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Abstract—In this paper, we propose a deep reinforcement 

learning (DRL)-based algorithm to generate policies of Baseband 

Function (BBF) placement and routing. In order to explore the 

performance of the proposed algorithm in practical systems, the 

online scenario with the completely random requests is used in 

the simulation considering C-RAN and NG-RAN architectures. 

Besides, an Integer Linear Programming (ILP) model is 

formulated to generate the optimal solution as the benchmark. 

The simulation results show that DRL-based algorithm converges 

in a short time, and its performance closes to the optimal 

benchmark obtained by ILP in terms of latency and bandwidth 

for the online scenarios. In addition, the performance of the 

generated policies based on DRL is compared with a classic 

heuristic algorithm, i.e., first-fit algorithm.  The performance of 

DRL-based algorithm is superior to the first-fit algorithm from 

above two perspectives. The fast convergence and the near-

optimal performance prove that the DRL-based algorithm is a 

promising approach for the BBF placement and routing of RAN 

in 5G and Beyond.  

 
Index Terms— Deep reinforcement learning, Baseband 

Function placement and routing, 5G and Beyond. 

 

I. INTRODUCTION 

HE design of 5G network is expected to provide 

diversified services including enhanced Mobile 

Broadband (eMBB), ultra-Reliable & Low Latency 

Communication (uRLLC), and Massive Machine Type 

Communication (mMTC) [2]. These services make 5G 

network radical changes in terms of stringent requirements of 
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bandwidth, latency, and networking flexibility [3], [4]. 

Centralized radio access network (C-RAN) is a promising 

network architecture, which allows Baseband Units (BBUs) 

centralized in central offices (COs) [5]. With this design, 

baseband resource can be shared among several base stations, 

and OpEx can be significantly reduced through the centralized 

management and maintenance. Despite the advantages of C-

RAN, it raises some challenges. The C-RAN’s fronthaul 

which transmits raw I/Q sample data between BBUs and 

remote radio units (RRUs) through the fixed point-to-point 

connection suffers from high pressure to provide huge 

bandwidth, especially for future 5G communications. In 

addition, fronthaul supported by the load-independent 

common public radio interface (CPRI) limits the scalability 

and bandwidth efficiency of C-RAN. Therefore, eCPRI is 

proposed as a data-dependent fronthaul interface for data 

transmission on a frame basis, e.g., with Ethernet protocol, 

which remarkably economizes the fronthaul bandwidth than 

constant-bit based CPRI. 

In order to support a high-bandwidth transmission and 

improve the scalability of RAN in 5G/B5G, the fronthaul of 

next-generation (NG-RAN) evolves from the “point-to-point” 

connection to the “any-to-any” connection [6], [7]. The high 

flexibility not only saves the fronthaul bandwidth significantly, 

in particular to massive MIMO scenarios [8], but also enables 

RRUs to share the computational resources in different COs. 

In addition, the flexibility of mobile fronthaul is more 

conducive to the deployment of advanced technologies such as 

coordinated multipoint (CoMP) transmission/reception, 

enhanced Inter-Cell Interference Coordination (eICIC), and 

BBU aggregation [9], [10]. More importantly, with the 

emerging advanced techniques introduced in the network such 

as mobile edge computing (MEC) and network function 

virtualization (NFV), network automation and intelligence are 

the necessary elements for 5G/B5G communications to 

improve the efficiency of network management and 

maintenance [11], [12]. 

Due to the evolution of RAN, it is necessary to adjust the 

corresponding policy of  BBF placement and routing which 

decides the appropriate positions of BBFs and the lightpath 

provisioning from the RRU to data centre (DC). The adjusted 

policy should incorporate harmoniously with the evolution of 
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RAN. On the one hand, traditional heuristic algorithms are 

difficult to achieve an ideal performance under dynamic 

network scenarios. The heuristic-based policy which adopts 

predefined procedures tends to stop searching for better 

policies once it gets an available solution [13]. On the other 

hand, ILP models can be formulated for a set of requests to 

search for the global optimal solution, however, the required 

time and computational resource of the ILP method prohibit 

the real-time deployment in practical networks. In addition, 

the ILP model uses a pre-set request matrix in an offline 

scenario, whereas the decision-making policy should run in an 

online scenario to handle the unpredictable changes of 

network state in practical networks. Therefore, it is necessary 

to introduce a more intelligent policy for BBF placement and 

routing, which abstracts the network state and adjusts the BBF 

placement and routing automatically. The proper algorithms 

should be able to achieve self-optimization and iterative 

upgradation. Motivated by the above, we tend to propose a 

flexible and self-learning BBF placement and routing policy 

based on DRL. As far as I know, this is the first work to 

explore the DRL-based policy for BBF placement and routing 

in an online scenario with complete random requests. 

We extend our previous work about the DRL-based 

algorithm for BBF placement and routing in C-RAN with 

offline scenarios, where the request matrix is predefined and 

fixed [1]. To keep pace with the evolution of RAN and 

explore the intelligent policy, we implement a DRL-based 

algorithm for BBF placement and routing to optimize network 

resource utilization and transport latency in an online scenario 

both for C-RAN and NG-RAN. Besides, the proposed policy 

is formulated as an ILP model in detail. The result of ILP is 

used as an optimal benchmark for the proposed DRL-based 

policy. The proposed DRL-based algorithm is also compared 

with the first-fit algorithm. We analyse the performance of 

these three algorithms in terms of bandwidth, transport latency 

and BBF aggregation gain. The result shows that the DRL-

based algorithm not only converges quickly in an online 

scenario, but also achieves the satisfactory performance. 

The remainder of this paper is organized as follows. In 

Section II, we present some related works and discuss the 

background of our work. The system model is described in 

Section III. The ILP model and DRL-based algorithm are 

presented in Section IV. Section V gives a detailed description 

of simulation results. We make a conclusion in Section VI. 

II. RELATED WORKS 

The problem of BBF placement in RAN has attracted 

considerable research interests in the literature. A fixed/mobile 

convergence aggregation optical network was proposed in [14]. 

The authors formulated an optimization problem to minimize 

the aggregation infrastructure power. Reference [15] presented 

the problem of BBU placement over a wavelength division 

multiplexing (WDM) aggregation optical network. The author 

formulated an ILP model to evaluate two different fronthaul 

transport cases. These two works optimized BBU placement in 

WDM optical networks. Reference [16] proposed to place 

BBU pools at the edge of the network. The authors solved the 

BBU placement problem over the wireless front–hauls. An 

ILP-based algorithm and a heuristic algorithm were developed 

for small and large networks respectively. Reference [17] 

proposed a Digital Unit pool placement problem. A Mixed 

Integer Linear Programming (MILP) model is formulated to 

minimize the total cost of ownership. These two works tried to 

solve the BBU placement problem through different concepts, 

wireless front-hauls in [16] and Digital Unit pool in [17]. The 

architecture of survivable RAN was widely discussed to solve 

the problem of link failures in [18]-[21]. Reference [18] 

introduced an efficient and proactive restoration mechanism to 

ensure service resilience under the tremendous mobile traffic 

in carrier clouds. The authors in [19] used ILP and Branch-

and-Price algorithms to optimize virtualized BBU selection 

problems based on resiliency and price. Reference [20] 

proposed a survivable fronthaul scheme against single hotel 

failure. The authors used both ILP and heuristic methods to 

evaluate different strategies of survivable BBU placement. 

Reference [21] introduced three protection strategies: 

dedicated path protection, dedicated BBU protection, and 

dedicated path and BBU protection. The authors formulated an 

ILP model to minimize the consumption of computational 

resources, the number of used wavelengths and BBU pools. 

To overcome the unpredictable failures from the links and 

BBU hotels, various protection schemes were proposed in 

these works to ensure the resiliency of BBU placement. 

With the evolution of RAN to address the rapid growth of 

fronthaul traffic and the stringent requirement of latency, more 

flexible RAN architectures such as NG-RAN have been 

analyzed. Reference [22] proposed a resource allocation 

policy for RAN slicing in Multi-CU/DU architectures, the 

result showed that the proposed method reached the 

satisfactory performance and guaranteed the isolation between 

slices. The effective management strategy for the agile DU-

CU deployment was investigated in terms of power 

consumption in [23], a mixed ILP model and a graph-based 

heuristic method was proposed to optimize the consumption of 

reconfigurable add/drop multiplexer, Ethernet switch, optical 

transponder and so on. With the increasing complexity and 

dynamicity of network, it is difficult to find an adaptive and 

efficient strategy to optimize resource allocation for network. 

Recently, deep reinforcement learning (DRL) has gained 

increasing attention after AlphaGo defeated the world's best 

chess player [24]. DRL that combines Deep Learning and 

Reinforcement Learning together can handle complicated 

problems because the former processes complex information 

and the latter optimizes complex decision-making strategies 

[25]. This promising methodological paradigm has been 

explored in resource allocation for 5G networks. The authors 

in [26] proposed a multi-agent DRL-based algorithm for 

service provisioning of multi-domain optical networks. The 

result showed that the proposed framework outperformed the 

existing rule-based heuristic algorithms significantly. A DRL-

based algorithm was proposed to optimize network slicing 

problem in [27]. The results showed the proposed policy 

outperformed benchmark heuristics in terms of the profit of 

infrastructure providers. The authors in [28] designed a DRL-
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based framework to address the problem of virtual network 

(VNT) slicing in datacenter interconnections. The experiment 

showed that the proposed framework can provision VNT 

requests with shorter time and comparable blocking 

performance. An online multi-tenant secret-key assignment 

policy based on DRL was proposed in [29]. The proposed 

method reduced the tenant-request blocking probability 

significantly. A DRL-based algorithm was proposed to 

accommodate diversified services in 5G/B5G networks in [30]. 

The results showed that the proposed algorithms outperformed 

the benchmark by ILP and widely used heuristics significantly 

considering the resource-saving and the service-scale. 

DRL can perform end-to-end training and abstract a 

complex multi-layered model from the state to action. It is 

considered as one of the key-enabling technologies to solve 

sequential decision-making problems. In addition, the random 

process of request can be introduced in the training process of 

DRL-based algorithms. Therefore, the DRL-based method can 

be designed as an online algorithm to generate policy for BBU 

placement and routing of flexible RAN. 

III. RAN ARCHITECTURE 

Fig. 1 shows the typical architecture of RAN. A certain 

number of RRUs are aggregated to several COs, and each CO 

is interconnected by optical links, which constitute a 

converged wireless and optical aggregation network. In 5G, 

eCPRI is considered as an important interface protocol to 

support much more fronthaul traffic. It enables more 

flexibility of the functional split for the physical layer, and 

puts some low physical functions into RRU. Generally, the 

data of a request from RRU is sent to the CO with the eCPRI 

encapsulation to do the baseband processing, then the 

processed data is transported to data center (DC) for core 

network processing. Therefore, a general service should 

include the complete BBF processing and the routing from 

RRU to DC. 

C-RAN was gradually adopted in 4G+ and the initial stage 

of 5G due to its advantages in energy consumption, operation 

and maintenance costs, and it will be massively deployed in 

the mature stage of 5G era. To address the issue of sharp 

increase in fronthaul traffic, 3GPP has also advocated new 

standards for NG-RAN [23], [31]. NG-RAN disaggregates 

partial physical-layer BBFs from BBU to the cell site to 

reduce the fronthaul bandwidth consumption, while dividing 

the rest of BBFs into a distributed unit (DU) and a central unit 

(CU). This design can also reduce the fronthaul latency since 

DU is placed closer to RRU than traditional BBU, while 

guaranteeing the centralization gain through CU aggregation 

in remote COs. The disaggregation of BBF has improved the 

RAN flexibility for diversified service demands, but also 

increased the difficulty of BBF placement and routing. Thus, 

we consider that it is necessary to explore more effective and 

adaptive policy to plan the RAN in 5G/B5G, especially based 

on many advanced technologies and concepts that may bring 

the technological revolution like artificial intelligence. Here 

we try to formulate a unified ILP model following these points: 

1) Active COs which have been switched on are chosen 

preferably to hold the BBF for high consolidation. 2) The CO 

closest to the requests is chosen to host BBFs. This scenario 

benefits to the reduction of fronthaul latency and the cost of 

mobile fronthaul bandwidth. 3) We choose the shortest path 

from RRU to DC for each request. In some cases, all these 

points can’t be fulfilled together. For example, node 0 and 

node 2 are active in Fig. 1. The next request can’t select the 

closest CO, i.e., node 1, as it is inactive. The active COs are 

also not on the optimal routing path from node 1 to node 6. 

Therefore, we need to cope with the trade-off between the 

above three points and search the best solution for the request 

sequence. In the next section, we developed an ILP model to 

search the optimal solution for BBU placement and routing in 

an offline scenario, the unified ILP model can consider both 

C-RAN and NG-RAN through adapting the pattern of RAN 

slicing. We then explored the DRL-based algorithm for 

tacking this complicated decision-making problem in an 

online scenario. 

IV. ILP MODEL AND DRL-BASED ALGORITHMS 

A. The Description of ILP Model 

In this section, ILP model for flexible BBU placement and 

routing is developed in detail. In order to generate the solution 

fully consistent with the ideas mentioned above, we establish a 

multi-objective optimization function to minimize the 

consumption of COs, bandwidth and transport latency. And 

the result of ILP is also used as an optimal benchmark for 

DRL-based algorithm. 

(A) Inputs and parameters 

a) B: Set of services. 

b) 𝑅: Set of COs, which can hold BBU. 

c) 𝐷: Data centre. 

d) E: Set of optical links. 

e) P: Set of paths from RRU to DC. 

f) 𝐾: Number of BBU Functions. (𝐾 = 3 represents 

 
Fig. 1.  Architecture of RAN. 
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the C-RAN, 4=K represents NG-RAN. The first 

BBF is in RRU i.e., the origin of services, the last 

BBF equals to the content processing in destination 

DC). 

g) 𝑇𝑟 : The computational resource (GOPS, Giga 

operations per second) of CO r ∈ 𝑅. 

h) 𝐶𝑒: The bandwidth (Gbps) of optical links e ∈ E. 

i) 𝑇𝑒: The transport latency of optical links e ∈ E. 

j) 𝑇𝑏: The maximum latency allowed for the service 

b ∈ B. 

k) 𝐵𝑏,𝑘: The cost of bandwidth (Gbps) of the service 

b ∈ B after the k-th BBF processing. 

l) 𝐶𝑏,𝑘 : The requirement of computational resource 

(GOPS) for the k-th BBF processing of service b ∈

B. 

m) 𝐺𝑝,𝑒: Binary indicator, 1 if the path p ∈ P includes 

the link e. 

n) 𝑀𝑟,𝑒 : Binary indicator, 1 if the link 𝑒 ∈ 𝐸  is 

connected to CO r. 

o) 𝐵𝑎𝑠𝑒𝑏,𝑟 : Binary indicator, 1 if the RRU with 

current service b ∈ B is connected to CO r ∈ 𝑅. 

p) 𝐿𝑝: The number of links on path p ∈ P. 

q) 𝑃𝑁𝑝,𝑟: Binary indicator, 1 if the path p ∈ P passes 

the CO r ∈ 𝑅.  

(B) Variables of model 

a) 𝑈𝑏,𝑝  : Binary variable, 1 if service b ∈ B selects 

the path p ∈  P. 

b) 𝑍𝑏,𝑘
𝑒,𝑝

 : Binary variable, 1 if service b ∈ B is carried 

on the link 𝑒 ∈ 𝐸 of path p ∈  P after the k-th BBF 

processing. 

c) 𝑂𝑏,𝑘
𝑟  : Binary variable, 1 if the k-th BBF of service 

b ∈ B is processed in CO r ∈  𝑅. 

d) 𝐵𝑟 : Binary variable, 1 if CO r ∈  𝑅 is active. 

(C) Objective function: To consider the mentioned concepts, 

a multi-objective optimization function is formulated as: 

         𝑚𝑖𝑛 (𝛼 × ∑ 𝐵𝑟𝑟 + 𝛽 × ∑ 𝑍𝑏,𝑘
𝑒,𝑝

𝑏,𝑘,𝑒,𝑝 × 𝐵𝑏,𝑘 +

                                                      𝛾 × ∑ 𝑍𝑏,𝑘
𝑒,𝑝

𝑏,𝑘,𝑒,𝑝 × 𝑇𝑒).                                                        

(1) 

The objective function consists of three parts. The first term is 

to minimize the number of active COs. The second term is to 

minimize the cost of bandwidth on all links. The third part 

aims at optimizing the transport latency of all services. We can 

change the priority of these three factors in the optimization 

process by adjusting the weights (𝛼, 𝛽, 𝛾). 

(D) Constraints: 

• Routing: 
∑ 𝑈𝑏,𝑝𝑝 = 1, ∀ 𝑏 ∈ B.                         (2) 

∑ 𝑍𝑏,𝑘
𝑒,𝑝

𝑘,𝑒,𝑝 = ∑ 𝑈𝑏,𝑝𝑝 ∙ 𝐿𝑝, ∀𝑏 ∈ 𝐵.               (3) 

• Capacity: 

 

∑ ∑ 𝑍𝑏,𝑘
𝑒,𝑝

× 𝐵𝑏,𝑘 ≤𝑘≠𝐾𝑏,𝑝 𝐶𝑒 , ∀𝑒 ∈ E.            (4) 

∑ ∑ 𝑂𝑏,𝑘
𝑟 × 𝐶𝑏,𝑘 ≤𝑘≠𝐾𝑏 𝑇𝑟 , ∀𝑟 ≠ 𝐷𝐶.           (5) 

• BBU placement: 
∑ 𝑂𝑏,𝑘

𝑟
𝑟 = 1, ∀ 𝑏 ∈ B, ∀𝑘 ∈ 𝐾.                 (6) 

 

𝑂𝑏,𝑘
𝑟 = {

𝐵𝑎𝑠𝑒𝑏,𝑟 , if 𝑘 = 1

1, if 𝑘 = 𝐾
, ∀ 𝑏 ∈ 𝐵.            (7) 

𝑂𝑏,𝑘
𝑟 = ∑ 𝑍𝑏,𝑘1

𝑒,𝑝
𝑘≤𝑘1≤𝐾 , 𝑖𝑓 𝐵𝑎𝑠𝑒𝑏,𝑟 = 1, ∀𝑏 ∈ 𝐵, 𝑟 ∈

𝑅, 𝑘 ∈ 𝐾.                                                              (8) 

2 × 𝑂𝑏,𝑘
𝑟 ≤ ∑ ∑ 𝑍𝑏,𝑘1

𝑒,𝑝
× 𝑀𝑟,𝑒

𝑘1=𝑘−1
𝑘1=1𝑒,𝑝 +

∑ ∑ 𝑍𝑏,𝑘2
𝑒,𝑝𝑘2=𝐾−1

𝑘2=𝑘𝑒,𝑝 × 𝑀𝑟,𝑒 ≤ 𝑂𝑏,𝑘
𝑟 + 1, if 𝐵𝑎𝑠𝑒𝑏,𝑟 =

0 𝑎𝑛𝑑 𝑃𝑁𝑝,𝑟 = 1, ∀𝑏 ∈ B, 𝑝 ∈ P, 𝑟 ≠ 𝐷𝐶, 𝑘 ≠ 𝐾.     

(9) 

𝐵𝑟 ≤ ∑ ∑ 𝑂𝑏,𝑘1
𝑟 ≤ 𝑀𝑎𝑥 ∙ 𝐵𝑟

𝑘1=𝐾−1
𝑘1=2𝑏 , ∀𝑟 ∈ 𝑅.  

(10) 

• Latency: 

∑ ∑ 𝑍𝑏,𝑘1
𝑒,𝑝

× 𝑇𝑒 ≤𝑘1=𝐾−2
𝑘1=1𝑒,𝑝 𝑇𝑏 , ∀𝑏 ∈ B.         (11) 

Equation 2 ensures that service 𝑏 ∈ B selects only one path 

to DC. Equation 3 ensures that service traffic passes through 

all the links of selected path 𝑝 ∈  P. Equation 4 guarantees 

that the bandwidth requirement of all services carried on each 

link does not exceed its capacity. Equation 5 ensures that the 

cost of computational resource for processing BBFs of all 

services does not exceed the capacity of each CO.  Equation 6 

guarantees that all the BBFs of service 𝑏 ∈ B  have been 

processed. Equation 7 ensures the first and the last BBF of 

service b ∈ B  is processed in its BS and DC respectively.  

Equation 8 and 9 decide the position of BBFs processing for 

service 𝑏 ∈ B. The position depends on the state of ingress 

and egress flows. Equation 10 identities that once the k-th 

(𝑘 ≠ 𝐾, 𝑘 ≠ 1) BBF of service b ∈ B is processed in CO 𝑟 ∈
R, then 𝐵𝑟 = 1. Equation 11 ensures the fronthaul latency of 

service 𝑏 ∈ B does not exceed its threshold.  

B. DRL-based Algorithm 

The structure of DRL-based policy is shown in Fig. 2. Deep 

double Q-Learning algorithm [32] is deployed to fit the Q-

value Q(st, at)  which is a measure of the overall expected 

reward when the agent in state ts  performs action ta  during a 

completed episode. In the experiment, the value of Q(st, at) 
can reflect whether the action 𝑎𝑡 composed of BBU placement 

and routing path is suitable for the current network state 𝑠𝑡 

represented by the bandwidth of optical links, the 
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Fig. 2.  Structure of the proposed DRL-based algorithm. 
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computational resource of each CO in RAN, and the request 

position. Once the accurate Q-function 𝑄(𝑠𝑡 , 𝑎𝑡) is formulated 

by DNN with parameters 𝜽, we can find the best mapping 

from the current network state 𝑠𝑡 to the corresponding action 

by  𝑎𝑡
∗ = max

𝑎𝑡

𝑄(𝑠𝑡 , 𝑎𝑡) . The DRL-based algorithm has the 

following three steps. 

The first step is to create the environment which can 

simulate the scenario of the actual network. The environment 

must reflect the accurate variations of bandwidth, 

computational resource from the current state 𝑠𝑡 to next state 

𝑠𝑡+1 and the instant return 𝑟(𝑠𝑡 , 𝑎𝑡).In order to make decision 

for BBF placement and routing in RAN, the action 𝑎𝑡  should 

contain the node information for BBF processing and routing 

information. Generally, a vector v  containing N elements can 

represent a certain action as ],...,,[ 21 Nvvvv = . The first 

element 1v  denotes the location of BBU in C-RAN, the other 

elements 2v  to Nv can decide the routing from one of RRUs 

to DC. The last element of Nv  must be DC, so it exists 1
1
−

−
N
nC

possible combinations for other 1−N  elements from the 

nodes except DC, where n  is the number of nodes. Therefore, 

the upper bound for the cardinality of the action space can be 

estimated as 1−Nn  through some simple mathematical 

derivation. The difference between C-RAN and NG-RAN is 

that the first two elements of sequences rather than one 

element are required to decide the locations of CU and DU. It 

means that it may need one more element to represent the 

action. And the upper bound of action’s space for NG-RAN 

can be estimated as Nn . 

The action can be arranged generally as it is described 

above, however, the action space increases with the number of 

nodes rapidly according to the upper bound for the cardinality 

of the action space, and it also contains amounts of invalid 

actions with inexistent paths and impossible placement for 

BBF processing. The large space tends to decrease the speed 

of algorithm convergence. Therefore, the action space is 

reduced significantly through selecting the k shortest paths in 

the experiment. For a certain request from any BS, we use the 

“k-shortest-paths” algorithm [33] to select the k shortest paths 

from RRU to the data center (DC), where 3k =  in this paper. 

Therefore, the actions for the request from RRU include one 

path from the path set and the node information for BBF 

processing on the selected path. All the information for the 

action is still represented as a sequence, but the action space 

only contains the possible action which includes an existed 

path and the corresponding node in this path.  

The state which contains the information of network is 

easier to be represented. A two-dimensional matrix is used to 

represent the available bandwidth for the links of the state 𝑠𝑡.  

For the topology of 7 nodes in Fig. 1, a 7 by 7 matrix is 

enough to express the available bandwidth. If a physical link 

exists between these two nodes, the corresponding element 

equals to the available bandwidth of the link. Otherwise, it is 

set to 0. For the computational resource, a one-dimensional 

matrix is used to represent the available resource for each 

node. Finally, we use a one-dimensional matrix to represent 

the request position through one-hot encoding method. The 

request position is to denote the source CO of each request. 

The element with the position of a request in the topology is 

set to 1, the other elements are set to 0. Therefore, the state is 

comprised of the matrices for the available bandwidth, 

available computational resources and the request position. In 

addition to the state information, the connection information 

of the network topology is used as an initial information to 

establish the environment for DRL simulation, which decides 

the latency of the selected path.  The 𝑟(𝑠𝑡 , 𝑎𝑡) is defined as: 

𝑟(𝑠𝑡, 𝑎𝑡) = {
−(𝛼 × 𝑥𝑡 + 𝛽 × 𝑏𝑡 + 𝛾 × 𝑙𝑡), 𝑎𝑡 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑅, 𝑎𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑
. 

Where the  𝑥𝑡  is the binary indicator, 𝑥𝑡 = 1 means that one 

inactive CO is used to hold BBU while 𝑥𝑡 = 0 means that the 

CO selected to hold BBU has been activated. 𝑏𝑡 is the cost of 

bandwidth for the current service. 𝑙𝑡 is the transport latency of 

routing path. The parameters (𝛼, 𝛽, 𝛾) are the weights for the 

multi-objective function in ILP model. When the selected 

action 𝑎𝑡 cannot meet the requirements of the current request, 

the instant reward is set to 𝑅, where 𝑅 should be obviously 

lower than the instant rewards of the action that can be 

accepted. In our simulation, 𝑅  are set to -200 and -500 

respectively for C-RAN and NG-RAN. This design helps the 

algorithm to converge effectively. 

 
                Fig. 3.  Framework of Deep learning in DRL-based algorithm. 
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The second step is to prepare the data [𝑠𝑡 , 𝑎𝑡,𝑟(𝑠𝑡 , 𝑎𝑡), 𝑠𝑡+1] 

by interacting with the environment. As in Fig. 2, the current 

network state 𝑠𝑡 is sent to DNN, and DNN with parameters 𝜽𝒕 

outputs the Q-values of all the actions, 𝑄(𝑠𝑡 , 𝑎𝑡), 𝑎𝑡 ∈ 𝐴. The 

action 𝑎𝑡  with the largest Q-value is selected with the 

probability of 𝜀  to interact with the environment, and the 

environment outputs the instant return 𝑟(𝑠𝑡 , 𝑎𝑡) and next state 

𝑠𝑡+1. Finally,  [𝑠𝑡 , 𝑎𝑡,𝑟(𝑠𝑡 , 𝑎𝑡), 𝑠𝑡+1] is saved in the memory of 

database. To represent the network state 𝑠𝑡 more precisely, the 

specific deep learning framework is designed in Fig. 3. We 

formulate the inputs of network state as the matrix, and 2 × 2 

convolution kernels are used to detect the feature of nodes 

whether it exists direct optical links between two nodes.  

The detailed framework of neural network is described in 

Fig. 3. We first use two convolution layers to process the 

feature of bandwidth with the size of 7×7 for the topology in 

C-RAN. Each convolution layer contains 5 channels with 2×2 

kernel. The parameter of padding is set to be “same” for CNN 

layers, so the outputs of these two convolution layers are 5×7

×7 respectively. Then the flattened output from CNN (1×245), 

the input of computational resource (1×6) and the request 

position (1×6) are combined as the feature with the size of 1×

257. After that, we build one fully connected layer with 100 

hidden neurons. The tanh activation function is used for the 

hidden layers. Finally, we build the last layer containing 51 

neurons with no activation function to estimate the Q-value of 

actions. The data structure of action is also showed in Fig. 3. 

In C-RAN, the position of BBU is decided by the first element 

of 𝑎𝑡, the routing information is stored in the rest elements of 

𝑎𝑡. For example, the action [1 0 1 6] means that the current 

policy of routing is from node 0 to node 1, node 1 to node 6. 

The node 1 is selected as CO to hold the BBU. It should be 

noted that the only difference for the action in NG-RAN is that 

the action contains two nodes for the placement of DU/CU. 

The third step is to train DNN until it converges. The 

principle for the training of DNN is the Bellman optimality 

equation as [34] 

𝑄𝜋𝑡(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ×  𝑚𝑎𝑥𝑄𝜋𝑡(𝑠𝑡+1, 𝑎𝑡+1).     (12) 

Where 𝛾 is a discount factor, which determines the importance 

of the return in the future. The Q-function fitted by neural 

networks with parameters 𝜽𝒕 is used to estimate the value of 

Q-function as 𝑄𝜋𝑡(𝑠𝑡 , 𝑎𝑡) ≈ 𝑄𝜋𝑡(𝑠𝑡 , 𝑎𝑡 , 𝜽𝒕), 𝑄𝜋𝑡(𝑠𝑡+1, 𝑎𝑡+1) ≈
𝑄𝜋𝑡(𝑠𝑡+1, 𝑎𝑡+1, 𝜽𝒕) , so the optimal fitting of Q-function by 

DNN should also satisfy the principle of Bellman optimality 

equation as 

𝑄𝜋𝑡(𝑠𝑡 , 𝑎𝑡 , 𝜽𝒕)  = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾 ×  𝑚𝑎𝑥𝑄𝜋𝑡(𝑠𝑡+1, 𝑎𝑡+1, 𝜽𝒕). 

(13) 

Here the Bellman error is defined as 

ξ = 𝑄𝜋𝑡(𝑠𝑡 , 𝑎𝑡 , 𝜽𝒕) − 𝑟(𝑠𝑡 , 𝑎𝑡) − 𝛾 ×  𝑚𝑎𝑥𝑄𝜋𝑡(𝑠𝑡+1, 𝑎𝑡+1, 𝜽𝒕). 
(14) 

Therefore, the parameters of DNN can be updated by 

minimizing the Bellman error through stochastic gradient 

descent techniques. The pseudocode of the proposed DRL-

based algorithm is provided in TABLE I. It should be noted 

that the bandwidth of links is set to be enough in the online 

scenario. Therefore, the maximum number of requests 𝑁 that 

the system can accommodate mainly depands on the cost of 

computational resource for a request and the total 

computational resource. In the simulation, 𝑁  is estimated in 

advance, then we set the maximum pace 𝑃 based on 𝑁, which 

satisfies this inequality 𝑃 ≤ 𝑁. Considering the extreme case 

that most requests origin from one single BS tends to exhaust 

the local resources of network along the corresponding BS, 𝑃 

is set to 96 in our simulation, which is lower than 𝑁. 

 

V. SIMULATION AND DISCUSSION 

The simulation of the DRL-based algorithm is demonstrated 

in this section. In order to analyze the unified performance of 

DRL-based algorithms, the algorithm is analyzed in two 

scenarios, C-RAN and NG-RAN. The topology of C-RAN is 

TABLE I 

THE PSEUDOCODE OF PROPOSED DRL-BASED ALGORITHM. 

Algorithm: DRL-based algorithm for BBU placement and 

routing 

Input: Set of links = {start node, end node, link length, 

bandwidth capacity}; COs = {capacity of GOPS for each 

CO}; Requests = {RRU’s position, GOPS demand, and 

bandwidth demand of fronthaul and backhaul}. 

Output: the action 𝑎𝑡
∗ for BBU placement and routing for 

current state 𝑠𝑡  . 
1 Initial the parameters of DNN with Gaussian 

distribution and the memory with 3000 spaces. 

2 Set episode number M and the maximum pace 𝑃 

allowed for one episode. 

3 for _ in 1, 2, 3, …, M: 

4      Get the initial network state  𝑠𝑡  and initial  step 

      𝑝𝑡  from the reset of environment. 

5         Initial the request 𝑏𝑡 

6         While 𝑝𝑡 ≤ 𝑃 ∶ 
7               DNN outputs the Q-value 𝑄𝜋𝑡(𝑠𝑡 , 𝑎𝑡 , 𝜽𝒕) under   

                 the current 𝑠𝑡 and request 𝑏𝑡.  

8               Choose the action  𝑎𝑡  by the probability 𝜀 with   

                maximum Q-values and the probability 1 − 𝜀   

                with random action from action space 𝐴. 

9              Use the action 𝑎𝑡 to interact with environment,  

                get the instant return 𝑟(𝑠𝑡 , 𝑎𝑡)  𝑎𝑛𝑑  𝑠𝑡+1. 

10            Send the data [𝑠𝑡, 𝑎𝑡,𝑟(𝑠𝑡, 𝑎𝑡), 𝑠𝑡+1] to the   

                memory. 

11            If  the number of data N > 3000:  

                     Update DNN parameters by stochastic   

                     gradient descent:   𝜽𝒕+𝟏 ←  𝜽𝒕 − 𝜇 ∑ 𝒅 ξ𝑖/
                        𝑑𝜽𝒕 based on a batch of data sampling from   

                     the memory. 

12             𝑠𝑡 = 𝑠𝑡+1. 

13             𝜀 = 𝜀 + 0.000003 (greedy_increment). 

14             If the current request is accepted: 

15                  The next request is generated;  

                         𝑝𝑡 = 𝑝𝑡 + 1;  

16             else: the next request remains the same. 

17       End 

18  End 
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showed in Fig. 1, which contains 7 nodes. And the scenario of 

NG-RAN is more complicated, which contains 17 nodes. The 

bandwidth of each link is initialized to 25 Gbps for C-RAN, 

and the computational resource in each CO is initialized to 

40000 GOPS. The bandwidth requirement of fronthaul and 

backhaul for a given request is 2.2948 Gbps and 0.2432 Gbps 

respectively with the wireless parameters of 100MHz 

spectrum, 2×2 MIMO and 16QAM for upstream. The cost of 

computational resource for BBFs of a request is 1200 GPOS. 

Based on the cost of computational resource for a request and 

the total computational resources, the maximum number of 

requests N that the system can accommodate is estimated as 

192. Considering the extreme case that the most requests of an 

episode from a single RRU may exhaust the bandwidth of a 

link around this base station, the maximum pace P is set to 96. 

The maximum fronthaul latency allowed is 50 μs, which 

equals to 10 km in this paper. The weights (𝛼, 𝛽, 𝛾) for the 

ILP model and the instant return are set as (100, 10, 1).  

A. The simulation for C-RAN 

In order to match the practical scenarios, the result of DRL-

based algorithm is presented in an online scenario, where the 

request matrix is completely random that the next request 

origins from the arbitrary CO. We do the simulations of DRL-

based and first-fit algorithms. Then the random request 

sequence is saved as the input of ILP model. In Fig. 4, the 

convergence presented by the loss of Bellman error and the 

normalized Q-value is plotted against the training steps. We 

can see that the loss of DNN drops quickly as the training 

begins, then converges a very small value. And the normalized 

Q-value decreases at first for the random exploration, then 

increases quickly for the improving policy by the training of 

DNN, finally reaches a large value which means that it has 

achieved a satisfactory policy. According to the definition of 

the instant return value 𝑟(𝑠𝑡 , 𝑎𝑡), Q value is probably a large 

negative value for the currently random policy, so the 

normalized Q-value decreases at first for the random 

exploration, then increases quickly for the improving policy 

by the training of DNN, finally it reaches a large and stable 

value which means that it has achieved a satisfactory policy. It 

exists a small fluctuation both in the error curve and the 

normalized Q-value curve even though their values have 

converged. This is because we have introduced random 

exploration in DRL-based algorithms. 

The value of objection function (1) which represents the 

weighted sum of bandwidth, the active CO’s number and the 

transport latency is showed in Fig. 5. For the random requests 

 
 Fig.5. Value of objective function for different algorithms in C-RAN  

 Fig. 4. Convergence of proposed DRL-based algorithm. 

 

 
Fig. 6.  Required bandwidth for different algorithms. 

 

 
Fig. 7.  Transport latency of different algorithms. 
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from 24 to 96, we find that the function value of DRL-based 

algorithms is almost the same as the ILP model, which are 

both much lower than that of the first-fit algorithm. This result 

proves that the policy of DRL-based algorithm nearly achieves 

the same performance of optimal benchmark by the ILP model.  

Based on Fig. 4 and 5, we can conclude that the proposed 

DRL-based algorithm not only converges quickly, but also 

achieves the sub-optimal results.  

In Fig. 6 and 7, the comparisons of cost for bandwidth and 

the transport latency are made between the first-fit algorithm, 

DRL-based algorithm and the ILP model. The figures show 

that the ILP model achieves the least cost of bandwidth and 

transport latency for the most cases. The cost for DRL-based 

algorithm is very close to the ILP model, and both of their cost 

are far less than the first-fit algorithm. In some scenarios like 

24 and 30 requests, the cost of bandwidth and transport 

latency for DRL-based algorithm is less than the ILP model, 

the optimal benchmark. This is because the weights for the 

objective function of ILP model in (1) are set as (100, 10, 1). 

It means that the most important factor for ILP model is the 

number of active COs (i.e., CO dominates the cost of whole 

network). Therefore, it firstly tends to uses fewer COs to 

reduce the cost of network. It is observed that the solution of 

the ILP model just uses 4 COs while the DRL-based algorithm 

occupies 6 COs for 24 and 30 requests. The ILP model 

searches the best solution to optimize the objective function 

while the DRL-based algorithm explores the possible strategy 

based the Q-value, which is deeply influenced by the instant 

return 𝑟(𝑠𝑡 , 𝑎𝑡). According to the definition of the objective 

function and the instant return value, the strategies of ILP and 

DRL-based algorithms both can be adjusted by changing their 

weights.  

B. The simulation for NG-RAN 

In the NG-RAN scenario, the algorithm is required to the 

select the nodes for CU and DU. A more complex topology 

for the simulation is used in Fig. 8. Services can origin from 5 

possible AAUs randomly. The bandwidth requirement of 

fronthaul, midhaul, and backhaul for a given request is 4.571 

Gbps, 0.487 Gbps and 0.2432 Gbps respectively with the 

wireless parameters of 100MHz spectrum, 4×4 MIMO and 

16QAM for upstream. The cost of computational resource for 

DU and CU of a request is 4600 GPOS and 200 GOPS. The 

maximum pace P is set to 96. The maximum latency allowed 

for fronthaul and midhaul is 100 μs and 500 μs, which equals 

to 20 km and 100 km in this topology [35]. The weights 
(𝛼, 𝛽, 𝛾) for ILP and DRL-based algorithm are consistent with 

the settings in C-RAN. Since the topology changes 

complicatedly with 17 nodes, the possible actions in DRL-

based algorithms increase to 88 from 51 in C-RAN. 
In Fig. 9 and 10, the comparisons of cost for bandwidth and 

the transport latency are made between first-fit, DRL-based 

algorithms and the ILP model in NG-RAN. The figures show 

that the ILP model achieves the best performance, which 

requires the least bandwidth and transport latency for all the 

cases. On the other hand, the cost for DRL-based algorithm is 

very close to ILP model. And these two algorithms outperform 

the first-fit algorithm significantly. According to Fig. 9 and 

Fig. 10, the required bandwidth for DRL-based algorithm is 

completely the same as the ILP model, the transport latency 

for DRL-based algorithm is a bit larger than the ILP model. 

The results denote that the proposed algorithm generates the 

similar policy for the placement of CU/DU, and plans the sub-

 
 Fig.9. Required bandwidth for different algorithms in NG-RAN 

 
 Fig.10. Required transport latency for different algorithms in NG-RAN 

 
Fig. 8. The topology of NG-RAN. 
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optimal routing for the system. The above results and analysis 

show that the DRL-based algorithm has potentials to address 

the decision-making problem in complicated scenarios.  

C. Motivation of DRL-based algorithms in practical systems 

According to the above results, it is concluded that the 

performance of DRL-based algorithm outperforms the first-fit 

algorithm significantly, and it reaches the sub-optimal 

performance compared with the ILP model. The ILP model 

can provide the optimal solution for a set of known requests, 

however, it is difficult to address the online scenarios with 

unpredictable requests because the request input for ILP must 

be predefined. On the other hand, the proposed DRL algorithm 

can adapt to the online scenarios. Through the introduction of 

the random requests in the environment of DRL algorithms, 

the data from the environment can instruct the agent to learn 

the corresponding policy for dynamic scenarios. This is the 

main motivation to explore DRL-based algorithms for BBU 

placement and routing of RAN, because there are 

unpredictable, dynamic and random events such as 4K live 

broadcast, VR/AR, telemedicine, which brings in dynamic 

traffic (time- and spatial-varying). And the final result in the 

paper has proved the proposed algorithm’s effectiveness in an 

online scenario.  

On the other hand, we should pay attention to the 

deployment of DRL-based algorithms in practical systems. 

The unavoidable problem of reinforcement learning is that it 

requires a certain amount of training time, and the time 

increases with the complexity of the problem. To train the 

DRL-based algorithms to generate the policy of BBF 

placement and routing in C-RAN and NG-RAN, it requires 

about 1 hour for the convergence of the algorithms with i5-

8250U CPU and 8 GB RAM. The inference time for obtaining 

an action are microseconds, which can be ignored compared 

with the training time. Therefore, the main concern for 

deploying DRL-based algorithms is to reduce the training time. 

One possible solution is to prepare the pre-trained model in 

advance. In addition to this, the design of action space and the 

instant reward is very important for the fast convergence of 

DRL algorithms. The follow-up work will explore the 

influence of these factors on the algorithms. 

VI. CONCLUSION 

In this paper, we propose a DRL-based algorithm to solve 

the decision-making problem of BBU placement and routing 

for C-RAN and NG-RAN. In order to consider the possible 

dynamic events in practical systems, we design an online 

scenario with random requests to evaluate the proposed DRL-

based algorithm. In addition, the first-fit algorithm and ILP 

model are also used as the baseline algorithms. The simulation 

results show that the proposed DRL-based algorithm 

converges effectively, and it outperforms the first-fit algorithm 

significantly both in offline and online scenarios. The DRL-

based algorithm nearly reaches the optimal performance 

offered by ILP in terms of transport latency and bandwidth 

cost. In the future, the RAN network will be further evolved to 

more dynamic with integration of computing, perception, and 

communications. The dynamic traffic will cause more 

unpredictable events, which will require a self-learning policy 

to optimize the function placements. The performance of 

proposed DRL algorithm in an online scenario proves that 

DRL-based algorithms have potentials to address complicated 

decision-making problem. The proposed DRL algorithm are 

expected to provide the satisfactory performance for networks 

with dynamic events through implementing the training 

environment with random elements.  
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