8.2.8 Objective function selection

Having proposed a series of possible objective functions, we are now in a position to analyse
their appropriateness in the context of QMLA. Recall from Section 8.1.2 that we use F1-score as
the figure of merit against which individual models are measured; we can compare OFs on the
basis of the F1-score of models they spawn.

First we can remark on the examples listed in Table 8.2. The OFs which rely on the TLTL, i.e.
gL, gA, gB, gr, are effectively tricked by the log-likelihood, which appears reasonably convincing

10 We truncate the Nm models on µ by the truncation rate τ, i.e. only τNm models are considered as potential parents
in the GA. In this chapter we use τ = 1/3.
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Figure 8.4: Comparison between proposed objective functions (OFs). Each OF trains the same initial
generation of Nm = 28 models with resources NE = 500, NP = 2000, and then design a new
set of Nm models, µh, through a roulette strategy, such that the only difference between OF’s
output is how they assign selection probability. We run each OF 25 times for the same target
system, a 4–qubit Heisenberg–XYZ model. a, Box-plot of F1-score, f , for the models in µh in
each case, where the median and inter–quartile ranges are indicated by the boxes, as well as
those of the initial generation µ centered on fµ = 0.45. We mark f = {0.4, 0.5, ..., 1.0} for ease
of interpretation. b, Box-plots of the time taken to compute the single generation in each case.
c, Difference between the median f among the newly proposed models from fµ, ∆ f , plotted
against the time to achieve the result.

for poor models, e.g. Ĥa, Ĥc. This underlines the risk in building Ev, which can be biased towards
weak models, for example resulting in high selection probability for Ĥa which has f = 0, while
Ĥd, with f = 0.4 is discarded. On the other hand, OFs grounded by the BF (gp, gR, gE) invariably
promote models of higher F1-score, justifying the role of statistical evidence used for those
calculations. Overall, however, the insights from this complete example are insufficient to
make general claims about the performance of each OF, so here we examine their outputs
systematically.

Returning to the task of determining our favoured OF, we choose some random target Ĥ0,
and run a single generation of the GES with each OF, allowing us to assess their performance
based on the quality of models the GA produces under their respective guidance. We train
the same batch of Nm = 28 random models in each case, and allow each OF to compute the
selection probabilities for those models, and therefore direct the design of the hypothetical next
generation of models, µh. Fig. 8.4 shows the distribution of F1-score for the models within µh, as
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generated by each proposed OF, also accounting for the time taken in each case, i.e. we report
the time to train and evaluate the single generation on a 16–core node.

We can see that a strong balance of outcome with resource considerations are achieved by the
BFEER strategy, Section 8.2.7, so we will use it for the case study presented in this chapter. We
strongly emphasise, however, that the performance of each objective function can vary under
alternative conditions, and therefore similar analysis may be warranted for future applications.
For instance, if tmax is known to be small, in smaller model spaces, using gr results in higher
success rates. We retain BFEER, however, for generality and novelty, but it is important to
recognise that the results listed do not reflect an upper limit of QMLA’s performance, but rather
reflect the constraints of the system under study; each Q will bring its own unique considerations
which can result in significantly stronger or weaker performance under each OF. In particular,
in Chapter 10, we will later use gr

i – the residual OF described in Section 8.2.6 – to study a larger
model space under assumptions of perfect parameter learning.

8.3 application

Having introduced all the necessary concepts of GAs, mapped them to the QMLA framework
and chosen a suitable OF, we can finally use the GES for model search. In summary of this
chapter so far, we use the following settings.

• Models are mapped to a unique bit string (chromosome), where each bit represents
whether a given model term (gene) is present; chromosomes are of length Nt genes.

• A maximum of Ng generations are run, each with Nm unique models.

• Candidate models are trained using QHL, specifically by using interactive quantum
likelihood estimation (IQLE)11 for parameter estimation.

• Models’ fitness are determined by their BFEER, after having been trained by QHL and
compared against some set of competing candidate models.

• For generating models on µ + 1, the models on µ are first truncated with truncation rate τ;
the remaining τNm models are assigned selection probability based on their fitness.

• Pairs of models are selected to become parents sequentially using roulette selection. Highly
favoured models can parent many offspring models.

• Selected parent models are crossed over via a one-point cross-over, at crossover location
κ ∈

(
Nt
4 , 3Nt

4

)
, and probabilistically mutated with rate rm = 0.25.

• The top two elite models from µ, Ĥµ
e , are included on the subsequent generation µ + 1.

• If, after 5 generations, the highest-fitness (elite) model is unchanged, i.e. Ĥµ
e = Ĥµ−5

e , we
terminate the search and declare that model as the champion, Ĥ′ = Ĥµ

e .
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• Otherwise, after Ng generations, the highest-fitness model on the final generation is

declared the global champion model, Ĥ′ = ĤNg
C .

We will use a four-qubit model space under the fully parameterised Heisenberg formalism,
Eq. (7.10), such that any pair of sites 〈k, l〉 can be coupled by any of the terms {σ̂x

〈k,l〉, σ̂
y
〈k,l〉, σ̂z

〈k,l〉},
so in total there are Nt = |T | = 3× (4

2) = 18 terms, giving a model space of 218 ≈ 250, 000 viable
models/chromosomes. For practical reasons12, we set Nm = 60 and Ng = 16, although in most
cases the elitism clause is triggered so the search terminates long before Ng is reached. The true
parameters~α0 are assigned randomly in the range (0.25, 0.75); within QHL the prior is set as a
multivariate normal distribution with mean and standard deviation 0.5± 0.125. We choose Ĥ0
at random to contain half the available terms13,

Ĥ0 = σ̂
yz
(1,2)σ̂

z
(1,3)σ̂

y
(1,4)σ̂

xy
(2,3)σ̂

x
(2,4)σ̂

xz
(3,4). (8.21)

8.3.1 Analysis

We will analyse the GES from four perspectives: a single model, a single generation, a single
QMLA instance, and the overall performance across many instances, i.e. a run.

Recall that BFEER are mediated through random graphs: given Nm models on µ, a given
model Ĥi undergoes some NBF

i < Nm BF comparisons. In Fig. 8.5 we show the BF results
and effects on the rating of a random model, Ĥi, where Nm = 60 and NBF

i = 12, i.e. Ĥi is
directly compared against 20% of contemporary models on µ. We see that Ĥi’s rating is effected
by whether it wins a given comparison, but also by the strength of evidence provided by the
comparison (the BF), and the quality of its opposition Ĥj, i.e. the initial rating of Ĥj. For example,
the sixth comparison finds Ĥj as the superior model, but the evidence is relatively weak and
Ĥi, Ĥj began with similar ratings, so Ri is not effected drastically.

We extend the single model analysis of Fig. 8.5 to all Nm models in the first generation in
Fig. 8.6. The general trend is that models of higher F1-score have their ratings increased, at the
expense of models of lower F1-score. After assessing models thus, the set of models is truncated
with rate τ = 1/3 to retain only the strongest 20 candidates, which are assigned selection
probability, i.e. their chance of being chosen to become a parent during roulette selection, as
in Section 3.3.3. Nm models are required to populate the next generation: the two models with
highest Ri – the elite models – are automatically granted a position; the remaining positions are
filled through the crossover procedure outlined above.

11 IQLE assumes complete access to the target system, see Section 4.3.1. This restricts the present analysis to
simulatable, rather than physical, use cases, e.g. device calibration.

12 This is to ensure, with 15 available worker nodes, that all Nm models in a generation are trained within 4tqhl, where
tqhl is the time to train a single model.

13 Note we use a compact model representation, e.g. Ĥi = σ̂
yz
(1,2)σ̂

z
(1,3) = σ̂

y
(1,2) + σ̂z

(1,2) + σ̂z
(1,3).
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Figure 8.5: Progression of Bayes factor enhanced Elo ratings for a single candidate, Ĥi, within a single
generation. The x-axis marks successive comparisons for Ĥi against a subset of models from
the same generation (see main text). a, The BFs between Ĥi and some opponents, {Ĥj}, from
the perspective where Ĥi wins given Bij > 1 ⇒ log10 Bij > 0, and loses otherwise. b, Ĥi’s
rating is shown (solid green line) changing according to the BFs comparisons with 12 other
models from the same generation. Before each comparison, Ĥi’s rating is shown (green cross)
as well as the rating of its opponent, Ĥj (purple plus). The F1-scores are also shown for Ĥi
(dashed green line) and Ĥj (purple diamond). c, The corresponding change in Ĥi’s rating, ∆Ri.
Implementation details are listed in Table A.1.
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a unique model and is coloured by the F1-score of that model. The x-axis marks successive
comparisons for Ĥi against a subset of models from the same generation (see main text). Inset,
the selection probabilities resulting from the final ratings of this generation. Only τ = 1/3

of models are assigned selection probability, meaning only those models depicted in the pie
chart can become parents to new candidates, while the remaining poorer-performing models
are discarded. Implementation details are listed in Table A.1.
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Figure 8.7: A single instance of the QMLA genetic algorithm. a, Ratings of all models for the first four
generations. Each line in each generation represents a model by its F1-score through colour.
Horizontal dotted lines show the starting rating at that generation. b, Gene pool progression
for Nm = 60, Ng = 15. Each tile at each generation represents a model by its F1-score through
colour. Implementation details are listed in Table A.1.
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Figure 8.8: A run of the QMLA genetic algorithm (GA), consisting of 100 independent instances. a,
The model space contains 218 ≈ 250, 000 candidate models, normally distributed around
f = 0.5± 0.14. b, The models explored during the model search of all instances combined,
{Ĥi}. QMLA generates O(43, 000) chromosomes in total across the 100 instances, i.e. each
instance trains O(430) distinct models; Models generated by QMLA are described overall by a
distribution of f = 0.76± 0.15, c, Champion models from each instance, showing in general
QMLA nominates champion models with f ≥ 0.88 in all instances, and in particular finds
the true model Ĥ0 (with f = 1) in 72%. d, Hinton diagram showing the rate at which each
term is found in the winning model. The size of the blocks show the frequency with which
they are found, while the colour indicates whether that term was (not) in the true model in
blue (red). Terms represent couplings between two qubits, e.g σ̂x

(1,3) couples the first and third
qubits along the x-axis. Available terms involve four qubits with full connectivity, resulting in
18 unique terms (terms with black rectangles are not considered by the GA). Implementation
details are listed in Table A.1.
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We can likewise consider the quality and ratings of models across generations. In Fig. 8.7(a)
we see the ratings for models over the first four generations of a QMLA instance: the trend
suggested by Fig. 8.6 continues, where models of higher F1-score tend to achieve higher BFEER.
The gene pool as a whole tends towards a homogeneous set of high-quality models: the final
generation consists only of models with f ≥ 0.85, Fig. 8.7(b). Consequently, even in instances
where the precise model, Ĥ0, is not identified, the champion model is highly informative, in that
it captures many of the same interactions, therefore most-likely providing meaningful insight on
the system’s physics.

Finally, to understand the performance of the QMLA algorithm overall, we combine 100

independent instances in a run, Fig. 8.8. We see that, while the overall model space can be
characterised by a distribution of models with f̄ = 0.5± 0.14 (Fig. 8.8(a)), QMLA quickly moves
to the subspace of high-quality models, i.e. the models explored have median f = 0.76± 0.15
(Fig. 8.8(b)). This exploration is based on 430± 45 chromosomes per instance, i.e. QMLA
trains only 0.16% of the 218 permitted models. Ultimately QMLA nominates champion models
{Ĥ′} with f ≥ 0.88 in all instances, and precisely identifies Ĥ′ = Ĥ0 in 72% of instances,
Fig. 8.8(c). Considering the big picture – where the remit of QMLA is to identify the interactions
Q undergoes – we show the rate at which each individual term/gene is included in Ĥ′ in
Fig. 8.8(d). Crucially, we see that terms which really are within the true Hamiltonian, t̂ ∈ T0,
are found at a higher rate than those without, t̂ /∈ T0. This level of analysis can be used to
post-validate the outcome of QMLA, i.e. rather than relying on Ĥ′ from a single instance, trusting
the terms’ individual frequencies as evidence that they are of importance when describing the
system of interest.

8.3.2 Device calibration

The use-case presented in this chapter is restrictive, so cannot be considered as a solution to
characterising any black box quantum system. Firstly, the set of conceivable terms must be
prescribed in advance to facilitate a chromosome mapping; this either limits the range of insight
QMLA can achieve to interactions envisaged by the user, or requires a vast set of permissible
terms, leading to substantially larger model search phases than shown here. Secondly, models
were trained using IQLE in order to learn effectively with relatively few resources. IQLE is only
available to train models where we can reliably reverse the evolution of the target system (see
Section 4.3.1), and as such it is only useful when we have complete control over Q, for example
where Q is some quantum simulator.

The adaptive GES presented in this chapter may therefore prove a useful application of QMLA
in the domain of device calibration, in particular to characterise some untrusted quantum
simulator. That is, by using the simulator to implement some target Ĥ0, QMLA can identify
which operator is actually implemented. For instance, implementation of a four–qubit model
relies on high-fidelity two-qubit gates between arbitrary qubit pairs. QMLA can effectively
reconstruct which operations were and were not faithfully computed, i.e. determine in which
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operations the device failed to perform the intended calculations, allowing for the calibration
of said device. The extension of QMLA to the characterisation of real quantum devices is one
of the most promising applications for future research in the scope of the QMLA framework
beyond this thesis.
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Part IV

E X P E R I M E N TA L S T U D I E S



O V E RV I E W A N D C O N T R I B U T I O N

This Part details the application of the algorithms described in Part II to the study of experimental
and realistic quantum systems. The results here were presented in [1].

In Chapter 9, we describe the physical system considered, the nitrogen-vacancy (NV) centre in
diamond. We detail the design of an exploration strategy within the Quantum Model Learning
Agent (QMLA) framework targeting the study of such a system. The application was conceived
by Dr. Raffaele Santagati; the retrieval of experimental data used throughout this section, as
well as the initial model reduction to a set of sensible Hamilontonian terms, were performed by
Drs. Sebastian Knauer and Andreas Gentile. The machine learning methodologies presented,
such as the greedy search rule, were refined by Drs. Santagati, Gentile and myself. I performed
the adaptation of the QMLA software, ran the instances, analysed the data and generated the
figures, except where explicitly referenced.

Chapter 10 continues the theme of applying QMLA to data from realistic systems: we extend
the analysis to larger systems than those considered in Chapter 9, at the expense of resorting
to simulations instead of experimental data. I proposed genetic algorithms for the exploration
of large model spaces within QMLA, as examined in Part III, including the study presented in
this chapter. Together with Drs. Knauer, Gentile, Santagati and Nathan Wiebe, we devised the
target model, including the choice of parameters, to reflect a realistic system interacting with a
spin-bath environment. I adapted the QMLA software, ran the instances, performed the analysis
and generated the figures shown in this chapter.
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9
N I T R O G E N VA C A N C Y C E N T R E

It is of primary interest to apply the Quantum Model Learning Agent (QMLA) algorithm
to real-life, experimental systems. In this chapter we devise an exploration strategy (ES) to
operate in conjunction with experimental data in order to characterise an electron spin in a
nitrogen-vacancy centre (NVC) in diamond. In particular, we model, through Hamiltonian
terms, interactions between the spin and the spin bath in which it resides, so that QMLA is
finding an effective model for the open system dynamics.

Here we will first introduce a basic picture of NVCs, using basic but nonstandard nomenclature
for simplicity; for thorough descriptions of the underlying physics, readers are referred to [187].
We next discuss the target system with respect to its modelling, determining the suitable terms
which might represent the NVC’s interactions, to inform the starting point for QMLA. Finally
we describe the implementation of an ES for the examination of the NVC, and the results of the
QMLA procedure.

9.1 nitrogen-vacancy centre

Nitrogen vacancies are point defects in diamond, occurring intrinsically (naturally) [188] or
extrinsically (synthetically) [189, 190]. A substitutional nitrogen-14 (14N) isotope is embedded in
a lattice of carbon atoms in diamond, adjacent to a lattice vacancy, such that it is surrounded
by three carbons (Cs) (either 12C or 13C) [191]. Of the 14N atom’s five valence electrons, three
bond with nearby Cs; the remaining two unbonded electrons couple with the lattice vacancy,
forming a triplet state, considered as the NVC. We can experimentally drive the outer electron,
moving the NVC between energy levels characterised by the triplet. In this section we describe
how we can exploit those energy levels in order to define a mechanism by which to prepare and
implement gates on the controlled system, a readout procedure and a computational basis.

A manifold is a set of states with marginal differences, such as a single differing quantum
number. For example, states near the absolute ground state might differ only in their magnetic
spin quantum number: together they can be characterised as the ground state manifold. We
consider two principal manifolds of the system: the ground state and excited manifolds, each
consisting of three states, corresponding to the allowed values for magnetic spin ms, see Fig. 9.1a.
For brevity, we denote states with reference to their magnetic spin and manifold, e.g. the state
in the ground state manifold with ms = 0 is denoted |ms = 0〉g. In the absence of a magnetic
field, the states corresponding to |ms = ±1〉 are degenerate, but in the presence of a magnetic
field, B, they have distinct energy levels, referred to as the Zeeman effect, Fig. 9.1b.

For the purposes of computation, we choose the ground state and one of the excited states as
the two levels of a qubit. We designate the states |ms = 0〉g and |ms = −1〉g as the computational
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basis states |0〉 , |1〉 respectively, such that we have defined a qubit and computational basis,
Fig. 9.1d. We also require a reliable mechanism through which we can be confident that our
qubit is in a definite state, to serve as the starting point of computation: usually qubits are
initialised to |0〉, so here we aim to prepare the NVC in |ms = 0〉g. By shining a laser of 532 nm
(green) on the NVC, irrespective of which state within the ground state manifold the spin starts,
it is excited in to the excited manifold, from which it decays back to the ground state manifold.
The process of this decay can be exploited for the preparation of the NVC in |ms = 0〉g and
therefore enable initialisation for computation. That is, when the NVC is excited to the |ms = 0〉e
level, the dominant decay process is spin-preserving, so after decay it ends in |ms = 0〉g. On the
other hand, if the NVC had been excited instead to |ms = ±1〉e, the dominant decay process
is through a meta-stable/shelving state, which does not preserve spin, so in this case it also
ultimately decays to the |ms = 0〉g, Fig. 9.1(c). Therefore, irrespective of the initial state, by
shining the green laser on the NVC and exciting it into any of the states in the excited manifold,
after decay it is most likely that it has been prepared in |ms = 0〉g = |0〉, providing a starting
point from which to perform computation.

The difference in energy between our defined computational basis states |0〉 and |1〉 is
≈ 2.87GHz, i.e. it is addressable by microwave (MW) radiation. Via antenna, we can deliver a
MW pulse upon the NVC, driving the NVC between the two levels providing an implementation
of an X-gate. Likewise, having initialised the state to |0〉, we can perform a π/2 rotation about
the logical z-axis, by running the MW laser for half the time, resulting in the state |+〉. We can
similarly devise MW radiation to achieve quantum gates and operations on our NVC qubit. We
depict these cycles in Fig. 9.1c.

We can further exploit the decay mechanism to compose a readout procedure, to infer the
population of {|0〉 , |1〉} at a given instant, for example following the application of a series
of gates (a circuit) to the system. We know that the excitation due to the green laser is spin-
preserving, i.e. when the NVC has been excited to |ms = 0〉e, it had originated in |ms = 0〉g.
We also know that the decay |ms = 0〉e → |ms = 0〉g is spin preserving, with the emission of
a red photon: by simply counting the number of excess1 photons emitted, we quantify the
population of |0〉 at the time of query. On the contrary, when the |ms = −1〉g is excited, spin is
also preserved, so it goes to |ms = −1〉e, but |ms = −1〉e decays through the shelving state as
outlined earlier, without the emission of a red photon (the decay emits out infrared radiation
instead). We can hence infer the population of |ms = −1〉g at the time of query by the fraction of
incidents which don’t emit a photon [192]. That is, say we first calibrate the system by retaining
the green laser for some time: after a few µs, a steady state is achieved where the majority of the
time, the triplet is in the computional state |0〉 = |ms = 0〉g. Then, excitation from the same laser
results in the excitation to |ms = 0〉e, which decays back to |ms = 0〉g and emits a photon in the
process; by counting the red photons emitted in a certain time window – equivalently, measuring
the photoluminescence (PL) signal – we benchmark the population of |0〉 when nothing else
has happened as p0. Now, when we apply gates (i.e. MW pulses) to the NVC, we can similarly
read out the population of |0〉 as p′0, and infer that the likelihood that the NVC is found in the
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Figure 9.1: Simplified depiction of energy levels of the nitrogen-vacancy centre, corresponding to its
triplet state. a, With no external magnetic field, the system has excited and ground-state
manifolds, each of which consist of two energy levels depending on the magnetic spin, ms.
b, In the presence of a magnetic field (purple, B), the magnetic spins have distinct energy
levels, i.e. Zeeman splitting giving distinct ms. States are denoted by their magnetic spin,
ms and subscripted by their manifold (e for excited and g for ground-state). c, Application
of a 532 nm laser (green arrow) excites the nitrogen-vacancy centre from any of the states in
the ground state manifold into the excited manifold. The dominant decay mechanism for
the excited states are shown: (i) |ms = 0〉e → |ms = 0〉g (photoluminescence, red) through
the emission of a photon at 637 nm); (ii) |ms = ±1〉e → |ms = 0〉g (dotted grey lines) via the
shelving manifold which allows for non-spin-preserving transition, emitting a photon in the
infrared (not shown). d, Computational basis states |0〉 and |1〉 are assigned to the two lowest
energy states. The difference in energy between these states is such that a microwave (MW,
blue) can drive transition from |0〉 ↔ |1〉. MW pulses can also be used to achieve other states
apart from the basis states, allowing for the implementation of quantum logic gates.

initial state |0〉 is p′o/p0. We can use this quantity as the likelihood within quantum likelihood
estimation (QLE), allowing us to learn from the NVC, as we will discuss in the next sections.

In summary then, by assigning computational basis states |0〉 , |1〉 to energy levels of the
ground state manifold, we are able to ensure the preparation of the NVC in |0〉 by first shining
a green laser on the NVC. We can then apply MW radiation to achieve quantum logical gates
on the system, and read out the final state of the system, again by shining a green laser and
observing the PL (i.e. the emitted photons), and inferring the population level of each basis state.
We represent these concepts in a simplified format in Fig. 9.1.

1 A large number of photons are emitted by the NVC when it is excited by a 532 nm laser, which can be profiled by
its emission spectrum. At the zero phonon line (637 nm), a relatively large number of photons are emitted, compared
with nearby wavelengths. This is where decay from the excited to ground state occurs without interacting with
proximal phonons, as is the case during the spin-preserving decay |ms = 0〉e → |ms = 0〉g. The excess photons are
taken as indication that the electron had been in the state |ms = 0〉e immediately prior to emission.
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9.1 nitrogen-vacancy centre

9.1.1 Experimental procedure

As our primary objective, we aim to model the decoherence and precession of the NVC (described
in Section 9.2), and therefore must implement an experimental strategy which highlights the
decoherence effects dominating the spin. The Hahn echo sequence is a series of operations which
decouple a spin from the slowly varying components of its environment, i.e. the nuclear
bath [193–197]. For short evolution times, i.e. in the first decay of the NVC, the spin is
influenced mostly by fast decoherence processes, providing a platform to study the contributions
of dominant decoherence effects in isolation.

During the Hahn echo sequence, the NVC spin undergoes a series of evolutions – either
according to application of quantum logic gates or the natural evolution of the system interacting
with its environment. Intuitively, the stages are as follows:

(a) Prepare spin in |0〉.

(b) Apply a π/2 MW pulse. A π-pulse is a MW pulse of sufficient duration to flip the spin
completely (|0〉 ↔ |1〉), so a π/2-pulse generates a superposition, i.e. π/2 : |0〉 → |+〉.

(c) The superposition precesses freely for t. During this time, the |1〉-component of the
superposition picks up a phase proportional to t, such that the spin is now in the state

1√
2

(
|0〉+ e−iδt |1〉

)
.

(d) A MW π-pulse is applied, which inverts the basis states, yielding the state 1√
2

(
|1〉+ e−iδt |0〉

)
.

(e) The spin is again allowed precess freely, here for a duration t′. Again the |1〉-component
gains a phase e−iδt′ , i.e. the spin is in the state 1√

2

(
e−iδt |0〉+ e−iδt′ |1〉

)
.

(f) A final π/2 pulse is applied, giving 1√
2

(
e−iδt |+〉+ e−iδt′ |−〉

)
. Expanding |+〉 , |−〉 and

factoring e−iδt, we get the final state

|ψH(t, t′)〉 = e−iδt

2

{
(1 + e−iδ(t′−t)) |0〉+ (1− e−iδ(t′−t)) |1〉

}
. (9.1)

If the second free evolution is run for t′ = t, we retrieve

|ψH(t, t′ = t)〉 = e−iδt

2
{(1 + 1) |0〉+ (1− 1) |1〉} = |0〉 , (9.2)

i.e. the phase accumulated is effectively removed. This is therefore an excellent scheme when
seeking to isolate the spin from its environment, e.g. when the spin is intended to act as a qubit.
In practice it is impossible to decouple the environment entirely, since distant nuclei still interact
with the spin, causing decoherence on a relatively long time scale2. These are what we refer to as
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Figure 9.2: States of spin qubit at each stage of Hahn echo sequence shown on the Bloch sphere. a, The
state of the NVC spin is initialised by a green laser into state |ψ0〉 = |0〉. b, We apply a π/2

rotation about the y-axis (i.e. a MW (microwave) pulse, implemented as e−i π
4 σ̂y ), yielding

the state |ψ1〉 = |+〉. c, The system is allowed to evolve according to its own Ĥ0 for t,
|ψ2〉 = e−iĤ0t |+〉. d, We apply a second MW pulse, this time for a π-rotation about the
y-axis, |ψ3〉 = e−i π

2 σ̂y e−iĤ0t |+〉. e, Again the system evolves according to interactions with the
environment, this time for t′. f, We apply a final π/2 MW pulse to rotate about the y-axis
again, projecting it upon |0〉. Here |ψ5〉 is roughly half way between |0〉 and |+〉, i.e. along the
z-axis. The spin is read out from |ψ5〉 via the NVC’s photoluminescence. Here Ĥ0 = 0.25 σ̂y

was evolved for t = 0.5 (arbitrary units), and the final state overlap with the initial state, i.e.
the likelihood of measuring the spin in |0〉 is Pr(0|Ĥ0, t) = 0.865.
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9.1 nitrogen-vacancy centre

slow interactions: this decoupling scheme can therefore be viewed as corresponding to a model
where the Hamiltonian consists solely of slow terms, enabling us to study the spin’s interactions
with its environment beyond the nearest C atom. We will utilise this strategy in Chapter 10.

On the other hand, when t′ 6= t, the spin is instead found in the state

|ψH(t, t′ 6= t)〉 = e−iδt

2

{
(1 + e−iδ(t′−t)) |0〉+ (1− e−iδ(t′−t)) |1〉

}
. (9.3)

Eq. (9.3) has the precise form (up to the phase factor e−iδt) of a spin having undergone a
Ramsey sequence, i.e. a π/2 pulse, followed by free evolution for t, and a final π/2 pulse. That is,
for t′ 6= t, the Hahn echo sequence behaves like a Ramsey sequence with a delay (t′ − t) [198].
|ψH(t, t′ 6= t)〉 therefore does not decouple the spin from its dominant dephasing contributions,
but rather it reverses the dephasing due to slowly varying components of the environment. As
such, this provides a platform for examining only the fast effects on the spin, i.e. the dominant
Markovian decoherence processes, which are expected to be dominated by coupling with the
nearest C atom of strength O(MHz).

In Chapter 10, we consider the system more broadly, and endeavour to characterise its coupling
with several nuclei, located farther from the spin than the nearest C, i.e. the slower-varying
contributions to the spin’s dynamics, which an be examined via the former scheme with t′ = t.
For the remainder of this chapter, however, we will exploit the latter scheme, Eq. (9.3), in order
to model the decoherence of the spin via its relationship with a single C atom.

To relate the experimental procedure to the parameter learning technique described in Chap-
ter 4 which fulfils the training stage of QMLA, consider the overall Hahn echo sequence. We
depict the stages of the experiment more generally in Fig. 9.2, starting from the initialised
computational state, |ψ0〉 = |0〉, through to its final state which is read out through PL, both of
which as described in Section 9.1. In particular, the final state, |ψ〉5, is effectively read out by
projection onto |0〉; we can interpret the normalised PL after evolution time t as the likelihood
that the NVC is found in |0〉 after evolution of its true3 Hamiltonian, Ĥ0 for t. That is, we assign
this projection as the quantity Pr(0|Ĥ0, t) (the likelihood), and it can be used within likelihood
estimation in order to refine a candidate model Ĥj, effectively4 by changing the structure of Ĥj

until Pr(0|Ĥ0, t) ≈ Pr(0|Ĥj, t) ∀t.
By varying the evolution time, t, used within the Hahn echo sequence, we can map the

likelihood against time, which we can view as capturing the dynamics of the NVC spin, Fig. 9.3.
We vary the evolution time up to t ≈ 4µs in intervals of ∆t = 50ns, so we have 425 data points.
Note the data for the studied NVC is taken once and analysed offline, i.e. QMLA does not have

2 The timescales on which these interactions decohere the spin are orders of magnitude higher then available through
alternative decoupling schemes, e.g. T2 = 242 µs in [194].

3 Note: we refer to the target Ĥ0 as the system’s true Hamiltonian. This is a matter of convention: here Ĥ0 is not the
Hamiltonian of the complete NVC system/environment, but captures only the precession and fast decoherence
processes, i.e. Ĥ0 is simply the name assigned to the Hamiltonian which models the interactions we aim to uncover.

4 Of course this is a gross simplification of quantum Hamiltonian learning (QHL) which is described fully in Chapter 4
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Figure 9.3: Raw data for the nitrogen-vacancy centre’s dynamics. The y-axis shows the normalised
photoluminescence of the NVC, equivalently the likelihood Pr(0|Ĥ0, t).

complete authority to design experiments to run on the NVC, although it can aim to choose
the most informative t available in the predefined set; we will discuss the consequences of this
restriction in Section 9.4.

9.2 target system

We take the axis of the NVC, i.e. the axis connecting the 14N with the lattice vacancy, as the
z-axis. While the NVC is subject to myriad interactions which result in decoherence, we choose
to focus on its dominant interactions with proximal environmental nuclei. These interactions are
characterised by hyperfine terms [199]. The complete Hamiltonian for such systems, where the
set of nuclear sites is {χ}, is expected to be given by

Ĥfull = ∆gsŜ2
z + µBgB · S + S ·∑

χ

(
Aχ · Îχ

)
+ PÎ2

z + µngB ·∑
χ

Îχ. (9.4)

Our overarching intention is to design an approximate model Ĥ′, i.e. a subset of the terms
in Ĥfull which can explain the observed dynamics and decoherence of the NVC. It is therefore
prudent only to retain terms which may contribute to the spin’s decoherence and precession.
First, we will describe each term in Eq. (9.4), as well as approximations which enable us to
drastically reduce the space of terms to consider for inclusion in Ĥ′.

isolated-spin terms

Describe the spin independent of the environmental nuclei.

– ∆gsŜ2
z : the zero-field splitting, or ground state splitting between the computational basis

states. ∆gs∼O(GHz) is a constant offset which does not contribute to the decoherence, so
it is excluded from our study.
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– µBgB · S: the spin’s precession about the magnetic field, B =
(

Bx By Bz
)
, via the total

spin operator5 S =
(
Ŝx Ŝy Ŝz

)
, where µB is the Bohr magneton and g is the electron

g-factor (≈ 2, simplified from the g-factor tensor). Misalignment of the magnetic field is a
decoherence effect, so one core aim of QMLA in this setting is to identify whether such
terms dominate.

hyperfine terms

– Ŝ ·∑χ

(
Aχ · Îχ

)
: The NVC total spin operator S couples the spin with each site, χ. At each

site there is a nucleus which has total spin operator Iχ =
(

Îx Îy Îz
)

χ
. A is the hyperfine

tensor, containing the hyperfine parameters of interest. The coupling between the NVC
and these nuceli is one of the primary decoherence mechanisms, so is essential to any
model aiming to capture those dynamics.

bath-only terms

Describe the other nuceli independent of the spin

– PÎ2
z : the quadrupole splitting, which provides another constant shift, and is therefore not

of interest when modelling the spin’s decoherence, and can be neglected.

– µngB ·∑χ Îχ: nuclear precession terms. µn is the nuclear magneton and g is the nuclear
g-factor (again from the g-factor tensor). These terms represent the nuclei independent
of the spin – these terms lead to decoherence at much higher times than we have access
to, since the Hahn echo sequence reverses the contribution on the spin from the bath,
Section 9.1.1. For the short-time model targeted here, then, these terms can be excluded.

Given that we are modelling the spin’s decoherence, we are interested only in the spin and
its interactions with the environment, so we can immediately drop the bath-only terms, by
assuming the bath is static apart from its interactions with the NVC. This is a usual assumption
in the treatment of open system dynamics, to allow for focus on the dominant interactions in
the processes of interest [43]. Additionally, since the zero field splitting contributes a constant
shift in energy, we can safely omit it by moving to the rotating frame. We are then left only with
the second and third terms of Eq. (9.4), from which to define the space of terms in which QMLA
will search:

µBgB · S; (9.5a)

S ·∑
χ

(
Aχ · Îχ

)
. (9.5b)

5 We invoke an inexact representation of high dimensional tensors here for ease of interpretation. For instance, the
total nuclear spin operator exists in arbitrary dimension (depending on the number of sites modelled), but we
present it simply as I =

(
Îx Îy Îz

)
at each site to convey that we can separate the terms in the construction of

models.
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9.2.1 Mapping to model terms

Next we will focus on mapping the remaining terms to operators to compose the set of terms T
to use in our ES. In our modelling, the NVC spin is represented by the first logical qubit, with a
further |{χ}| qubits, each representing a unique nuclear site, as discussed later in this section.
As standard, we take the axis6 of the NVC as parallel to the qubit’s z-axis.

The first terms included, Eq. (9.5a), come from the spin’s precession about the magnetic
field. It is usually assumed that the external, applied magnetic field is well-aligned with the
spin qubit’s z-axis: if the field is misaligned, it leads to decoherence effects. Determining the
alignment is treated as a core role of QMLA, i.e. we will endeavour to establish whether the x-,
y-axis components of the magnetic field are important for describing the spin’s decoherence.
Then, we have

µBgB · S = µBg(Bx By Bz) · (Ŝx Ŝy Ŝz)→ αxŜx + αyŜy + αzŜz, (9.6)

with αi = µBgBi. The spin’s rotation terms to be included in QMLA’s deliberations are therefore

Ts = {Ŝx, Ŝy, Ŝz}. (9.7)

Next, we consider the hyperfine coupling term. In general we sum over the nuclear sites {χ},
since the NVC spin will interact with every nucleus within a certain range. We show in [1]
that a realistic system requires modelling a finite-size bath of |{χ}|∼15 nuclei to capture the
dynamics of interest, which is infeasible for complete characterisation via classical simulation,
where we are limited to ∼11 qubit calculations7. Instead, by focusing only on the short-time
dynamics of the NVC, we can isolate the effects of dominant interactions, most notably with a
single nearby C. Indeed, by assigning a first qubit as representing the NVC spin, we can map
the entire environment onto a generic second environmental qubit, representing the amalgamation
of said interactions, though we can think of the two-qubit system as the NVC coupled with a
single 14N [199].

S ·∑
χ

(Aχ · Iχ)→ S ·A · I (9.8)

This reduces the dimension of our approximation: the number of qubits required, nq reduces
from nq = 1 + |{χ}| to nq = 2, since now we only retain qubits for the NVC and the 14N (which
also represents the entire bath). The hyperfine tensor A consists of the hyperfine parameters, i.e.
the strength of corresponding interactions.

A =




A⊥ 0 0

0 A⊥ 0

0 0 A‖


 , (9.9)

6 The quantisation axis, i.e. the axis along the 14N and lattice vacancy.
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where A⊥ is the non-axial hyperfine coupling term and A‖ is the axial coupling term, since the
axis of the NVC is used to define the z-axis for our qubits.

The total spin operators are then those of the NVC operating on the first logical qubit, e.g.
Ŝ(1)

x , and those of the environmental qubit on the second, e.g. Î(2)x . They can be summarised as

S = (Ŝ(1)
x Ŝ(1)

y Ŝ(1)
z )

I = ( Î(2)x Î(2)y Î(2)z )
(9.10)

So we can write,

S ·A · I =A⊥Ŝx Îx + A⊥Ŝy Îy + A‖Ŝy Îy

+ Axy
(
Ŝx Îy + Ŝy Îx

)

+ Axz
(
Ŝx Îz + Ŝz Îx

)

+ Ayz
(
Ŝy Îz + Ŝz Îy

)
(9.11)

Similarly to αi in Eq. (9.6), we replace the expected (and theoretically computable) scalar
parameters, e.g. A⊥, with generic parameters α, to be learned. Off-diagonal terms, referred
to hereafter as transverse terms (Ŝi Îj where i 6= j), are usually neglected [193]. Here we will
employ QMLA to determine whether the transverse contributions are worthy of inclusion in
the decoherence model, although we consider only {Ŝx Îy, Ŝx Îz, Ŝy Îz} for brevity. The hyperfine
terms to be entertained by QMLA are then

THF =

{
Ŝx Îx, Ŝy Îy, Ŝz Îz,

Ŝx Îy, Ŝx Îz, Ŝy Îz

}
. (9.12)

Finally, combining Eq. (9.7) and Eq. (9.12), we have the full set of terms to incorporate into the
ES for the QMLA model search:

TNV =





Ŝx, Ŝy, Ŝz,

Ŝx Îx, Ŝy Îy, Ŝz Îz,

Ŝx Îy, Ŝx Îz, Ŝy Îz





. (9.13)

We introduce a shorthand notation to ease model representation for the remainder of this
chapter. Recall that we have defined a two-qubit Hilbert space for model construction. Terms
which affect only the spin act only on the first qubit, Ŝi = Ŝ(1)

i = σ̂i ⊗ 1̂, where σ̂i is the Pauli
operator giving rotation about the i-axis, and 1̂ is the one-qubit identity matrix. Retaining the
hyperfine notation, for the expectedly-dominant diagonal terms, we denote Âi = Ŝ(1)

i Î(2)i =

7 This limitation arises from the requirement to compute the total evolution of the global state, involving calculation of
e−iĤt, i.e. the characterisation of an nq-qubit model depends on classical exponentiation of the 2nq × 2nq Hamiltonian
for each particle and experiment in classical likelihood estimation (CLE), which is prohibitively expense.
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σ̂i ⊗ σ̂i. We refer to the transverse terms as T̂kl = Ŝ(1)
k Î2

l = σ̂k ⊗ σ̂l . We can hence rewrite Eq. (9.13)
as

TNV =





Ŝx, Ŝy, Ŝz,

Âx, Ây, Âz,

T̂xy, T̂xz, T̂yz





. (9.14)

We also use a succinct representation for brevity, e.g. Ŝxy Âz = Ŝx + Ŝy + Âz, where parameters
αx, αy, αz are implicitly assumed.

9.2.2 Prior knowledge

QMLA will construct models using the pool of terms defined in Eq. (9.14). Recall from Chapter 5

that each model considered must be trained independently, where the purpose of model training
is to optimise the parameter vector~α which characterises the model. For example, the model
Ĥi = Ŝx,y Âz = α1Ŝx + α2Ŝy + α3Âz, is trained to retrieve the optimal~α′i = (α′1 α′2 α′3). Models
are trained through QHL, described in Chapter 4, which iteratively updates a probability
distribution for the associated parameters, Pr(~α). As such, a prior distribution must be drawn,
from which QHL begins its training. While QHL can redraw the probability distribution
iteratively, and even find parameters entirely outside of the initial range, it is necessary at least
to identify the order of magnitude where the true parameter should be found. The algorithm
therefore demands that the user specifies the range of each parameter in which to search, which
can be based on domain knowledge and theoretical predictions. For example, recall from
Section 9.2 that the zero field splitting, ∆gs in Eq. (9.4) (and excluded in our modelling), is
expected to be O (GHz): in order to provide a reasonable chance at learning the true parameter,
here we would propose a prior distribution of 5± 2GHz. We must similarly identify the broad
range in which we reasonably expect to find parameters associated with each term in Eq. (9.14).

The spin-only terms, Ŝi, are consequences of the magnetic field, expected in the range
O (2− 3MHz). Likewise, the hyperfine terms, Âi are expected in the range of O (MHz) [200],
while in the secular approximation only the z-component is expected to contribute substantially
[201]. The non-axial hyperfine terms, i.e. the transverse terms T̂kl are not usually included in
effective models, but can be found of order O(10 kHz) [202]. We utilise this prior understanding
of the system to inform the parameter range used for training candidate models: for each of
the terms in Eq. (9.14), we will adopt a normal prior distribution of 4± 1.5MHz. This range is
sufficiently specific to ensure the training subroutine operates in a physically meaningful – and
likely appropriate – space, while also broad enough to allow for significant differences between
expectation and reality. Moreover this distribution supports hypotheses where each parameter
is zero: if these prove favourable, negligible contributions can be identified and excluded from
the model.
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9.3 exploration strategy

We may now turn to the specific implementation details by which QMLA is applied to the
study of this NVC system. Recalling the terminology of QMLA from Chapter 5, we design an
exploration strategy (ES) specifically for the system under study. The ES will account for the
details listed in this chapter so far, in summary:

• we aim to assign a model, Ĥ′, to the NVC to describe its decoherence processes

– we especially focus on its hyperfine interactions;

• we use a 2-qubit approximation

– the first qubit represents the spin itself;

– the second qubit represents the environment in which the NVC resides;

• we query the NVC by performing Hahn echo experiments (Fig. 9.2);

• the outcome of those experiments are thought of as the system’s likelihoods (Fig. 9.3);

• candidate models are composed of the terms defined in Eq. (9.14)

– likelihoods are used for the training of individual candidate models through QHL;

– we assign approximate ranges to the scalar parameters corresponding to each term
based on theoretical arguments;

∗ those parameters are to be learned precisely by QHL.
As outlined in Section 5.4, the central role of any ES is to specify the model generation

procedure, which QMLA relies upon for deciding the next set of candidate models to test. In
this case, we exploit some intuition and prior knowledge of how such systems work, to design
a bespoke model generation subroutine: we can think of this as a midway point between the
completely specified ESs used for identifying the underlying lattices from a prescribed set in
Chapter 7, and the entirely general genetic algorithm which does not restrict model generation,
of Chapter 8. We use the standard structure of exploration trees (ETs) introduced in Section 5.4,
where models are placed on consecutive branches, µ, and branches are consolidated by pairwise
comparisons between all models on µ, where comparisons are computed through Bayes factors
(BFs). The outcome of consolidation on µ is the determination of a single branch champion, ĤC(µ).

We use a greedy search rule: terms are added one-by-one to gradually increase the complexity of
candidate models until terms are exhausted [103]. We break the ET into three distinct tiers, each
corresponding to an intuitive degree of complexity: the first tier involves the spin-only terms,
T1 = {Ŝi}; the second considers the hyperfine terms, T2 = {Âi}; the final tier the transverse
terms, T3 = {T̂i}. Within each tier, terms are added greedily to the previous branch’s champion,
ĤC(µ). So, the first branch is given by µ = {Ŝx, Ŝy, Ŝz}; say ĤC(µ) = Ŝy, then µ + 1 determines
that Ŝx, Ŝz are not yet considered, so it constructs the models {Ŝx,y, Ŝy,z}, e.g. Fig. 9.4. After
exhausting all tiers, we consolidate the set of branch champions, HC = {ĤC(µ)}, to determine
the best model considered globally, Ĥ′.
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9.3 exploration strategy

Figure 9.4: Greedy model search. Models (purple) are placed on branches, trained and consolidated
(green) as in Fig. 5.1, with the branch champion spawning (red) candidates to place on the
subsequent branch. Branches are grouped in tiers, corresponding to levels of approximation:
the first tier of the model generation strategy is shown, where T1 = {Ŝx, Ŝy, Ŝz} is explored.
The final champion from the first tier seeds the second tier.

Clearly, this growth rule is partially deterministic, insofar as some models are guaranteed to
be considered, while others are not reachable. Indeed, the space of available models are heavily
constrained, in particular models in later tiers will always involve all of the tier 1 terms, e.g.
Ŝx Ây can not occur organically. In general, restrictions of this kind undermine the ES and are
considered a weakness. To account for this, we add a final test of reducibility on the champion
model, triggered if any of the parameters of ~α′ are potentially negligible, i.e. the posterior
distribution of any parameter assigns credibility to the hypothesis that the parameter is 0. This
champion reducibility test simply removes the negligible-parameter terms from Ĥ′, yielding
a reduced global champion, Ĥ′r. We then compute the BF between Ĥ′, Ĥ′r: if the BF indicates
strong evidence in favour of the reduced version, we replace the champion model, Ĥ′ ← Ĥ′r. In
effect, we thus verify the statistical significance of each term included in Ĥ′.

The total model in Eq. (9.4) supports Nt = 1 + 3 + 6|χ|+ 3 + 3|χ| = 7 + 9|χ| terms, which we
reduced to a space of Nt = 3 + 6|χ| = 9 through several approximations. Even so, the remaining
29 permitted models were reduced further by building the logic of this ES from our intuition
around existing knowledge of typical NVC systems. As such, the described ES will only ever
consider < 20 models per instance. The described ES seems overly prescriptive, but should be
viewed as a first attempt at a generalisable approach: essentially we can view the tiers of the
greedy search as characterising the system at various approximations, e.g. the first tier examines
one-qubit terms, while subsequent tiers inspect 2-qubit terms. We can envision future work
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where the greedy search is gradually extended to less rigid approximations, enabling study of
more complex quantum systems. This leads to some important remarks:

1. Realistic, near-term applications of QMLA can not be thought of as a solution to black-box
characterisation problems: it must be used in conjunction with domain expertise for the
system under study.

2. While this test-case yields promising results, the outcome of QMLA here may not be
especially insightful, since the available model terms were so deliberately constrained – we
demonstrate a use-case in Chapter 10 where a broader scope is enabled in simulation.

A common charge against QMLA supposes to first write down the most complex model, train
it fully, and then infer which terms are negligible, in a similar process to the champion reduction
test outlined here. While this may be feasible in the case described here, with Nt = 9 and a
closed term set, it is unscalable: adding just a second nuclear site increases the model search to
a space of Nt = 15. Models of higher cardinality (|~α|) demand higher NE, NP to train well, so
immediately training the most involved model would require infeasible resources8, and risks
significantly overfitting the data. It seems more appropriate to work “from the ground up”,
testing terms and only keeping those justified, rather than training all terms and attempting to
decouple their effects post-hoc.

9.3.1 Test in simulation

Before considering the real experimental data (Fig. 9.3), we first test the ES in simulation under
ideal conditions. That is, we assume the ability to prepare arbitrary probe states, and use
a random probe set (see Section 4.7), and use the full expectation value as the likelihood,
| 〈ψ|e−iĤjt|ψ〉 |2. Of course, this is infeasible since we presume access to the full state at the time
of measurement, but this can be seen as a best-case scenario for this application, because the
realistic case loses information by tracing out the environmental qubit at measurement. We vary
the target Ĥ0, among a series of ten models, which are all valid models achievable by the ES.

9.4 experiment design constraints

Moving to analyse the experimental setup, there are a number of constraints which we must
account for in training models. Firstly, the π/2-pulse applied to the prepared qubit (|ψ0〉 → |ψ1〉
in Fig. 9.2) means that the state before evolution is always |+〉 in the computational basis; this is
a severe limitation on model training, as we saw in Section 4.6. Moreover, this places a bias on
the interactions QMLA is likely to identify: we show in Fig. 9.2 how QHL performs in training

8 Note: in the case studies presented in this thesis, it was found that the same resources were sufficient for the
simplest and most complex models, due to the relatively small number of terms therein. We expect for larger
models, e.g. |~α| > 10, that the resources allocated ought to be proportional to the cardinality, which is an in-built
option in the QMLA software.
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the same model using (i) the probe set available experimentally; (ii) a more general (random)
probe set. This bias adds a caveat to the outcome of this study: the suppression of terms means
we are more likely to find some genuine interactions than others, so the champion model is
capturing the decoherence with respect only to one basis.

The experiment was run with increasing t for the duration of the first decay of the NVC, i.e.
until it had dephased, so the data available for examination terminate at tmax∼4µs, see Fig. 9.3.
As discussed in Section 4.6, usually it is helpful to allow an experiment design heuristic (EDH)
to choose the experimental controls, including the evolution time, t, against which the model
is trained at each experiment; the default particle guess heuristic (PGH) attempts to select t at
the upper boundary of times where the model is expected to be predictive, to maximise the
information gained by the experiment (see Section 4.6.1). Here, however, we can not allow the
EDH to select arbitrary t, since we do not have data beyond tmax.

We require a custom EDH to account for the constraints outlined, with the following consider-
ations:

1. We may only assume access to the probe |+〉 on the spin qubit

(a) we further assume the environmental spin is polarised by the same microwave pulse,

such that the global probe available is |ψ〉 = |+〉 |+′〉, with |+′〉 = |0〉+eiφ|1〉√
2

and φ is
random [203].

2. We can not allow the choice of any t:

(a) Any t > tmax, arising from a thin parameter distribution, must be mapped to some
0 < t ≤ tmax.

(b) All nominated t must be mapped to the nearest available t in the dataset so that the
likelihoods are as close as possible to simulating the true system.

3. Much of the physics of interest occurs at relatively high times, i.e. because the rotation
(MHz) terms dominate, the decay of the peaks can be seen as evidence of the bath, notably
through hyperfine terms in the model.

(a) We therefore wish to enforce that all models are trained on those data (t ≥ 2µs), even
if their parameter distribution is insufficiently narrow to yield those times naturally.

Accounting for these, we construct an EDH which mixes the robust, adaptive nature of
PGH, useful for refining an initially broad Pr(~α), with a primitive, linear time-selection, useful
to ensure the trained parameters at least attempt to account for the physics we are actually
interested in. That is, with each model trained for NE experiments, we train according to the
standard PGH for the first Ne/2, but force the training to mediate over the available data for the
latter Ne/2.
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9.5 results

We apply the ES described in Section 9.3 to the raw data of Fig. 9.3: the results are summarised
in Fig. 9.5. We first focus on the overall outcomes: the most blunt figure of merit of interest is
simply whether QMLA overfits or underfits the true parameterisation. In preliminary analysis
we run 500 instances with varying Ĥ0, varying the cardinality of Ĥ0, so we can broadly gauge
the tendency towards over- and under-fitting: we see that in ∼50% of instances the correct
cardinality is found, rising to ∼86% by allowing ±1 term, Fig. 9.5(b). In general, the champion
models from each instance are highly predictive: the median coefficient of determination between
the systems’ and corresponding champion models’ data is R2 = 0.84.

Then, considering the performance of the algorithm on whole, we perform runs of 100 in-
stances on the experimental data as well as simulated data, where the simulation assumes9

Ĥ0 = Ŝxyz Âz. The set of models selected most frequently are shown in Fig. 9.5(c), and
each model is trained with Ne = 1000, Np = 3000, with the volumes of those models (in
the experimental case) shown in Fig. 9.5(d). In particular, the most prominent models,
{Ŝx,y,z Âz, Ŝx,y,z Ây,z, Ŝx,y,z Âx,z, Ŝy,z Âz} are found collectively in 74% (87%) of instances on the ex-
perimental (simulated) data; the win rate and R2 of all models (which won at least one instance)
are reported in Table 9.1. It is noteworthy that even in the simulated case, the same models
mislead QMLA: this suggests that the resultant physics from these models is substantially
similar to that of the true model10. These models are defensible with respect to the descriptions
of Section 9.2, since in each case they detect the interaction between the spin qubit and the
environmental qubit, i.e. the hyperfine terms Âi, especially Âz which occurs in 97% (99%) of
champion models, reported in Table 9.1. We discuss some physical insights from these results in
Section 9.5.1.

The most frequently identified model, Ĥ′ = Ŝx,y,z Âz, is found in 45% (61%) of instances on
experimental (simulated) data: we show its attempt to reproduce the dynamics of Fig. 9.3 in
Fig. 9.5(e), showing excellent agreement with the raw data, with R2 = 0.82. This serves as an
essential sanity check: we can intuitively see that QMLA has distilled a model which captures
at least some of the most important physical interactions the target NVC system is subject to;
otherwise we would not see such clear overlap between the predicted and true dynamics.

Finally we display the model search as a directed acyclic graph (DAG) in Fig. 9.5(f), where
models are represented on nodes on the graph’s layers (equivalent to ET branches), and their
parents are resident on the branch immediately above their own. Comparisons between models,(

Ĥi, Ĥj
)
, are shown as edges between nodes on the graph, coloured by the strength of evidence

of the outcome, i.e. the Bayes factor, Bij. Each layer, µ, nominates their branch champion, ĤC(µ);
the set of branch champions are consolidated to determine the global champion, Ĥ′C.

9 Here we work backwards by setting the target model as that which QMLA deemed most appropriate for the
available data. We posit that this choice is arbitrary and doesn’t fundamentally change the discussion of this chapter,
merely aiding in analysing the performance of the algorithm with respect to a concrete example.

10 Alternatively, that the same systematic error misdirects the search in both cases.
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Figure 9.5: QMLA results on simulated and experimental data, describing a NVC (nitrogen-vacancy
centre) system. Figure reproduced from [1]. a, The carbon lattice providing the outer
environment for the NVC, along with the time evolution of the electron spin state (represented
on a Bloch sphere) during the pulses for the Hahn echo sequences. These steps are expanded in
Fig. 9.2, although here the final π/2 pulse is omitted. b, Simulation of 500 independent QMLA
instances, where Ĥ0 is chosen randomly. The win rate is reported against the difference (Np −
N′p) between the number of parameters in Ĥ′ and Ĥ0, respectively. The under-parameterised
(over-parameterised) class refers to models with less (more) parameters than Ĥ0. Correct
indicates that exactly Ĥ0 was found. The mis-parameterised class groups models with the
same parameterisation cardinality as Ĥ0, but different Hamiltonian terms. Inset, Histogram
of occurrences of R2 values for each retrieved Ĥ′ against a sampling of datapoints from Ĥ0.
The blue vertical line groups together all those instance champions with R2 < 0, and the
median R2 = 0.84 is shown as a red dotted line. c, Win rates of the top four models for 100

QMLA instances, against both simulated and experimental data. On experimental data, Ĥ0 is
unknown, while simulations use Ĥ0 = Ŝx,y,z Âz. d, Total volume spanned by the parameters’
probability distribution across progressive epochs, for the models in (c). The shaded area
show the 67% confidence region of volumes, taken from instances where those models were
deemed Ĥ′. e, Simulated likelihoods reproduced by the model with the highest win rate
(Ŝx,y,z Âz, turquoise), compared with corresponding NV-centre system experimental data (red
dots, extracted from the observed photoluminescence of the first Hahn echo decay). Error bars
are smaller than the dots. The shaded area indicates the 67% confidence region of likelihoods
predicted from the instances where Ĥ′ = Ŝx,y,z Âz f, A single QMLA instance depicted as a
directed acyclic graph. The thin end of each edge points to the favoured model; the colour
of the edges depict the strength of evidence, log10 B, where B is the BF between those two
models. Champions of each layer, ĤC(µ), are in light brown, whereas the global champion Ĥ′

is in orange and all other candidate models are grey.
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Model Experiment Simulation

Wins R2 Wins R2

Ŝy,z Âz 9 0.8 1 0.26

Ŝy Âx,z 2 0.63

Ŝx,y,z Âz 45 0.86 61 0.97

Ŝx,y,z Ây 1 -0.54

Ŝx,y,z Âx,y 3 0.81

Ŝx,y,z Ây,z 14 0.83 10 0.96

Ŝx,y,z Âx,z 6 0.64 15 0.99

Ŝx,y,z Âx,y,z 2 0.72 5 0.97

Ŝx,y,z Âx,zT̂xz 1 0.68

Ŝx,y,z Âx,y,zT̂xz 5 0.77

Ŝy Âx,y,zT̂xy,xz,yz 2 0.31

Ŝx,y,z Âx,y,zT̂xy,xz 4 0.67 1 0.32

Table 9.1: QMLA win rates and R2 for models based on experimental data and simulations. We state the
number of QMLA instances won by each model and the average R2 for those instances as an
indication of the predictive power of winning models.

9.5.1 Analysis

Here we offer some further perspectives, considering the runs summarised in Fig. 9.5. Fig. 9.6
first details all models considered in the 200 instances comprising the experimental and simulated
QMLA runs, as well as the win rate of each model. This ES is designed to study a small subspace
of the overall available space: only 40 unique models are constructed. We highlight a number of
credible models which we deem especially valid approximations of the target system, i.e. which
contain the most viable approximations.

Fig. 9.7 shows the reproduction of dynamics of the top11 four models from both simulated and
experimental runs. We see that each model faithfully captures the essential dynamics arising
from the respective target systems; this alone is insufficient to conclude that the true model has
been identified, but serves as a valuable sanity-check, convincing us that the output of QMLA is
at least a sensible approximation of Ĥ0, if not the absolute true model.

11 Top models in the context of QMLA are those models within the run with the highest win rates, i.e. which won
more instances than other candidates from the model space.
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Figure 9.6: Left, map of the various Hamiltonian terms included in each of the possible 40 candidate
models explored by QMLA during any of the 100 instances on either simulated or experimental
data. IDs of candidate models are on the vertical axis, and labels for the terms on the horizontal
axis. The true model Ĥ0 for the simulated case is highlighted in green and a subset of credible
models in blue, i.e. models which may reasonably be expected to describe the targeted
nitrogen-vacancy centre from theoretical arguments. Right, number of wins for each of
the candidate models out of 100 independent QMLA runs. Cases adopting simulated data
are shown by empty bars, with those using the experimental dataset shown by green bars.
Implementation details are listed in Table A.1.
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Figure 9.7: Dynamics reproduced by various QMLA champion models for (a) simulated and (b) exper-
imental data. Likelihoods, Pr(0) are shown on y–axis with time on x–axis. Red dots give
the true dynamics of Ĥ0, while the blue lines show the median reconstruction by Ĥ′ from all
the instances where that model was deemed Ĥ′, with light blue showing the 67% confidence
region. Ĥ′ is listed on top of each plot; the number of instances won by each model can be
read from Table 9.1. Implementation details are listed in Table A.1.

The key insight promised by QMLA is to identify the interactions present in the studied
system, which in this case was the decoherence processes of an NVC. In Fig. 9.8 we show the
number of times each of the terms permitted, i.e. t̂ ∈ TNV from Eq. (9.14), are included in the
champion model, as well as the distribution of parameter estimates for those terms. From the
simulated case, we see that those terms which are in Ĥ0, i.e. t̂ ∈ T0, are found in almost all
instances. Furthermore, while most instances find a champion model which includes some
erroneous term(s), each t̂ /∈ T0 is found with less than a quarter of the frequency of those t̂ ∈ T0.
Hence terms outside of T0 may be reasonably ruled out in post-processing the QMLA results,
by manually considering the relative frequency with which each term is found. The inaccurate
terms found most often are seen to have (almost) negligible parameters: in conjunction with
domain expertise, users can determine whether the inclusion of these terms are meaningful or
simply artefacts of slight overfitting. In the experimental run, on the other hand, we see a similar
gulf in frequency between some terms. Namely, {Ŝx, Ŝy, Ŝz, Âz} are found in over 50 instances
more than all other terms: we therefore conclude that those terms contribute most strongly to
the NVC’s decoherence process. The resultant model, Ŝxyz Âz is in agreement with theoretical
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expectations, and shows that we can describe the intricate processes involved in decoherence
through a relatively simple Hamiltonian, proving that QMLA can perform an important role in
aiding the understanding of quantum systems.

9.5.2 Finite size effects

The case examined in this chapter is fundamentally limited by the nature of the approximation:
by assigning a closed Hamiltonian to the NVC, we may never retrieve a complete description
of the system. Closed, conservative dynamical systems – with a finite spectrum of permissible
states – will return to their initial state after some finite time, according to the Poincaré recurrence
theorem [43]. For quantum systems, then, the Poincaré recurrence times {tR} correspond to the
times at which the global system’s state, |ψg〉, returns to its starting state,

∣∣〈ψg(tR)|ψg(0)〉
∣∣2 ≈ 1

[197]. Such a system is therefore expected to exhibit revivals; in the context of quantum many-
body systems, this is where the system rephases some time after it had dephased. These revivals
are not necessarily physical, but rather an artefact of the approximation: realistic systems are
seen to decohere completely after some decoherence time without revivals, i.e. irreversible
decoherence. The Poincaré recurrence time scales polynomially with the number of degrees
of freedom, n, within the closed system: tR ∼ n!. That is, even though the system of many
interacting components will rephase, the time required to do so may be greater than the age of
the universe [204]. Conversely, in our simplistic two-qubit model, the spectrum of eigenenergies
is artificially restricted, and so revivals will appear unrealistically quickly.

Fig. 9.9 shows the predicted revivals of Ĥ′ = Ŝx,y,z Âz, the model found by QMLA to describe
the NVC in the above analysis. The predicted revivals are unlikely to correspond to further
experimental data; we can see intuitively that the system had decohered completely and
irreversibly after 4.2 µs. When modelling such systems in practice, these revivals are often
suppressed by a time-dependent damping e−Γt, with Γ determined phenomononoligcally, in
order to yield the irreversible decoherence observed in real experimental systems, including
the one used throughout this chapter. Here our aim was to model the interactions of the NVC
spin with its nearest environmental qubit, which would be undermined by including such a
drastic time-dependent effect: we omit this factor in this work, however it will prove important
to account for this behaviour in future applications of QMLA to open systems.

Invoking a finite-size bath to approximate the genuine open-system nature of the NVC permits
us to examine the interaction of the spin with few neighbours, sufficient to characterise the
dominant decoherence processes of a system, as we have done in this chapter. However, the
approximation can not capture all of the spin’s interactions, so we are motivated to consider
models involving more nuclei, and ultimately models of open quantum system. In Chapter 10

we consider a similar NVC setup in simulation, to explore QMLA’s capability while relaxing the
effect of the finite size bath, and we note in Chapter 11 that in order for QMLA to meaningfully
characterise genuine quantum systems, it must explore models of open systems.
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(a) Simluated QMLA instances. Red dotted lines show the true parameters.
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(b) Experimental QMLA instances.

Figure 9.8: Parameter values for terms found by QMLA. For each term found within the champion
model of at least one instance of QMLA, a histogram is shown for the values of the term’s
associated parameter. The terms are listed along the top of each subplot with results for (a)
simulated and (b) experimental data. Blue dotted lines indicate the median for that parameter,
while red dotted lines give the true parameter in the simulated case. Grey blocks show the
number of champion models which found the parameter to have that value, and the number
listed in the legend reports the total number of champion models which contained that term.
Implementation details are listed in Table A.1.
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Figure 9.9: Predicted revivals of QMLA champion model, Ĥ′ (blue), against the experimental data (red).

9.5.3 Outlook

We have thus characterised the interactions which dominate the decoherence process for a
given NVC. In doing so, we identified not only the terms present, but also the strength (i.e.
parameters) of those terms. Automated characterisation of quantum systems will be essential
in the development of quantum technologies, whether for calibration of controlled devices,
or alignment of experimental systems for optimal results. While this demonstration must be
understood in the context of its limitations, e.g. the restricted basis studied, and the constrained
model space searched, it represents a crucial proof of principle that QMLA is applicable to the
task of automated quantum system characterisation. In the next chapter, we extend QMLA in
simulation, to overcome some of the limitations mentioned here.

153



10
L A R G E R R E A L I S T I C S Y S T E M S

Chapter 9 concerned a two-qubit approximation of the short-time dynamics of an nitrogen-
vacancy centre (NVC). It is valid criticism that the corresponding model space searched was
reduced substantially through prior knowledge, and it therefore remains to test Quantum Model
Learning Agent (QMLA) in a large model space, on physically meaningful data. In this chapter,
we extend QMLA to consider approximations of NVC systems using more qubits, representing
several nuclear sites, which aim to capture the interactions between the target NVC and the
environment more thoroughly. Here we will simulate the target system, allowing us to make
definite statements on the performance of QMLA, unlike the experimental data where we can
not be sure of the dynamics’ generator.

10.1 target system

A realistic model may be expected from considering the environment as a finite-size bath,
consisting of ns nuclear spins in addition to the NVC spin, i.e. the total number of qubits of such
a model is nq = 1 + ns. The effects of nuclear spins are expected to manifest at higher times
than those studied in Chapter 9, e.g. the decoherence of the NVC is only effected by the nuclear
spins’ independent precession at higher times. To study these slowly varying contributions to
the spin’s decoherence, we must modify the experimental procedure: the Hahn echo sequence
isolates these types of dynamics when the second free evolution runs for the same duration as
the first, t′ = t [198], detailed in Section 9.1.1.

Since we are simulating the target system, we may choose the approximation we wish to
invoke. Starting from the Hamiltonian expected to describe NVCs in [199], we again exclude the
zero-field and quadrupole splitting (as in Eq. (9.4)), and assume the complete Hamiltonian to
describe the long-time dynamics of an NVC,

Ĥlong = µBgB · S + γ · B · I + A · S · I, (10.1)

where1

• µB = 9.274× 10−24J T−1 is the Bohr magneton;

• g ≈ 2 is the electron g-factor;

• B is the magnetic field with magnitude B = 11 mT;

• S is the total electron spin operator;

• I is the total nuclear spin operator.

• γ is gyromagnetic ratio, with dominant axial contributions from 13C of γz = 10.8 MHz T−1

and non-axial contribution from proximal nuclei of γx = γy = 42.6 MHz T−1 [205];
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Figure 10.1: Long-time dynamics for nitrogen-vacancy centre, red, showing revivals, generated by Ĥ0

from Eq. (10.4), via Hahn echo measurement with t′ = t. For comparison, experimentally
generated dynamics are shown in blue.

• A is the hyperfine tensor, coupling the electron with the nuceli, here we take it to consist
of A = Ax = Ay = Az = 0.2 MHz [206].

We perform the same mapping to qubits as in Section 9.2: we let the first qubit represent the
electron, and reduce the spin tensors to sums over nuclear sites, {χ}. The complete model is
then given by

Ĥlong =µBgB ∑
w∈{x,y,z}

Ŝw

+ A ∑
w∈{x,y,z}

∑
χ∈{χ}

Ŝw · Âχ
w

+ B ∑
w∈{x,y,z}

γw ∑
χ∈{χ}

Îχ
w.

(10.2)

For the purpose of testing QMLA, we can choose a subset of terms from Eq. (10.2) to constitute
the true model: to set Ĥ0, we use the secular approximation, i.e. we assume the magnetic field is
perfectly aligned along the z-axis [195, 201]. In the secular approximation, the NVC spin qubit
rotates only about the z-axis, and coupling between the NVC and nuclear qubits are only via
Ŝz · Âχ

z . Here we will include the effect of the nuclear spins’ rotations, which are much weaker

1 Note: the parameter values used here do not necessarily correspond to a physical system as they are taken from a
range of sources. The precise values should not matter to the discussion, but are intended to generate dynamics
using realistic values, which are similar to a genuine system, by inspection of Fig. 10.1.
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10.1 target system

Term t̂ Meaning Parameter (Hz) ∈ Ĥ0

Ŝx σ̂1
x electron spin rotation about x-axis 2× 109 No

Ŝy σ̂1
y electron spin rotation about y-axis 2× 109 No

Ŝz σ̂1
z electron spin rotation about z-axis 2× 109 Yes

Ŝx · Âj
x σ̂1

x σ̂
j
x hyperfine coupling with jth nuclear qubit, x-axis 0.2× 106 No

Ŝy · Âj
y σ̂1

y σ̂
j
y hyperfine coupling with jth nuclear qubit, y-axis 0.2× 106 No

Ŝz · Âj
z σ̂1

z σ̂
j
z hyperfine coupling with jth nuclear qubit, z-axis 0.2× 106 Yes

Î j
x σ̂

j
x jth nuclear spin rotation about x-axis 66× 103 Yes

Î j
y σ̂

j
y jth nuclear spin rotation about y-axis 66× 103 Yes

Î j
z σ̂

j
z jth nuclear spin rotation about z-axis 15× 103 Yes

Table 10.1: Terms permitted in the QMLA GA (genetic algorithm) when modelling the extended nitrogen-
vacancy centre systems. Each term is permitted in the model search from expectations about
the system under study. The succinct representation is listed as t̂, along with an interpretation
of the term’s physical contribution to the system. The parameter values used in simulations
can be found from from the listings of Eq. (10.1). The presence of the term in the true model is
indicated in the final column: t̂ /∈ Ĥ0 do not contribute to the dynamics of Fig. 10.1 but are
available to the genetic algorithm (GA) when constructing models.

and only influence the NVC’s decoherence at long times. In total then, the set of nuclear spins,
{χ}, are mapped to ns qubits, and we define the true model as

Ĥ0 = Ŝz +
nq

∑
j=2

Ŝz · Âj
z + ∑

w∈{x,y,z}

nq

∑
j=2

Î j
w, (10.3)

with the parameters of Eq. (10.2) now absorbed, listed in Table 10.1, giving the dynamics in
Fig. 10.1. For simplicity, we restate this in terms only of the Pauli matrices, where the first qubit
refers to the NVC and the remaining qubits give the interactions and nuclear terms.

Ĥ0 = σ̂1
z +

nq

∑
j=2

σ̂1
z σ̂

j
z + ∑

w∈{x,y,z}

nq

∑
j=2

σ̂
j
w, (10.4)

so in total, the set of terms for Q, T0, has 1 term for the NVC qubit, ns terms for hyperfine
couplings and 3ns terms for the nuclei: |T0| = 1 + 4ns.
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10.2 genetic algorithm

We set the goal of QMLA as finding the approximation of Eq. (10.4), by allowing it to consider
a wider set of terms. The permissible terms are then all terms from Eq. (10.2), i.e. the spin
rotation terms about all axes, as well as all nuclei rotation terms, and the coupling terms:

T =





Ŝw = σ̂1
w,

Î j
w = σ̂

j
w,

Ŝw · Âw = σ̂1
wσ̂

j
w





(10.5)

for w = {x, y, z} and j ∈ {2, ..., n′q}. Note that n′s is the number of nuclear spins considered by
QMLA, but not necessarily the same number of nuclear spins, ns, present in Ĥ0: in general
n′s + 1 = n′q 6= nq. In total, |T | = 3 + 3n′s + 3n′s = 3 + 6n′s.

Our aim is to test QMLA, so the choice of ns and n′s are arbitrary: we will allow QMLA
to explore a larger model space than is required to capture the true model, in order to give
QMLA the means to overfit, as a robust test. For the target system we use ns = 3 proximal
spins, so that |T0| = 13; we allow candidates up to n′s = 5, so |T | = 33. In the most general
sense, irrespective of the underlying physics we are simulating, here QMLA is aiming to identify
the 13 terms truly present in Q, while searching the space of 33 permissible terms. Without
imposing any restrictions on which combinations of terms are allowed, each term is simply
either in Ĥ′ or not, so can be thought of as binary variables: the total model space is therefore of
size 2|T | = 233 ≈ 1010.

10.2 genetic algorithm

Genetic algorithms (GAs) provide a robust and thoroughly tested paradigm for searching large
candidate spaces; this is a natural framework through which we can explore such an unrestricted
model space as described above. We have already extensively discussed the formalism of GAs
in Section 3.3, and specifically in the context of QMLA in Chapter 8. Here we will use the same
exploration strategy (ES) as described in Section 8.1, i.e. where model generation is driven
by a GA, and models are cast to chromosomes. In particular, candidate model’s fitness will
be computed from the residuals between their and the system’s dynamics, described fully in
Section 8.2.6. This objective function (OF) relies on the definition of a validation dataset, Ev,
which we compose of tomographic probes (see Section 4.7) and times generated uniformly up to
tmax = 100µs, Fig. 10.2.

10.2.1 Parameter learning

Our primary goal in this chapter is to validate QMLA’s performance in a very large model space,
with over 1010 valid candidates. Our focus, then, is on model generation, and not concerned
with parameter learning: we do not train models individually, but rather we assume access to a
perfect parameter learning subroutine. That is, for each candidate, Ĥi, considered, we simply
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10.2 genetic algorithm

x
y

|0

|1
0 20 40 60 80 100

Evolution time (µs)

Figure 10.2: Evaluation dataset, Ev, for nitrogen-vacancy centre genetic algorithm. Left, Set of 1-qubit
probe states the NVC qubit is prepared in for evaluation, i.e. Ψv is close to the tomographic
basis. Shown are the one-qubit probes on the Bloch sphere, which are combined to form
n-qubit probes used when evaluating candidate models. Right, Time comb evaluated against,
i.e. uniformly distributed times up to tmax = 100µs are used for experiments in Ev.

assume knowledge of its parameters,~αi. This assumption is a major caveat to the results of this
chapter: no such perfect training scheme is known, so it remains to examine the detrimental
effects of imprecisely finding~α′i ≈~αi. Moreover, while it is possible to extract information on
the nuclear qubits from measuring only the NVC qubit, as in the Hahn echo measurements,
it is uncertain whether any technique can simultaneously detect parameters of significantly
varying orders of magnitude. For instance, some terms in Table 10.1 are O(GHz), while others
are O(kHz); it is likely to prove difficult to discern the kHz parameters well, given that their
contribution is equivalent to errors of order O(10−6) in the dominant GHz terms. Finally, the
terms in candidate models which are not in Ĥ0 must be assigned learned parameters as though
they had undergone quantum Hamiltonian learning (QHL); we do not know how QHL would
treat such terms in reality, and here we simply assume such terms would learn the parameter
listed in Table 10.1.

Given these considerations, therefore, we must caution that the results presented here, while
demonstrating that QMLA can operate in large model spaces, are not immediately applicable to
experimental systems, since there are outstanding challenges in the assessment of individual
candidates, which must be overcome before the technique outlined can realistically succeed.
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10.2 genetic algorithm
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Figure 10.3: Instance of the genetic algorithm (GA) for simulated nitrogen-vacancy centre system with
four qubits. a, Gene pool progression for the GA. Each tile represents a candidate model by its
F1-score. Each generation considers Nm = 72 models; the GA runs for Ng = 53 generations.
b, Branch champions’ dynamics. Each generation, µ, nominates a branch champion, ĤC(µ).
Here, progressive generations’ champions dynamics are shown against those of the target
system, Ĥ0 (red).

10.2.2 Results

At the instance level, we can see that the gene pool tends towards models of higher quality,
captured2 by their F1-score, Fig. 10.3(a). The improvement in modelling is reflected in the branch
champions’ predictive power at reproducing data generated by the system, Fig. 10.3(b).

Considering the overall run, we see that QMLA is searching in a vast model space where
randomly sampled models have poor F1-score on average, Fig. 10.4(a). QMLA efficiently explores
the space by quickly moving into a subspace of high F1-score, nominating Ĥ′ = Ĥ0 precisely in
85% of instances, Fig. 10.4(b,c). The number of times each of the terms considered, Eq. (10.5),
are present in Ĥ′ offers the most important insight from QMLA, namely the evidence in favour
of each term’s presence, which can be used to infer the most likely underlying physics. Here,
t̂ ∈ T0 are found in ≥ 94% of instances, while t̂ /∈ T0 are found in ≤ 11%, shown in Fig. 10.5 and
listed in Table 10.2. Such a discrepancy, as well as the win rates for the models, allows for the
clear declaration of the model Ĥ0 as the favoured representation for the quantum system.

By simulating a realistic system, we have hereby shown QMLA’s ability to operate on
physically meaningful data in large model spaces. The model search guided by a GA instructs
QMLA to consider only O(103) models out of the total space of O(1010), clearly showing a
drastic speedup in characterising Q when compared with brute force search. This demonstration
is moderated by the presumptions which enabled us to perform simulations quickly and assume
perfect outcomes from model training. However, taken together with the results of examining
experimental data from Chapter 9, and the earlier confirmations of QMLA’s operating principles

2 The use of F1-score as a figure of merit for candidate models in the QMLA search is described in Section 8.1.2.
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Figure 10.4: Nitrogen-vacancy centre genetic algorithm run. a, F1-score of 106 samples from the model
space of 233 ≈ 1010 candidate models, normally distributed around f = 0.44± 0.12. b, The
models explored during the model search of all instances combined, {Ĥi}, show that QMLA
tends towards stronger models overall, with f = 0.79± 0.16 from O(140, 000) chromosomes
across the 100 instances, i.e. each instance tests O(1400) distinct models. c, Champion models
from each instance, showing QMLA finds strong models in general, and in particular finds
the true model (Ĥ0, with f = 1) in 85% of cases.

in Part III, QMLA shows promise for characterising genuine small-to-medium quantum systems
in the near future.

160



10.2 genetic algorithm

σ̂ (1,i)
x σ̂ (1,i)

y σ̂ (1,i)
z σ̂ i

x σ̂ i
y σ̂ i

z

1

2

3

4

5

6

Q
ub

it

∈T0 /∈T0 /∈T

Figure 10.5: Hinton diagram of terms found for 4-qubit nitrogen-vacancy centre model. Terms are either
in the target model (∈ T0, blue) or not (/∈ T0, red), or else not considered (/∈ T , black). Terms
acting solely on the first qubit are the NVC spin’s rotation terms, σ̂1

w, while each nuclear site
also has rotation terms σ̂

j
w. Hyperfine terms, σ̂

(1,j)
w , couple the NVC qubit with the jth nuclear

spin. The precise rate at which each term is detected can be read from Table 10.2.

σ̂
(1,i)
x σ̂

(1,i)
y σ̂

(1,i)
z σ̂i

x σ̂i
y σ̂i

z

Qubit

1 - - - 0 0 100

2 5 11 97 97 99 97

3 10 9 94 96 94 94

4 7 12 94 94 97 95

5 9 12 11 6 8 5

6 7 9 9 7 5 8

Table 10.2: Percentage of instances for which each term is found by QMLA GA studying NVC system.
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Part V

C O N C L U S I O N



11
O U T L O O K F O R M O D E L L E A R N I N G M E T H O D O L O G I E S

Optimal control techniques are a crucial component in improving quantum technologies, such
that imperfect near-term devices may be leveraged to achieve some meaningful quantum advan-
tages. The developments presented in this thesis contribute to the growing interest in automatic
characterisation and verification of quantum systems and devices. Namely, the introduction of
the Quantum Model Learning Agent (QMLA) represents an important advancement, whereby
quantum systems can be completely characterised starting with little prior knowledge. The
majority of this thesis was dedicated to the rigorous testing of QMLA, gradually moving from
ideal scenarios in simulation to genuine experimental quantum systems.

We described the implementation of QMLA as an open source software platform in Part II,
detailing numerous tunable aspects of the protocol, and their impact on training candidate
models in Chapter 4. QMLA facilitates customisation of its core elements and subroutines, such
that it is applicable to a wide range of target quantum systems, as described in Chapters 5 to 6.
This malleability enables users to easily adapt the framework to their own needs, and formed
the basis for the cases studied in the remainder of the thesis: we tested QMLA by devising a
series of exploration strategies, each corresponding to a different target quantum system.

In Part III we considered ideal theoretical quantum systems in simulation. Initial tests in
Chapter 7 showed that QMLA could distinguish between different physical scenarios and
internal configurations. In Chapter 8, we explored much larger model spaces by incorporating
a genetic algorithm into QMLA’s model design; the genetic algorithm showed promise for
characterising complex quantum systems by successfully identifying the target model. The
performance of the genetic algorithm, however, came at the expense of relying on a restrictive
subroutine – used for training individual candidate models – drastically reducing its applicability
to realistic systems. However, the restriction is permitted in the scope of characterising controlled
quantum systems, for example new, untrusted quantum simulators.

We concluded the thesis by considering realistic quantum systems in Part IV. Experimental
data from an electron spin in a nitrogen-vacancy centre was treated in Chapter 9; this too relied
upon tailoring QMLA’s procedure with respect to the system under study. A theoretically
justified Hamiltonian is proposed by QMLA to describe the decoherence of the electron spin,
yielding a highly predictive model in agreement with the system’s measured dynamics, albeit
exploring a small model space. To overcome concerns that the model search was artificially
constrained in the context of realistic systems, Chapter 10 exercised QMLA in a vast model
space, spanning terms which represent plausible interactions for the same type of system. Here,
again, QMLA achieved high success rates, but with caveats on the subroutines assumed for
model training, and resorting to simulated data.

In summary, this thesis has provided extensive tests of the QMLA algorithm, but each may be
undermined by its individual constraints. In outlook, near-term developments of model learning
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outlook for model learning methodologies

methodologies in the context of quantum systems must address these shortcomings, for instance
by unifying the strategies described in this thesis. Further, we anticipate immediate application
in the study of open quantum systems, by replacing the Hamiltonian formalism examined
here with a Lindbladian representation, permitted within the QMLA apparatus. Through the
advancements presented herein, we hope to have provided a solid foundation upon which these
constraints may be relaxed, ultimately with a view to providing an automated platform for the
complete characterisation of quantum systems. We envision QMLA as a straightforward but
powerful utility for quantum engineers in the design of near term quantum devices, expecting
continued development of the framework alongside the burgeoning open-source quantum
software ecosystem.
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A
F I G U R E R E P R O D U C T I O N

The default behaviour of the Quantum Model Learning Agent (QMLA) software framework is
to generate a results directory for every run of the algorithm, uniquely identified by the date and
time the run was launched, e.g. qmla/launch/Jan 01/12 34. Most of the figures presented in the
main text analyse data from runs of the QMLA framework; the results directory corresponding
to each figure are listed (as Data) in Table A.1, and all data presented herein can be downloaded
from [207]. The presented figures are usually available as default analyses through the QMLA
framework, and therefore can be reproduced by implementing the corresponding configuration.
In Table A.1 we list the core implementation details – the number of experiments NE, and
particles, NP and the exploration strategy (ES) – used to achieve those results. In some cases,
further configuration details are necessary to produce equivalent runs; complete details and
information are available at [207]. Instructions for installing, configuring and running the QMLA
software are given in Appendix C.

a.1 structure of results directory

Within the results directory, the outcome of the run’s instances are stored, with analysis plots
broadly grouped as

• evaluation: plots of probes and times used as the evaluation dataset.

• instances: outcomes of an individual QMLA instance, grouped by the instance ID. Includes
results of training of individual models (in model training), as well as sub-directories for
anlaysis at the branch level (in branches) and comparisons.

• combined datasets: pandas dataframes containing most of the data used during analysis of
the run. Note that data on the individual model/instance level may be discarded so some
minor analyses can not be performed offline.

• exploration strategy plots plots specifically required by the ES at the run level.

• champion models: analysis of the models deemed champions by at least one instance in
the run, e.g. average parameter estimation for a model which wins multiple instances.

• performance: evaluation of the QMLA run, e.g. the win rate of each model and the number
of times each term is found in champion models.

• meta analysis of the algorithm’ implementation, e.g. timing of jobs on each process in a
cluster; generally users need not be concerned with these.

168



NE NP Data

Figure Exploration Strategy

Fig. 4.4

DemoHeuristicPGH 1000 3000 Nov 27/19 39

DemoHeuristicNineEighths 1000 3000 Nov 27/19 40

DemoHeuristicTimeList 1000 3000 Nov 27/19 42

DemoHeuristicRandom 1000 3000 Nov 27/19 47

Fig. 4.5

DemoProbesPlus 1000 3000 Nov 27/14 43

DemoProbesZero 1000 3000 Nov 27/14 45

DemoProbesTomographic 1000 3000 Nov 27/14 46

DemoProbes 1000 3000 Nov 27/14 47

Fig. 4.2 AnalyticalLikelihood 500 2000 Nov 16/14 28

Fig. 7.2 DemoIsing 500 5000 Nov 18/13 56

Fig. 7.3 DemoIsing 1000 5000 Nov 18/13 56

Fig. 7.4 DemoIsing 1000 5000 Nov 18/13 56

Fig. 7.5
IsingLatticeSet 1000 4000 Nov 19/12 04

IsingLatticeSet 1000 4000 Nov 19/12 04

IsingLatticeSet 1000 4000 Nov 19/12 04

Fig. 7.6
IsingLatticeSet 1000 4000 Sep 30/22 40

HeisenbergLatticeSet 1000 4000 Oct 22/20 45

FermiHubbardLatticeSet 1000 4000 Oct 02/00 09

Fig. 7.7

IsingReducedLatticeSet 125 500 Feb 16/09 12

HeisenbergReducedLatticeSet 125 500 Feb 16/09 14

HubbardReducedLatticeSet 125 500 Feb 16/09 16

IsingReducedLatticeSet 250 1000 Feb 15/21 49

HeisenbergReducedLatticeSet 250 1000 Feb 15/21 47

HubbardReducedLatticeSet 250 1000 Feb 15/21 45

IsingReducedLatticeSet 500 2000 Feb 16/09 20

HeisenbergReducedLatticeSet 500 2000 Feb 16/09 19

HubbardReducedLatticeSet 500 2000 Feb 16/09 18

IsingReducedLatticeSet 1000 4000 Feb 16/18 33

HeisenbergReducedLatticeSet 1000 4000 Feb 16/18 34

HubbardReducedLatticeSet 1000 4000 Feb 16/18 35

Table A.1: Implementation details for figures used in the main text. For each Figure, we list the Exploration
Strategy used by the QMLA framework to achieve the corresponding results, which are stored
in the results directory labelled by Data. We list the number of experiments, NE, and particles,
NP, used in the training of all models within that run. Equivalent runs of QMLA can be
launched as outlined in Appendix C. Continued in Table A.2.



A.1 structure of results directory

NE NP Data

Figure Exploration Strategy

Fig. 8.3 N/A N/A N/A Dec 07/22 04

Fig. 8.2

DemoBayesFactorsByFscore 500 2500 Dec 09/12 29

DemoFractionalResourcesBayesFactorsByFscore 500 2500 Dec 09/12 31

DemoBayesFactorsByFscore 1000 5000 Dec 09/12 33

DemoBayesFactorsByFscoreEloGraphs 500 2500 Dec 09/12 32

Fig. 8.5 HeisenbergGeneticXYZ 500 2500 Dec 10/14 40

Fig. 8.6
HeisenbergGeneticXYZ 500 2500 Dec 10/14 40

HeisenbergGeneticXYZ 500 2500 Dec 10/14 40

Fig. 8.7
HeisenbergGeneticXYZ 500 2500 Mar 07/12 40

HeisenbergGeneticXYZ 500 2500 Dec 10/16 12

Fig. 8.8 HeisenbergGeneticXYZ 500 2500 Dec 18/20 12

Fig. 9.6
NVCentreExperimentalData 1000 3000 2019/Oct 02/18 01

SimulatedExperimentNVCentre 1000 3000 2019/Oct 02/18 16

Fig. 9.7 NVCentreExperimentalData 1000 3000 2019/Oct 02/18 01

Fig. 9.6 SimulatedExperimentNVCentre 1000 3000 2019/Oct 02/18 16

Fig. 9.8
SimulatedExperimentNVCentre 1000 3000 2019/Oct 02/18 16

NVCentreExperimentalData 1000 3000 2019/Oct 02/18 01

Fig. 10.2
NVCentreGenticAlgorithmPrelearnedParameters 2 5 Sep 09/12 00

NVCentreGenticAlgorithmPrelearnedParameters 2 5 Sep 09/12 00

Fig. 10.3
NVCentreGenticAlgorithmPrelearnedParameters 2 5 Sep 09/12 00

NVCentreGenticAlgorithmPrelearnedParameters 2 5 Sep 09/12 00

Fig. 10.4 NVCentreGenticAlgorithmPrelearnedParameters 2 5 Sep 08/23 58

Fig. 10.5 NVCentreGenticAlgorithmPrelearnedParameters 2 5 Sep 08/23 58

Table A.2: [Continued from Table A.1] Implementation details for figures used in the main text. For
each Figure, we list the Exploration Strategy used by the QMLA framework to achieve the
corresponding results, which are stored in the results directory labelled by Data. We list the
number of experiments, NE, and particles, NP, used in the training of all models within that
run. Equivalent runs of QMLA can be launched as outlined in Appendix C.
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B
F U N D A M E N TA L S

There are a number of concepts which are fundamental to any discussion of quantum mechanics
(QM), but are likely to be known to most readers, and are therefore cumbersome to include in
the main body of the thesis. We include them here for completeness1.

b.1 linear algebra

Here we review the language of linear algebra and summarise the basic mathematical techniques
used throughout this thesis. We will briefly recall some definitions for reference.

Definition of Representation

Vector (or ket) |ψ〉
Dual Vector (or bra) 〈ψ|
Tensor Product |ψ〉 ⊗ |φ〉
Complex conjugate |ψ∗〉
Transpose |ψ〉T

Adjoint |ψ〉† = (|ψ〉∗)T

Table B.1: Linear algebra definitions.

The dual vector of a vector, or ket |ψ〉, is given by its bra, 〈ψ| = |ψ〉†.
The adjoint of a matrix replaces each matrix element with its own complex conjugate, and then

switches its columns with rows.

M† =

(
M0,0 M0,1

M1,0 M1,1

)†

=

(
M∗0,0 M∗0,1

M∗1,0 M∗1,1

)T

=

(
M∗0,0 M∗1,0

M∗0,1 M∗1,1

)
. (B.1)

1 Much of this description is reproduced from my undergraduate thesis [208].
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B.2 postulates of quantum mechanics

The inner product of two vectors, |ψ〉 =




ψ1

ψ2
...

ψn




and |φ〉 =




φ1

φ2
...

φn




is given by

〈φ|ψ〉 = (|φ〉†) |ψ〉 = (φ∗1 φ∗2 . . . φ∗n)




ψ1

ψ2
...

ψn




= φ∗1 ψ1 + φ∗2 ψ2 + · · ·+ φ∗nψn. (B.2)

|ψ〉i , |φ〉i are complex numbers, and therefore the above is simply a sum of products of
complex numbers. The inner product is often called the scalar product, which is in general
complex.

b.2 postulates of quantum mechanics

There are numerous statements of the postulates of quantum mechanics. Each version of the
statements aims to achieve the same foundation, so we endeavour to explain them in the simplest
terms.

1 Every moving particle in a conservative force field has an associated state vector, known
as its wavefunction, |ψ〉 ∈ H, where H is the Hilbert space to which the particle belongs.
Normalised linear combinations of state vectors are valid state vectors, known as superposi-
tions. From this wavefunction, it is possible to determine all physical information about
the system.

2 Particles have physically observable properties, Q, corresponding to a linear operator Q̂.
Measurement of such an observable – i.e. Q̂ acting on |ψ〉 – will only ever result in an
eigenvalue of that operator, q, with the system immediately after measurement in the
corresponding eigenstate, |q〉:

Q̂ |ψ〉 = q |ψ〉 . (B.3)

The set of eigenvalues, {q}, is the spectrum of Q̂: in the case where the spectrum is discrete,
the possible outcomes of measurement are quantised.

3 Any such operator Q̂ is Hermitian,
Q̂† = Q̂. (B.4)

4 The set of eigenfunctions for an observable operator Q̂ forms a complete set of linearly
independent functions, i.e. a basis of the Hilbert space.
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B.3 states

5 For a system with wavefunction |ψ〉, the expectation value of an observable Q with respect
to an operator Q̂, denoted 〈q〉, is given by

〈q〉 = 〈ψ|Q̂ |ψ〉 = ∑
n

qn 〈qn|Q̂|qn〉 . (B.5)

6 The time evolution of |ψ〉 is given by the time dependent Schrödinger Equation

ih̄
∂ |ψ〉

∂t
= Ĥ |ψ〉 , (B.6)

where Ĥ is the system’s Hamiltonian.

Using these building blocks, we can begin to construct a language to describe quantum
systems.

b.3 states

An orthonormal basis consists of vectors of unit length which do not overlap, e.g. |x1〉 =(
1

0

)
, |x2〉 =

(
0

1

)
⇒ 〈x1|x2〉 = 0. In general, if {|x〉} are the eigenstates of a system, then the

system can be written as some state vector, |ψ〉, in general a superposition over the basis-vectors:

|ψ〉 = ∑
x

ax|x〉 (B.7a)

subject to ∑
x
|ax|2 = 1, ax ∈ C. (B.7b)

The state space of a physical system (classical or quantum) is then the set of all possible states
the system can exist in, i.e. the set of all possible values for |ψ〉 such that Eq. (B.7b) are satisfied.

For example, photons can be polarised horizontally (↔) or vertically (l); take those two
conditions as observable states to define the eigenstates of a two-level system, so we can
designate the photon as a qubit. Then we can map the two states to a 2-dimensional, x-y plane:

a general vector on such a plane can be represented by a vector with coordinates

(
x

y

)
. These

polarisations can then be thought of as standard basis vectors in linear algebra. Denote↔ as the
eigenstate |0〉 and l as |1〉

|↔〉 = |0〉 =
(

1

0

)
A unit vector along x-axis (B.8a)
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B.3 states

|l〉 = |1〉 =
(

0

1

)
A unit vector along y-axis (B.8b)

Now, in relation to the concept of superposition, we can consider, for example, a photon
in an even superposition of the vertical and horizontal polarisations, evenly splitting the two
basis vectors. As such, we would require that, upon measurement, it is equally likely that the
photon will collapse into the polarised state along x as it is to collapse along y. That is, we want
Pr(l) = Pr(↔) so assign equal modulus amplitudes to the two possibilities:

|ψ〉 = a |↔〉+ b |l〉 , with Pr(l) = Pr(↔)⇒ |a|2 = |b|2 (B.9)

We consider here a particular case, due to the significance of the resultant basis, where ↔-
polarisation and l-polarisation have real amplitudes a, b ∈ R.

⇒ a = ±b but also |a|2 + |b|2 = 1

⇒ a =
1√
2

; b = ± 1√
2

⇒ |ψ〉 = 1√
2
|↔〉 ± 1√

2
|l〉

⇒ |ψ〉 = 1√
2
|0〉 ± 1√

2
|1〉

(B.10)

These particular superpositions are of significance:

|+〉 = 1√
2
(|0〉+ |1〉) (B.11a)

|−〉 = 1√
2
(|0〉 − |1〉) (B.11b)

This is called the Hadamard basis: it is an equally valid vector space as the standard basis which

is spanned by

(
1

0

)
,

(
0

1

)
, as it is simply a rotation of the standard basis.

b.3.1 Mulitpartite systems

In reality, we often deal with systems of multiple particles, represented by multiple qubits.
Mathematically, we consider the state vector of a system containing n qubits as being the tensor
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B.3 states

product of the n qubits’ individual state vectors2. For instance, suppose a 2-qubit system, |ψ〉
consisting of two independent qubits |ψA〉 and |ψB〉:

|ψ〉 = |ψA〉 |ψB〉 = |ψAψB〉 = |ψA〉 ⊗ |ψB〉 . (B.12)

Consider first a simple system of 2 qubits. Measuring in the standard basis, these qubits will
have to collapse in to one of the basis states |0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉. Thus, for such a 2-qubit
system, we have the general superposition

|ψ〉 = α0,0|0, 0〉+ α0,1|0, 1〉+ α1,0|1, 0〉+ α1,1|1, 1〉.
where αi,j is the amplitude for measuring the system as the state |i, j〉. This is perfectly analogous
to a classical 2-bit system necessarily occupying one of the four possibilities {(0, 0), (0, 1), (1, 0), (1, 1)}.

Hence, for example, if we wanted to concoct a two-qubit system composed of one qubit in the
state |+〉 and one in |−〉

|ψ〉 = |+〉 ⊗ |−〉

|ψ〉 = 1√
2
(|0〉+ |1〉)⊗ 1√

2
(|0〉 − |1〉)

=
1
2
[|00〉 − |01〉+ |10〉 − |11〉]

=
1
2

[(
1

0

)
⊗
(

1

0

)
−
(

1

0

)
⊗
(

0

1

)
+

(
0

1

)
⊗
(

1

0

)
−
(

0

1

)
⊗
(

0

1

)]

=
1
2







1

0

0

0



−




0

1

0

0




+




0

0

1

0



−




0

0

0

1







.

⇒ |ψ〉 = 1
2




1

−1

−1

1




(B.13)

That is, the two qubit system – and indeed any two qubit system – is given by a linear
combination of the four basis vectors

{|00〉 , |01〉 , |10〉 , |11〉} =








1

0

0

0




,




0

1

0

0




,




0

0

1

0




,




0

0

0

1








. (B.14)

2 We will later discuss entangled states, which can not be described thus.
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We can notice that a single qubit system can be described by a linear combination of two basis
vectors, and that a two qubit system requires four basis vectors to describe it. In general we can
say that an n-qubit system is represented by a linear combination of 2n basis vectors.

b.3.2 Registers

A register is generally the name given to an array of controllable quantum systems; here we
invoke it to mean a system of multiple qubits, specifically a subset of the total number of
available qubits. For example, a register of ten qubits can be denoted |x[10]〉, and we can think
of the system as a register of six qubits together with a register of three and another register of
one qubit.

|x[10]〉 = |x1[6]〉 ⊗ |x2[3]〉 ⊗ |x3[1]〉

b.4 entanglement

Another unique property of quantum systems is that of entanglement: when two or more
particles interact in such a way that their individual quantum states can not be described
independent of the other particles. A quantum state then exists for the system as a whole instead.
Mathematically, we consider such entangled states as those whose state can not be expressed
as a tensor product of the states of the individual qubits it’s composed of: they are dependent
upon the other.

To understand what we mean by this dependence, consider a counter-example. Consider the
Bell state,

|Φ+〉 = 1√
2
(|00〉+ |11〉) , (B.15)

if we measure this state, we expect that it will be observed in either eigenstate |00〉 or |11〉, with
equal probability due to their amplitudes’ equal magnitudes. The bases for this state are simply
the standard bases, |0〉 and |1〉. Thus, according to our previous definition of systems of multiple
qubits, we would say this state can be given as a combination of two states, like Eq. (B.12),

|Φ+〉 = |ψ1〉 ⊗ |ψ2〉
= (a1 |0〉+ b1 |1〉)⊗ (a2 |0〉+ b2 |1〉)
= a1a2 |00〉+ a1b2 |01〉+ b1a2 |10〉+ b1b2 |11〉

(B.16)

However we require |Φ+〉 = 1√
2
(|00〉+ |11〉), which would imply a1b2 = 0 and b1a2 = 0. These

imply that either a1 = 0 or b2 = 0, and also that b1 = 0 or a2=0, which are obviously invalid since
we require that a1a2 = b1b2 = 1√

2
. Thus, we cannot express |Φ+〉 = |ψ1〉 ⊗ |ψ2〉; this inability to

describe the first and second qubits independently from each other is termed entanglement.
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B.5 unitary transformations

b.5 unitary transformations

A fundamental concept in quantum mechanics is that of performing transformations on
states. Quantum transformations, or quantum operators, map a quantum state into a new state
within the same Hilbert space. There are certain restrictions on a physically possible quan-
tum transformation: in order that U is a valid transformation acting on some superposition
|ψ〉 = a1 |ψ1〉+ a2 |ψ2〉+ . . . ak|ψk〉, U must be linear

U(a1 |ψ1〉+ a2 |ψ2〉+ . . . ak|ψk〉) = a1(U |ψ1〉) + a2(U |ψ2〉) + · · ·+ ak(U|ψk〉). (B.17)

To fulfil these properties, we require that U preserve the inner product:

〈ψ0|U†U |ψ〉 = 〈ψ0 |ψ〉 .

That is, we require that any such transformation be unitary:

UU† = I ⇒ U† = U−1 (B.18)

Unitarity is a sufficient condition to describe any valid quantum operation: any quantum
transformation can be described by a unitary transformation, and any unitary transformation
corresponds to a physically implementable quantum transformation.

Then, if U1 is a unitary transformation that acts on the space H1 and U2 acts on H2, the
product of the two unitary transformations is also unitary. The tensor product U1 ⊗U2 acts on
the space H1 ⊗H2. So, then, supposing a system of two separable qubits, |ψ1〉 and |ψ2〉 where
we wish to act on |ψ1〉 with operator U1 and on |ψ2〉 with U2, we perform it as

(U1 ⊗U2) (|ψ1〉 ⊗ |ψ2〉) = (U1 |ψ1〉)⊗ (U2 |ψ2〉) . (B.19)

b.6 dirac notation

In keeping with standard practice, we employ Dirac notation throughout this thesis. Vectors are
denoted by kets of the form |a〉. For example, the standard basis is represented by,

|x〉 = |0〉 =
(

1

0

)
;

|y〉 = |1〉 =
(

0

1

)
.

(B.20)

We saw in Table B.1 that for every such ket, |ψ〉, there exists a dual vector: its complex conjugate
transpose, called the bra of such a vector, denoted 〈ψ|. That is,

〈ψ|† = |ψ〉 ,

|ψ〉† = 〈ψ| .
(B.21)
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B.6 dirac notation

|ψ〉 =




ψ1

ψ2
...

ψn



⇒ 〈ψ| = (ψ∗1 ψ∗2 . . . ψ∗n). (B.22)

Then if we have two vectors |ψ〉 and |φ〉, their inner product is given as 〈ψ|φ〉 = 〈φ|ψ〉.

|ψ〉 =




ψ1

ψ2

ψ3
...

ψn




; |φ〉 =




φ1

φ2

φ3
...

φn




⇒ 〈φ| = (φ∗1 φ∗2 φ∗3 . . . φ∗n)

⇒ 〈φ| |ψ〉 = (φ∗1 φ∗2 φ∗3 . . . φ∗n)




ψ1

ψ2

ψ3
...

ψn




⇒ 〈φ| |ψ〉 = φ∗1 ψ1 + φ∗2 ψ2 + φ∗3 ψ3 + · · ·+ φ∗nψn

(B.23)

Example B.6.1.

|ψ〉 =




1

2

3


 ; |φ〉 =




4

5

6




⇒ 〈φ| |ψ〉 = (4 5 6)




1

2

3




= (4)(1) + (5)(2) + (6)(3) = 32

(B.24)

Similarly, their outer product is given as |φ〉 〈ψ|. Multiplying a column vector by a row vector
thus gives a matrix. Matrices generated by a outer products then define operators:
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B.6 dirac notation

Example B.6.2. (
1

2

)
(3 4) =

(
3 4

6 8

)
(B.25)

Then we can say, for |0〉 =
(

1

0

)
and |1〉 =

(
0

1

)

|0〉 〈0| =
(

1 0

0 0

)
; (B.26a)

|0〉 〈1| =
(

0 1

0 0

)
; (B.26b)

|1〉 〈0| =
(

0 0

1 0

)
; (B.26c)

|1〉 〈1| =
(

0 0

0 1

)
. (B.26d)

And so any 2-dimensional linear transformation in the standard basis |0〉 , |1〉 can be given as
a sum (

a b

c d

)
= a |0〉 〈0|+ b |0〉 〈1|+ c |1〉 〈0|+ d |1〉 〈1| . (B.27)

This is a common method of representing operators as outer products of vectors. A transforma-
tion that exchanges a particle between two states, say |0〉 ↔ |1〉 is given by the operation

Q̂ :

{
|0〉 → |1〉
|1〉 → |0〉

Which is equivalent to the outer product representation

Q̂ = |0〉 〈1|+ |1〉 〈0|.

For clarity, here we will prove this operation

Example B.6.3.
Q̂ = |0〉 〈1|+ |1〉 〈0|

=

(
1

0

)(
0

1

)
+

(
0

1

)(
1

0

)
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B.6 dirac notation

=

(
0 1

0 0

)
+

(
0 0

1 0

)

=

(
0 1

1 0

)

So then, acting on |0〉 and |1〉 gives

Q̂ |0〉 =
(

0 1

1 0

)(
1

0

)
=

(
0

1

)
= |1〉

Q̂ |1〉 =
(

0 1

1 0

)(
0

1

)
=

(
1

0

)
= |0〉

To demonstrate how Dirac notation simplifies this:

Q̂ |0〉 = (|0〉 〈1|+ |1〉 〈0|) |0〉
= |0〉 〈1| |0〉+ |1〉 〈0|0〉
= |0〉 〈1|0〉+ |1〉 〈0|0〉

Then, since |0〉 and |1〉 are orthogonal basis, their inner product is 0 and the inner product of a
vector with itself is 1, i.e. 〈1|1〉 = 〈0|0〉 = 1, 〈0|1〉 = 〈1|0〉 = 0. So,

Q̂ |0〉 = |0〉 (0) + |1〉 (1)
⇒ Q̂ |0〉 = |1〉

(B.28)

And similarly for Q̂ |1〉. This simple example then shows why Dirac notation can significantly
simplify calculations across quantum mechanics, compared to standard matrix and vector nota-
tion. To see this more clearly, we will examine a simple 2-qubit state under such operations. The
method generalises to operating on two or more qubits generically: we can define any operator
which acts on two qubits as a sum of outer products of the basis vectors |00〉 , |01〉 , |10〉 and |11〉.
We can similarly define any operator which acts on an n qubit state as a linear combination of
the 2n basis states generated by the n qubits.

Example B.6.4. To define a transformation that will exchange basis vectors |00〉 and |11〉, while leaving
|01〉 and |10〉 unchanged (i.e. exchanging |01〉 ↔ |01〉 , |10〉 ↔ |10〉) we define an operator

Q̂ = |00〉 〈11|+ |11〉 〈00|+ |10〉 〈10|+ |01〉 〈01| (B.29)

Then, using matrix calculations this would require separately calculating the four outer products in the
above sum and adding them to find a 4× 4 matrix to represent Q̂, which then acts on a state |ψ〉. Instead,
consider first that |ψ〉 = |00〉, i.e. one of the basis vectors our transformation is to change:

Q̂ |00〉 = (|00〉 〈11|+ |11〉 〈00|+ |10〉 〈10|+ |01〉 〈01|) |00〉 (B.30)
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B.6 dirac notation

And as before, only the inner products of a vector with itself remains:

= |00〉 〈11 |00〉+ |11〉 〈00 |00〉+ |10〉〈10 |00〉+ |01〉 〈01 |00〉
= |00〉 (0) + |11〉 (1) + |10〉 (0) + |01〉 (0)

⇒Q̂ |00〉 = |11〉
(B.31)

i.e the transformation has performed Q̂ : |00〉 → |11〉 as expected. Then, if we apply the same
transformation to a state which does not depend on one of the target states, eg,

|ψ〉 =a |10〉+ b |01〉

Q̂ |ψ〉 =
(
|00〉 〈11|+ |11〉 〈00|+ |10〉 〈10|+ |01〉 〈01|

)(
a |10〉+ b |01〉

)

=a
(
|00〉 〈11| |10〉+ |11〉 〈00| |10〉+ |10〉 〈10| |10〉+ |01〉 〈01| |10〉

)

+ b
(
|00〉 〈11| |01〉+ |11〉 〈00| |01〉+ |10〉 〈10| |01〉+ |01〉 〈01| |01〉

)

(B.32)

And since the inner product is a scalar, we can factor terms such as 〈11|10〉 to the beginning of
expressions, eg |00〉 〈11| |10〉 = 〈11 |10〉 |00〉, and we also know

〈11|10〉 = 〈00|10〉 = 〈01|10〉 = 〈11|01〉 = 〈00|01〉 = 〈10|01〉 = 0
〈10|10〉 = 〈01|01〉 = 1

(B.33)

We can express the above as

Q̂ |ψ〉 = a
(
(0) |00〉+ (0) |11〉+ (1) |10〉+ (0) |01〉

)

+b
(
(0) |00〉+ (0) |11〉+ (0) |10〉+ (1)|01〉

)

=a |10〉 |+ b|01〉
= |ψ〉 .

(B.34)

Then it is clear that, when |ψ〉 is a superposition of states unaffected by transformation Q̂, then
Q̂ |ψ〉 = |ψ〉.

This method generalises to systems with greater numbers of particles (qubits). If we briefly
consider a 3 qubit system - and initialise all qubits in the standard basis state |0〉 - then the

system is represented by |000〉 = |0〉 ⊗ |0〉 ⊗ |0〉 =
(

0

1

)
⊗
(

0

1

)
⊗
(

0

1

)
. This quantity is an

8-row vector. To calculate the outer product 〈000|000〉, we would be multiplying an 8-column
bra 〈000| by an 8-row ket |000〉. Clearly then we will be working with 8× 8 matrices, which will
become quite difficult to maintain effectively and efficiently quite fast. As we move to systems
of larger size, standard matrix multiplication becomes impractical for hand-written analysis,
although of course remains tractable computationally up to n = O(10) qubits. It is obvious that
Dirac’s bra/ket notation is a helpful, mathematically precise tool for QM.
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C
E X A M P L E E X P L O R AT I O N S T R AT E G Y C U S T O M I S AT I O N A N D R U N

Here we provide a complete example of how to run the Quantum Model Learning Agent
(QMLA) framework, including how to implement a custom exploration strategy (ES), and
generate/interpret analysis. Note: these examples are included in the Quantum Model Learning
Agent (QMLA) documentation in a format that may be easier to follow – where possible, we
recommend readers follow the Tutorial section of [4].

First, fork the QMLA codebase from [3] to a Github user account (referred to as username

in Listing C.6). Now, we must download the code base and ensure it runs properly; these
instructions are implemented via the command line1.

The steps of preparing the codebase are

1. install redis;

2. create a virtual Python environment for installing QMLA dependencies without damaging
other parts of the user’s environment;

3. download the QMLA codebase from the forked Github repository;

4. install packages upon which QMLA depends.

# I n s t a l l r e d i s ( d a t a b a s e b r o k e r )
sudo apt update
sudo apt i n s t a l l redis −server

# make d i r e c t o r y f o r QMLA
cd
mkdir qmla tes t
cd qmla tes t

# make Python v i r t u a l env i ronment f o r QMLA
# n o t e : change Python3 . 6 t o d e s i r e d v e r s i o n
sudo apt −get i n s t a l l python3 .6 − venv
python3 . 6 −m venv qmla−env
source qmla−env/bin/ a c t i v a t e

1 Note: these instructions are tested for Linux and presumed to work on Mac, but untested on Windows. It is likely
some of the underlying software (redis servers) can not be installed on Windows, so running on Windows Subsystem
for Linux is advised.
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example exploration strategy customisation and run

# Download QMLA
g i t c lone −−depth 1 ht tps :// github . com/username/QMLA. g i t #

REPLACE username

# I n s t a l l d e p e n d e n c i e s
cd QMLA
pip i n s t a l l −r requirements . t x t

Listing C.1: QMLA codebase setup.

Note there may be a problem with some packages in the requirements.txt arising from the
attempt to install them all through a single call to pip install. Ensure these are all installed before
proceeding.

When all of the requirements are installed, test that the framework runs. QMLA uses redis

databases to store intermittent data: we must manually initialise the database. Run the following
(note: here we list redis-4.0.8, but this must be corrected to reflect the version installed on the
user’s machine in the above setup section):

˜/ redis −4 .0 .8/ s r c /redis −server

Listing C.2: Launch redis database.

which should give something like Fig. C.1.

Figure C.1: Terminal running redis-server.

In a text editor, open qmla test/QMLA/launch/local launch.sh; here we will ensure that we
are running the quantum Hamiltonian learning (QHL) algorithm, with 5 experiments and
20 particles, on the exploration strategy (ES) named TestInstall. Ensure the first few lines of
local launch.sh read:

183



example exploration strategy customisation and run

# ! / b in / bash

# #### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #####
# QMLA run c o n f i g u r a t i o n
# #### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #####
num instances =2 # number o f i n s t a n c e s in run
run qhl =0 # p e r f o r m QHL on known ( t r u e ) model
run qhl mult i model =0 # p e r f o r m QHL f o r d e f i n e d l i s t o f mode l s
\ g l s p l {experiment}=2 # number o f \ g l s p l { e x p e r i m e n t }
p a r t i c l e s =10 # number o f p a r t i c l e s
p l o t l e v e l =5

# #### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #####
# Choose an e x p l o r a t i o n s t r a t e g y
# Th i s w i l l d e t e r m i n e how QMLA p r o c e e d s .
# #### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #####
e x p l o r a t i o n s t r a t e g y =” T e s t I n s t a l l ”

Listing C.3: local launch script.

Ensure the terminal running redis is kept active, and open a separate terminal window.
We must activate the Python virtual environment configured for QMLA, which we set up in
Listing C.6. Then, we navigate to the QMLA directory, and launch:

# a c t i v a t e t h e QMLA Python v i r t u a l env i ronment
source qmla tes t/qmla−env/bin/ a c t i v a t e

# move t o t h e QMLA d i r e c t o r y
cd qmla tes t/QMLA
# Run QMLA
cd launch
./ l o c a l l a u n c h . sh

Listing C.4: Launch QMLA.

There may be numerous warnings, but they should not affect whether QMLA has succeeded;
QMLA will raise any significant error. Assuming the run has completed successfully, QMLA
stores the run’s results in a subdirectory named by the date and time it was started. For example,
if the run was initialised on January 1st at 01:23, navigate to the corresponding directory by
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cd r e s u l t s /Jan 01 /01 23

Listing C.5: QMLA results directory.

For now it is sufficient to notice that the code has run successfully: it should have generated
(in results/Jan 01/01 23) files like storage 001.p and results 001.p.

c.1 custom exploration strategy

Next, we design a basic ES, for the purpose of demonstrating how to run the algorithm. ESs
are placed in the directory qmla/exploration strategies. To make a new one, navigate to the
exploration strategies directory, make a new subdirectory, and copy the template file.

cd ˜/ qmla tes t/QMLA/ e x p l o r a t i o n s t r a t e g i e s /
mkdir custom es

# Copy t e m p l a t e f i l e i n t o example
cp template . py custom es/example . py
cd custom es

Listing C.6: QMLA codebase setup.

Ensure QMLA will know where to find the ES by importing everything from the custom ES
directory into to the main exploration strategy module. Then, in the custom es directory, make a
file called init .py which imports the new ES from the example.py file. To add any further ESs
inside the directory custom es, include them in the custom init .py, and they will automatically
be available to QMLA.

# i n s i d e qmla / e x p l o r a t i o n s t r a t e g i e s / c u s t o m e s
# i n i t . py
from qmla . e x p l o r a t i o n s t r a t e g i e s . custom es . example import *

# i n s i d e qmla / e x p l o r a t i o n s t r a t e g i e s , add t o t h e e x i s t i n g
# i n i t . py
from qmla . e x p l o r a t i o n s t r a t e g i e s . custom es import *

Listing C.7: Providing custom exploration strategy to QMLA.
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C.1 custom exploration strategy

Now, change the structure (and name) of the ES inside custom es/example.py. Say we wish to
target the true model

~α = (α1,2 α2,3 α3,4)

~T =




σ̂1
z ⊗ σ̂2

z

σ̂2
z ⊗ σ̂3

z

σ̂3
z ⊗ σ̂4

z




=⇒ Ĥ0 = σ̂
(1,2)
z σ̂

(2,3)
z σ̂

(3,4)
z

(C.1)

QMLA interprets models as strings, where terms are separated by +, and parameters are
implicit. So the target model in Eq. (C.1) will be given by

pauliSet 1J2 zJz d4+pauliSet 2J3 zJz d4+pauliSet 3J4 zJz d4.

Adapting the template ES slightly, we can define a model generation strategy with a small
number of hard coded candidate models introduced at the first branch of the exploration tree.
We will also set the parameters of the terms which are present in Ĥ0, as well as the range in
which to search parameters. Keeping the imports at the top of the example.py, rewrite the ES as:

c l a s s ExampleBasic (
e x p l o r a t i o n s t r a t e g y . E x p l o r a t i o n S t r a t e g y

) :

def i n i t (
s e l f ,
e x p l o r a t i o n r u l e s ,
true model=None ,
* * kwargs

) :
s e l f . true model = ’ p a u l i S e t 1 J 2 z J z d 4 +

p a u l i S e t 2 J 3 z J z d 4 + p a u l i S e t 3 J 4 z J z d 4 ’
super ( ) . i n i t (

e x p l o r a t i o n r u l e s = e x p l o r a t i o n r u l e s ,
true model= s e l f . true model ,
* * kwargs

)

s e l f . i n i t i a l m o d e l s = None
s e l f . true model terms params = {

’ p a u l i S e t 1 J 2 z J z d 4 ’ : 2 . 5 ,
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’ p a u l i S e t 2 J 3 z J z d 4 ’ : 7 . 5 ,
’ p a u l i S e t 3 J 4 z J z d 4 ’ : 3 . 5 ,

}
s e l f . t r e e c o m p l e t e d i n i t i a l l y = True
s e l f . min param = 0

s e l f . max param = 10

def generate models ( s e l f , * * kwargs ) :

s e l f . l o g p r i n t ( [ ” Generating models ; spawn step {}” . format
( s e l f . spawn step ) ] )

i f s e l f . spawn step == 0 :
# c h a i n s up t o 4 s i t e s
new models = [

’ p a u l i S e t 1 J 2 z J z d 4 ’ ,
’ p a u l i S e t 1 J 2 z J z d 4 + p a u l i S e t 2 J 3 z J z d 4 ’ ,
’ p a u l i S e t 1 J 2 z J z d 4 + p a u l i S e t 2 J 3 z J z d 4 +

p a u l i S e t 3 J 4 z J z d 4 ’ ,
]
s e l f . spawn stage . append ( ’ Complete ’ )

return new models

Listing C.8: ExampleBasic exploration strategy.

To run2 the example ES for a meaningful test, return to the local launch of Listing C.3, but
change some of the settings:

p a r t i c l e s =2000

\ g l s p l {experiment }=500

run qhl =1

e x p l o r a t i o n s t r a t e g y =ExampleBasic

Listing C.9: local launch configuration for QHL.

Run locally again as in Listing C.4; then move to the results directory as in Listing C.5.

2 Note this will take up to 15 minutes to run. This can be reduced by lowering the values of particles, experiments,
which is sufficient for testing but note that the outcomes will be less effective than those presented in the figures of
this section.
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c.2 analysis

QMLA stores results and generates plots over the entire range of the algorithm3, i.e. the
run, instance and models. The depth of analysis performed automatically is set by the user
control plot level in local launch.sh; for plot level=1, only the most crucial figures are generated,
while plot level=6 generates plots for every individual model considered. For model searches
across large model spaces and/or considering many candidates, excessive plotting can cause
considerable slow-down, so users should be careful to generate plots only to the degree they
will be useful. Next we show some examples of the available plots.

c.2.1 Model analysis

We have just run quantum Hamiltonian learning (QHL) for the model in Eq. (C.1) for a single
instance, using a reasonable number of particles and experiments, so we expect to have trained
the model well. Instance-level results are stored (e.g. for the instance with qmla id=1) in
Jan 01/01 23/instances/qmla 1. Individual models’ insights can be found in model training, e.g.
the model’s learning summary Fig. C.2a, and dynamics in Fig. C.2b.
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Figure C.2: Model analysis plots, stored in (for example) Jan 01/01 23/instances/qmla 1/model training.
a, learning summary 1. Displays the outcome of QHL for the given model: Subfigures (a-c)
show the estimates of the parameters; (d) shows the total parameterisation volume against
experiments trained upon, along with the evolution times used for those experiments. b,
dynamics 1 The model’s attempt at reproducing dynamics from Ĥ0.

3 Recall that a single implementation of QMLA is called an instance, while a series of instances – which share the
same target model – is called the run.
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c.2.2 Instance analysis

Now we can run the full QMLA algorithm, i.e. train several models and determine the most
suitable. QMLA will call the generate models method of the ExampleBasic ES, set in Listing C.8,
which tells QMLA to construct three models on the first branch, then terminate the search. Here
we need to train and compare all models so it takes considerably longer to run: for the purpose
of testing, we reduce the resources so the entire algorithm runs in about 15 minutes. Some
applications will require significantly more resources to learn effectively. In realistic cases, these
processes are run in parallel, as we will cover in Appendix C.3.

Reconfigure a subset of the settings in the local launch.sh script (Listing C.3) and run it again:

\ g l s p l {experiment }=250

p a r t i c l e s =1000

run qhl =0

e x p l o r a t i o n s t r a t e g y =ExampleBasic

Listing C.10: local launch configuration for QMLA.

In the corresponding results directory, navigate to instances/qmla 1, where instance level
analysis are available.

cd r e s u l t s /Jan 01 /01 23/ i n s t a n c e s /qmla 1

Listing C.11: Navigating to instance results.

Figures of interest here show the composition of the models (Fig. C.3a), as well as the Bayes
factors between candidates (Fig. C.3b). Individual model comparisons – i.e. Bayes factor (BF) –
are shown in Fig. C.3c, with the dynamics of all candidates shown in Fig. C.4c. The probes used
during the training of all candidates are also plotted (Fig. C.3e).

c.2.3 Run analysis

Considering a number of instances together is a run. In general, this is the level of analysis of
most interest: an individual instance is liable to errors due to the probabilistic nature of the
model training and generation subroutines. On average, however, we expect those elements to
perform well, so across a significant number of instances, we expect the average outcomes to be
meaningful.

Each results directory has an analyse.sh script to generate plots at the run level.

cd r e s u l t s /Jan 01 /01 23

./ analyse . sh
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Listing C.12: Analysing QMLA run.

Run level analysis are held in the main results directory and several sub-directories created
by the analyse script. Here, we recommend running a number of instances with very few
resources so that the test finishes quickly4. The results will therefore be meaningless, but allow
fo elucidation of the resultant plots. First, reconfigure some settings of Listing C.3 and launch
again.

num instances =10

\ g l s p l {experiment}=20

p a r t i c l e s =100

run qhl =0

e x p l o r a t i o n s t r a t e g y =ExampleBasic

Listing C.13: local launch configuration for QMLA run.

Some of the generated analysis are shown in Figs. C.4 to C.5. The number of instances for
which each model was deemed champion, i.e. their win rates are given in Fig. C.4a. The top
models, i.e. those with highest win rates, analysed further: the average parameter estimation
progression for Ĥ0 – including only the instances where Ĥ0 was deemed champion – are shown
in Fig. C.4b. Irrespecitve of the champion models, the rate with which each term is found in the
champion model (t̂ ∈ Ĥ′) indicates the likelihood that the term is really present; these rates –
along with the parameter values learned – are shown in Fig. C.4c. The champion model from
each instance can attempt to reproduce system dynamics: we group together these reproductions
for each model in Fig. C.5.

c.3 parallel implementation

We provide utility to run QMLA on parallel processes. Individual models’ training can run in
parallel, as well as the calculation of BF between models. The provided script is designed for
portable batch system (PBS) job scheduler running on a compute cluster. It will require a few
adjustments to match the system being used. Overall, though, it has mostly a similar structure
as the local launch.sh script used above.

QMLA must be downloaded on the compute cluster as in Listing C.6; this can be a new fork
of the repository, though it is sensible to test installation locally as described in this chapter
so far, then push that version, including the new ES, to Github, and cloning the latest version.
It is again advisable to create a Python virtual environment in order to isolate QMLA and its

4 This run will take about ten minutes
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dependencies5. Open the parallel launch script, QMLA/launch/parallel launch.sh, and prepare
the first few lines as

# ! / b in / bash

# #### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #####
# QMLA run c o n f i g u r a t i o n
# #### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #####
num instances =10 # number o f \ g l s p l { i n s t a n c e } in run
run qhl =0 # p e r f o r m QHL on known ( t r u e ) model
run qhl mult i model =0 # p e r f o r m QHL f o r d e f i n e d l i s t o f mode l s
\ g l s p l {experiment }=250

p a r t i c l e s =1000

p l o t l e v e l =5

# #### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #####
# Choose an e x p l o r a t i o n s t r a t e g y
# Th i s w i l l d e t e r m i n e how QMLA p r o c e e d s .
# #### −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− #####
e x p l o r a t i o n s t r a t e g y =” ExampleBasic ”

Listing C.14: parallel launch script.

When submitting jobs to schedulers like PBS, we must specify the time required, so that it
can determine a fair distribution of resources among users. We must therefore estimate the time
it will take for an instance to complete: clearly this is strongly dependent on the numbers of
experiments (NE) and particles (NP), and the number of models which must be trained. QMLA
attempts to determine a reasonable time to request based on the max num models by shape

attribute of the ES, by calling QMLA/scripts/time required calculation.py. In practice, this can be
difficult to set perfectly, so the timing insurance factor attribute of the ES can be used to correct
for heavily over- or under-estimated time requests. Instances are run in parallel, and each
instance trains/compares models in parallel. The number of processes to request, Nc for each
instance is set as num processes to parallelise over in the ES. Then, if there are Nr instances in
the run, we will be requesting the job scheduler to admit Nr distinct jobs, each requiring Nc
processes, for the time specified.

The parallel launch script works together with launch/run single qmla instance.sh, though note
a number of steps in the latter are configured to the cluster and may need to be adapted. In
particular, the first command is used to load the redis utility, and later lines are used to initialise

5 Indeed it is sensible to do this for any Python development project.
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a redis server. These commands will probably not work with most machines, so must be
configured to achieve those steps.

module load t o o l s /redis − 4 . 0 . 8

. . .

SERVER HOST=$ ( head −1 ”$PBS NODEFILE” )
l e t REDIS PORT=” 6300 + $QMLA ID”

cd $LIBRARY DIR
redis −server RedisDatabaseConfig . conf −−protected −mode no −−port

$REDIS PORT &
redis − c l i −p $REDIS PORT f l u s h a l l

Listing C.15: run single qmla instance script.

When the modifications are finished, QMLA can be launched in parallel similarly to the local
version:

source qmla tes t/qmla−env/bin/ a c t i v a t e

cd qmla tes t/QMLA/launch
./ p a r a l l e l l a u n c h . sh

Listing C.16: run single qmla instance script.

Jobs are likely to queue for some time, depending on the demands on the job scheduler.
When all jobs have finished, results are stored as in the local case, in QMLA/launch/results/-

Jan 01/01 23, where analyse.sh can be used to generate a series of automatic analyses.

c.4 customising exploration strategies

User interaction with the QMLA codebase should be achieveable primarily through the explo-
ration strategy (ES) framework. Throughout the algorithm(s) available, QMLA calls upon the
ES before determining how to proceed. The usual mechanism through which the actions of
QMLA are directed, is to set attributes of the ES class: the complete set of influential attributes
are available at [4].

QMLA directly uses several methods of the ES class, all of which can be overwritten in the
course of customising an ES. Most such methods need not be replaced, however, with the
exception of generate models, which is the most important aspect of any ES: it determines which
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models are built and tested by QMLA. This method allows the user to impose any logic desired
in constructing models; it is called after the completion of every branch of the exploration tree
on the ES.

c.4.1 Greedy search

A first non-trivial ES is to build models greedily from a set of primitive terms, T = {t̂}. New
models are constructed by combining the previous branch champion with each of the remaining,
unused terms. The process is repeated until no terms remain.

We can compose an ES using these rules, say for

T =
{

σ̂1
x , σ̂1

y , σ̂1
x ⊗ σ̂2

x , σ̂1
y ⊗ σ̂2

y

}

as follows. Note the termination criteria must work in conjunction with the model generation
routine. Users can overwrite the method check tree completed for custom logic, although a
straightforward mechanism is to use the spawn stage attribute of the ES class: when the final
element of this list is Complete, QMLA will terminate the search by default. Also note that the
default termination test checks whether the number of branches (spawn step) exceeds the limit
max spawn depth, which must be set artifically high to avoid ceasing the search too early, if
relying solely on spawn stage. Here we demonstrate how to impose custom logic to terminate
the seach also.

c l a s s ExampleGreedySearch (
e x p l o r a t i o n s t r a t e g y . E x p l o r a t i o n S t r a t e g y

) :
r ”””
From a f i x e d s e t of terms , c o n s t r u c t models i t e r a t i v e l y ,
g r e e d i l y adding a l l unused terms to separa te models a t each

c a l l to the generate models .

”””

def i n i t (
s e l f ,
e x p l o r a t i o n r u l e s ,
* * kwargs

) :

super ( ) . i n i t (
e x p l o r a t i o n r u l e s = e x p l o r a t i o n r u l e s ,
* * kwargs
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)
s e l f . true model = ’ p a u l i S e t 1 x d 3 + p a u l i S e t 1 J 2 y J y d 3 +

p a u l i S e t 1 J 2 J 3 z J z J z d 3 ’
s e l f . i n i t i a l m o d e l s = None
s e l f . a v a i l a b l e t e r m s = [

’ p a u l i S e t 1 x d 3 ’ , ’ p a u l i S e t 1 y d 3 ’ ,
’ p a u l i S e t 1 J 2 x J x d 3 ’ , ’ p a u l i S e t 1 J 2 y J y d 3 ’

]
s e l f . branch champions = [ ]
s e l f . p r u n e c o m p l e t e d i n i t i a l l y = True
s e l f . check champion reduc ib i l i ty = Fa l se

def generate models (
s e l f ,
mode l l i s t ,
* * kwargs

) :
s e l f . l o g p r i n t ( [

” Generating models in t i e r e d greedy search a t spawn
step {} . ” . format (

s e l f . spawn step ,
)

] )
t r y :

previous branch champ = m o d e l l i s t [ 0 ]
s e l f . branch champions . append ( previous branch champ )

except :
previous branch champ = ””

i f s e l f . spawn step == 0 :
new models = s e l f . a v a i l a b l e t e r m s

e lse :
new models = greedy add (

current model = previous branch champ ,
terms = s e l f . a v a i l a b l e t e r m s

)

i f len ( new models ) == 0 :
# Greedy s e a r c h has e x h a u s t e d t h e a v a i l a b l e mode l s ;
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# send b a c k t h e l i s t o f b ranch champions and
t e r m i n a t e s e a r c h .

new models = s e l f . branch champions
s e l f . spawn stage . append ( ’ Complete ’ )

return new models

def greedy add (
current model ,
terms ,

) :
r ”””
Combines given model with a l l terms from a s e t .

Determines which terms are not yet present in the model ,
and adds them each s e p a r a t e l y to the current model .

: param s t r current model : base model
: param l i s t terms : l i s t of s t r i n g s of terms which are to be

added g r e e d i l y .
”””

t r y :
present terms = current model . s p l i t ( ’+ ’ )

except :
present terms = [ ]

nonpresent terms = l i s t ( s e t ( terms ) − s e t ( present terms ) )

t e r m s e t s = [
present terms +[ t ] for t in nonpresent terms

]

new models = [ ”+” . j o i n ( t e rm se t ) for t e rm se t in t e r m s e t s ]

return new models

Listing C.17: ExampleGreedySearch exploration stategy.

This run can be implemented locally or in parallel as described above6, and analysed as in
Listing C.12, generating figures in accordance with the plot level set by the user in the launch

195



C.4 customising exploration strategies

script. Outputs can again be found in the instances subdirectory, including a map of the models
generated, as well as the branches they reside on, and the BFs between candidates, Fig. C.7.

c.4.2 Tiered greedy search

We provide one final example of a non-trivial ES: tiered greedy search. Similar to the idea of
Appendix C.4.1, except terms are introduced hierarchically: sets of terms T1, T2, . . . Tn are each
examined greedily, where the overall strongest model of one tier forms the seed model for the
subsequent tier. This is depicted in the main text in Fig. 9.4. A corresponding ES is given as
follows.

c l a s s ExampleGreedySearchTiered (
e x p l o r a t i o n s t r a t e g y . E x p l o r a t i o n S t r a t e g y

) :
r ”””
Greedy search in t i e r s .

Terms are batched together in t i e r s ;
t i e r s are searched g r e e d i l y ;
a s i n g l e t i e r champion i s e levated to the subsequent t i e r .

”””

def i n i t (
s e l f ,
e x p l o r a t i o n r u l e s ,
* * kwargs

) :
super ( ) . i n i t (

e x p l o r a t i o n r u l e s = e x p l o r a t i o n r u l e s ,
* * kwargs

)
s e l f . true model = ’ p a u l i S e t 1 x d 3 + p a u l i S e t 1 J 2 y J y d 3 +

p a u l i S e t 1 J 2 J 3 z J z J z d 3 ’
s e l f . i n i t i a l m o d e l s = None
s e l f . t e r m t i e r s = {

1 : [ ’ p a u l i S e t 1 x d 3 ’ , ’ p a u l i S e t 1 y d 3 ’ , ’
p a u l i S e t 1 z d 3 ’ ] ,

6 We advise reducing plot level to 3 to avoid excessive/slow figure generation.
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2 : [ ’ p a u l i S e t 1 J 2 x J x d 3 ’ , ’ p a u l i S e t 1 J 2 y J y d 3 ’ , ’
p a u l i S e t 1 J 2 z J z d 3 ’ ] ,

3 : [ ’ p a u l i S e t 1 J 2 J 3 x J x J x d 3 ’ , ’
p a u l i S e t 1 J 2 J 3 y J y J y d 3 ’ , ’ p a u l i S e t 1 J 2 J 3 z J z J z d 3

’ ] ,
}
s e l f . t i e r = 1

s e l f . max t ier = max( s e l f . t e r m t i e r s )
s e l f . t ier branch champs = {k : [ ] for k in s e l f .

t e r m t i e r s }
s e l f . t ier champs = {}
s e l f . p r u n e c o m p l e t e d i n i t i a l l y = True
s e l f . check champion reduc ib i l i ty = True

def generate models (
s e l f ,
mode l l i s t ,
* * kwargs

) :
s e l f . l o g p r i n t ( [

” Generating models in t i e r e d greedy search a t spawn
step {} . ” . format (

s e l f . spawn step ,
)

] )

i f s e l f . spawn stage [ −1 ] i s None :
t r y :

previous branch champ = m o d e l l i s t [ 0 ]
s e l f . t ier branch champs [ s e l f . t i e r ] . append (

previous branch champ )
except :

previous branch champ = None

e l i f ” g e t t i n g t i e r c h a m p ” in s e l f . spawn stage [ − 1 ] :
previous branch champ = m o d e l l i s t [ 0 ]
s e l f . l o g p r i n t ( [

” T ier champ f o r {} i s {}” . format ( s e l f . t i e r ,
m o d e l l i s t [ 0 ] )

] )
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s e l f . t ier champs [ s e l f . t i e r ] = m o d e l l i s t [ 0 ]
s e l f . t i e r += 1

s e l f . l o g p r i n t ( [ ” T ier now = ” , s e l f . t i e r ] )
s e l f . spawn stage . append ( None ) # normal p r o c e s s i n g

i f s e l f . t i e r > s e l f . max t ier :
s e l f . l o g p r i n t ( [ ”Completed t r e e f o r ES” ] )
s e l f . spawn stage . append ( ’ Complete ’ )
return l i s t ( s e l f . t ier champs . values ( ) )

e lse :
s e l f . l o g p r i n t ( [

”Spawn stage : ” , s e l f . spawn stage
] )

new models = greedy add (
current model = previous branch champ ,
terms = s e l f . t e r m t i e r s [ s e l f . t i e r ]

)
s e l f . l o g p r i n t ( [

” t i e r e d search new models=” , new models
] )

i f len ( new models ) == 0 :
# no mode l s l e f t t o f i n d − g e t champions o f b r a n c h e s

from t h i s t i e r
new models = s e l f . t ier branch champs [ s e l f . t i e r ]
s e l f . l o g p r i n t ( [

” t i e r champions : {}” . format ( new models )
] )
s e l f . spawn stage . append ( ” g e t t i n g t i e r c h a m p {}” .

format ( s e l f . t i e r ) )
return new models

def check tree completed (
s e l f ,
spawn step ,
* * kwargs

) :
r ”””

198



C.4 customising exploration strategies

QMLA asks the e x p l o r a t i o n t r e e whether i t has f i n i s h e d
growing ;

the e x p l o r a t i o n t r e e quer ies the e x p l o r a t i o n s t r a t e g y
through t h i s method

”””
i f s e l f . t r e e c o m p l e t e d i n i t i a l l y :

return True
e l i f s e l f . spawn stage [ −1 ] == ”Complete” :

return True
e lse :

return Fa lse

def greedy add (
current model ,
terms ,

) :
r ”””
Combines given model with a l l terms from a s e t .

Determines which terms are not yet present in the model ,
and adds them each s e p a r a t e l y to the current model .

: param s t r current model : base model
: param l i s t terms : l i s t of s t r i n g s of terms which are to be

added g r e e d i l y .
”””

t r y :
present terms = current model . s p l i t ( ’+ ’ )

except :
present terms = [ ]

nonpresent terms = l i s t ( s e t ( terms ) − s e t ( present terms ) )

t e r m s e t s = [
present terms +[ t ] for t in nonpresent terms

]

new models = [ ”+” . j o i n ( t e rm se t ) for t e rm se t in t e r m s e t s ]
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return new models

Listing C.18: ExampleGreedySearchTiered exploration stategy.

with corresponding results in Fig. C.8.
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Figure C.3: QMLA plots; found within instance directory e.g. Jan 01/01 23/instances/qmla 1, and its
subdirectories. a composition of models: constituent terms of all considered models, indexed
by their model IDs. Here model 3 is Ĥ0. b bayes factors: Bayes factor (BF) comparisons
between all models. Bayes factors (BFs) are read as Bi,j where i is the model with lower ID,
e.g. B1,2 rather than B2,1. Thus Bij > 0 (< 0) indicates Ĥi (Ĥj), i.e. the model on the y-axis
(x-axis) is the stronger model. c comparisons/BF 1 3: direct comparison between models with
IDs 1 and 3, showing their reproduction of the system dynamics (red dots, Q), as well as
the times (experiments) against which the BF was calculated. d branches/dynamics branch 1:
dynamics of all models considered on the branch compared with system dynamics (red dots,
Q). e probes bloch sphere: probes used for training models in this instance (only showing
1-qubit versions).
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Figure C.4: QMLA run plots; found within run directory e.g. Jan 01/01 23/. a perfor-

mace/model wins: number of instance wins achieved by each model. b cham-

pion models/params params pauliSet 1J2 zJz d4+pauliSet 2J3 zJz d4+pauliSet 3J4 zJz d4:
parameter estimation progression for the true model , only for the instances where it was
deemed champion. c champion models/terms and params: histogram of parameter values
found for each term which appears in any champion model, with the true parameter (α0) in
red and the median learned parameter (ᾱ′) in blue.
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Figure C.5: Run plot performace/dynamics: median dynamics of the champion models. The models
which won most instances are shown together in the top panel, and individually in the lower
panels. The median dynamics from the models’ learnings in its winning instances are shown,
with the shaded region indicating the 66% confidence region.

Figure C.6: Greedy search mechanism. Left, a set of primitive terms, T , are defined in advance. Right,
models are constructed from T . On the first branch, the primitve terms alone constitute
models. Thereafter, the strongest model (marked in green) from the previous branch is
combined with all the unused terms.
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Figure C.7: Greedy exploration strategy. a, composition of models. b,
graphs of branches ExampleGreedySearch: shows which models reside on each branches of
the exploration tree. Models are coloured by their F1-score, and edges represent the BF
between models. The first four branches are equivalent to those in Fig. C.6 , while the final
branch considers the set of branch champions, in order to determine the overall champion.
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Figure C.8: Tiered greedy exploration strategy. a, composition of models. b,
graphs of branches ExampleGreedySearchTiered: shows which models reside on each
branches of the exploration tree. Models are coloured by their F1-score, and edges represent
the BF between models. In each tier, three branches greedily add terms, and a fourth branch
considers the champions of the first three branches in order to nominate a tier champion. The
final branch consists only of the tier champions, to nominate the global champion, Ĥ′.
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