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Quantum theory cannot violate a causal inequality

Tom Purves* and Anthony J. Shortf
H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, U.K.

Within quantum theory, we can create superpositions of different causal orders of events, and
observe interference between them. This raises the question of whether quantum theory can produce
results that would be impossible to replicate with any classical causal model, thereby violating a
causal inequality. This would be a temporal analogue of Bell inequality violation, which proves
that no local hidden variable model can replicate quantum results. However, unlike the case of
non-locality, we show that quantum experiments can be simulated by a classical causal model, and

therefore cannot violate a causal inequality.

Introduction.— A fascinating aspect of quantum the-
ory that has been investigated recently is the possibility
for the causal order of events to be placed into superpo-
sition [1-5], leading to ‘causal indefiniteness’ about the
order with which events have taken place. This phe-
nomenon has been tested experimentally [6-8], and can
be exploited to gain advantages within quantum theory.
For example, setups based on the quantum switch [1] can
help to determine whether unknown unitaries commute
or anticommute [2]. An interesting question is whether
quantum theory can generate results which could not be
simulated by any classical causal model. Such results
would violate a Causal Inequality [15-18]. These are the
temporal analogues of Bell Inequalities [19], and the vi-
olation of such an inequality in nature would call into
question the elementary properties that scientists regu-
larly invoke when talking about cause and effect relation-
ships.

In this paper we focus on the relationship between the
type of causal indefiniteness present in quantum theory
and the type needed to violate causal inequalities. We
show that despite allowing causally indefinite processes,
the correlations generated by quantum theory can be sim-
ulated by a classical causal model. This means that quan-
tum theory cannot violate causal inequalities, and hence
cannot yield an advantage over classical causal processes
for tasks defined in a theory-independent way (such as
‘guess your neighbour’s input’ [17, 20]). Previous works
in this direction have shown that particular switch-type
scenarios cannot violate causal inequalities [21], and that
causal order cannot be placed in a pure superposition
[13, 22]. It has also been shown that causal inequality vi-
olations are possible when we condition on measurement
outcomes of one party [23]. However, our results imply
that such violations are not possible for general quantum
setups without conditioning.

Indefinite causal structure is often studied via process
matrices [15], which assume that local laboratories obey
standard quantum theory, but allow any connections be-
tween them consistent with this. This may include pro-
cesses which are not achievable in standard quantum the-
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ory, or in nature more generally. Here we focus on what
is possible in standard quantum theory, using quantum
control of different parties’ operations to generate super-
positions of causal order, in a similar way to [24, 25]. As
process matrices can yield causal inequality violation, a
corollary of our result is that all process matrices cannot
be implemented in standard quantum theory.

Results— Before considering quantum processes, we
first define causal processes, which are those which could
be realised classically by a set of parties in separate lab-
oratories passing systems between them [5, 26].

First consider two parties, Alice and Bob, with mea-
surement settings x and y and measurement results a and
b respectively. During the experiment, depicted in figure
1, each party sees a system enter their laboratory ex-
actly once, performs a measurement on it with their cor-
responding measurement setting (which may also modify
the system), and records their result. They then pass
the system out of their laboratory. Apart from the sys-
tems entering and leaving their laboratories, the two par-
ties cannot communicate with each other, but the sys-
tem leaving one laboratory may be later sent into the
other. Alice and Bob’s joint measurement results can
be described by a conditional probability distribution
p(ablzy). However, not all such probability distributions
can be achieved by a causal process.
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FIG. 1. An example of a causal process in which Alice goes
before Bob. Note that the system which is passed from Alice’s
to Bob’s laboratory could encode information about a and x.

The most general causal process in this case would be
to first choose randomly whether Alice or Bob would go
first (with probabilities p(Alice first) or p(Bob first)). If
Alice goes first, then her measurement result can depend
on her measurement setting but not on Bob’s, who hasn’t
acted yet, so is given by p(a|z). She can then encode her



measurement setting and result in the system and pass
it out of her laboratory. This system then enters Bob’s
laboratory, where his measurement result can depend on
all of the other variables, given by p(b|a, z,y). Consider-
ing the other causal order in which Bob goes first in the
same way, we obtain [17]

causal(

ablzy) =p(Alice first)p(a|x)p(bla, x,y)
+ p(Bob first)p(bly)p(alb, z,y) (1)

For the multiparty generalisation [18, 27], observe that
the above causal probability contains two types of terms.
The first, such as p(Alice first), determines the order in
which the parties act, and the second, such as p(a|x) or
p(bla, x,y), determines the outcome probabilities of their
measurements, constrained by their causal order. We
now extend these ‘who is next?’ and ‘what did they see?’
type probabilities to an arbitrary number of parties. We
use I, to denote the kth party that receives the system (or
equivalently, the kth laboratory the system enters), and
denote the probability for this to occur by pg(lg|Hg—1)-
The conditional on Hy_; represents the history (includ-
ing all previous parties that have measured, and their
inputs and outputs) for it should be permitted for par-
ties in the causal past of [ to affect who is the next party
to act. As a simple example of this, consider a tripartite
experiment, with Alice, Bob and Charlie participating. If
Charlie comes first, the system could be passed to Alice
or Bob next, based on the outcome of his measurement.
Here, ps(Alice next|Charlie got outcome = 1) may not
be equal to po(Alice next|Charlie got outcome = 0).
Scenarios of this form this are what pg(lx|Hg—1) ac-
counts for. The probability for [ to obtain given re-
sults may also depend on this history (but, importantly,
not on the causal future), and of course on the measure-
ment setting, denoted x;,. We write this probability as
pr(ay, |Hek—1, 21, ). A causal model is then the summation
over all available parties at all stages of the measurement
procedure, under the assumption that each party only
acts once in the entire procedure.

p

Definition 1 A causal probabilistic model can be written
as

p M @ld) = > .. Y pu(h|Ho)pi(ay, |Ho, @i, ).
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where the py(lx|Hg—1) terms represent probabilities for
party I to act at stage k of the causal order, and
pr(ay, |He—1,1,) terms represent probabilities for party
li, who has acted at stage k of the causal order to obtain
measurement result a;, . Both of the above probabilities
are conditional on a history, Hy_1, which contains all of
the information about previous inputs, outputs and party
order. In particular, the history Hy = (h1,..., hy) is the
ordered list of triples h; = (I;,ar,,21,). The summations
are performed over all possible next parties, excluding
parties who have already acted, which are stored in the

unordered sets Ly, = {l1,...,lx}. To emphasise the sym-
metry between the terms we include Hy and Ly, which
are defined as empty sets, as no parties have acted at
that point.

This definition leads to a convex polytope of causal
probability distributions p°®*#!(@| 7). Note that although
the notation differs, this generates the same set of prob-
abilities as was previously defined in [18, 27]. Lin-
ear constraints on these probabilities which are satis-
fied by all pc@2l(G|7) but which could be violated by
some arbitrary probability distribution p(@|Z) are known
as ‘causal inequalities’, and are a temporal analogue of
the Bell inequalities which have been widely studied in
the context of quantum non-locality. By definition, any
pceusal(q b|x, 1) cannot violate a causal inequality. A vio-
lation of a causal inequality, by observation in experiment
or by calculation in theory, proves that those experimen-
tal results or predictions do not have a causal explanation
of the type defined above.

Quantum Processes— A general representation of
quantum theory is provided by the quantum circuit
model. However, if we construct a circuit with the par-
ties’ actions at fixed locations, then there is no causal
indefiniteness and a causal inequality cannot be violated
[35]. Even to capture all classical causal processes, we
need to be able to alter when different parties act. This
can be achieved in the circuit model by representing the
parties’ actions by controlled quantum gates. Such gates
could be constructed within standard quantum theory
(e.g. by sending a system into the lab when the con-
trol is in the appropriate state and not otherwise), and
are effectively what has been used in experiments prob-
ing quantum causality [7]. Quantum circuits involving
controlled lab gates appear sufficient to represent any
processes achievable within standard quantum theory.

For simplicity, we consider a setup involving a single
quantum control which can trigger any of the labs. How-
ever this is equivalent to considering any quantum circuit
which can be constructed from any number of individual
controlled lab operations and other unitary gates (see the
supplementary information for more details).

The key idea is to consider N parties, each of whom
will interact with a quantum system exactly once, but
in an order that is controlled coherently via the quan-
tum control. We allow arbitrary unitary transformations
of the system and control between each party’s action,
so that the ordering of later parties can be modified by
earlier actions.

To allow the maximum possible interference, and avoid
‘collapses’ which would prevent interference between dif-
ferent causal orders, we model each party’s measurement
as a unitary interaction between the system and a lo-
cal measurement register. This corresponds to the case
in which there is no record in the measuring device of
the time at which the measurement was performed. At
the end of the experiment, all parties read off their mea-
surement results from their local measurement registers
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FIG. 2. Illustration of the quantum protocol. The system interacts with the different parties via a sequence of controlled
entangling unitaries. Quantum control of causal order is achieved by a series of unitaries U, on the control and system wires.

(which can be modelled by a standard projective mea-
surement).

Each party also has a ‘flag’ which keeps track of how
many times they have interacted with the system. At
the end of the protocol we require that each party has
interacted with the system exactly once.

Formally, the Hilbert space can be decomposed into
the following components

e An arbitrary quantum system g, which is passed
between parties.

e A quantum control H, which has dimension N + 1.
The basis states |1) ... |N) denote which party will
measure next, while |0) is treated as a ‘do nothing’
command. By considering superpositions of these
basis states, we can superpose different causal or-
ders.

o A result register H,, for each of the N parties. The
different results are represented by orthonormal ba-
sis states |a;) with a; € A;, leading to the result
register having dimension |A;|. We choose one of
these states as a starting state for the results reg-
ister and denote it by [0),. .

o A ‘flag’ Hy, for each of the N parties, indicating
how many times they have interacted with the sys-
tem. For simplicity, we take each of these to be in-
finite dimensional, with basis states labelled by the
integers. When the party interacts with the system
the value of the flag is unitarily raised by the op-
erator I' = 37 [n+1), (n[,. Each flag starts in
the |O>f7.- state, and at the end of the protocol, we
require them all to be in the [1) . state.

Note that we do not include separate local quantum
ancillas for the parties, as these can always be incorpo-
rated in Hs. We denote the combined result and flag
spaces by H, = Q H,, and H; = Q H, respectively.

We consider quantum protocols as follows. Firstly, the
initial state

10) = 10,10}, [0)N [0)} € Hy @ He @M, @ Hy.  (3)

is prepared, and each party [ either chooses or is dis-
tributed their individual classical measurement setting
xZy.

The protocol then consists of T time-steps, each of
which is composed of two operations. Firstly, an arbi-
trary unitary transformation Uy is applied to the system

and control, which can depend on the time ¢. Secondly, a
fixed controlled lab-activation unitary V is applied, which
activates whichever party is specified by the control. This
is given by

N
V=10){0l. @ I+ 1) (U], ® Ve (z) @, @ 1 (4)
=1

where the identities are over all remaining subsystems.
Vs,r, (1) is a unitary which implements the measurement
of party | on the system specified by the measurement
setting x;, and stores the result in the register r;. For
example, two different values of x; could correspond to
party [ measuring the system in either the computational
or the Fourier basis. Note that by incorporating ancillas
within the system, any local quantum measurement (i.e a
POVM) is realisable within this paradigm. Ancillas can
also be used to generate arbitrary mixed states if required
(via purification).

The unitary operator I'y, raises the flag system of the
party making their measurement. At the end of the pro-
tocol, we require that the flags are in the state |1)§v (i.e.
that each party has measured the system once). This
places constraints on the possible protocols which can be
constructed. Note that each party does not have access
to an operation which resets the flag, aside from the ini-
tialisation operation at the start of the protocol. They
therefore always ‘remember’ if they have made a mea-
surement or not. Also, we do not allow circuits involving
the controlled inverse of a party’s action (which would
lower their flag and erase their memory), as this would
enlarge the set of causal possibilities even classically.

The total unitary for the protocol is given by

U=VUrVUr_1..VU. (5)

At the end of the protocol, each party performs a projec-
tive measurement on their results register to obtain their
final result [36]. The output probability distribution of
the quantum protocol is therefore given by

pr (al) = |(|a) (al, ® D (o) 2. (6)

The full protocol is illustrated as a quantum circuit in
figure 2.

The main result of this paper is that any probabil-
ity distribution which can be generated within quantum
theory, as described above, can also be obtained via a
classical causal process.



Theorem 1 Any quantum  probability  distribution
pavartum (@3 can be exactly replicated by a classically
causal process p°*sal(g|x¥).  Hence quantum theory
cannot violate a causal inequality.

In particular, we now show how to construct an explicit
classical causal process which replicates the results of any
quantum protocol, together with a sketch of the proof of
Theorem 1. The full proof of the theorem can be found
in the supplementary information.

We first define notation for describing states at each
stage of the quantum protocol, and then show how to use
these to construct the probabilities in the corresponding
classical model.

Definition 2 The (un-normalised) state with a History
Hy_1, at a time t, with the control set to trigger the ac-
tion of party li is given by

Wt tren)) = (k) (il @73 @ L) UV U_1...V UL [0).
(7)

The projector onto the result and flag spaces is given by
Wgc"'*l = ®fi1 (wf}’l) , where

if (i,a:,2;) € Hp—1,

otherwise .

o _ Jlai) {ail,, @ 11) (1,
rifi I, ®0) (0],

(®)

This notation describes states which are about to be mea-
sured by the parties (i.e., a V type operator is about to
act on them). We also set up some notation for states
which have just been measured, in a similar fashion.

Definition 3 The (un-normalised) state with a History
Hy, at a time t, in which party l;, has just acted is given
by

P .m)) = (law) el @ DV by i) (9)

With these definitions, we can associate the states in this
quantum process with the probabilities in our classical
causal model.

Definition 4 The probability for party I to act next,
given a history Hy_1 is given by:

T
Ztkzl | |w(lk7tk,Hk—1)> |2
T
Yovgrey 2o =1 | Ve m_)) P

We have summed over time [36], because it is pos-
sible within the quantum paradigm to conduct the k"
measurement at different times according to a back-
ground clock (which we note the labs have no access
t0). Note that states at different times combine incoher-
ently, but different sequences leading to the same set of
historical measurement results combine coherently inside

|w(lk7tk7Hk—1)>'

(k| Hp—1) = . (10)

4

The form of equation (10) makes it a valid probability
distribution, as it is non-negative, and obeys the correct
normalisation that »2, o, pr(lx|Hk—1) = 1. Also note
that it depends on only those input variables x; which
appear in the history Hy_;.

Next, we specify similar probabilities for seeing mea-
surement results based on a given history.

Definition 5 The probability for party I to obtain the
measurement result a;,, given a history Hy_1, and an
input variable x;, is given by:

T
Ztkzl | |¢(lk,tk7Hk)> |2
T b)
2ol ey, 2aty=1 Pty ) 12
(11)
and H; =

pr(ay, | H—1,71,) =

where H, =

(Hi—1, (I, a;k ) mlk))
This is again a valid probability distribution, since

ZaszAlk pr(ay, |Hk—1,21,) = 1. In the numerator, we

(kah (lkvalk’xlk))

have simply taken sum of the modulus squared of all of
the states which have the correct historical results, the
control in the correct state, and the results register con-
taining the result we want to calculate the probability
for.

To prove Theorem 1, We begin by inserting
pr(lk|Hik—1) (from (10)) and pg(as, |Hk—1,2,) (from
(11)) into the definition of a causal model (1). We are
then able to straightforwardly cancel the numerator of
the ‘who is next?’ type probabilities with the denomi-
nator of the ‘what did they see?’ probabilities for the
probabilities evaluated at the same stage of the causal
order. Next, we show that a sum over the last party to
measure in the numerator at one stage of the causal or-
der, cancels with the denominator at the next stage of
the causal order. We then make the observation that for
the first stage of the causal order, the denominator of
p1(l1|Hp) is equal to one (which corresponds to the fact
that someone must measure first in the quantum circuit).
Finally, we note that the numerator of the final term,
summed over all parties, represents exactly the proba-
bilities pauantum(g|F) arising from the quantum protocol.
This allows us to simulate the results of the quantum pro-
tocol via the classically causal model given in (1). Given
that it can be replicated by a causal model, it follows
that quantum theory cannot violate a causal inequality.

In the supplementary information, we give an example
of how these results can be applied in practice, based on
the quantum switch [1]. This involves the causal order
of two parties becoming entangled with the control. A
third party then performs a measurement which leads
to interference between the two causal orders. It has
already been shown that this simple setup cannot be used
to violate a causal inequality [15, 21]. However, it is
instructive to see how it fits into our framework. Despite
the quantum setup including interference, our results give
an explicit classical causal process which generates the
same behaviour (i.e. the same p(a, b, c|z,y, 2)).



Conclusions.— By using a quantum control to deter-
mine when different parties measure, and treating these
measurements as coherent unitary processes, quantum
theory allows us to generate superpositions of causal or-
ders and to observe interference between them. At the
level of the theory, such processes do not arise from a sin-
gle causal order, or even a mixture of orders. However,
we have shown that the probabilities p(@|Z) generated by
any quantum protocol can be simulated by a classical
causal process. This means that quantum theory cannot
violate a causal inequality, and thus one could not con-
vince a sceptic that nature deviates from classical notions
of causality.

This is in sharp distinction to non-locality, where not
only does the theory appear non-local (e.g. via entangled
states) but we can also prove that some quantum proba-
bilities cannot be replicated by any local hidden variable
model. By violating a Bell inequality we can therefore
prove non-locality experimentally.

Although our framework is very general, one key re-
quirement is that each party interacts with the system
once (which leads to a requirement on the final flag state).
This is the normal setup for causal inequalities, and al-
lows us to assign a single input and output to each party,
and to represent the experimental results via p(d|Z).
However, it would be interesting to lift this assumption
in future research. For example, could we obtain a viola-
tion of causality if parties are allowed to measure twice,
or a variable number of times, or to forget they have
measured? We also have a technical assumption that the

protocol takes finite time (i.e. that it terminates after a
finite number of steps). This seems physically reasonable,
but it might be interesting to investigate lifting this as-
sumption, as well as to consider extending the results to
continuous time. Finally, it would be interesting to con-
sider a network structure in the causal scenario, in the
non-local case this is known to generate non-linear Bell
inequalities, and sets of non convex probability polytopes
[33]. Investigation of causal indefiniteness and causal in-
equalities in these type of scenarios might prove of general
interest.

Finally, our framework assumes standard quantum
theory. If the theory changes significantly to incorpo-
rate quantum gravity we might expect new possibilities
for causal inequality violation, although not necessarily
[4] (note that even classical general relativity allows for
the existence of closed time-like curves, which appear to
violate the simple classical causal models we have con-
sidered here [14, 28, 29]). We hope that the framework
and tools developed here will prove helpful in discussing
these interesting issues, and in highlighting differences
from the standard case.

T.Purves acknowledges support from the EPSRC.

Note added - Independently obtained related results
using the process matrix formalism [34] appeared on the
ArXiv on the same day as this paper.
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