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Abstract 

The 2019 Ridgecrest sequence provides the first opportunity to evaluate Uniform California 

Earthquake Rupture Forecast Version 3 with Epidemic Type Aftershock Sequences (UCERF3-

ETAS) in a pseudo-prospective sense. For comparison, we include a version of the model 

without explicit faults more closely mimicking traditional ETAS models (UCERF3-NoFaults). 

We evaluate the forecasts with new metrics developed within the Collaboratory for the Study of 

Earthquake Predictability (CSEP). The metrics consider synthetic catalogs simulated by the 

models rather than synoptic probability maps, thereby relaxing the Poisson assumption of 

previous CSEP tests. Our approach compares statistics from the synthetic catalogs directly 

against observations, providing a flexible approach that can account for dependencies and 

uncertainties encoded in the models. We find that, to first order, both UCERF3-ETAS and 

UCERF3-NoFaults approximately capture the spatiotemporal evolution of the Ridgecrest 

sequence, adding to the growing body of evidence that ETAS models can be informative 

forecasting tools. However, we also find that both models mildly overpredict the seismicity rate, 

on average, aggregated over the evaluation period. More severe testing indicates the 

overpredictions occur too often for observations to be statistically indistinguishable from the 

model. Magnitude tests indicate that the models do not include enough variability in forecasted 

magnitude-number distributions to match the data. Spatial tests highlight discrepancies between 

the forecasts and observations, but the greatest differences between the two models appear when 

aftershocks occur on modeled UCERF3-ETAS faults. Therefore, any predictability associated 

with embedding earthquake triggering on the (modeled) fault network may only crystalize during 

the presumably rare sequences with aftershocks on these faults. Accounting for uncertainty in the 

model parameters could improve test results during future experiments. 
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Introduction 

A fundamental question in seismology is: What is the probability of observing an earthquake 

within some predefined space-time-magnitude region? Earthquake forecasting models try to 

answer this question by incorporating ideas of varying complexity about the earthquake process, 

including both empirical statistical relations, such as the Omori-Utsu and Gutenberg-Richter 

relations (Gutenberg and Richter, 1944; Utsu, 1961), and physical modeling, such as Coulomb 

stress calculations (Oppenheimer et al., 1988; King et al., 1994; Stein, 1999; Woessner et al., 

2011; Cattania et al., 2018). The simplest models use locations of previous earthquakes to 

forecast locations of future earthquakes via smoothing (Kagan and Jackson, 1994; Frankel, 1995; 

Werner et al., 2010; Zechar and Jordan, 2010; Werner et al., 2011; Helmstetter and Werner, 

2014). By contrast, UCERF3-ETAS (hereafter U3ETAS) combines long-term earthquake 

probabilities on faults based on elastic rebound statistics with short-term earthquake clustering as 

epidemic type aftershock sequences (Ogata, 1998) into a single model with fault-specific 

magnitude distributions (Field et al., 2017a; Field et al., 2017b). Most notably, U3ETAS 

provides probabilities of triggering ruptures on known faults, such as the Garlock and San 

Andreas faults. U3ETAS is a candidate model for Operational Earthquake Forecasting (OEF) 

issued by the US Geological Survey, motivating model evaluations also from a practical 

perspective.  

 The Collaboratory for the Study of Earthquake Predictability (CSEP) has established the 

philosophy and cyber-infrastructure required to conduct earthquake forecasting experiments in 

an unbiased and transparent fashion (Jordan, 2006; Schorlemmer and Gerstenberger, 2007; 

Jordan et al., 2011; Michael and Werner, 2018; Schorlemmer et al., 2018).  Since its inception, 

CSEP has been using likelihood-based consistency tests (Schorlemmer et al., 2007; Zechar et al., 
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2010; Rhoades et al., 2011; Werner et al., 2011) that are rooted in the concepts that 1) 

earthquakes occur in space-time-magnitude bins independently, 2) earthquakes follow the 

Poisson distribution in each bin, and 3) modelers provide the 'true' parameter of the distribution 

in each bin. Thus, CSEP required that modelers provide forecasts giving the expected number of 

earthquakes in discrete space-time-magnitude bins. This pragmatic simplification allows multiple 

types of models, including those without explicit likelihood functions, to participate in the 

experiments.  

However, Poisson likelihood-based evaluations of gridded forecasts can incorrectly 

report discrepancies between forecasts and observations when the true likelihood function of a 

forecast does not match a Poisson distribution or when strong dependencies exist between events 

within a forecast period. For example, the ETAS model is overdispersed with respect to a 

Poisson process, causing forecasts to be more frequently rejected than expected (Werner and 

Sornette 2008, Lombardi and Marzocchi 2010, Nandan et al., 2019). This is particularly 

noticeable when evaluating forecasts over multiple forecasting periods. 

Evaluating gridded forecasts over multiple time periods exploits the property that the sum 

of N Poisson random variables each with parameter 𝜆𝑖 is a Poisson random variable with 

parameter ∑𝜆𝑖. The same convenience does not hold for catalog-based forecasts, because, in 

general, simulated events in catalogs from later time periods are not consistent with simulated 

events from earlier catalogs. Thus, catalog-based forecasting models should be evaluated for 

consistency by comparing realizations from their predictive distributions against observations. 

This approach is formally referred to as calibration, which is based on the idea that observations 

should be indistinguishable from realizations drawn from the predictive distributions of the 

model (Gneiting et al., 2006; Gneiting et al., 2007; Gneiting and Katzfuss, 2014). In other words, 
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if the model were the data generator, we would expect observations to uniformly sample the 

forecasted distribution over independent trials. 

Fundamentally, calibration is a different type of evaluation approach that can be 

potentially more severe than previously used cumulative evaluations. For example, evaluations 

over individual periods might indicate that observations consistently fall within the forecasted 

distribution, but instead of sampling the forecasted distribution uniformly they are concentrated 

towards one end. Thus, the model would fail calibration, but potentially pass a cumulative test. 

Understanding the overall performance of these models is more important than ‘rejecting’ a 

particular forecast; therefore, we focus on characteristics of the models and differences between 

models that potentially uncover new insights that might lead to model improvements. 

Page and van der Elst (2018) introduced Turing-style evaluations for assessing 

forecasting models that produce synthetic catalogs. The tests evaluate important features of the 

simulated catalogs such as: aftershock productivity, seismicity rate, magnitude distribution, and 

clustering behavior. The Turing tests provide useful insights into the behavior of the forecasts, 

and can help to inform modeling decisions and identify discrepancies between the model and 

observations. However, they are not well suited for consistency testing or calibration, because 

they do not formally score forecasts against observations.  

 Here, we introduce new validation methods (consistency tests) for catalog-based 

earthquake forecasting models. Most notably, these methods relax the assumption that 

earthquakes follow independent Poisson distributions in discrete space-time-magnitude bins 

(Schorlemmer et al., 2007). Catalog-based forecasts differ from gridded forecasts in that they can 

capture the full aleatory variability of the model and can also account for epistemic uncertainty 

(such as in parameter estimates). Exhaustive sets of simulated catalogs retain the full 
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spatiotemporal dependencies amongst modeled earthquakes, i.e., they can reflect the full 

complexity of the model through simulations. We build predictive distributions from the 

forecasts, empirically, by defining statistics that emphasize important characteristics of 

seismicity. This enables hypothesis testing and calibration of probabilistic forecasts over multiple 

evaluation periods. 

 We organize this manuscript as follows. First, we introduce the evaluation metrics for 

catalog-based forecasts. We then apply the metrics to forecasts made during the Ridgecrest 

sequence for an eleven-week period following the Mw 7.1 mainshock. To benchmark the fault-

based triggering component of U3ETAS, we also generate and evaluate forecasts from a simpler 

version of the model, named UCERF3-NoFaults (hereafter NoFaults), which removes the fault 

component of U3ETAS. We discuss the primary differences between U3ETAS and NoFaults in 

the Methods section. Finally, we discuss the evaluation results with respect to U3ETAS and 

NoFaults and comment on the evaluation metrics. 

Methods: Evaluations 

Definitions and Notation 

We introduce some notation to help us define evaluations in the context of earthquake 

forecasts that are specified as synthetic earthquake catalogs. First, we define a testing region 𝓡, 

as the combination of a magnitude range 𝓜,  spatial domain 𝓢, and time period 𝓣:  

 

 𝓡 = 𝓜 × 𝓢 × 𝓣. (1) 
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These individual components can be regarded as filters that operate on a catalog which retain 

only the events within 𝓡.  

Let us consider an event, 𝑒 = (𝑡, 𝒙, 𝑚). Each 𝑒 can be specified exactly by its origin time, 

𝑡, geographic location, 𝒙, and magnitude, 𝑚. The spatial coordinate, 𝒙, typically refers to a 

latitude and longitude pair, but can also include depth. Thus, an earthquake catalog is simply a 

collection of events.  

We define an observed catalog as  

  

 Ω = {𝑒𝑖 | 𝑖 = 1, … , 𝑁𝑜𝑏𝑠; 𝑒𝑖 ∈ 𝓡}.  (2) 

 

Here, Ω is the observed catalog containing 𝑁𝑜𝑏𝑠 observed events, 𝑒𝑖, within 𝓡. This catalog is 

used as the testing data set for the evaluations.  

A forecast is a collection of synthetic catalogs whose events 𝑒̃𝑖𝑗 in 𝓡 are defined as  

 

 𝚲 ≡  Λ𝑗 = {𝑒̃𝑖𝑗 | 𝑖 = 1, … , 𝑁𝑗; 𝑗 = 1, … , 𝐽;  𝑒̃𝑖𝑗 ∈ 𝓡}.  (3) 

 

The forecast, 𝚲, contains 𝐽 synthetic catalogs each with 𝑁𝑗 events. Λ𝑗 indicates the 𝑗𝑡ℎ 

catalog of the forecast 𝚲, likewise 𝑒̃𝑖𝑗 denotes the 𝑖𝑡ℎ  event from the 𝑗𝑡ℎ synthetic catalog of 

𝚲. Each Λ𝑗 is a synthetic catalog that represents a continuous space-time-magnitude realization of 

seismicity generated by the model. The synthetic catalogs from the forecast and the observed 

catalog share the same event definitions, therefore the same statistics can be readily applied to all 

catalogs.  
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The testing methodology presented here follows three guiding principles: (1) statistics 

should be calculated directly from the simulated and observed catalogs to build test distributions 

empirically; (2) testing methods should be able to preserve space-time-magnitude dependencies 

between events that are encoded in the model and may exist within the earthquake process; and 

(3) these tests should reduce their reliance on approximate likelihood functions of models, 

whether parametric in the case of the Poisson assumption or non-parametric in the case of the 

spatial test and pseudo-likelihood tests presented here. The last principle requires compromise if 

(approximate) likelihood-based inference remains desirable for model comparison, especially if 

no analytical likelihood function is available. Models without explicit likelihood functions are 

also known as generative or simulator-based models (Gutmann and Corander, 2016), which is 

the case for U3ETAS. In the remainder of this section, we define a suite of evaluations that can 

be used to evaluate the consistency of earthquake forecasts specified as synthetic catalogs against 

observed seismicity. These evaluations by no means represent an exhaustive set of metrics that 

can be used to evaluate catalog-based forecast models. 

 

Number Test 

The number test asks whether the number of earthquakes observed in 𝓡 is inconsistent with the 

forecasted number distribution by assessing whether the observed number falls into the tails of 

the forecast distribution (Kagan and Jackson, 1995; Schorlemmer et al., 2007; Zechar et al., 

2010). The test statistic for an arbitrary catalog, 𝜉, is 𝑁 = |𝜉|, where the bars denote the count of 

events in the catalog. Thus, the observed statistic is 

 

 𝑁𝑜𝑏𝑠 = |Ω|, (4) 
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or simply the number of events in the observed catalog. To build the test distribution from the 

forecast 𝚲 we calculate this statistic for every catalog forming the vector: 

 

 𝑁𝑗 = |Λ𝑗|; 𝑗 = 1, … , 𝐽. (5) 

 

To identify potentially important discrepancies between the observation and the forecast 

distribution, we compute the quantiles of the observed number in the empirical cumulative 

distribution function (CDF) of the forecast distribution (Equation 5) according to 

 

  𝛿1 = 1 − 𝐹𝑁(𝑁𝑜𝑏𝑠 − 1) = 𝑃(𝑁𝑗 ≥ 𝑁𝑜𝑏𝑠) (6) 

 

and 

 𝛾𝑁 = 𝛿2 = 𝐹𝑁(𝑁𝑜𝑏𝑠) = 𝑃(𝑁𝑗 ≤ 𝑁𝑜𝑏𝑠).  (7) 

 

𝐹𝑁(𝑛) denotes the empirical cumulative distribution function of 𝑁𝑗. For the number test, we 

should consider a two-sided test to assess the probabilities of observing (1) at least and (2) at 

most 𝑁𝑜𝑏𝑠 events, a distinction that becomes important when forecasted and observed numbers 

are small (Zechar et al., 2010). 𝐹𝑁(𝑛) denotes the empirical predictive CDF of 𝑁𝑗. For a 

probabilistically calibrated forecast, we expect the quantile scores, 𝛾𝑁, to uniformly sample the 

forecasted number distribution over multiple independent trials.  
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Magnitude Test  

The magnitude test evaluates whether an observed magnitude-frequency distribution (MFD) is 

inconsistent with the forecasted MFD. We base this statistic on a square metric computed from 

the difference in logarithms between the incremental MFDs of the so-called union catalog ΛU, 

individual catalogs Λj, and the observed catalog Ω. This metric is loosely related to the quadratic 

Cramer von-Mises and Anderson tests (Anderson, 2006). Using the logarithm of bin-wise 

magnitude counts places greater weight on magnitude bins with relatively fewer observed (and 

predicted) earthquakes, which typically occur at larger magnitudes. Thus, each missed (or over-

predicted) event at larger magnitudes should contribute more to the test statistic than the same 

absolute error between smaller magnitudes. 

We first define the union catalog Λ𝑈 as  

 

 Λ𝑈 = {Λ1 ∪ Λ2 ∪ … ∪ Λ𝐽}. (8) 

 

The union catalog Λ𝑈 contains all events from 𝚲 totaling 𝑁𝑈 = ∑ |Λ𝑗|𝐽
𝑗=1  events. We compute 

the standard histograms of (1) Λ𝑈
(𝑚)

, the magnitudes of the union catalog, (2) Λ𝑗
(𝑚)

, the 

magnitudes of each individual synthetic catalog, and (3) Ω(𝑚), the observed magnitudes, with all 

histograms discretized according to 𝓜 (say, in increments of 0.1 magnitude units). We 

normalize all histograms so that ∑ 𝜉(𝑚)(𝑘)  = 𝑁𝑜𝑏𝑠𝑘 , where 𝜉(𝑚)(𝑘) represents the normalized 

number of events in the 𝑘𝑡ℎ bin of the incremental MFD for an arbitrary catalog. This ensures 

that differences in forecasted rates do not contribute directly to the bin-wise sum, although the 

earthquake rate may implicitly affect the shape of the MFD. We compute the observed statistic 
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as the sum of squared logarithmic residuals between the normalized observed magnitude and 

union histograms following   

 

 𝑑𝑜𝑏𝑠 = ∑ (log [
𝑁𝑜𝑏𝑠

𝑁𝑈
Λ𝑈

(𝑚)(𝑘) + 1] − log[Ω(𝑚)(𝑘) + 1])
2

.

𝑘

 (9) 

 

Λ𝑈
(𝑚)(𝑘) and Ω(𝑚)(𝑘) represent the count in the 𝑘𝑡ℎ bin of the incremental MFDs from the union 

and observed catalogs, respectively. We add unity to each bin to prevent the singularity 

associated with log(0). Since we are only concerned with differences between two MFDs, this 

modification does not bias the statistic. Next, we build the test distribution from the catalogs in 

𝚲, i.e., the distribution of test statistics if the forecast model were the data-generating model 

following  

 

 𝐷𝑗 = ∑ (log [
𝑁𝑜𝑏𝑠

𝑁𝑈
Λ𝑈

(𝑚)(𝑘) + 1] − log [
𝑁𝑜𝑏𝑠

𝑁𝑗
Λ𝑗

(𝑚)(𝑘) + 1])

2

𝑘

;  𝑗 = 1, … 𝐽. (10) 

 

Here, Λ𝑗
(𝑚)(𝑘) indicates the count of events in the 𝑘𝑡ℎ magnitude bin from the 𝑗𝑡ℎ synthetic 

catalog. Finally, we compute the quantile score of 𝑑𝑜𝑏𝑠 within the empirical cumulative 

distribution function defined as 

 

 𝛾𝑚 = 𝐹𝐷(𝑑𝑜𝑏𝑠) = 𝑃(𝐷𝑗 ≤ 𝑑𝑜𝑏𝑠).  (11) 
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We expect the quantile scores, 𝛾𝑚, should uniformly sample the test distribution 𝐷𝑗  for either 

forecast.                 

 

Pseudo-Likelihood Test 

Here, we introduce a statistic based on the continuous point-process likelihood function (Daley 

and Vere-Jones, 2004). While this statistic resembles the likelihood scores used by previous 

CSEP experiments (e.g., Schorlemmer et al., 2007), there are two differences. First, we do not 

compute an actual likelihood, whence the name pseudo-likelihood. Second, this pseudo-

likelihood statistic is aggregated over target event likelihood scores as opposed to the Poisson 

likelihood scores computed over discrete cells (see also Rhoades et al., 2011). In the case of zero 

or one events the pseudo-likelihood and the Poisson likelihood scores are identical. Finally, and 

most importantly, we build test distributions of pseudo-likelihood scores using the simulated 

(non-Poissonian) catalogs provided by the forecasting model, thereby producing distributions 

that better represent models that are over-dispersed and more clustered than a Poisson process.  

 A continuous marked space-time point process can be represented by its conditional 

intensify function 𝜆(𝒆 | 𝐻𝑡), where Ht denotes the history of all earthquake occurrences (and any 

other relevant input data) prior to time t. The log likelihood function of any point-process over a 

region 𝓡 is  

 

 𝐿 = ∑ ln 𝜆(𝑒𝑖 | 𝐻𝑡) − ∫ 𝜆(𝒆 | 𝐻𝑡)𝑑𝓡.
𝓡

 

𝑁

𝑖=1

 (12) 
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CSEP seeks to accommodate a wide range of stochastic models, including generative or 

simulator-based models such as UCERF3-ETAS without explicit conditional intensity or 

likelihood functions. CSEP therefore does not require an explicit likelihood function for 

evaluation (although models that contain explicit likelihood functions can be evaluated using this 

idea, e.g., Ogata et al., 2013).  

Instead, we approximate the expectation of 𝜆(𝒆 | 𝐻𝑡) using the forecasted catalogs. To do 

this we introduce a discretization of 𝓡 similar to previous CSEP experiments. Heuristically, the 

approximate rate density is defined as the conditional expectation, given the discretized region, 

𝓡𝒅, of its continuous rate density: 

 

 𝜆̂(𝒆 | 𝐻𝑡) = 𝐸[𝜆(𝒆 | 𝐻𝑡) | 𝓡𝒅]. (13) 

 

Conceptually, we can still regard the model as continuous in space, time and magnitude, 

but its rate density is only approximated and takes a constant value within a given cell. The 

approximate rate density is readily derived from the standard CSEP forecast of gridded expected 

rates, by computing the mean event count from the forecast, 𝚲, in each cell in 𝓡𝒅. The discrete 

grid cells are used only for approximation purposes; we use the synthetic catalogs from the full 

model to calculate the pseudo-likelihood statistic (rather than catalogs of the approximate 

model).  

From the approximate rate density (Equation 13), we can define the pseudo log likelihood 

𝐿̂ by 

 𝐿̂ = ∑ ln 𝜆̂(𝑒𝒊 | 𝐻𝑡) − ∫ 𝜆̂(𝒆 | 𝐻𝑡)𝑑𝓡.
𝓡

 

𝑁

𝑖=1

 (14) 



 

Evaluating Catalog-based Forecasts 14 

The pseudo-likelihood test applied here considers a discretized region in space to avoid 

introducing artifacts into the forecasts (such as minimum “water-levels” and smoothing operators 

that could bias the evaluations) to account for under-sampling in space-magnitude bins. 

Formally, we can write the spatial approximate rate density as 

 

 𝜆̂𝑠(𝒆 | 𝐻𝑡) = ∑ 𝜆̂(𝒆 | 𝐻𝑡)

𝓜

. (15) 

 

If 𝜆̂𝑠(𝑘) denotes the approximate rate density in the 𝑘𝑡ℎ spatial cell of the model, we can 

compute the observed pseudo-likelihood score using, 

 

 𝐿̂𝑜𝑏𝑠 = ∑ ln 𝜆̂𝑠 (𝑘𝑖) − 𝑁̅.

𝑁𝑜𝑏𝑠

𝑖=1

 (16) 

 

Here 𝑘𝑖 denotes the spatial cell in which the 𝑖𝑡ℎ event occurs and 𝑁̅ denotes the expected number 

of events in 𝓡𝒅. Following Equation 16, we compute the statistics for the test distribution as  

 

 𝐿̂𝑗 = [∑ ln 𝜆̂𝑠(𝑘𝑖𝑗) − 𝑁̅

𝑁𝑗

𝑖=1

] ; 𝑗 = 1, … , 𝐽. (17) 

 

Here 𝜆̂𝑠(𝑘𝑖𝑗) denotes the approximate rate density of the 𝑖𝑡ℎ event of the 𝑗𝑡ℎ catalog from the 

forecast. We combine Equation 16 and Equation 17 to obtain the quantile score 
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 𝛾𝐿 = 𝐹𝐿(𝐿̂𝑜𝑏𝑠) = 𝑃(𝐿̂𝑗 ≤ 𝐿̂𝑜𝑏𝑠).  (18) 

 

The statistic captures simultaneously the spatial component and the rate component of the 

forecast. Thus, potential discrepancies in both rate and the spatial components of the forecasts 

should be reflected in this statistic. As with the magnitude test and the number test, we expect 

that the quantile scores 𝛾𝐿 should be uniformly distributed over multiple evaluation periods. 

 

Spatial Test – Geometric Average of Target Event Rate Distribution   

The spatial test isolates the spatial distribution of the forecast to evaluate whether the observed 

locations are consistent with the forecasted spatial distribution. This statistic utilizes the 

approximate rate density (Equation 15) with normalization 𝜆̂𝑠
∗ = 𝜆̂𝑠/ ∑ 𝜆̂𝑠𝓡  to isolate the spatial 

component of the forecast.  

We define the observed spatial statistic according to 

 

 𝑠𝑜𝑏𝑠 = [ ∑ ln 𝜆̂𝑠
∗(𝑘𝑖)

𝑁𝑜𝑏𝑠

𝑖=1

 ] 𝑁𝑜𝑏𝑠
−1 , (19) 

 

where 𝜆̂𝑠
∗(𝑘𝑖) denotes the normalized approximate rate density in the 𝑘𝑡ℎ cell corresponding to 

the 𝑖𝑡ℎ event in 𝛀. Likewise, we can define the test distribution for the statistic defined in 

Equation (19) using 
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 𝑆𝑗 = [∑ ln 𝜆̂𝑠
∗(𝑘𝑖𝑗)

𝑁𝑗

𝑖=1

] 𝑁𝑗
−1 ; 𝑗 = 1, … , 𝐽. (20) 

  

As above, 𝜆̂𝑠
∗(𝑘𝑖𝑗) denotes the approximate rate density in the 𝑘𝑡ℎ cell corresponding to the 𝑖𝑡ℎ 

event in the 𝑗𝑡ℎ simulated catalog. The observed spatial statistic (Equation 19) is scored by 

computing quantiles in the test distribution (Equation 20) using, 

 

 𝛾𝑆 = 𝐹𝑆(𝑠̂𝑜𝑏𝑠) = 𝑃(𝑆̂𝑗 ≤ 𝑠̂𝑜𝑏𝑠). (21) 

 

We interpret this statistic as being the geometric mean of the target event rate 

distribution. Normalizing 𝜆̂𝑠 and computing the geometric mean of the target event rate 

distribution ensures that two catalogs (from the same forecast) with events occurring in identical 

bins will result in equivalent spatial test statistics irrespective of the number of events in either 

catalog. If the model were the data generator, we expect that 𝛾𝑆 will be uniformly distributed 

over multiple evaluation periods. 

 

Testing Over Multiple Periods 

 To assess models over many periods, we exploit the following idea: quantile scores over 

multiple periods should be uniformly distributed if the model is the data generator (Gneiting and 

Katzfuss, 2014). Departures from a uniform distribution of the quantile scores flag discrepancies 

between the forecasting model and observation. Formally, we employ a Kolmogorov-Smirnov 

test between the quantile scores and the uniform distribution to test the hypothesis that the 
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observed quantile scores are uniformly distributed. We calculate the p-value of this test and use a 

significance level 𝛼 = 0.05 to identify discrepancies.  

Graphically, we consider different patterns of variation of the observed quantile scores 

from a uniform distribution. A model that under-predicts the test statistic produces a graph 

similar to that in Figure 1a. In this case, there is a small proportion of low quantile scores and a 

high proportion of high quantiles compared to the uniform distribution, because the observed 

test-statistic tends to be higher than the simulated test-statistic. Conversely, a model that tends to 

over-predict the test statistic produces a graph similar to Figure 1b, because in that case the 

actual test statistic tends to be lower than the simulated test statistics. If the model test statistics 

are under-dispersed relative to the observed test statistics, then the quantile scores will fall near 

the end-points 0 and 1 of the distribution. This produces the pattern seen in Figure 1c. 

Conversely, if the model test statistics are over-dispersed relative to the actual test statistic, the 

pattern seen in Figure 1d will be the result. 

 

Methods: Pseudo-Prospective Experiment Design 

The 2019 Ridgecrest sequence provides the first opportunity to evaluate operational aftershock 

forecasts in a pseudo-prospective sense. A pseudo-prospective experiment preserves the time-

dependent causality of the data set by partitioning the dataset into a training set and a testing set 

(Schorlemmer et al., 2018), which happened naturally as these forecasts were computed in near 

real-time during the Ridgecrest sequence. Most of the forecasts produced in this study were 

computed in near-real-time using real-time data products with the exceptions listed in Table 1. 

The forecasts presented in this study use the ShakeMap (v.14) source model and default 
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parameters described in Milner et al. (2020). We evaluate the forecasts starting at 𝑡 = 0 and 𝑡 =

7 days following the Mw 7.1 mainshock (along with the nine others) in this study. 

 

Data 

 For this experiment, we use authoritative data from the Advanced National Seismic 

System (ANSS) provided by the United States Geological Survey (USGS) Comprehensive 

Catalog (ComCat). The evaluation data were accessed from ComCat on 11 November 2019, 

approximately 60 days following the date of the final forecast. We use the data directly provided 

by ComCat, and do not attempt to standardize magnitude types or manually relocate events. We 

apply the time-dependent magnitude of completeness model from Helmstetter et al. (2006) to 

account for missing events following the mainshock, modeled by a time-dependent magnitude of 

completeness 𝑀𝑐(𝑡). Therefore, the evaluation catalog has a threshold magnitude 

 

 𝑀𝑡(𝑡) = max(𝑀𝑚𝑖𝑛, 𝑀𝑐(𝑡)). (22) 

 

Here, 𝑀𝑚𝑖𝑛 , represents a minimum magnitude that is either defined to be 𝑀𝑚𝑖𝑛 = 2.5 or 𝑀𝑚𝑖𝑛 =

3.5, in the case of the number test. We apply the time-dependent magnitude of completeness 

model to both forecasted and observed catalogs. The inset in Figure 2a shows the events used for 

this study along with the time-dependent magnitude of completeness. In the 77 days following 

the Mw 7.1 Ridgecrest event, the catalog lists 1,362 events with 𝑀 ≥ 2.5 in the study region.  

Finite-fault representations for trigger ruptures are based on surface field mapping and 

geodetic observations, and were provided by ShakeMap (Wald et al., 1999). These finite-fault 

models were made available on 11 July 2019 within six days after the Mw 7.1 mainshock. Milner 
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et al. (2020) explains the various finite-fault representations available and the sensitivity of the 

forecasts to these. 

 

Earthquake Forecasting Models 

We consider two forecasting models, (1) UCERF3-ETAS (U3ETAS) and (2) UCERF3-

NoFaults (NoFaults). The former model is explained in detail by Field et al. (2017b), so we 

summarize the important differences between U3ETAS and NoFaults here. Field et al. (2017a) 

provides a less technical overview of the UCERF3-ETAS model for the interested reader. The 

full mathematical description of these models can be found in the above manuscripts and their 

appendices. 

U3ETAS is unique as compared with standard ETAS models, because the model includes 

finite faults that can host so-called supraseismogenic earthquakes. In U3ETAS, a 

supraseismogenic earthquake is defined as an earthquake with a rupture length at least as long as 

the seismogenic fault width. When a large earthquake in close enough proximity to a U3ETAS 

fault is sampled by ETAS, that earthquake is mapped onto the modeled fault-sections. 

Subsequently, the rates of all events that utilize the ruptured sections are modified according to 

Reid renewal statistics (Reid, 1910; Field et al., 2015). Therefore, U3ETAS provides stochastic 

event sets with ruptures on modeled finite faults in addition to ‘off-fault’ ruptures elsewhere, 

following a traditional ETAS model. U3ETAS makes no model-wide assumptions about 

magnitude-frequency distributions on faults, with most exhibiting non Gutenberg-Richter (GR) 

behavior depending on the relative rate of microseismicity versus inferred fault-based ruptures.  

On average the faults are slightly characteristic (elevated rates at higher magnitudes), which 

means off-fault areas are slightly anti-characteristic so that combined a GR b-value of 1.0 is 
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maintained. However, the model assigns the regional faults surrounding the Ridgecrest sequence 

an anti-characteristic behavior (Field et al., 2017b; Milner et al., 2020) implying lower 

probabilities of triggering supraseismogenic aftershocks than under a pure GR model. In 

contrast, NoFaults applies the state-wide G-R relationship (b-value=1.0) throughout the entire 

model.  

As the name suggests, NoFaults does not include information about modeled faults and 

behaves similar to a traditional space-time ETAS implementation (Ogata and Zhuang, 2006). 

Both U3ETAS and NoFaults explicitly model the depth distribution of seismicity. The 

computational requirements for the two models differ by approximately an order of magnitude, 

with U3ETAS being more expensive. Because model simplicity and computational efficiency are 

two desirable characteristics of robust operational forecasting tools (Jordan and Jones, 2010; 

Jordan et al., 2011), we seek to understand the relative predictive skills and usefulness of the 

models.  

The forecasts issued by both U3ETAS and NoFaults consist of a family of 100,000 

synthetic catalogs constrained to the bounding-box of the CSEP California testing region 

(Schorlemmer and Gerstenberger, 2007).  As inputs to all forecasts, we include earthquakes with 

M2.5+ for seven days prior to the Mw 7.1 mainshock until the start-time of each forecast, 

including the Mw 6.4 Searles Valley event. We use identical input catalogs for both U3ETAS and 

NoFaults to maintain direct comparability between the two forecasts. Also, we do not include 

spontaneous (background) events in the conditioning data for the forecasts. Therefore, any 

discrepancies between the forecast and observations can be attributed to the implementation of 

the short-term components of the model and not the background seismicity model.  
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Spatial Region, Magnitude Bins, and Forecast Horizons 

For this experiment, we choose magnitude bins 

 

 𝓜 = {[2.5, 2.6), [2.7, 2.8), … , [8.4, 8.5), [8.5, ∞)}. (23) 

 

The bins are uniformly spaced at Δ𝑀 = 0.1 except for the right-most bin which extends 

to infinity. We remove events outside a spatial zone of three Wells and Coppersmith (1994) fault 

radii from the M7.1 epicenter (143 km) to isolate the Ridgecrest aftershocks from other 

seismicity. Each forecast horizon extends for seven non-overlapping days, which we treat as 

independent time intervals. Figure 2b shows the spatial extent of the circular region surrounding 

the hypocenter of the Mw 7.1 mainshock and the observed M2.5+ events during this time period.  

These definitions completely define the extent of 𝓡 for our experiment. All forecasts are 

evaluated for seven days following the forecast start time to preserve effects of short-term 

clustering in the observed catalog. Table 1 contains the exact start and end times for all the 

forecasts considered in this study, which consist of eleven non-overlapping time periods 

following the Mw 7.1 mainshock. All but two U3ETAS forecasts were computed prospectively 

using real-time catalogs and data. The NoFaults simulations were run pseudo-prospectively, but 

using the same input catalogs and input finite-fault models as U3ETAS. 

Results 

Before we share the results of the quantitative evaluations of the forecasts, we show how 

differences between U3ETAS and NoFaults manifest in individual synthetic catalogs. Since the 

models are similar for events smaller than ~Mw 6.5, catalogs display similar characteristics for 
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‘typical’ realizations (Figure 3a,c), defined here as catalogs representing the median of the 

forecasted number distribution. The differences become obvious when viewing catalogs (Figure 

3b,d) that sample the tails of the number distribution at the 99.9th percentile. We call these 

catalogs ‘extreme’ as they forecast rare, but possible, large aftershock sequences on potentially 

multiple faults. Extreme U3ETAS scenarios involve ruptures triggered on the Garlock fault and 

subsequently on the San Andreas fault. Their respective aftershocks are largely constrained 

within the fault zones. On the other hand, NoFaults assigns aftershock locations isotropically in 

space resulting in (nearly) isotropic catalogs that contain clusters of earthquakes (Figure 3d). 

 The differences illustrated in Figure 3, namely in the catalogs at the tails of the forecast, 

complicate robust model comparisons using typical California aftershock sequences, which only 

occasionally involve triggering of large aftershocks on (mapped) faults. This is because the 

models produce very similar (visually nearly indistinguishable) catalogs near the modes and 

medians of the number distributions. Sequences such as the 1992 Landers earthquake cascade 

and others that are thought to have triggered other large ruptures could help distinguish between 

these two models (Kisslinger and Jones, 1991; Hauksson et al., 1993; Freed and Lin, 2001).  

We show test results as quantile scores for all evaluations in Table 2. The overall 

(aggregate) scores over all forecast periods are reported as p-values of Kolmogorov-Smirnov 

tests between a uniform distribution and the quantile scores of each test computed at the updating 

periods shown in Table 1. 

 

Forecasted Seismicity Rates 

Figure 4 shows the forecasted number distributions as a function of time during the 

aftershock sequence for both 𝑀𝑡(𝑡) = max(2.5, 𝑀𝑐(𝑡)) and 𝑀𝑡(𝑡) = max(3.5, 𝑀𝑐(𝑡)).  
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We observe the largest variability in the number distribution immediately following the 

mainshock, which decreases rapidly throughout the evaluation period. During the first evaluation 

period the median forecasted numbers are 925 and 956 for U3ETAS and NoFaults, respectively, 

with 829 observed events during this period. The median forecasted event counts are identical 

between the two models for the remaining forecasting periods. 

We compute number test results for each forecast by reporting quantile scores for 

individual testing periods as a function of evaluation day (Figure 5a). Except for the first day, 

both forecasts produce nearly identical quantile scores. The difference in number distributions 

during the first forecasting period can potentially be explained by the anti-characteristic behavior 

of the U3ETAS faults surrounding the aftershock sequence. This behavior results in U3ETAS 

producing fewer large (M6.5+) events, along with their numerous aftershocks, and subsequently 

fewer catalogs with large numbers of aftershocks. During the first forecasting period, the 95- 

percentile range of the number distribution are (751, 2482) and (756, 3906) for U3ETAS and 

NoFaults respectively.  

Figure 5b shows the number test quantile scores compared against standard uniform 

quantiles as a quantile-quantile plot. We assign the standard uniform quantiles following 𝑈(𝑘) =

𝑘/(𝑛 + 1), for 𝑘 = 1, … , 𝑛, to space the quantiles equally along the distribution. We compute 

confidence intervals for the 𝑘𝑡ℎ order statistic of the standard uniform distribution using 𝑈(𝑘) ∼

Β(𝑘, 𝑛 + 1 − 𝑘) where 𝑛 is the number of observations (Jones, 2004). 

The distribution of quantile scores indicates the forecasts overpredict the observed 

seismicity (Figure 1b), as the observed numbers of earthquakes too frequently fall into the lower 

tails of the forecasted distributions. At both magnitude cutoffs, the Kolmogorov-Smirnov tests 

reject the hypothesis that the distribution of quantile scores from the number test are uniformly 
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distributed. This suggests that, given this limited forecasting period, the observations are not 

indistinguishable from realizations from the forecast number distribution. 

 

Magnitude Number Distribution 

 Figure 6a shows incremental MFDs aggregated over the eleven-week evaluation period. 

For the union MFD, Λ𝑈
(𝑚)

, and observed MFDs, Ω𝑈
(𝑚)

, we sum bin-wise counts from each 

evaluation period to obtain aggregate counts. We estimate percentiles using an aggregate 

forecasted MFD (thin lines in Figure 6). We generate the aggregate forecasted MFD using a 

bootstrapped approach where we randomly sample one MFD per forecast per time-period and 

sum bin-wise counts over each evaluation period. This produces 100,000 aggregate MFDs 

approximating an MFD representative of the eleven-week evaluation period. Except between 

M3.0 and M4.0 the observations generally fall within the variability of the forecasted MFD. 

Above M6.5 we see differences in the tails of the magnitude frequency distributions that further 

show how the anticharacteristic MFDs assumed by U3ETAS manifest in the forecasts.  

Figure 6b shows the bin-wise value of the magnitude test statistic over the full evaluation 

period to highlight the bin-wise contribution to the overall magnitude test statistic. From the bin-

wise statistic, we can obtain the magnitude test statistic in Equation 9 by summing over all 

magnitude bins. This figure illustrates that discrepancies at larger magnitudes contribute more 

(per event) to the value magnitude test statistic, but this must be reconciled with statistics 

computed from simulated catalogs. We can identify bins whose values contribute most to the 

discrepancy between observations and forecasts by assessing the observed statistic with respect 

to the bin-wise distribution of magnitude test statistics. 
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The percentiles in Figure 6b (for both U3ETAS and NoFaults) are estimated from the 

bin-wise distributions of magnitude test statistics based on the bootstrapped aggregate MFD 

(explained above). We can associate the large peak observed near M4.7 in Figure 6b with 

catalogs from either model that contain zero events in that magnitude bin. This can be seen by 

comparing the square bin-wise difference with the union MFD and zero observed events in 

Figure 6a. The percentiles in Figure 6b indicate 2.5% of the catalogs contain no events at this 

magnitude, and 16% of the catalogs contain no events at M5.0. The largest discrepancies with 

respect to the forecasts occur from around M3.0 through M4.0 indicated by the observed bin-

wise values falling outside the 95th percentile range of the bin-wise distribution. Generally, the 

observed values are frequently greater than the median from their respective bin-wise 

distributions, and this behavior is not confined to a particular magnitude range. 

 Figure 7a shows quantile scores for each evaluation period following the Mw 7.1 

mainshock to assess the performance of the forecast over multiple updating periods. The shaded 

region in Figure 7a indicates the critical region assuming a 0.05 significance level for a right-

tailed statistical test. (In this magnitude test, larger-than-expected values of the statistic, i.e. large 

quantile scores, indicate larger discrepancies). Figure 7b shows the quantile-quantile plot of the 

magnitude test scores against standard uniform quantiles. The quantile scores, 𝛾𝑚, do not sample 

the test distribution uniformly and are instead concentrated near the upper end. The Kolmogorov-

Smirnov test thus rejects the hypothesis of a uniform distribution of the quantile scores. The 

pattern in Figure 7b implies persistently greater-than-expected differences between the observed 

magnitude distribution and the forecast. The pattern of magnitude test quantile scores reflects the 

finding in Figure 6b that the bin-wise magnitude scores are typically greater than the median bin-

wise values. 
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Spatial Distribution of Seismicity and Pseudo-likelihood Test 

 Figure 8a,b shows the approximate spatial rate density (Equation 15) for both U3ETAS 

and NoFaults during the first evaluation period following the Mw 7.1 mainshock. The expected 

cell-wise event counts clearly show differences between U3ETAS and NoFaults, specifically the 

increased expected rates along modeled faults in U3ETAS. The relatively high rates along the 

Garlock fault, for example, are dominated by catalogs containing supraseismogenic ruptures 

along these faults (which occur in about 7% of the catalogs). Thus, we should expect to see 

noticeable differences between these two models with observations of such aftershock 

sequences. 

Figure 8c shows test distributions of spatial statistics for a single week-long forecast 

immediately following the Mw 7.1 mainshock. Likewise, Figure 8d shows test distributions for 

the pseudo-likelihood score. Positive values of the pseudo-likelihood scores can occur when 

multiple target events occur within the same spatial bin with 𝜆̂𝑠 ≫ 1 (the Poisson likelihood 

contains an explicit term to account this discretization artifact that does not appear in the pseudo-

likelihood statistic), which can happen when scoring catalogs that sample upper tails of the 

number distribution. For this evaluation period, the observed statistic, 𝐿̂𝑜𝑏𝑠, lies in the lower tail 

of the test distribution 𝐿̂. 

 The aggregate spatial test result in Figure 9a shows quantile scores and pseudo-

likelihood quantiles for each evaluation period since the Mw 7.1 mainshock. In general, U3ETAS 

tends to have larger quantile scores, and thus, more favorable test statistics for a given forecast 

than NoFaults. We find that if differences are observed, they appear in both the pseudo-

likelihood and spatial test statistics. Comparisons of quantile scores against the uniform 

distribution (Figure 9b) show the statistic from the observed catalog tends to fall in the lower tail 
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of the spatial test distribution for most forecasts. Thus, according to the spatial test, random 

draws from the forecasted distribution are distinguishable from the observations; the latter more 

frequently occur in cells of lower rates than expected by the models. 

The pseudo-likelihood quantiles 𝛾𝐿 shows seemingly better agreement with the standard 

uniform quantiles (we compute p=0.0280, p=0.0235 from the Kolmogorov-Smirnov test for 

U3ETAS and NoFaults, respectively); however, this observation must be analyzed in the context 

of both the number test and spatial test results. Since both models show inconsistencies in the 

number test and spatial test, we expect this to be reflected in the pseudo-likelihood test. Previous 

studies have shown that the Poisson-based likelihood test is anticorrelated with the number test 

results (Werner et al., 2011). The somewhat counterintuitive result causes forecasts that 

overpredict the seismicity rates to trivially pass the likelihood test. Therefore, this must be 

considered when interpreting the pseudo-likelihood test results. Specifically, the test results are 

probably better solely because the models overpredict. 

Deconstructing the statistics helps to inform us about the behavior of the evaluation 

results. For the magnitude test, we showed the bin-wise value of the test statistics to identify 

problematic bins. Here, we show cell-wise spatial pseudo-likelihood ratios (U3ETAS – 

NoFaults) in Figure 10 to understand which cells contribute to the differences observed in the 

spatial test and the pseudo-likelihood tests. We represent the observed event rate distribution on 

the spatial grid as follows: spatial cells with no observed events show the difference in the 

approximate rate density between models, and cells containing observed events show the 

difference in the that cells’ contribution to the pseudo-likelihood scores. Only cells containing 

observed events contribute to the spatial test statistic, therefore cells without observed events 

help to visualize differences in the spatial distributions of the forecast. These plots are similar to 
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spatial deviance residuals (Schneider et al., 2014). We find that U3ETAS tends to show larger 

spatial test statistics, and thus quantile scores, when observed events occur along modeled 

U3ETAS faults. 

Discussion 

We have introduced a suite of evaluations for catalog-based earthquake forecasts that provide 

insight into the forecasted earthquake rates, magnitude-number distributions, and spatial 

distributions of seismicity. These evaluations are complementary to the Turing Tests introduced 

by Page and van der Elst (2018) and the comparative mean-information gain introduced by 

Nandan et al. (2019), which can also be used to evaluate generative or simulator models that 

produce synthetic catalogs. Importantly, these metrics begin to relax the independence and 

Poisson assumptions of previous forecast evaluations (Schorlemmer et al., 2007). Additionally, 

we introduced an approach, commonly applied to weather (and other) probabilistic forecasts 

(e.g., Gneiting et al., 2006), to calibrate probabilistic earthquake forecasting models. We apply 

these new methods to U3ETAS and NoFaults forecasts of the Ridgecrest sequence for eleven-

weeks following the Mw 7.1 mainshock. 

We find U3ETAS and NoFaults overpredict earthquake rates in 10 out of 11 evaluation 

periods for 𝑀𝑡(𝑡) = max(2.5, 𝑀𝑐(𝑡)) by comparing observed event counts against the mode of 

the forecasted number distribution (modal ratio), but 5 out of 11 modal ratios are within ±20% of 

the observed event count (with the maximum being a 140% overprediction). On average, from 

the modal ratio, the forecasts overpredict observed event counts by approximately 50%. 

NoFaults tends to produce larger variability in the number distribution than U3ETAS (e.g., 

Figure 4a,b), which is most noticeable during the first evaluation period. This likely occurs 

because the Airport Lake and Little Lake faults are both anti-characteristic in U3ETAS (Milner 
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et al., 2020), which causes these faults to host fewer large magnitude events as compared with 

the GR (b=1.0) MFD implemented in NoFaults (Figure 6). Moreover, every event in NoFaults is 

treated as a point-source. In contrast, U3ETAS can assign large ruptures to faults (if the event 

occurs close enough to a modeled fault). This in turn activates the elastic-rebound model (Field 

et al., 2015), and this combined behavior effectively smooths the forecasted number of events in 

the vicinity of the rupture (Figure 8a,b). The anticharacteristic behavior of the Little Lake and 

Airport Lake faults is likely to have pronounced differences in the tails of the number 

distributions and the associated hazard and risk curves. In areas with anticharacteristic MFDs, 

U3ETAS produces lower expected rates of events except along the faults that host aftershock 

sequences. Visually, we see the larger rates along the faults for U3ETAS as compared with 

NoFaults (Figure 8a,b), but statistically the chance of damaging aftershocks is lower in U3ETAS. 

On aggregate, the U3ETAS and NoFaults produce catalogs whose MFDs display lower 

variability with respect to the expected MFD than observations. By comparing the logarithms of 

bin-wise counts we find that observations are different, statistically, from realizations from the 

forecasts. Figure 6b shows contributions to this discrepancy across all magnitude ranges, but 

M3.0 through M4.0 show the largest discrepancy with respect to the forecasted bin-wise 

statistics. This can be interpreted in two ways: either significant discrepancies exist between 

U3ETAS (and NoFaults) and observations, or this magnitude test is too severe given the 

uncertainties in reported magnitudes and assumed b-values in the forecasting model. To address 

uncertainties in reported magnitudes, we recomputed the magnitude test with magnitude bins 

Δ𝑀 = 0.2, and found consistent results with those presented in Figure 7. Moreover, using Monte 

Carlo simulations we find the magnitude test results are sensitive to changes in b-values of Δ𝑏 ≤ 

0.1 units, which is on the order of the uncertainty in b-value estimates for U3ETAS (Felzer, 
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2013). Thus, including epistemic uncertainty in the assumed b-value could potentially improve 

calibration. Furthermore, we should consider explicitly accounting for uncertainties in observed 

magnitudes when evaluating earthquake forecasts. 

Here, we discuss a potential reason for the inconsistencies in the spatial test results. 

ETAS models, due to their self-excitation property (Hawkes, 1971), have a particularly difficult 

time forecasting seismicity in areas that were not previously active. As a result, the approximate 

rate densities (Equation 13) and locations of events in the simulated catalogs are controlled by 

the events in the input catalog used to condition the forecast. For example, neither U3ETAS nor 

NoFaults forecast much seismicity off the northwest-end of the mainshock fault plane during the 

first forecasting period (Figure 8a,b), leading to the observations falling in the lower tail of the 

test distribution. This discrepancy can be reduced with more frequent updating of the ETAS 

intensity function, which would locally increase after each subsequent event. Ideally, the 

conditional intensity function would be updated continuously after each observed event; 

however, this might prove difficult in practice because of computational times and costs.   

 The spatial and pseudo-likelihood tests show the largest differences between U3ETAS 

and NoFaults amongst the statistics, which we expected because the spatial distribution of 

seismicity is the primary difference between these models. Figure 10 shows spatial (pseudo-) 

log-likelihood ratios (U3ETAS – NoFaults) to understand where differences in the spatial test 

statistic originate. Carefully looking at the cell-wise ratios where observed events occur in Figure 

10, we find the differences manifest when aftershocks occur near modeled U3ETAS faults. This 

suggests that we should be able to identify differences between U3ETAS and NoFaults using the 

spatial test for sequences when aftershocks occur on modeled U3ETAS faults. 
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We draw counter-intuitive conclusions from the pseudo-likelihood test, when put in 

context of the spatial and number tests. We find that observations are inconsistent with both the 

rate and spatial forecasts from both models, and thus we expect the pseudo-likelihood scores to 

reflect this observation. Instead, the pseudo-likelihood test scores show more favorable 

agreement with the observations. Similar to the Poisson likelihood test (Schorlemmer et al., 

2007), overpredictions in rates can result in artificially high pseudo-likelihood scores (e.g., 

Werner et al., 2011). From this, we conclude that the pseudo-likelihood test provides redundant 

information to the number and spatial tests, and the test is less severe than the spatial test when 

the forecast fails the number test. 

U3ETAS uses ETAS parameters estimated from the state-wide California seismic catalog 

(Hardebeck, 2013). The moderate overprediction by U3ETAS (and NoFaults) suggests that the 

Ridgecrest sequence deviates from the state-wide average in aftershock productivity. Milner et 

al. (2020) found this behavior was due to high primary productivity of the mainshock, coupled 

with low secondary aftershock productivity. State-wide maximum-likelihood estimates (MLE) of 

ETAS parameters also result in over-predictions for this sequence when using traditional ETAS 

models (Mancini et al., 2020, In Press). These results suggest that accurate forecasting of 

aftershock rates requires proper treatment of intersequence variability or obtaining sequence 

specific parameters (Page et al., 2016).  

MLE parameter estimates of a traditional ETAS model may well be different, however, 

from MLE estimates of U3ETAS parameters, because the models are different: non-GR behavior 

in U3ETAS is spatially variable, magnitude and spatial distributions are not separable, and 

‘characteristic-ness’ impacts secondary triggering productivity (Milner et al., 2020). Milner et al. 

(2020) showed that adjustment of the ETAS c-value could improve the fit to the cumulative 
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number of 𝑀 ≥ 3.5 events, but this required manual trial-and-error adjustments to optimize for a 

specific metric. If sequence specific parameters are not (yet) available, incorporating additional 

uncertainty in the ETAS parameters could make the model more general and perhaps calibrated, 

especially for the first forecasts following a large earthquake before sequence-specific 

information is available (Omi et al., 2015; Omi et al., 2019).  

The discrepancies between the models and observations can potentially be explained by 

epistemic uncertainty in model parameters not accounted for by the model. Incorporating 

parameter uncertainty would broaden distribution functions (reduce sharpness) and potentially 

lead to calibrated probabilistic forecasts. Moreover, incorporating more sequences (and quiet 

periods) could uncover systematic discrepancies with observations that can lead to improvements 

in the models, and increase the robustness of the results. Retrospective as well as further 

prospective tests are required to understand the usefulness and accuracy of modeling decisions. 

In particular, the U3ETAS model will be most easily differentiated from standard ETAS models 

in the rare circumstances (of about 7%, assuming U3ETAS is correct) when supraseismogenic 

events are triggered. This relatively small percentage (which varies spatially in the model) 

implies that we expect to observe substantial differences between the models about once in 20 

earthquake sequences. Future work should therefore evaluate the model retrospectively against 

all well-recorded aftershock sequences observed in California.   

Conclusions 

In this manuscript, we evaluate forecasts from UCERF3-ETAS and UCERF3-NoFaults during 

the Ridgecrest using new non-parametric evaluations developed for forecasts specified as 

simulated catalogs. We evaluate eleven week-long forecasts immediately following the Mw 7.1 

mainshock using an idea, known as calibration, that suggests that random draws from the 
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forecast should be indistinguishable from observations. Probabilistic calibration is severe, but is 

a useful approach to aggregate forecasts over multiple periods. Probabilistic forecasts should aim 

to maximize the sharpness of their predictive distributions, subject to calibration (Gneiting et al., 

2007; Gneiting and Katzfuss, 2014). We introduce statistics that probe the forecasted earthquake 

rate, magnitude distributions, and spatial component of the forecast. Importantly, these 

evaluations relax the assumption that earthquakes occur in discrete Poissonian space-time-

magnitude bins and better reflect the dependencies between earthquakes. 

This pseudo-prospective evaluation of U3ETAS (and NoFaults) constitutes a milestone as 

it represents the first out-of-sample evaluation of a model under consideration for real-time 

operational earthquake forecasting by the US Geological Survey. (Pseudo-) Prospective model 

evaluation is a critical step in building confidence in the model outputs. To first order, both 

U3ETAS and NoFaults capture the temporal evolution and magnitude distributions of the 

earthquake sequence, notwithstanding the generic state-wide ETAS model parameters. For 

example, when considering the mode of the forecasted number distribution, the forecasts on 

average overpredict the observed number of events by approximately 50% with 5 out of 11 

forecasts being within ±20% of the observed event count. This suggests that, in spite of the much 

more severe calibration test results, U3ETAS (and ETAS models in general) are effective tools 

to provide insight into the spatial and temporal distributions of seismicity, in real-time, during an 

aftershock sequence. As with any forecasting model, the usefulness depends on the specific use-

case in mind (Field and Milner, 2018). For U3ETAS, in particular, estimates of probabilities of 

ruptures on nearby faults may provide valuable information for emergency planners and decision 

makers (Milner et al., 2020). 
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 The results of the proposed tests lead to similar conclusions for both UCERF3-ETAS and 

NoFaults. For the number test, the forecasts systematically overpredict the observed seismicity. 

The overpredictions can be attributed to deviations in primary and secondary aftershock 

productivity during the Ridgecrest with respect to the state wide average. The observed MFDs 

show greater variability with respect to the expected MFD than predicted by the forecasts. We 

interpret this discrepancy as a result of unmodeled uncertainty in the magnitude data, 

highlighting a need to account for observational uncertainty in the tests. The spatial tests uncover 

an issue associated with the discrete updating of self-exciting ETAS models, that is, the models 

have difficulty forecasting seismicity in areas without previous seismicity. We find the largest 

differences between U3ETAS and NoFaults when observed aftershocks occur on modeled 

U3ETAS faults. In such cases, the pseudo-likelihood test provides redundant results to the 

number and spatial test.  

Data and Resources 

The evaluation results and data for individual simulations can be found at 

https://github.com/cseptesting/ridgecrest_evaluation_bssa. The UCERF3-ETAS and UCERF3-

NoFaults simulations were generated using the UCERF3 model implemented in OpenSHA and 

can be found at https://github.com/opensha/ucerf3-etas-launcher/. The code used for the analysis 

can be found in development at https://github.com/SCECcode/csep2/. The finite-fault data was 

obtained from the ShakeMap accessed through the Comprehensive Catalog (ComCat) provided 

by the United States Geological Survey and can be access through the web at 

https://earthquake.usgs.gov/data/comcat/. 

https://github.com/cseptesting/ridgecrest_evaluation_bssa
https://github.com/opensha/ucerf3-etas-launcher/
https://github.com/SCECcode/csep2/tree/dev
https://earthquake.usgs.gov/data/comcat/
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Tables 

Table 1. Start times for the forecasts considered in this study. UCERF3-NoFaults were computed pseudo-

prospectively using the same input catalogs as their UCERF3-ETAS counterparts. UCERF3-ETAS forecasts were 

computed in near-real-time with real-time data products except as otherwise noted.  

Mw 7.1 + 𝚫𝑻 (days) Start Time (GMT+0) End Time (GMT+0) 

0.0* 2019-07-06 03:19:54.04 2019-07-13 03:19:54.04 

7.0† 2019-07-13 03:19:54.04 2019-07-20 03:19:54.04 

14.0** 2019-07-20 03:19:54.04 2019-07-27 03:19:54.04 

21.0 2019-07-27 03:19:54.04 2019-08-03 03:19:54.04 

28.0 2019-08-03 03:19:54.04 2019-08-10 03:19:54.04 

35.0 2019-08-10 03:19:54.04 2019-08-17 03:19:54.04 

42.0 2019-08-17 03:19:54.04 2019-08-24 03:19:54.04 

49.0 2019-08-24 03:19:54.04 2019-08-31 03:19:54.04 

56.0 2019-08-31 03:19:54.04 2019-09-07 03:19:54.04 

63.0 2019-09-07 03:19:54.04 2019-09-14 03:19:54.04 

70.0 2019-09-14 03:19:54.04 2019-09-21 03:19:54.04 

* Calculated on 09/04/19, catalog input data accessed from ComCat 09/04/19 

† Calculated on 07/16/19, catalog input data accessed from ComCat 07/16/19 

** Calculated on 08/19/19, catalog input data accessed from ComCat 08/19/19 
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Table 2. Evaluation results for number, magnitude, pseudo-likelihood, and spatial tests results for UCERF3-ETAS 

and UCERF3-NoFaults for 𝑀𝑡(𝑡) = max(2.5, 𝑀𝑐(𝑡)). 

Test day 

(since M7.1) 

U3ETAS  

(N-Test)* 

NoFaults 

(N-Test)* 

U3ETAS  

(M-Test) 

NoFaults 

(M-Test) 

U3ETAS  

(PL-Test) 

NoFaults 

(PL-Test) 

U3ETAS 

(S-Test) 

NoFaults 

(S-Test) 

7 [0.818, 0.185] [0.843, 0.160] 0.912 0.944 0.073 0.094 0.044 0.035 

14 [0.688, 0.326] [0.692, 0.322] 0.819 0.822 0.035 0.032 0.043 0.04 

21 [0.995, 0.006] [0.996, 0.006] 0.129 0.136 0.109 0.083 0.192 0.137 

28 [0.958, 0.052] [0.958, 0.051] 0.725 0.731 0.018 0.017 0.065 0.065 

35 [0.999, 0.002] [0.999, 0.002] 0.57 0.575 0.031 0.036 0.296 0.298 

42 [0.907, 0.114] [0.908, 0.113] 0.825 0.827 0.018 0.012 0.116 0.078 

49 [0.399, 0.636] [0.398, 0.636] 0.782 0.781 0.325 0.186 0.307 0.209 

56 [0.998, 0.004] [0.998, 0.004] 0.904 0.905 0.012 0.013 0.266 0.276 

63 [0.999, 0.002] [0.999, 0.002] 0.908 0.905 0.187 0.095 0.921 0.874 

70 [0.995, 0.008] [0.995, 0.008] 0.905 0.904 0.052 0.024 0.732 0.609 

77 [1.000, 0.000] [1.000, 0.001] 0.967 0.967 0.134 0.138 0.975 0.976 

Overall 8.450e-05 3.363e-05 1.425e-03 1.222e-03 2.796e-02 2.349e-02 2.432e-06 1.927e-08 

 *(𝜹𝟏, 𝜹𝟐)        
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Figure Captions 

Figure 1. Schematic of cumulative distribution of quantile scores for a test statistic calculated 

over multiple test periods (points) as compared with the ideal uniform distribution (dashed line) 

expected for a well-calibrated model. Panels show instances of (a) under-prediction, and (b) 

over-prediction of the statistic by the model; (c) under-dispersion, and (d) over-dispersion of 

statistic in the model simulations. 

 

Figure 2. (a) Ridgecrest sequence data beginning one week preceding the Mw 6.4 foreshock 

through the eleven-week evaluation period. Vertical gray dashed lines indicate the starting times 

of the forecasts. Brown data denote target (test) earthquakes. The forecasts are conditioned on all 

events until the start time of the forecast. The inset shows the Helmstetter et al. (2006) 

magnitude-completeness model for the first three days following the Mw 7.1 mainshock. (b) 

Distribution of spatial seismicity from ComCat during the period shown in (a). The circle shows 

the spatial region used for the evaluations based on an average Mw 7.1 fault length from Wells 

and Coppersmith (1994) with a radius of approximately 143 km. 

 

Figure 3. Synthetic catalog realizations showing 7 days of aftershocks following the Mw 7.1 

mainshock. (a) ‘Typical’ U3ETAS synthetic catalog, defined as the catalog whose event count 

lies along the median amongst all simulated catalogs. (b) ‘Extreme’ U3ETAS synthetic catalog, 

which is defined as the catalog whose event count falls in the uppermost 0.1 percentile of the 

forecasted number distribution. Notice the triggered ruptures on the Garlock and San Andreas 

faults that in turn generate aftershocks along these faults. (c) ‘Typical’ synthetic catalog 

generated by NoFaults and (d) an ‘extreme’ catalog from NoFaults, which lacks triggering of 
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ruptures on prescribed faults resulting in a nearly isotropic aftershock distribution. The ‘extreme’ 

catalogs highlight the predominant differences between these two models and suggest that 

differences will be most noticeable when large aftershocks occur on mapped faults in U3ETAS. 

 

Figure 4. Forecasted number distributions and observed cumulative number over the eleven-

week evaluation period. The forecasted event count distributions are offset by the number of 

observed events at the start of the forecast. Forecasted number distributions are plotted at the end 

of each evaluation period. The vertical extent of the lines indicates the 95-percentile range of the 

forecasted number distribution. The ‘x’ indicates evaluation periods with observed event counts 

that fall outside the 95-percentile range of the forecast. (a) Both observed and forecasted catalogs 

are filtered to threshold magnitudes Mt (t) = max(2.5, 𝑀𝑐(𝑡)) and (b) catalogs are filtered to 

Mt(t) = max(3.5, 𝑀𝑐(𝑡)). During the first seven-day forecast period, the 95th percentile of the 

forecasted number distribution for M2.5+ events are 2,482 and 3,906 events for U3ETAS and 

NoFaults, respectively. 

 

Figure 5. Aggregate number test results for 𝑀𝑡(𝑡) = max(2.5, 𝑀𝑐(𝑡))  and 𝑀𝑡(𝑡) =

max(3.5, 𝑀𝑐(𝑡)) magnitude thresholds for U3ETAS and NoFaults for eleven weekly evaluation 

intervals following the Mw 7.1 mainshock. (a) Quantile scores 𝛿1 (top) and 𝛿2 (bottom) for 

individual weekly evaluation periods. (b) Quantile-quantile plot showing calibration of rate 

forecasts by comparing quantile scores, 𝛾𝑁 against standard uniform quantiles. The dashed lines 

indicate 95 percent confidence intervals around the standard uniform quantiles. Thus, U3ETAS 

and NoFaults overpredict the number of M2.5+ and M3.5+ events during this aftershock 

sequence. 
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Figure 6. (a) Magnitude frequency distribution in Δ𝑀 = 0.1 bins aggregated over entire the 

eleven-week evaluation period. The thin lines approximate the 95% percentile range of the event 

counts in each magnitude bin. The U3ETAS magnitude frequency distribution shows anti-

characteristic behavior through the lack of M6.5+ earthquakes as compared with NoFaults. (b) 

Bin-wise magnitude test statistic aggregated over the entire evaluation period. The circles depict 

the kernel of 𝑑𝑜𝑏𝑠 for both U3ETAS and NoFaults to show bin-wise contributions to 𝑑𝑜𝑏𝑠. We 

find negligible differences between the two models. The solid lines show percentiles from the 

bin-wise value distribution, for both models. 

 

Figure 7. Magnitude test results for events with 𝑀𝑡(𝑡) = (2.5, 𝑀𝑐(𝑡)) over the full eleven-week 

evaluation period.  (a) Quantile scores are shown for individual week-long evaluation periods. 

Gray patch depicts the 0.05 significance level for the magnitude test. The largest differences 

between U3ETAS and NoFaults exist during the first week and become negligible over the 

remainder of the evaluation period. (b) Calibration of magnitude forecasts by comparing 

magnitude test quantile scores against standard uniform quantiles. The dashed lines depict 95 

percent confidence intervals around the standard uniform quantiles. 

 

Figure 8. Logarithm of the expected event counts per spatial bin per week for U3ETAS (a) and 

NoFaults (b) for the week-long forecast following the Mw 7.1. The relatively high expected 

counts along the faults in U3ETAS are controlled by scenarios whose aftershock sequences 

contain supraseismogenic ruptures along these faults. In both plots, target events during this 

period are shown as white circles. The color scale is manually saturated for comparison 
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purposes. The spatial bin with highest rate expects 64.24 and 65.76 events for U3ETAS and 

NoFaults, respectively. (c) Evaluation result for the spatial test for U3ETAS (top) and NoFaults 

(bottom) for the first evaluation period at seven days after the Mw 7.1 mainshock. 𝑆̂(95) denotes 

the 95th percentile range of the test distribution of the spatial test statistic, 𝑠̂𝑜𝑏𝑠 is the observed 

statistic, and 𝛾𝑆 is the quantile score. (d) Same as (c) except for the pseudo-likelihood test 

statistics. 

 

Figure 9. Spatial test and pseudo-likelihood results for events with 𝑀𝑡(𝑡) = max(2.5, 𝑀𝑐(𝑡)) 

over the complete eleven-week evaluation period. The spatial test and likelihood tests show the 

greatest differences between U3ETAS and NoFaults. (a) Quantile scores shown for individual 

week-long evaluation periods. The patch depicts the 0.05 significance level for the spatial test. 

(b) Calibration of spatial forecasts by comparing quantile scores against standard uniform 

quantiles. The dashed lines depict 95 percent confidence intervals around the standard uniform 

quantiles. 

 

Figure 10. Map of cell-wise spatial pseudo log-likelihood ratios between U3ETAS and NoFaults 

for individual evaluation periods ending on (a) day 35, (b) day 49, (c) day 56, and (d) day 63 

following the Mw 7.1 mainshock. Maps show the higher rates along faults in U3ETAS. 

Evaluation periods at (b) 49 days and (d) 63 days show the largest differences in the observed 

spatial statistic, which is calculated only from spatial cells where events occur, while periods 

ending on days 35 and 56 show a negligible difference in the spatial statistic. This highlights 

how spatial test results are sensitive to events occurring on modeled U3ETAS faults and that 

such events are required to discern between the models. The color 
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scale is manually saturated between ‐0.05 and 0.05 to help comparisons; and dots show 

locations of target events 
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Figures 

 

Figure 1. Schematic of cumulative distribution of quantile scores for a test statistic calculated over multiple test 

periods (points) as compared with the ideal uniform distribution (dashed line) expected for a well-calibrated model. 

Panels show instances of (a) under-prediction, and (b) over-prediction of the statistic by the model; (c) under-

dispersion, and (d) over-dispersion of statistic in the model simulations. 
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Figure 2. (a) Ridgecrest sequence data beginning one week preceding the Mw 6.4 foreshock through the eleven-week 

evaluation period. Vertical gray dashed lines indicate the starting times of the forecasts. Brown data denote target 

(test) earthquakes. The forecasts are conditioned on all events until the start time of the forecast. The inset shows the 

Helmstetter et al. (2006) magnitude-completeness model for the first three days following the Mw 7.1 mainshock. (b) 

Distribution of spatial seismicity from ComCat during the period shown in (a). The circle shows the spatial region 

used for the evaluations based on an average Mw 7.1 fault length from Wells and Coppersmith (1994) with a radius 

of approximately 143 km.    
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Figure 3. Synthetic catalog realizations showing 7 days of aftershocks following the Mw 7.1 mainshock. (a) 

‘Typical’ U3ETAS synthetic catalog, defined as the catalog whose event count lies along the median amongst all 

simulated catalogs. (b) ‘Extreme’ U3ETAS synthetic catalog, which is defined as the catalog whose event count 

falls in the uppermost 0.1 percentile of the forecasted number distribution. Notice the triggered ruptures on the 

Garlock and San Andreas faults that in turn generate aftershocks along these faults. (c) ‘Typical’ synthetic catalog 

generated by NoFaults and (d) an ‘extreme’ catalog from NoFaults, which lacks triggering of ruptures on prescribed 

faults resulting in a nearly isotropic aftershock distribution. The ‘extreme’ catalogs highlight the predominant 

differences between these two models and suggest that differences will be most noticeable when large aftershocks 

occur on mapped faults in U3ETAS. 
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Figure 4. Forecasted number distributions and observed cumulative number over the eleven-week evaluation period. 

The forecasted event count distributions are offset by the number of observed events at the start of the forecast. 

Forecasted number distributions are plotted at the end of each evaluation period. The vertical extent of the lines 

indicates the 95-percentile range of the forecasted number distribution. The ‘x’ indicates evaluation periods with 

observed event counts that fall outside the 95-percentile range of the forecast. (a) Both observed and forecasted 

catalogs are filtered to threshold magnitudes Mt (t) = max(2.5, 𝑀𝑐(𝑡)) and (b) catalogs are filtered to 

Mt(t) = max(3.5, 𝑀𝑐(𝑡)). During the first seven-day forecast period, the 95th percentile of the forecasted number 

distribution for M2.5+ events are 2,482 and 3,906 events for U3ETAS and NoFaults, respectively.    
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Figure 5. Aggregate number test results for 𝑀𝑡(𝑡) = max(2.5, 𝑀𝑐(𝑡))  and 𝑀𝑡(𝑡) = max(3.5, 𝑀𝑐(𝑡)) magnitude 

thresholds for U3ETAS and NoFaults for eleven weekly evaluation intervals following the Mw 7.1 mainshock. (a) 

Quantile scores 𝛿1 (top) and 𝛿2 (bottom) for individual weekly evaluation periods. (b) Quantile-quantile plot 

showing calibration of rate forecasts by comparing quantile scores, 𝛾𝑁 against standard uniform quantiles. The 

dashed lines indicate 95 percent confidence intervals around the standard uniform quantiles. Thus, U3ETAS and 

NoFaults overpredict the number of M2.5+ and M3.5+ events during this aftershock sequence. 
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Figure 6. (a) Magnitude frequency distribution in Δ𝑀 = 0.1 bins aggregated over entire the eleven-week evaluation 

period. The thin lines approximate the 95% percentile range of the event counts in each magnitude bin. The 

U3ETAS magnitude frequency distribution shows anti-characteristic behavior through the lack of M6.5+ 

earthquakes as compared with NoFaults. (b) Bin-wise magnitude test statistic aggregated over the entire evaluation 

period. The circles depict the kernel of 𝑑𝑜𝑏𝑠 for both U3ETAS and NoFaults to show bin-wise contributions to 𝑑𝑜𝑏𝑠. 

We find negligible differences between the two models. The solid lines show percentiles from the bin-wise value 

distribution, for both models.  
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Figure 7. Magnitude test results for events with 𝑀𝑡(𝑡) = (2.5, 𝑀𝑐(𝑡)) over the full eleven-week evaluation period.  

(a) Quantile scores are shown for individual week-long evaluation periods. Gray patch depicts the 0.05 significance 

level for the magnitude test. The largest differences between U3ETAS and NoFaults exist during the first week and 

become negligible over the remainder of the evaluation period. (b) Calibration of magnitude forecasts by comparing 

magnitude test quantile scores against standard uniform quantiles. The dashed lines depict 95 percent confidence 

intervals around the standard uniform quantiles.  
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Figure 8. Logarithm of the expected event counts per spatial bin per week for U3ETAS (a) and NoFaults (b) for the 

week-long forecast following the Mw 7.1. The relatively high expected counts along the faults in U3ETAS are 

controlled by scenarios whose aftershock sequences contain supraseismogenic ruptures along these faults. In both 

plots, target events during this period are shown as white circles. The color scale is manually saturated for 

comparison purposes. The spatial bin with highest rate expects 64.24 and 65.76 events for U3ETAS and NoFaults, 

respectively. (c) Evaluation result for the spatial test for U3ETAS (top) and NoFaults (bottom) for the first 

evaluation period at seven days after the Mw 7.1 mainshock. 𝑆̂(95) denotes the 95th percentile range of the test 

distribution of the spatial test statistic, 𝑠̂𝑜𝑏𝑠 is the observed statistic, and 𝛾𝑆 is the quantile score. (d) Same as (c) 

except for the pseudo-likelihood test statistics.  
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Figure 9. Spatial test and pseudo-likelihood results for events with 𝑀𝑡(𝑡) = max(2.5, 𝑀𝑐(𝑡)) over the complete 

eleven-week evaluation period. The spatial test and likelihood tests show the greatest differences between U3ETAS 

and NoFaults. (a) Quantile scores shown for individual week-long evaluation periods. The patch depicts the 0.05 

significance level for the spatial test. (b) Calibration of spatial forecasts by comparing quantile scores against 

standard uniform quantiles. The dashed lines depict 95 percent confidence intervals around the standard uniform 

quantiles.   
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Figure 10. Map of cell-wise spatial pseudo log-likelihood ratios between U3ETAS and NoFaults for individual 

evaluation periods ending on (a) day 35, (b) day 49, (c) day 56, and (d) day 63 following the Mw 7.1 mainshock. 

Maps show the higher rates along faults in U3ETAS. Evaluation periods at (b) 49 days and (d) 63 days show the 

largest differences in the observed spatial statistic, which is calculated only from spatial cells where events occur, 

while periods ending on days 35 and 56 show a negligible difference in the spatial statistic. This highlights how 

spatial test results are sensitive to events occurring on modeled U3ETAS faults and that such events are required to 

discern between the models. The color scale is manually saturated between -0.05 and 0.05 to help comparisons; and 

dots show locations of target events. 
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