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Abstract
An assessment of liquefaction potential for the Kathmandu Valley considering seasonal 
variability of the groundwater table has been conducted. To gain deeper understanding 
seven historical liquefaction records located adjacent to borehole datapoints (published in 
SAFER/GEO-591) were used to compare two methods for the estimation of liquefaction 
potential. Standard Penetration Test (SPT)  blowcount data from 75 boreholes inform the 
new liquefaction potential maps. Various scenarios were modelled, i.e., seasonal variation 
of the groundwater table and peak ground acceleration. Ordinary kriging, implemented in 
ArcGIS, was used to prepare maps at urban scale. Liquefaction potential calculations using 
the methodology from (Sonmez, Environ Geol 44:862–871, 2003) provided a good match 
to the historical liquefaction records in the region. Seasonal variation of the groundwater 
table is shown to have a significant effect on the spatial distribution of calculated liquefac-
tion potential across the valley. The less than anticipated liquefaction manifestations due to 
the Gorkha earthquake are possibly due to the seasonal water table level.

Keywords Kathmandu Valley · Seismic hazard · Liquefaction potential · Groundwater 
table · Kriging

1 Introduction

The Kathmandu Valley is located approximately 10 km from the Main Himalayan Thrust 
(MHT) (Elliott et al. 2016). This geographical area experienced several destructive earth-
quakes in the past: the latest significant event occurred in 2015, the  Mw 7.8 Gorkha earth-
quake (Grandin et  al. 2015). The Gorkha earthquake caused structural damage and geo-
technical failures, including landslides and liquefaction (e.g., Goda et  al. 2015; Chiaro 
et  al. 2015; Hashash et  al. 2015; Moss et  al. 2015; Sharma and Deng 2019). The thick, 
sediments underlying the Kathmandu Valley have highly variable geotechnical properties 
(e.g., Sakai et al. 2008; Gilder et al. 2020) and are prone to liquefy (e.g., Rajendran et al. 
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2016). However, the study of Moss et al. (2017) demonstrated that evidence of liquefaction 
in the aftermath of the 2015 Gorkha earthquake was less significant than expected. Pos-
sible reasons for this may include: changes in the groundwater table due to extraction (e.g., 
Pandey et al. 2012); seasonal variation of groundwater table level (Shrestha and Tamrakar 
2018) and/or underestimation of soil stiffness (e.g., VS30) (cf. Wald and Allen 2007). Jha 
et al. (2020) compared probabilistic and deterministic approaches for liquefaction potential 
evaluation in the Kathmandu Valley using two boreholes. In this paper, two deterministic 
approaches (Iwasaki et al. 1978, 1982, 1984 and Sonmez 2003) are compared using a data-
base of field observations. The observations of Moss et al. (2017) are also tested in this 
paper.

For the Kathmandu Valley, geotechnical testing (Gilder et  al. 2019a; Pokhrel et  al. 
2019a) and the collection of historical geotechnical investigations (Gilder et al. 2020) have 
shown that the slope-based prediction of shear wave velocity represents an overestimation 
for many areas of the valley (Gilder et al. 2018; De Risi et al. 2021). In data-scarce regions, 
such as the Kathmandu Valley, geostatistical tools may be used to extrapolate results from 
point locations to a geographical area (e.g., De Risi et al. 2021). Kriging interpolation is 
often used to determine values for liquefaction potential measures at locations without suf-
ficient geotechnical data (e.g., Baise and Lenz 2006; Maruyama et al. 2010; Pokhrel et al. 
2010, 2013, 2012; Thompson et al. 2010; Chung and Rogers 2011; Baker and Faber 2008; 
Liu and Chen 2006, 2010; Habibullah et al. 2012).

Three new records of liquefaction and four previously documented records of lique-
faction within the Kathmandu Valley are examined in this paper. These records are all 
located in the vicinity of borehole locations collected in the geo-database SAFER/GEO-
591 (Gilder et al. 2019b, 2020). In this paper, the two reviewed approaches for liquefac-
tion potential determination use the triggering model from Seed and Idriss (1971) and the 
manifestation models by Iwasaki et al. (1978, 1982, 1984) and Sonmez (2003) respectively. 
These approaches are compared against the liquefaction records examined in this study to 
enable comment on which is the most applicable ‘simplified’ method for the valley. The 
approaches are implemented using data from 75 borehole locations (see Table  1) along 
with the kriging algorithm from ArcGIS to prepare liquefaction maps for variable PGA 
values and groundwater table levels. Another possible use of SAFER/GE0-591 is to use the 
data to estimate building settlements (based on SPT N60) using methodologies such as that 
described in Valverde-Palacios et al. (2014).

2  The Kathmandu Valley

2.1  Geology

The Kathmandu Valley is an intermontane basin in the Lesser Himalayas in central Nepal, 
south of the Great Himalayan Range (e.g., Sakai et al. 2008). The valley is made up of: (a) 
a basement, metamorphic rock underlying the valley at depth, and (b) younger valley sedi-
ments which overly the metamorphic rock formations. Figure 1 shows the liquefaction map 
of the UNDP/UNCHS (HABITAT) (1993) Subproject “Seismic hazard mapping and risk 
assessment for Nepal”. This project was important as new surficial geological maps were 
developed based on the details of well data sources originating from the early work done in 
the Valley. Similarly, the geomorphological map of Yoshida and Igarashi (1984) (Fig. 1b) 
described a number of sediments resulting from both the Quaternary deposition (recent 
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Table 1  Boreholes SAFER/
GEO-591 (Gilder et al. 2019b) 
used in this study

No BH_ID

1 R_JICA_2002_BH1
2 R_JICA_2002_BH2
3 R_JICA_2002_BH3
4 R_JICA_2002_BH4
5 R_JICA_2002_BH5
6 RES_Pokh_2006_BH6
7 RES_Pokh_2006_BH7
8 RES_Safe_2018_BH1
9 RES_Safe_2018_BH2
10 IND_Bans_2007_BH1
11 IND_Bakh_2006_BH3
12 R_JRAP_2016_BH4
13 R_JRAP_2016_BH2
14 R_JRAP_2016_BH5
15 R_JRAP_2016_BH3
16 R_JRAP_2016_BH1
17 IND_Sina_2006_BH1
18 IND_Chan_2007_BH4
19 IND_Biju_1000_BH1
20 IND_Dhob_1000_BH2
21 IND_Bhat_2008_BH2
22 IND_Sane_2007_BH1
23 IND_Taha_2007_BH11
24 IND_Ravi_2008_BH1
25 IND_Solt_2007_BH1
26 IND_Dhum_2007_BH2
27 IND_Pani_2008_BH1
28 IND_Lazi_2008_BH3
29 IND_Kule_2007_BH1
30 IND_Sane_1000_BH3
31 IND_Kupo_1000_BH1
32 IND_Sank_2008_BH1
33 IND_Kama_2008_BH1
34 IND_Pulc_2008_BH1
35 IND_Solt_2008a_BH1
36 IND_Dill_2008_BH2
37 IND_Gyan_2008_BH2
38 IND_Sane_2009_BH5
39 IND_Bish_2007_BH5
40 IND_Sano_2008_BH2
41 IND_Sane_1001_BH1
42 IND_Hatt_1000_BH6
43 IND_Balk_2009_BH2
44 IND_Sane_1002_BH1
45 IND_Dhap_2009_BH1
46 IND_Ghat_2009_BH4
47 IND_Kada_1000_BH10
48 IND_Sane_2009a_BH3
49 IND_Thad_2009_BH1
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sediment deposits near rivers) and earlier Pliocene to Pleistocene deposits from a variety 
of depositional environments including fluvio-deltaic, laucustrine and deltaic (Sakai et al. 
2008).

The geological map in Fig. 2 indicates the newer geological designations from Shrestha 
et  al. (1998). The Kalimati Formation beneath any recent deposits in the central Valley 
(Fig.  1c) (Paudel and Sakai 2009) often consists of a laminated black clayey, silt inter-
laminated with silt, clay and with very fine, silty, sand layers. The Sunakothi Formation, 
present in much of the southern part of the Valley, contains both clayey sequences and 
laminated silts and sands. The Terrace deposits contain coarser materials, skirting the bed-
rock geology of the southern central and western margins. When examining Fig. 1b, it can 
be seen how the original liquefaction map (Fig. 1a) was defined. Where rivers are present 
(with presumably saturated soils) these areas represent the position of highest liquefation 
potential. This potential reduces towards the valley edge. More recent assessments have 
indicated that the highest potential is at locations near the rivers and in the central valley 
(Gautam et al. 2017), and probabilistic assessments have reported similar findings (Sajan 
et al. 2020; Khatakho et al. 2021). However, this has been attributed to the older sequences 
and as the Valley contains a complex mix of laminated sequences it remains a challenge 
to evaluate the liquefaction potential in the valley. It is likely much of the valley mapping 
is affected by recent superficial deposits (which are not currently shown on maps) due to 

Table 1  (continued) No BH_ID

50 IND_Baba_2008_BH2
51 IND_Balk_2009a_BH2
52 IND_Batt_2005_BH3
53 IND_Solt_2008_BH1
54 IND_Naxa_1000_BH1
55 IND_Naxa_1000_BH2
56 IND_Naxa_1000_BH3
57 IND_Hanu_1002_BH1
58 IND_Hanu_1002_BH2
59 IND_Balk_2009b_F2
60 IND_Dhap_2008_BH9
61 IND_Bakh_2006_BH1
62 IND_Jaga_2010_BH1
63 IND_Kote_2008_BH1
64 IND_Kaus_2017_BH1
65 IND_Kaus_2017_BH2
66 IND_Kaus_2017_BH3
67 IND_Goda_2018_BH1
68 IND_Bala_2018_BH1
69 IND_Chys_2015_BH1
70 RES_Daha_2002_BH4
71 RES_Pagl_2018_BH1
72 RES_Kate_1996_T2
73 RES_Kate_1996_R1
74 Bungmati-1 (Jha et al. 2020)
75 Bungmati-2 (Jha et al. 2020)
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the likely occurance of channel movement and geomorphic development of the river basin 
(Shrestha and Tamrakar 2013). Age relationships of the soils shown in Fig.  1 are inex-
act due to the combination of map sources. For instance, more recent Cone Penetration 
Testing (CPT) work has suggested that some locations near rivers are unlikely to liquefy 
(Gilder et al. 2021) but also the position of the Araniko Highway movement is upon a relict 
river channel. These conclusions (Gilder et al. 2021) are also currently affected by the abil-
ity to assess the silts of this region for liquefaction potential due to the limited amount of 
geotechnical field and laboratory testing. Herein, the aim is to improve understanding of 
potential seasonal variation of liquefaction potential and to compare the modelled results to 
observations taken following the 2015 Gorkha earthquake.

2.2  Historical earthquakes and faults

Table 2 lists the significant historical earthquakes recorded in the Kathmandu Valley. The 
most devastating earthquakes occurred in 1833, 1866, 1934, 1988, and 2015 (Rana 1935; 
Bilham 1995, 2019; Pandey et al. 2002; Pandey and Molnar 1988; Goda et al. 2015). Prior 
studies considered a fault system containing three main faults, namely the main central 
thrust (MCT), main boundary thrust (MBT) and himalayan frontal thrust (HFT) (e.g., 

Fig. 1  a  Liquefaction map, UNDP/UNCHS (HABITAT) (1993), digitised map data from Shrestha et  al. 
(1998) b Kathmandu Valley sediments based on geomorphological distribution from Yoshida and Igarashi 
(1984), digitised map data from Yoshida and Gautam (1988) c map of Plio-Pleistocene sediments, digitised 
map data from Paudel and Sakai (2009)
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Chaulagain et al. 2015). The maximum PGA generated for the Kathmandu Valley by the 
earthquakes from these thrusts is around 0.35  g; consistent with the old building code 
of Nepal (1994) (NBC 1994). Publications after the 2015 Gorkha earthquake have bet-
ter described the geometry of the main himalayan thrust (MHT) beneath the Kathmandu 

Fig. 2  Engineering geological map with liquefaction validations points indicated with the IDs provided in 
Table 6 and zoomed areas to indicate distance between the liquefaction point identified in this study (black 
triangle) and validation borehole (red circle). The historical liquefaction points evidenced by the field study 
Geotechnical Extreme Event Reconnaissance (GEER) (locations given in Hashash et  al. 2015) are also 
shown (red triangles). Recent deposits have been added to map data digitised from Shrestha et al. (1998) 
map to reflect true extent of rivers

Table 2  Historical earthquakes that caused severe damage in the Kathmandu Valley

Date Moment 
magnitude 
(Mw)

Location References

August 26, 1833 7.8 North of Kathmandu Valley Pandey and Molnar (1988); Bilham (1995)
May 23, 1866 7.0 North of Kathmandu Szeliga et al. (2010)
Jan 15, 1934 8.4 Udayapur, Nepal Rana (1935); Chen and Molnar (1977)
August 21, 1988 6.5 Udayapur, Nepal Bilham (2019)
April 25, 2015 7.8 Gorkha, Nepal Goda et al. (2015)
May 13, 2015 7.3 Kodari, Nepal Goda et al. (2015)
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Valley (Elliott et al. 2016) and highlighted that the MHT could generate an earthquake as 
great as magnitude  MW 9.0 (Stevens et al. 2018; Pokhrel et al. 2019b). The new building 
code for Nepal (NBC 2020), specifies a maximum PGA value for the Kathmandu valley of 
0.35 g for a 475-year return period. PSHA results are significantly affected by the specific 
choice of GMPEs assumed (Stevens et al. 2018; De Risi et al. 2020). Taking the MHT as a 
single seismogenic source, the PGA can vary significantly depending on the GMPE used.

2.3  Groundwater level and water table

Nepal lies in a humid-subtropical climatic region with dry-winters (Kottek et  al. 2006) 
and heavy rain-summers. During the rainy seasons, monsoons last from mid-June to mid-
September (approximately 90  days) during which time the average rainfall is more than 
1000  mm (Pokharel and Hallett 2015). The large population of 2.5 million (CBS 2012) 
living in the Kathmandu Valley use groundwater for domestic and commercial purposes. 
If consumption exceeds the recharge of the groundwater in the dry season, the change in 
height of the groundwater table at the end of this season can be as much as 5  m (e.g., 
Shrestha and Tamrakar 2018). According to Moss et al. (2017), groundwater withdrawal in 
the Kathmandu Valley over the last decades resulted in a drop of the average water table in 
the valley. This is also supported by Pandey et al. (2012), who reported that 60–70% of the 
water supply during the dry season comes from groundwater with a consequent drawdown 
up to 7.5 m from 2000 to 2008. Moss et al. (2017) estimated an average annual groundwa-
ter drawdown of roughly 1 m per year and assumed a variable water table depth derived 
from the global water table database by Fan et al. (2013). For the purposes of liquefaction 
assessment the Moss et al. (2017) groundwater model ranged between 0 and 40 m within 
the sediment deposits in the central Valley. However, the seasonal variation of the ground-
water table for particular deposits was not explicitly considered.

Shrestha and Tamrakar (2018) mapped the shallow groundwater level for dry (pre-mon-
soon) and wet (monsoon) season in the northern part of the Kathmandu Valley. In particu-
lar, data from 239 wells were collected during wet and dry season, allowing an average 
estimation of seasonal variation of the groundwater level. In this study, using the observa-
tions of Shrestha and Tamrakar (2018):

• 1.6 m is taken as the approximate value for the water table in the wet season, estimating 
it as the average depth minus one half of the standard deviation from the data reported 
in Shrestha and Tamrakar (2018).

• 5.1 m is taken as the approximate value for the water table in the dry season, estimating 
it as the average depth plus one half of the standard deviation from the data reported in 
Shrestha and Tamrakar (2018).

These assumptions do not allow for the spatial variation of the groundwater table (cf. Fan 
et  al. 2013). However, the aim herein is to study seasonal variation of the groundwater 
table in conjunction with variability of the PGA as obtained from recent probabilistic haz-
ard assessment studies.



 Bulletin of Earthquake Engineering

1 3

3  Methodology

3.1  Liquefaction potential calculation

Seed and Idriss (1971) proposed a method to assess liquefaction resistance of soils. In this 
approach, the factor of safety against liquefaction (FL) is determined by the ratio between 
the cyclic resistance ratio (CRR) and the earthquake-induced cyclic stress ratio (CSR) (see 
Sonmez (2003) for further commentary on the historical development of this approach). 
This method is widely used as a triggering model to evaluate the factor of safety against 
liquefaction FL (e.g., Geyin et al. 2020). FL is used to evaluate if a soil layer is susceptible 
or non-susceptible to liquefaction during an earthquake.

Iwasaki et al. (1984) proposed a liquefaction potential index (IL) to evaluate the lique-
faction potential in multiple layers of soil. The liquefaction potential index (IL) in Iwasaki 
et al. (1984) is referred to in this paper as the liquefaction potential (PL); this parameter 
assumes that surface manifestation depends on the thicknesses of all strata that can liq-
uefy in the uppermost 20 m of a soil column, their proximity to the ground surface, and 
the amount by which the factor of safety against liquefaction in each stratum (FL) is less 
than 1.0 (Geyin et al. 2020). The methodology of Iwasaki et al. (1984) was also used in 
the work of Piya et al. (2004) who presented both qualitative and quantitative liquefaction 
potential assessments for the Kathmandu valley using the available SPT data at that time.

Equation  1 gives the function of the liquefaction resistance factor, F(z), is expressed 
through Eq. 2 and the depth weighting factor, W(z), is expressed through Eq. 3 in which z 
represents the depth of the midpoint of the soil layer from the surface.

Sonmez (2003) modified PL based on data from Inegol (Turkey) and Sonmez and Gok-
ceoglu (2005) modified PL based on data from Yuanlin (Taiwan). The assumption for F(z) 
to be used in Eq. 1 was modified according to Eq. 4 to incorporate marginally liquefiable 
strata (‘moderate’) (characterised by FL in the range [0.95–1.2], Sonmez (2003)).

 Comparison of the approaches of Iwasaki et al. (1984) and Sonmez (2003) was also pre-
sented in Liu (2008). In the present study, the methodologies by Iwasaki et al. (1984) and 
Sonmez (2003) were used to evaluate the liquefaction potential in the Kathmandu valley 
using new case evidence from the Gorkha earthquake and geotechnical investigations from 

(1)PL =

20

∫
0

F(z) ⋅W(z)dz

(2)F(z) =

{
1 − FL for FL ≤ 1

0 for FL > 1

(3)W(z) =

{
10 − 0.5 ⋅ z for z ≤ 20m

0 for z > 20m

(4)F(z) =

⎧
⎪⎨⎪⎩

1 − FL for FL ≤ 0.95

2 ⋅ 106 ⋅ e−18.427FL for 0.95 < FL < 1.2

0 for FL ≥ 1.2
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the SAFER/GEO-591 geo-database (Gilder et al. 2019b). Table 3 shows the D50 and ρsoil 
values used for the liquefaction potential analysis. Figure 3 shows the grain-size distribu-
tion curves from the SAFER/GEO-591 geo-database against the “liquefiable” and “poten-
tially liquefiable” bounds from Tsuchida (1970) and Koester and Tsuchida (1988). These 
distribution curves are mainly concentrated in the liquefiable boundary emphasising a 
potential for high susceptibility.

3.2  Historical records of liquefaction in the Kathmandu Valley

Photographs taken immediately after the Nepal-Bihar earthquake show fractures devel-
oped in the field associated with sand boiling (Rana 1935). After the Nepal-Bihar earth-
quake, eyewitness accounts describe liquefaction evidenced by observations of sand boil-
ing and soil fissuring. Photographic reports from Rana (1935) show “ground fissures after 
sand boiling” in the central part of Kathmandu city (location 5 in Fig.  2), in Tundikhel 
(Rana 1935). Similarly, during the 2015 Gorkha earthquake further evidence was observed. 
Table 4 details seven documented liquefaction records in the Kathmandu Valley which are 

Table 3  Summary of the 
mean D50 and ρsoil values for 
Kathmandu Valley from SAFER/
GEO-591 (Gilder et al. 2019b); 
n = number of data points used to 
compute the stated averages

Soil Type SAFER/GEO-591

D50 (mm) ρsoil (g/cm3)

mean n min mean max n

Surface soil – – – – – –
Clay – – 1.49 1.75 1.99 22
Silt 0.011 11 1.54 1.82 2.19 17
Sandy silt 0.041 6
Silty sand – – 1.65 1.88 2.28 122
Fine sand 0.380 27
Medium sand
Coarse sand
Gravelly sand 0.710 5 – – – –

Fig. 3  Grain-size distribution curves from SAFER/GEO-591, liquefaction bounds attributed to Tsuchida 
(1970) digitized from Koester and Tsuchida (1988)



 Bulletin of Earthquake Engineering

1 3

located near to boreholes locations in the SAFER/GEO-591 geo-database also reported in 
Fig. 2. In Fig. 2 the locations evidenced in the geotechnical extreme event reconnaissance 
(GEER) (Hashash et al. 2015 and Table 4) field studies are compared. Those that do not 
feature in Table 6, did not have an accompanying quality borehole record. In Table 5 the 
locations from this study are detailed, locations 7a, 7b and 7c represent new data collected 
in the aftermath of the Gorkha earthquake by the first author. All evidence data (i.e., pho-
tographic documentation and borehole details from SAFER/GEO-591) are provided in this 
paper (Tables 1, 4  and 5 and Figs. 10, 11, 12, 13, 14 and 15 in the Appendix). The PL and 
the corresponding liquefaction potential category according to Iwasaki et  al. (1984) and 
Sonmez (2003) are compared: both methodologies give similar computed values of lique-
faction potential with Sonmez providing slightly higher PL values (see Table 6) leading to 
a refined estimate. However, both estimates remain quite similar. Figure 4 shows a ground 
fissure at Kausaltar, Bhaktapur (Location 7a in Fig. 2), after the 2015 Gorkha earthquake. 
Figure 5a shows evidence of a building tilted due to liquefaction effects; this building was 
situated near the Araniko Highway, corresponding to Location 7b in Fig.  2. Figure  5b 
shows the liquefaction evidence record for Location 7c in Fig. 2.

Table 4  Approximate liquefaction evidence point co-ordinates and evidence details extracted from GEER 
report (Hashash et al. 2015)

Location Latitude °N Longitude °E Evidence (page(s) refer-
ence from Hashash et al. 
2015)

Ramkot 27.711025 85.26229 106–108
Singa Durbar Bridge 27.698793 85.32006 108–109
Manamaiju 27.745523 85.302223 109–110
Guheshwor 27.709253 85.357553 110–111
Lokanthali 27.674816 85.362646 111–118
Syuchatar 27.697230 85.274080 118–119
Bungamati 27.628630 85.296650 119
Changu Narayan 27.709430 85.413970 120
Mulpani 27.704575 85.399617 121
Gwarko/Imadol 27.666782 85.338346 121
Hattiban 27.655670 85.334410 121–122

Table 5  Approximate locations of liquefaction evidence photographs provided in the Appendix

Table 6 
Reference

Photo Location Latitude °N Longitude °E Evidence

3a Figure 10 Bungmati 27.62886 85.29696 Cracking and sand boiling ejecta
3b Figure 11 Bungmati 27.63028 85.29659 Cracking and sand boiling ejecta
6 Figure 12 Imadol 27.66614 85.33656 Tilted building
7a Figure 4 Kausaltar 27.67473 85.36359 Ground fracture
7b Figure 5a Kausaltar 27.67512 85.36217 Tilted building
7c Figure 5b Kausaltar 27.67407 85.36265 Ground fracture
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Photographic evidence collected by the first author in the aftermath of Gorkha earth-
quake and located in the vicinity of three boreholes from the SAFER/GEO-591 database 
(Gilder et al. 2019b) showed no evidence of liquefaction. These locations are indicated as 
8, 9 and 10 in Table 6 are employed as “evidence of no liquefaction” to compare the per-
formances of the two approaches of Iwasaki et al. (1984) and Sonmez (2003). For all three 
IDs 8, 9 and 10, the resulting PL value is 0 predicting very low and non-liquefiable poten-
tial categories for Iwasaki et al. (1984) and Sonmez (2003), respectively (see Table 6).

3.3  Zoning

Sonmez’s (2003) methodology was found to be better suited for classification of computed 
PL values based on the evidence presented in this paper for the Kathmandu Valley. Appli-
cation of the methodology can provide PL estimates at 75 discrete locations using SAFER/
GEO-591 (Gilder et al. 2019b) (see Table 1 for a list of the boreholes used from SAFER/
GEO-591). The final number of boreholes employed is due to the selection of higher qual-
ity investigations i.e., the deepest boreholes are used with availability of other geotechnical 
information) when multiple investigations are available at the same site. To draw liquefac-
tion potential maps for the region kriging interpolation can be used. Kriging interpolation 
allows for the degree of variation among known data points and corresponding distance to 
estimate values in unknown areas (e.g., Baise et al. 2006; Thompson et al. 2010; Chung 
and Rogers 2011; Pokhrel et  al. 2012, 2013; Thompson et  al. 2014). In this paper, the 
adopted algorithm is the ordinary kriging approach implemented in ArcGIS (ESRI 2012). 
Given kriging is an interpolation method and that soils are highly variable the results from 
the maps shown in this paper should not be used for site-specific design work but rather as 
a useful guide for planning future infrastructure developments.

4  Liquefaction potential map for Kathmandu Valley

4.1  Seismic hazard

PGA values for the Kathmandu Valley are those based on the PSHA results provided by 
Stevens et  al. (2018). As discussed in several studies (e.g., Stevens et  al. 2018; Pokhrel 

Fig. 4  Liquefaction and cracks 
in the ground at Kausaltar, 
Bhaktapur, Nepal, after the 2015 
Gorkha earthquake, (Location 7a 
on Fig. 2). Photograph taken on 
2015-05-31 [RM Pokhrel]
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et al. 2019b; De Risi et al. 2020), the hazard in the region is dominated by the MHT; how-
ever, the study by Stevens et al. (2018) considered several additional sources contributing 
to the hazard. Furthermore, the assumption related to the GMPEs in the PSHA can signifi-
cantly affect hazard results. There remains significant uncertainty related to the choice of 
GMPEs for PSHA studies in the Himalayan region and the lack of regional GMPEs sup-
ported by a significant number of data (e.g., Bajaj and Anbazhagan 2019). Stevens et al. 
(2018) employed an equally weighted logic tree in their PSHA, i.e., using an average of 
four GMPEs. Additionally, each GMPE was considered separately (data available in Ste-
vens 2020).

The PGA maps for a probability of exceedance of 2% and 10% in 50 years are consid-
ered as they refer to the near-collapse and life safety reference in many international seis-
mic codes (e.g., CEN 2004). The estimates of PGA employed for the Kathmandu Valley 
in this study are: (i) the final values provided in Stevens et al. based on the average of the 
four GMPEs considered defined as AVERAGE in the following and (ii) the PGA estimate 
resulting from the use of the GMPE from Atkinson and Boore (2003) indicated in the fol-
lowing as AB03. The first assumption was the inclusion of GMPEs suitable for crustal and 
subduction zones, and none of them being region-specific for the Himalaya given the lack 
of data and the further necessity to develop reliable GMPEs for the area (see also Bajaj and 
Anbazhagan 2019). The second assumption refers to the subduction GMPE proposed by 
Atkinson and Boore (2003), which is not region-specific but can be used as a lower bound 
for PGA for the Kathmandu Valley. Figures 6 and 7 show the PGA maps for the 2% and 
10% in 50 years probability of exceedance considering both the AVERAGE (Fig. 6) and 
AB03 (Fig.  7) GMPE assumptions. Both PGA maps were calculated accounting for the 
local soil amplification in the basin. This was achieved using the VS30 used as the parameter 
for soil characterization using the GMPEs. The source for VS30 used in the GMPEs for the 
PSHA study (Stevens et  al. 2018) was the USGS slope-based study by Wald and Allen 
(2007) and Allen and Wald (2009). This approach tends to overestimate the VS30 values 
(i.e. soil-stiffness) with respect to direct measurements, as shown in Gilder et al. (2018). 
For the geomorphological condition and complex geology of the Kathmandu Valley, the 
slope model does not represent an accurate approximation of VS30 (De Risi et al. 2021) but 
it is considered suitable at this stage for the scope of zoning liquefaction potential.

Fig. 5  a Partial collapse due to tilting and seismic pounding in the Kausaltar area (Location 7b in Fig. 2) 
after the Gorkha earthquake; b liquefaction and cracks in the ground near the Araniko Highway at Kausal-
tar, Bhaktapur, as a result of the Gorkha Earthquake 2015, (Location 7c on Fig. 2). Photograph taken on 
2015-05-31 [RM Pokhrel]
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4.2  Results and discussion

The results are presented for a range of PGA values, obtained from an average representing 
several GMPEs, (GMPE AVERAGE of Stevens 2020) and a single GMPE (AB03 of Ste-
vens 2020) as shown in Fig. 6 and Fig. 7. These figures indicate the uncertainty in the pre-
diction. The geographical resolution of the data is at the order of approximately 1000 m.

At each borehole location in the SAFER/GEO-591 database used for the liquefaction 
potential analysis, two different seasonal values of water table depth were used (1.6 m and 
5.1 m) as discussed in Sect. 2. Figure 8a and b show the liquefaction potential map of the 

Fig. 6  PGA map (horizontal component) of the Kathmandu Valley for a (left) 2% in 50 years probability 
of exceedance and b (right) 10% in 50 years probability of exceedance assuming the AVERAGE GMPE 
model choice by Stevens (2020) (data from Stevens 2020)

Fig. 7  PGA map (horizontal component) of the Kathmandu Valley for a (left) 2% in 50 years probability of 
exceedance and b (right) 10% in 50 years probability of exceedance assuming the AB03 GMPE as provided 
by Stevens (2020) (data from Stevens 2020)
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Kathmandu Valley based on PGA considering the AVERAGE GMPE assumption for 2% 
in 50 years probability of exceedance under a wet scenario and dry scenario, respectively. 

Fig. 8  Liquefaction potential map of the Kathmandu Valley based on PGA assuming an AVERAGE GMPE 
for 2% in 50 years probability of exceedance under a a (top-left) wet scenario and b (top-right) dry scenario 
and for 10% in 50 years probability of exceedance in a c (bottom-left) wet scenario and d (bottom-right) dry 
scenario, respectively
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Similarly, Fig. 8c and d present 10% in 50 years probability of exceedance in a wet scenario 
and dry scenario, respectively. Among these, the PGA having 2% probability of exceed-
ance in 50 years is around 1.2 g, and it is almost uniform across the valley. This represents 
the worst-case scenario of a wet season earthquake where both the sandy deposits and silty 
or fine-grained materials (characterizing the southern valley) are saturated and so have the 
potential to liquefy. On the other hand, the PGA for a probability of exceedance of 10% 
in 50 years is around 0.65 g, and it is more spatially variable (i.e., borehole to borehole). 
Severe liquefaction is anticipated all around the Kathmandu valley for these PGA values 
and with an assumed depth of groundwater table of 5.1 m during the dry season. In this 
scenario, most of the Kathmandu Valley has a high computed potential for liquefaction. 
Similarly, Fig. 9a and b present liquefaction potential maps of the Kathmandu Valley based 
on PGA considering only the AB03 GMPE for 2% in 50 years probability of exceedance 
under a wet scenario and dry scenario, respectively. Figure 9c and d show the liquefaction 
potential for 10% probability of exceedance in 50 years in a wet scenario and dry scenario, 
respectively. The estimated PGA for the 2% probability of exceedance in 50 years is about 
0.48  g and for 10% it is about 0.3  g, closer to the current design PGA in the Nepalese 
building code (NBC 2020).

An important geotechnical aspect is the superficial geology, the liquefiable layers are 
due to the presence of the river (supported by the GEER evidence, Hashash et al. 2015). 
However, when considering the distribution of the liquefaction potential in Fig.  8d in 
the central Valley, most areas correspond with the Somnez designation ‘moderate’ when 
located adjacent to the river edge. Two boreholes located between Kathmandu and Lalitpur 
either side of the river help evidence this result, and this probably is due to the dominant 
silt and clay-like materials often present at depth at these locations. The spatial position of 
these points (and the kriging results) gives lower values of potential liquefaction. As this 
indicates the ‘dry scenario’, the saturation in such deposits will be lower. Considering the 
laminated nature of the deposits and the fact that many locations are without borehole data, 
the results presented in this work are preliminary.

The flood plain areas have been identified and considered as having a high liquefaction 
potential used as a working assumption in all maps. The Gokarna and Tokha Formations 
at the northern part of the valley contain sand-dominant soil (Fujii and Sakai 2002 and 
Fig. 2). The Kalimati Formation dominantly comprises clayey silt has a lower liquefaction 
potential (Fujii and Sakai 2002). The liquefaction potential maps for all cases show that the 
northern part (Gokarna Formation) has a higher liquefaction potential than the southern 
(Kalimati Formation) region which complies with expectations considering the dominant 
constituents of these two materials. This result is expected given the geological nature of 
the deposits (the Kalimati is mainly clay while the Gorkarna is mainly sand). However, 
the original liquefaction map shown in Shrestha et  al. (1998) (see Fig. 1a) does not fol-
low the geological expectation in the same way as the analysis presented here, or that of 
Piya (2004) and Piya et al. (2004) when based upon on a database containing more recent 
ground investigations (Gilder et al. 2019b, 2020).

No severe liquefaction was observed in the Kathmandu Valley during the Gorkha earth-
quake as discussed in previous studies (e.g., Chiaro et al. 2015; Moss et al. 2017). Based on 
the present study, this can be attributed to the season of the year in which the Gorkha earth-
quake occurred. April is peak dry season in the Kathmandu Valley (Fig. 8d). Most of the 
area in this season has a low potential for liquefaction, therefore, this result matches with 
the relatively limited evidence of liquefaction damage during that earthquake. If a similar, 
or larger, earthquake occurred in the future during peak wet season, the soil is expected to 
liquefy more significantly as shown in the Figs. 8a and c and 9a and c.
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Fig. 9  Liquefaction potential map of the Kathmandu Valley based on PGA assuming the AB03 GMPE for 
2% in 50 years probability of exceedance under a a (top-left) wet scenario and b (top-right) dry scenario 
and for 10% in 50 years probability of exceedance in a c (bottom-left) wet scenario and d (bottom-right) dry 
scenario, respectively
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5  Summary and conclusions

Liquefaction potential zoning maps are useful tools for seismic hazard assessment. In 
this study, information compiled from geo-database SAFER/GEO-591 was employed to 
develop new maps of liquefaction potential using SPT data. Notwithstanding the additional 
information provided by the database, the area of the valley is still not well characterized 
from a geotechnical perspective and therefore interpolation by ordinary kriging was used to 
obtain continuous hazard maps of liquefaction potential, developed for different scenarios 
of hazard-consistent PGA. The following conclusions are drawn:

(a) The effect of changing depth of the water table to simulate seasonal variation was 
studied which is shown to have a significant effect on the distribution of computed 
liquefaction potential. This confirms the observations made by Moss et al. (2017) and 
highlights the need for season-dependent liquefaction susceptibility studies. This is 
an important issue as it further affects the predictions of structural and infrastructure 
damage in Kathmandu valley, which are key elements of regional loss assessment.

(b) As expected, the scenario of shallow water table typical of the monsoon season is 
characterized by higher calculated liquefaction potential with respect to the dry season 
scenario.

(c) The Gokarna Formation appears to have the highest computed potential for liquefaction 
with respect to other geological formations studied, which has resulted in maps that 
indicate higher liquefaction potential in the north of the valley compared to the south 
(where the composition is more cohesive).

To further refine the above observations, site response analyses at the city level can be 
performed to calculate the cyclic stress ratio in a more refined manner (De Risi et al. 2019). 
Currently the liquefaction potential maps are reliant on the available borehole distribution, 
and it should be noted that some areas are currently not well characterized (e.g., Bhakta-
pur). It is also expected that the assessment of liquefaction potential of the southernmost 
valley may increase with data from further investigations if the area is underlain by both 
weathered fan and deltaic deposits (Sakai et al. 2016). More recent work on liquefaction 
potential has investigated the role that silts might have on liquefaction potential (Shuttle 
and Cunning 2007). This may inform further work which may benefit future liquefaction 
potential studies for the Kathmandu Valley, given the central, most populated parts of the 
valley are underlain by potentially loose, saturated silts. Further work is also needed to 
compare the exact locations of observed liquefaction against the results predicted in this 
work. However, this study has shown the value of the SAFER/GEO-591 (Gilder  et  al. 
2019b) database for regional estimates of liquefaction potential which may be useful for 
planning and loss assessment purposes.

Appendix

See Figs. 10, 11, 12, 13, 14 and 15. 
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Fig. 10  Liquefaction and sand 
boiling at Bungmati (Liq. ID 3a 
in Table 6) [Photo: RM Pokhrel]

Fig. 11  Liquefaction and sand boiling at Bungmati (Liq. ID 3b in Table 6) [Photo: RM Pokhrel]
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Fig. 12  Tilted building due to liquefaction at Imadol (Liq. ID 6 in Table 6) [Photo: RM Pokhrel]

Fig. 13  Structure damage observed at Bungmati village near Bhainsepati—no evidence of liquefaction 
(Liq. ID 8 in Table 6) [Photo: RM Pokhrel]
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Fig. 14  Structure damage observed at Jagati—no evidence of liquefaction (Liq. ID 9 in Table  6) 
[Photo: RM Pokhrel]

Fig. 15  Structural damage observed at Kalanki near solti—no evidence of liquefaction (Liq. ID 10 in 
Table 6) [Photo: RM Pokhrel]
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