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N E U R O S C I E N C E

Circuit mechanisms for the chemical modulation 
of cortex-wide network interactions and  
behavioral variability
Thomas Pfeffer1,2*, Adrian Ponce-Alvarez2, Konstantinos Tsetsos1, Thomas Meindertsma1,3, 
Christoffer Julius Gahnström1, Ruud Lucas van den Brink1, Guido Nolte1, Andreas Karl Engel1, 
Gustavo Deco2,4,5,6, Tobias Hinrich Donner1,3,7,8*

Influential theories postulate distinct roles of catecholamines and acetylcholine in cognition and behavior. How-
ever, previous physiological work reported similar effects of these neuromodulators on the response properties 
(specifically, the gain) of individual cortical neurons. Here, we show a double dissociation between the effects 
of catecholamines and acetylcholine at the level of large-scale interactions between cortical areas in humans. 
A pharmacological boost of catecholamine levels increased cortex-wide interactions during a visual task, but not 
rest. An acetylcholine boost decreased interactions during rest, but not task. Cortical circuit modeling explained 
this dissociation by differential changes in two circuit properties: the local excitation-inhibition balance (more 
strongly increased by catecholamines) and intracortical transmission (more strongly reduced by acetylcholine). 
The inferred catecholaminergic mechanism also predicted noisier decision-making, which we confirmed for both 
perceptual and value-based choice behavior. Our work highlights specific circuit mechanisms for shaping cortical 
network interactions and behavioral variability by key neuromodulatory systems.

INTRODUCTION
The catecholaminergic (noradrenergic and dopaminergic) and cho-
linergic modulatory systems of the brainstem are important regulators 
of global brain state and cognition (1–3). Their brainstem centers 
send ascending projections to large parts of the cerebral cortex (1, 4), 
which is equipped with similarly widely distributed receptors for 
these neuromodulators (5). Consequently, these systems are in an 
ideal position to shape cortex-wide network activity in a coordinated 
fashion. Mounting evidence indicates that neuromodulatory systems 
have a profound impact on large-scale cortical network activity, as mea-
sured by neuroimaging or electrophysiological mass signals (5–9).

Influential theoretical accounts postulate highly specific roles of 
the catecholaminergic and cholinergic systems in the regulation of 
cognition and behavior (1,  10,  11). Such specific functional roles 
imply that these neuromodulators should also have dissociable 
effects on the cortical micro- and macrocircuit dynamics that im-
plement cognitive computation. One prominent idea holds that 
catecholamines increase the responsivity (“gain”) of neuronal popula-
tions to synaptic input (1, 12, 13). Acetylcholine, on the other hand, has 
been proposed to reduce the impact of prior knowledge (top-down 
cortical signaling) relative to new information (bottom-up signaling) (10).

Physiological evidence for such a distinct shaping of cortical net-
work activity through catecholamines and acetylcholine is currently 

sparse. At the cellular level, catecholamines and acetylcholine, 
both increase the gain of cortical neurons (14–17). However, the 
magnitudes of the catecholaminergic versus cholinergic gain modu-
lations have not yet been compared directly. Some studies have shown 
a suppression of intracortical signaling through acetylcholine (18–20), 
but it remains unknown whether the same holds for catecholamines. 
Here, we set out to conduct such a direct comparison between effects 
of catecholamines and acetylcholine the micro- and macrocircuit 
levels as well as the behavioral level.

Our approach was inspired by two insights (21). First, just as for 
single neurons (12), the network effects of gain modulation should 
depend on the external drive the network receives (22). Second, the 
large-scale interaction of subtle microcircuit effects can give rise to 
substantial effects at the level of cortex-wide network activity. In-
creases in neural gain result from complex microcircuit interactions 
(23). We hypothesized that one such mechanism may be a change 
in the ratio between excitation and inhibition (henceforth termed as 
“E/I”) within cortical microcircuits (17, 24, 25): Noradrenaline sup-
presses ongoing inhibitory inputs to pyramidal cells across the mi-
crocircuit (26), which may translate into a robust increase in the net 
gain of the complete neural population. We reasoned that an in-
crease in gain yields effects on large-scale network activity that are 
particularly pronounced during external drive. By contrast, cholin-
ergic increases in gain and E/I seem to only affect a smaller fraction 
of neurons in the microcircuit (24, 27). This may translate into a 
smaller impact of acetylcholine on the microcircuit’s (i.e., region’s) 
net gain. Furthermore, acetylcholine suppresses intracortical (later-
al and/or feedback) signaling in sensory cortex (18–20).

We performed placebo-controlled pharmacological manipula-
tions of catecholamine or acetylcholine levels and quantified their 
effects on cortex-wide functional connectivity assessed with magneto-
encephalography (MEG). This was performed in two behavioral 
contexts: a visual task (i.e., external drive) and rest (absence of drive). 
We used local and large-scale network models to explore possible 
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circuit mechanisms underlying the pattern of results. We lastly tested 
predictions derived from the circuit model at the behavioral level.

RESULTS
We increased central catecholamine and acetylcholine levels through 
the placebo-controlled administration of atomoxetine and done-
pezil, respectively (Fig. 1A, left; see Methods) [data reanalyzed from 
a previous report on local cortical variability (28)]. Atomoxetine is 
a selective noradrenaline reuptake inhibitor. Consequently, atom-
oxetine increases noradrenaline levels across cortex (3) and dopa-
mine levels in its more restricted cortical projection targets (mainly 
frontal cortex) (29). Donepezil is a cholinesterase inhibitor (18), 
which blocks the enzymatic breakdown of synaptic acetylcholine 
and thus boosts cortical acetylcholine levels.

Atomoxetine (catecholamines), but not donepezil (acetylcholine), 
increased pupil size (Fig. 1B and fig. S1), an established peripheral 
marker of central arousal state (30–32). Previous analyses of this 
dataset have shown that atomoxetine also increased heart rate and 
the so-called Hurst exponent of local fluctuations of MEG power, 
and both atomoxetine and donepezil altered heart rate variability 
and local MEG power (28). The current analyses focus on large-scale 

functional connectivity between cortical regions and on the under-
lying circuit mechanisms.

The results are organized as follows: We first quantify the effects 
of the two pharmacological interventions on cortex-wide functional 
connectivity and behavior. We then present simulations of cortical 
circuit models that explore specific hypotheses pertaining to the un-
derlying circuit mechanisms. We lastly use an extension of the cir-
cuit model to derive a prediction for choice behavior and confirm 
this prediction for perceptual and value-based decision-making.

Distinct, context-dependent drug effects on large-scale 
network dynamics
Large-scale functional connectivity was quantified as the frequency- 
resolved correlations of intrinsic fluctuations of MEG power be-
tween all pairs of cortical regions (Fig. 1C) (33). We reasoned that 
any effect of gain modulation should manifest in changes of func-
tional connectivity that depend on external drive. This intuition 
was solidified through simulations of a simple version of the circuit 
model described in the next section (Fig. 2C). Thus, we estimated 
functional connectivity in two behavioral contexts: a visual task 
with continuous input and eyes-open “rest” (Fig.  1A, right). The 
task entailed the continuous presentation of an ambiguous visual 
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stimulus, which, in turn, induced spontaneous and ongoing alter-
nations in perception (Fig. 1A and movie S1) (34). We asked partic-
ipants to silently count perceived perceptual alternations and report 
the total count at the end of each MEG run. This allowed us to as-
sess functional connectivity in the absence of transients in visual 
input and motor movements. In separate blocks, participants re-
ported each perceived alternation with an immediate button press.

We used a previously established approach for the estimation of 
MEG functional connectivity that attenuates spurious correlations 
due to signal leakage (33): For any pair of regions, we orthogonal-
ized the regions’ frequency band–limited signals and then computed 
the correlations between the power envelopes of the residuals (see 
Methods and fig. S2A). We computed these orthogonalized power 
envelope correlations for 400 cortical locations and compiled them 
into a matrix, separately for a range of carrier frequencies. This 

yielded magnitudes, as well as spatial and spectral structure, of cor-
relations for rest-placebo (fig. S2, B and C) similar to those reported 
for resting-state measurements in previous work (33).

We then compared the correlation matrices between task and 
rest (fig. S3, A to C) and between each drug condition and placebo. 
Neuromodulators may potentially cause correlations between corti-
cal mass signals to shift in a common direction (e.g., toward larger 
positive correlations), or change in magnitude [e.g., shift toward 
more negative and more positive correlations (13)], depending on 
the underlying mechanism (5). To statistically assess the differences 
between our experimental conditions in an unbiased fashion, we 
computed the fraction of significantly increased and decreased cor-
relations, separately for each frequency bin. We then tested those 
fractions for their deviation from the expected chance level while 
accounting for multiple comparisons across frequencies (Methods).
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Atomoxetine increased correlations across most pairs of regions 
during task (top triangular part in Fig. 1C, left; fig. S4A). This effect 
was evident in all four cerebral lobes (Fig. 1D, left) and peaked in 
the “alpha/beta” frequency band (9.51 to 16 Hz; Fig. 1E, left). The 
effect was absent during rest (Fig.  1E; bottom triangular part in 
Fig. 1C, left). In contrast, donepezil (acetylcholine) decreased cor-
relations across most region pairs, but only during rest (bottom 
triangular part in Fig. 1C, right; Fig. 1E, right, and fig. S4B). In other 
words, both drugs had opposite effects on correlations dependent 
on behavioral context, an effect that occurred within overlapping 
frequency bands (Fig. 1F). These opposite effects translated into a 
frequency-specific and context-dependent double dissociation between 
the effects of atomoxetine and donepezil on correlations (Fig. 1G; 
P values 0.0010, 0.0009, 0.0092, 0.0004, and 0.0106 for the frequency 
bins 9.51, 11.31, 13.45, 16.00, and 19.03 Hz, respectively; paired 
two-sided permutation test).

The double dissociation was neither present at the level of local 
activity fluctuations [see (28) and fig. S5A] nor did it depend on 
specific choices of analysis parameters (fig. S5, B to F). Drug-related 
differences in correlations, albeit small in absolute terms (|r| < 
0.02), corresponded to an atomoxetine-induced increase during task 
of about 16% (collapsed across 9.51- to 16-Hz range and all region 
pairs) and a donepezil-induced decrease during rest of about 14% 
(collapsed across 9.51- to 19.0-Hz range and all region pairs). Effect 
sizes (Cohen’s d) were d = 0.4972 for atomoxetine (task) and d = 0.6135 
for donepezil (rest), both corresponding a medium effect size (35).

Catecholamines and acetylcholine both increase the gain of cor-
tical neurons (1, 12, 15, 17). How, then, did the observed dissociation 
between their effects on large-scale functional connectivity arise? 
We reasoned that this may result from subtle differences between 
the catecholaminergic and cholinergic microcircuit effects, ampli-
fied through large-scale interactions between the multitude of 
microcircuits (i.e., regions) across cortex. Specifically, physiological 
evidence suggests that catecholamines increase net gain of entire 
cortical regions by tonically increasing E/I across neurons in the 
circuit and that acetylcholine may have a weaker effect on the re-
gions’ net gain (24). We simulated cortical circuit models at different 
scales to solidify these hypotheses and assess whether such circuit 
mechanisms were sufficient to account for the pattern of changes in 
functional connectivity.

Distinct circuit parameter changes can explain drug effects 
on large-scale network activity
We first used a large-scale model to simulate the correlations in 
mass activity (population firing rates) between coupled cortical re-
gions (“nodes”). Each node was composed of an interconnected ex-
citatory and inhibitory neural population (Fig. 2, A and B; see also 
Methods and Supplementary Discussion) (36). The model had four 
free parameters: the background inputs to excitatory (bE) and in-
hibitory (bI) populations, the slope of the input-output function 
(gain at the neural population level), and a global coupling parame-
ter. The interplay between excitation and inhibition was used to 
generate oscillatory dynamics within each node, as observed in 
measurements of cortical population activity (37). Specifically, we 
simulated a regime in which cortical mass activity exhibits noise- 
driven (as opposed to sustained) oscillations (fig. S6A) (38): Sto-
chastic fluctuations in activity drive damped oscillations in the local 
nodes (see also Supplementary Discussion). Superposition of such 
damped oscillations, triggered at random moments in time, gives 

rise to ongoing variations in the amplitude of band-limited activity. 
The power spectrum of the model firing rate time series exhibited a 
single peak (fig. S6E). The weights of the local nodes were chosen 
such that the spectral peak was in the range around ~10 Hz, match-
ing the spectral pattern present in the current MEG data during rest 
and (with smaller amplitude) task (28). The exact peak frequency 
within this range depended on the background inputs bE and bI 
(fig. S6F).

Our simulations were further constrained by the assumption of 
increased background input to excitatory populations (bE) and in-
hibitory populations (bI) in many cortical regions during task (39). 
This assumption rests on the notion that our visual task increased 
the drive of visual and higher-order “task-related” cortical regions 
and affected both excitatory and inhibitory neural populations in 
these regions. Sensory input increases not only excitation (i.e., drive 
of pyramidal cells) but also inhibition (i.e., drive of interneurons) in 
visual cortex (Supplementary Discussion) (40–42). Corresponding-
ly, in the model, we implemented the task as an increase in the back-
ground input to excitatory and inhibitory populations relative to 
rest. We first used a model made up of only two connected brain 
regions. The model’s behavior can be studied in the (bE, bI)-plane 
(Fig. 2C). The increased task-related input resulted in an upward- 
rightward shift in the (bE,bI)-plane and predicted a shift of the spec-
tral peaks of the local nodes’ power spectra to higher frequencies 
during task compared to rest (fig. S6, E and F). This was confirmed 
for the dominant ~10-Hz frequency range (“alpha-band”) in the 
data (fig. S7B). The model’s task state also captured an overall de-
crease in correlations (averaged across all region pairs) present in 
the MEG during task compared to rest (figs. S3, B and C, and S7C). 
These observations further validated the implementation of task 
drive as an upward-rightward shift in the (bE, bI)-plane.

An increase in gain in the model was sufficient to explain the 
context-dependent effect of atomoxetine on cortical correlations we 
observed in the data (Fig. 2C). Just as observed in the empirical data 
(Fig. 1E, left), increasing the gain in the “two-node model” produced 
distinct changes in correlations for different contexts situated in the 
(bE,bI)-plane (i.e., different levels of background drive; rest, light 
gray circle; task, yellow circle; Fig. 2C). In a realistic model of the 
whole cortex (Fig. 2B, right), which was fitted to the measured cor-
relation matrix for rest-placebo (fig. S6G), an increase in gain boosted 
correlations in the same context-dependent fashion, with no change 
at rest (Fig. 2D, light gray circle or bar) but a robust increase during 
task (Fig.  2D, yellow circle or bar). All parameter combinations 
consistent with the observed pattern of results included an increase 
in gain combined with a small or no change in the model’s global 
coupling parameter [Fig.  2,  F  and  G; all red cells to the right of 
x = 0 in (G); fig. S8 for various levels of task-related input].

We next simulated a cortical microcircuit model (Methods; 
Fig. 2H, left, and fig. S9) to test the hypothesis that the increase in 
gain inferred from the large-scale model may be mediated by a global 
increase (i.e., encompassing most neurons) in E/I of each node. The 
microcircuit was made up of a population of recurrently connected 
excitatory and inhibitory conductance-based leaky integrate- and-
fire neurons. We increased the circuit’s E/I by decreasing the strength 
of feedback inhibition and quantified the effect on response gain of 
the input-output function of the excitatory cells of the circuit (Methods). 
Increasing E/I translated into a gain increase (Fig. 2H, right).

The large-scale model could also explain the opposite, context- 
dependent effect of acetylcholine on cortical correlations (Fig. 1E, 
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right). This also entailed a gain increase (smaller or equal to the 
catecholaminergic one; Fig. 2, E and G). Critically, however, gain 
change alone was insufficient to account for the results, but it had to 
be combined with a decrease in global coupling (Fig. 2, E to G): All 
parameter combinations consistent with the observed results in-
cluded such a reduction in global coupling [Fig. 2, F and G; all blue 
cells below of y = 0 in (G); fig. S8 for various levels of task-related 
input]. This decrease is in line with a reduction of intracortical (lateral 
and/or feedback) signaling observed in sensory cortex (18–20).

In the simulations shown in Fig. 2, the task-related increase in 
background input was applied to all nodes of the network. This was 
based on the observation that task also changed MEG power in the 
relevant frequency range for most parts of the cortical surface (pla-
cebo only; fig. S3D) and statistically significant in about 50% of the 
regions (in the frequency range from 9.51 to 16 Hz; fig. S3E). We 
additionally simulated a variant of the large-scale model in which 
the task-related inputs were only applied to those nodes that also 
exhibited significant (P < 0.05, two-sided paired t test) task-related 
decreases in power. This heterogeneous model yielded qualitatively 
similar results as the homogeneous version (fig. S10).

Circuit mechanism also accounts for catecholaminergic 
increase in perceptual variability
The above circuit modeling insights, specifically the cortical E/I in-
crease under catecholamines, also accounted for the observed drug 
effects on visually guided behavior (Fig. 3). Atomoxetine (not done-
pezil) increased the number of perceptual alternations reported by 
the participants during MEG (Fig. 3A), which served as a readout of 
behavioral variability (43). This effect was not due to a change in eye 
movements or blinks (28), and it was evident both when participants 
silently counted the perceptual transitions and when they reported 
each perceptual transition with an immediate button press (fig. S11).

To make the above microcircuit model produce selection behav-
ior, we expanded it to two populations of excitatory neurons, each 
encoding a specific decision (“D1” and “D2”; corresponding to the 
two perceptual interpretations of the stimulus), which competed via 
feedback inhibition (Fig.  3B, left). This architecture matches the 
one of an established model of perceptual decision-making in 
two-alternative forced choice (2AFC) tasks with discrete trials (44). 
In such tasks, increasing E/I in the circuit model amplifies the noise 
in the transformation from sensory input to choice (45). We adjust-
ed some parameters (see Methods) to simulate the behavior in our 
current task (i.e., spontaneous perceptual alternations under con-
tinuous and ambiguous sensory input). When driving the circuit 
with sustained and unbiased input (i.e., equally strong input to D1 
and D2), it exhibited ongoing transitions in the activity dominance 
of D1 or D2 (Fig. 3B, right). Critically, we found an increase in the 
transition rate under increased E/I due to decreased feedback inhi-
bition (Fig. 3C). In other words, increasing E/I in the circuit model 
rendered the perceptual interpretations of the ambiguous input 
more volatile, same as atomoxetine did in our participants. This re-
sult corroborates our conclusion from the assessment large-scale 
functional connectivity that catecholamines increased the net E/I in 
cortical regions.

Analogous catecholaminergic increase in decision noise 
during foraging
Behavioral variability may be adaptive during foraging in environments 
with changing reward contingencies (46). Specifically, an influential 

view holds that catecholamines render choice behavior more vari-
able to facilitate behavioral exploration just when the uncertainty 
about the environment has increased (1, 47, 48). We performed a 
second behavioral experiment to probe the effect of atomoxetine 
(same dose as for the perceptual task; Fig.  4A and fig. S12A) on 
value-based choice during foraging. Participants performed a mod-
ified version of a dynamic foraging task previously used in monkeys 
(49). On each trial, participants chose between two visual targets 
presented in the left or right hemifield (horizontal/vertical gratings, 
randomized by position) through a button press with the corre-
sponding hand. Targets were either associated with a reward or no 
reward (Fig. 4B). Rewards were assigned to the horizontal and ver-
tical targets at different rates, which underwent hidden changes at 
random times (Methods and Fig. 4, B and C). Participants attempted 
to maximize the obtained reward. All but three participants per-
formed the task well, reaching a performance of ~70% (Fig. 4D) and 
responding to the changes in reward ratios with corresponding 
changes in their choice behavior (fig. S12B). As in the first dataset, 
atomoxetine increased baseline pupil diameter (Fig. 4E).

Previous work on this task has shown that a model entailing 
leaky integration of the rewards earned from choosing each target 
yields both successful reward harvesting and fits monkey behavior 
in this task well (49, 50). Within this reward integration model, de-
cision noise (governing choice variability) refers to the slope of a 
nonlinear transformation of integrated reward into the probability 
of choice of a particular target (e.g., horizontal) (50). We fitted a 
model using the softmax function as choice function in which the 
parameter 1/ (inverse temperature) quantifies decision noise (Fig. 4F 
and Methods). The other three parameters were (i) participants’ 
tendency to use a “win-stay, loose-switch” (WSLS) heuristic; (ii) 
leak of the reward integrator (inverse of time constant ); and (iii) 
overall bias (Fig.  4F). As expected, decision noise was negatively 
correlated with the duration (i.e., number of trials) of sticking to a 
given option after harvesting a reward (fig. S12E), whereas stay 
durations after unrewarded choices were predicted by the WSLS 
heuristic (fig. S12E). Leak and overall bias were unrelated to stay 
durations (fig. S12E).

In line with the results from our perceptual task and the circuit 
model prediction for E/I increase for 2AFC tasks (45), atomoxetine 
also increased the noise in the decision transformation in the forag-
ing task (Fig. 4G). The increase in decision noise could not be ex-
plained by mere differences in the goodness of the integrator model 
fit, which was about equal for atomoxetine and placebo conditions 
(fig. S12F). Group mean Bayesian information criterion (BIC) values 
were 521.29 for placebo and 518.64 for atomoxetine, with 14 of 
29 participants showing BIC values smaller by more than 6 (indicating 
strong evidence for better model fit) for atomoxetine than placebo 
and 14 of 29 participants showing the opposite pattern (i.e., better fit 
for placebo than atomoxetine). Furthermore, the increase in decision 
noise was also supported by analyzing the data with a mechanistically 
agnostic statistical model (logistic regression, fig. S13): Again, we found 
a decrease in the slope of the decision transformation (fig. S13A) 
but no increase in the lapse rate that captured behavioral variability 
beyond the decision transformation (fig. S13B).

The reward integration model predicted that the increase in de-
cision noise would manifest in participants’ foraging behavior as a 
larger deviance between their choice fractions and actual reward 
ratios, reaching an asymptote a few trials after the change points 
(Methods; Fig. 4H, top). Increases in the other three parameters had 
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no or even opposite effects on the deviance (Fig. 4H, bottom). Par-
ticipants exhibited an increase in this deviance measure under ato-
moxetine (Fig. 4I), diagnostic for an increase in decision noise. In 
summary, our behavioral results show that elevated catecholamine 
levels increased decision noise in both sensory- and value-guided 
behavior, likely via increasing E/I in cortical microcircuits.

DISCUSSION
We uncovered a context-dependent double dissociation between 
catecholaminergic and cholinergic effects on functional connectivi-
ty between frequency-specific population activities in different cor-
tical regions. Guided by recent insights into possible differences in 
catecholaminergic and cholinergic effects at the synaptic level (24), 
we used a multiscale circuit modeling to develop a mechanistic ac-
count of the complete pattern of our large-scale results. This showed 
that the hypothesized net increase in gain local circuits, through an 
increase in E/I, was sufficient to account for the catecholaminergic 
effects; accounting for the cholinergic effects required a reduction 
in the coupling between cortical regions in addition to an increase 
in gain. The catecholaminergic E/I increase also predicted an increase in 
behavioral variability, which we confirmed in two behavioral tasks.

An influential theory postulates that catecholamines and acetyl-
choline track distinct forms of uncertainty during inference in 
changing environments (10). Acetylcholine signals so-called “expected 
uncertainty,” which pertains to uncertainty about the environment 
in the absence of state change; noradrenaline signals “unexpected 
uncertainty,” originating from hidden changes in the state of the 
environment (10). These distinct roles of catecholamines and ace-
tylcholine in cognitive computation imply that they also have sepa-
rable physiological influences on the cortical networks that implement 
these computations. Our findings provide strong evidence for this 
notion and suggest that the physiological distinction may be medi-
ated by the modulators’ distinct effects on local circuit parameters, 
which translate into pronounced differences at the level of large-
scale cortical networks. These insights can serve as constraints for 
future translations of the above framework from the computational 
to the implementation level. Our results may also provide new con-
strains regarding the specific role of acetylcholine. The expected 
uncertainty in the above account can be decomposed into “irreduc-
ible uncertainty,” the inherent noisiness of sensations, and “state 

uncertainty,” the uncertainty about states in the model. Inference 
should ignore the former (by weighting priors over sensory input) 
but try to reduce the latter (by weighting sensory input over priors). 
The role of acetylcholine in this context has remained unclear. In 
our data, early visual cortex behaved differently from other regions 
under donepezil, showing no decrease (some locations even trend 
toward increase) in functional connectivity with the rest of cortex 
(Fig. 1, C and D). It is tempting to speculate that this may reflect a 
weighting of sensory input over priors (the decreased correlations 
between everywhere else in Fig. 1C). It will be interesting to test in 
future work how this feature of the data will behave under system-
atic changes of sensory input and/or prior.

Our behavioral results establish a general catecholaminergic effect 
on perceptual and value-based decision-making and confirm a key 
prediction from a prominent account of the noradrenergic modula-
tion of learning and decision-making (1). In this view, the 
noradrenergic system controls the exploration-exploitation trade-
off, whereby high tonic noradrenaline levels boost behavioral 
variability. While this is detrimental to performance in static envi-
ronments, it is adaptive in the presence of hidden environmental 
changes, as were present in our foraging task, by promoting exploration 
of alternatives (1, 46, 51). Animal behavior becomes more variable 
during periods of high tonic firing of the locus coeruleus in perceptual 
tasks in static environments (51, 52) and in value-based choice in 
changing environments (53, 54). In particular, chemogenetic stimu-
lation of locus coeruleus tonic activity increased decision noise 
during a foraging task (53), same as in the present Fig. 4. These findings 
in animals are in line with our current results in humans.

One study reported a decrease in random exploration under ato-
moxetine during a gambling task (55). This finding appears to be at 
odds with the above animal work and the increase in decision noise 
found in the present study. One possibility is that the predominant 
effect of atomoxetine on tonic versus phasic noradrenaline level dif-
fered between our experiments and the one from Warren et al. (55). 
Such differences may have occurred for several reasons including 
(i) the different latencies of the behavioral measurements relative to 
drug intake (1.5 hours in our study versus 3 hours in theirs), (ii) 
intersession differences in baseline arousal/noradrenaline levels, and/or 
(iii) interindividual differences in atomoxetine sensitivity between 
participants. For both our experiments, we found a robust increase 
of baseline pupil diameter under atomoxetine, consistent with increased 
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tonic noradrenaline levels (30, 31). The decreased exploration re-
ported previously (55) may have resulted from a predominant in-
crease in phasic noradrenaline release (1) or from a (tonic or phasic) 
increase in dopamine, which other studies have found to reduce decision 
noise (56). It will be important to differentiate between noradrener-
gic and dopaminergic effects on choice variability in future work.

In our reward integration model, decision noise affected the re-
ward-dependent component of behavior before its combination 
with WSLS. This was motivated by model comparisons, indicating 
that noise should be applied before, not after, the combination of 
the reward-dependent choice probability with the WSLS heuristic 
(fig. S12D). This observation is largely consistent with recent evidence 
pointing to reward integration, rather than response selection, as the 
dominant source of behavioral variability (57). Separating between 
noise at each integration step and noise at the transformation from 
integrated reward [“local fractional income” (LFI)] into choice prob-
ability would require a different approach. Future work should 
further constrain the locus of the catecholaminergic noise boost.

The observed drug effects on functional connectivity may 
have resulted from interactions between the cholinergic and 

catecholaminergic systems. For example, activity in these systems’ 
brainstem centers is correlated (32). Interactions between both systems, 
however, would not predict the pronounced differences in the 
physiological and behavioral effects of the catecholaminergic and the 
cholinergic manipulations we observed here. Our independent phar-
macological interventions have likely bypassed the known func-
tional coupling at brainstem level. It is possible that the interactions 
at the level of the systems’ cortical target networks may be negligible.

Our multiscale circuit modeling shows that subtle differences in 
the effects of catecholamines and acetylcholine at the cellular level 
[e.g., gain increases of different magnitude (1, 12, 15)] can combine 
to yield context-dependent dissociations at the level of large-scale 
cortical network dynamics. This principle accounts for the context- 
dependent (task versus rest) double dissociation between the 
modulatory effects observed here. Our mechanistic insights are 
consistent with single-cell physiology (1, 15, 24, 26, 39). Specifically, 
the conclusion that catecholamines and acetylcholine both increase 
overall gain (and hence E/I) but with different magnitudes is supported 
by the observation that noradrenaline and acetylcholine differen-
tially modulate E/I in rodent auditory cortex (24). Acetylcholine 
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suppresses stimulus-evoked, inhibitory transients in pyramidal cells 
(27,  58), while noradrenaline suppresses ongoing inhibition in a 
more persistent fashion (26). Such synaptic and cellular differences 
can translate into a differential net gain increase of the whole micro-
circuit, with a smaller net gain increase under acetylcholine, as 
described by the nodes of our neural mass model. The idea of a 
smaller effect of acetylcholine on gain (and hence E/I) is also consistent 
with the absence of a cholinergic effect on perceptual variability 
during ambiguous stimulation.

Our second conclusion of reduced intracortical coupling under 
acetylcholine is also consistent with the reduction of intracortical 
(lateral and/or feedback) signaling that has been observed in visual 
and auditory cortex (18–20), possibly mediated by muscarinic re-
ceptors (20). At the computational level, this conclusion aligns well 
with the idea that acetylcholine reduces the impact of prior knowl-
edge (feedback and lateral intracortical signaling) relative to incom-
ing evidence (bottom-up signaling) (10). However, evidence from 
prefrontal cortex suggests that acetylcholine can also increase syn-
aptic efficacy on recurrent intracortical connections through both 
nicotinic and muscarinic receptors (59). Further work is needed to 
elucidate the synaptic basis of the cholinergic effects observed here.

Our insights shed new light on some inconsistencies in the phar-
macological effects on functional connectivity as gauged with neuro-
imaging (5). One positron emission tomography study found an 
increase in functional connectivity during a task but decrease during 
rest under clonidine (an 2-adrenergic autoreceptor agonist that 
reduces noradrenaline release) (9), similar to the context dependence 
in the present study. A functional magnetic resonance imaging (fMRI) 
study found a decrease of resting-state functional connectivity under 
atomoxetine (6), in contrast to the weak effect during rest in our pres-
ent measurements (Fig. 1C, left). Our modeling demonstrates that 
subtle differences in the baseline state of the system [i.e., location on the 
(bE,bI)-plane] can lead to qualitatively different effects of the same gain 
increase on functional connectivity. Such shifts in baseline state may 
result from differences in environmental factors, age, or baseline arousal.

Resting-state functional connectivity is widely used in clinical neuro-
science, with a focus on the development of biomarkers for neuro-
psychiatric disorders (60). The behavioral context dependence of the 
neuromodulatory effects we uncovered here implies that resting- state 
measurements alone lack a critical dimension: The comparison be-
tween rest and task contexts was necessary to uncover the specific 
impact of neuromodulators on cortical dynamics. It is likely that the 
same holds for other classes of neurotransmitters and their distur-
bances in brain disorders.

In summary, we have pinpointed candidate circuit mechanisms 
for the distinct catecholaminergic and cholinergic shaping of large-
scale cortical network activity. Our results can guide future work 
into the underlying cellular and molecular mechanisms in animals 
and set the stage for the development of noninvasive biomarkers for 
the integrity of neuromodulatory systems in humans.

METHODS
Pharmacological MEG experiment (resting-state 
and continuous perceptual choice task)
Participants
Thirty healthy human participants (16 females, age range of 20 to 
36 years, mean of 26.7) participated in the study after informed con-
sent (exclusion criteria in table S1). The study was approved by the 

ethics committee of the Medical Association Hamburg. Two partic-
ipants were excluded from the analyses, one due to excessive MEG 
artifacts and the other due to not completing all three recording 
sessions. Thus, we report the results from n  =  28 participants 
(15 females).

The present dataset was also used in a previous report (28), which 
focused on the effects of both drugs (see below) on long-range tem-
poral correlations in local activity fluctuations. The present analyses 
of the correlations between these fluctuations across different corti-
cal regions are independent from the results presented in this previous 
work. A different version of the behavioral result shown in Fig. 3A 
was also shown in the previous paper (28).
Experimental design
General protocol.  We manipulated the levels of catecholamines 
(noradrenaline and dopamine) and acetylcholine through pharma-
cological intervention (Fig. 1A). Each participant completed three 
experimental sessions, consisting of drug or placebo intake at two 
time points; a waiting period of 3 hours; and an MEG recording 
session. During the recordings, participants were seated on a chair 
inside a magnetically shielded chamber. Each recording session 
consisted of six measurement blocks with different behavioral tasks 
(see below). Each block was 10 min long and followed by a short 
break of variable duration.

Pharmacological intervention.  We tested for the effects of two 
different drugs in a double-blind, randomized, placebo-controlled, 
and crossover experimental design. We used the selective noradren-
aline transporter inhibitor atomoxetine to boost the levels of cate-
cholamines (noradrenaline and dopamine (3, 29)). We used the 
cholinesterase inhibitor donepezil to boost acetylcholine levels. A 
mannitol-aerosil mixture was administered as placebo. The dosages 
for both drugs were chosen to be below common clinical steady-
state dosages and in accord with previous fMRI work, showing clear 
effects of the same dosages on cortical processing (6, 18): 40 mg for 
atomoxetine (clinical steady-state dose for adults: 80 mg) and 5 mg 
for donepezil (common clinical entry dose). All substances were 
encapsulated identically to render them visually indistinguishable. 
Peak plasma concentrations are reached ~3 to 4 hours after admin-
istration for donepezil (61) and 1 to 2 hours after administration for 
atomoxetine (62). To maximize plasma drug levels during MEG, 
participants received two pills in each session, 3 and 1.5 hours be-
fore MEG (Fig. 1A): placebo (t = −3 hours) followed by atomoxe-
tine (t = −1.5 hours) in the ATOMOXETINE condition, donepezil 
(t = −3 hours) followed by placebo (t = −1.5 hours) in the DONE-
PEZIL condition, and placebo at both times in the PLACEBO con-
dition. The three sessions were scheduled at least 2 weeks apart to 
allow plasma levels to return to baseline [plasma half-life of atom-
oxetine: ~5.2 to 21.6 hours (62); half-life of donepezil: ~70 hours].

Behavioral tasks.  Within each session (and each of the above- 
defined pharmacological conditions), participants alternated between 
three different behavioral conditions, all entailing absent or contin-
uous sensory input (two runs per 10 min per condition), here re-
ferred to as REST, TASK, and TASK-PRESSING (Fig. 1A, right; see 
also movie S1). REST and TASK were steady-state conditions (ab-
sent or minimal variations in sensory input or motor output) tai-
lored to quantifying intrinsic correlations between fluctuations in 
cortical activity. TASK-PRESSING was used to validate the behav-
ioral results from the TASK condition. During REST, participants 
were instructed to fixate a green fixation disk (radius = 0.45° visual 
angle) in the center of an otherwise gray screen. During TASK and 
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TASK-PRESSING, participants viewed a perceptually ambiguous 
three-dimensional structure-from-motion stimulus, which was per-
ceived as a rotating sphere (63). The stimulus subtended 21° of visual 
angle, consisted of 1000 dots (500 black and 500 white, radius: 0.18° 
of visual angle) arranged on a circular aperture presented on a mean 
luminance gray background and a green fixation dot in the center. 
In TASK, participants were instructed to count the number of 
changes in the perceived rotation direction and verbally report the 
total count at the end of the run. In TASK-PRESSING, the partici-
pants were instructed to press (and keep pressed) one of two 
buttons whenever they perceived a change in the rotation direction. 
The order of the conditions was as follows for 18 of 28 participants: 
(i) REST, (ii) TASK-PRESSING, (iii) TASK, (iv) REST, (v) 
TASK-PRESSING, and (vi) TASK. For 10 of 28 participants, the or-
der was reversed: (i) TASK, (ii) TASK-PRESSING, (iii) REST, (iv) 
TASK, (v) TASK-PRESSING, and (vi) REST. The experiment was 
programmed in the MATLAB (The MathWorks Inc., Natick, USA) 
using the Psychophysics Toolbox extensions (PTB-3) (64).

Data acquisition. MEG was recorded using a whole-head CTF 
275 MEG system (CTF Systems Inc., Canada) at a sampling rate of 
1200 Hz. In addition, eye movements and pupil diameter were re-
corded with an MEG-compatible EyeLink 1000 Long Range Mount 
system (SR Research, Osgoode, ON, Canada) and electrooculogram, 
and vertical, horizontal, and radial electrooculography were acquired 
using Ag/AgCl electrodes.
Pupil and behavioral data analysis
The pupil diameter recordings were preprocessed as follows: Eye 
blinks and eye movements were identified using the manufacturer’s 
default routines, then padded (±200 ms), linearly interpolated, and 
band-pass filtered using a second-order Butterworth filter with a 
passband from 0.01 to 10 Hz. Next, the effect of blinks and saccades 
on pupil diameter was estimated through deconvolution and re-
moved by means of linear regression (65). The mean pupil diameter 
was computed in a baseline interval from 6 to 3 s before the start of 
each recording block and for all conditions and averaged across the 
two corresponding blocks. In some cases, pupil diameter was not 
recorded, or the signal was too noisy. If this was the case for both blocks 
of a session, then the corresponding participant was not included in the 
respective analysis. The following number of participants was excluded/
included per combination of conditions: during REST-PLACEBO 
(N = 0/28), REST-ATOMOXETINE (N = 0/28), and REST-DONEPEZIL 
(N = 2/26) and during TASK-PLACEBO (N = 0/28), TASK- 
ATOMOXETINE (N = 0/28), and TASK-DONEPEZIL (N = 1/27). 
The behavioral data from TASK and TASK-PRESSING were aver-
aged across the two blocks, resulting in N = 28 for all drug condi-
tions for TASK. In the case of TASK-PRESSING, one participant 
was excluded because of missing triggers in the atomoxetine condi-
tion, resulting in N = 27.
MEG signal processing
The MEG signal processing pipeline described below is also illus-
trated in fig. S2A and entailed the following steps.

Preprocessing.  The sensor-level MEG data were first prepro-
cessed: Strong transient muscle artifacts and squid jumps were 
detected through visual inspection and semiautomatic artifact re-
jection procedures, as implemented in the FieldTrip toolbox (66) 
for MATLAB. To this end, data segments contaminated by such 
artifacts (±500 ms) were removed from the data (across all channels). 
Subsequently, the data were downsampled to 400 Hz and split into 
low-frequency [[0.5 to 2] to 40 Hz); the lower cutoff was variable 

across (but identical within) participants at 0.5, 1, or 2 Hz] and high- 
frequency (>40 Hz) components using a fourth-order Butterworth 
filter. Both signal components were separately submitted to inde-
pendent component analysis using the FastICA algorithm (67). 
Artifactual components (eye blinks/movements, muscle artifacts, 
heartbeat, and other extracranial artifacts) were identified on the 
basis of three criteria: power spectrum, fluctuation in signal variance 
over time (in bins of 1-s length), and topography. Artifact compo-
nents were reconstructed and subtracted from the raw signal, and 
low and high frequencies were combined into a single dataset. On 
average, 20 (±14) artifact components were identified for the low 
frequencies and 13 (±7) artifactual components were identified for 
the high frequencies. There were no statistically significant differ-
ences in the number of rejected artifactual components [for the 
low-frequency data: atomoxetine versus placebo (REST): T = 0.61, 
P = 0.55; donepezil versus placebo (REST): T = 0.43, P = 0.67; atom-
oxetine versus placebo (TASK): T = 0.95, P = 0.35; donepezil versus 
placebo (TASK): T = 0.96, P = 0.18; all two-sided paired t tests). All 
preprocessing was performed blind with respect to the drug labels.

Spectral analysis.  From the cleaned MEG signal, spectral esti-
mates were obtained using Morlet’s wavelets, similar to previous 
reports (33, 68)

  w(t, f ) =  (   t    √ 
_

   )   − 1 _ 2    e   −   t   
2  _ 

2  t  
2 
    e   −i2ft   (1)

We constructed wavelets for 17 logarithmically spaced (base 2) 
center frequencies, ranging from 4 to 64 Hz. In keeping with previ-
ous works (33, 68), the spectral bandwidth was set to half of an 
octave (f/t~5.83). Spectral estimates were obtained for consecu-
tive, half-overlapping segments of length ±3t. Segments that con-
tained artifactual samples (see the “Preprocessing” section) were 
omitted from the analysis.

Source analysis. For the main analyses, we projected the sensor- 
level signal onto 400 vertices located on the cortical surface, result-
ing in an estimated source level signal Xsrc(r, t, f). To this end, we 
estimated source-level activity using “linear beamforming” (69), 
separately for each participant, recording session and block. For 
each source location r and frequency f, a spatial filter  A(r, f) was 
computed according to

  A(r, f ) =  ( L   T (r )  C  real    (f)   −1  L(r ) )   
−1

   L   T (r ) C  (f)   −1   (2)

where L was the magnetic lead field, T denoted as matrix transpose, 
and Creal(f) was the real part of the (complex-valued and regular-
ized) cross-spectral density (CSD) matrix of the sensor-level data 
for frequency f. A(r, f) contained three orthogonal projections. We 
used the singular value decomposition of the CSD matrix to deter-
mine the direction of the dipole maximizing power (i.e., the first 
eigenvector) at location r. We then computed the corresponding 
spatial filter for this direction, henceforth referred to as B(r, f). This 
filter was used to project the sensor-level data X(t, f) onto that 
dominant dipole, as follows

   X  src  (r, t, f ) = B(r, f ) X(t, f)  (3)

where Xsrc(r, t, f) denoted as the complex-valued, source-level spec-
tral estimates for location r. Before computing the spatial filter, the 
CSD matrix was regularized with the mean of its diagonal multi-
plied by a scaling parameter . For the results shown in the main 
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section of this article, this parameter was chosen to be  = 0.3 
[see fig. S5 (D to F) for alternative values of ].

Orthogonalized power envelope correlations.  Interregional cor-
relations were computed as the correlations of the power estimates 
at carrier frequency f between two regions i and j, across all non- 
artifactual segments. To reduce spurious correlations arising from 
instantaneous signal leakage, we used a procedure established pre-
viously (33). Specifically, we orthogonalized each signal Y with re-
spect to signal X according to

    Y  ⊥X  (t, f ) = imag  (  Y(t, f)   
X  (t, f)   * 

 ─ ∣X(t, f )∣   )     (4)

where Y⊥X(t, f) was the signal Y(t, f) orthogonalized with respect 
to signal X(t, f) and * was the complex conjugate. Next, the absolute 
value was taken, and the resulting signal was squared, yielding 
source-level power envelopes, and log-transformed to render the 
distribution more normal. The orthogonalization was performed in 
two directions, Y⊥X(t, f) and X⊥Y(t, f). Correlation coefficients were 
computed for both directions, and the resulting (Fisher transformed) 
values were averaged. Doing this for all pairs of source locations 
and for each frequency band resulted in a correlation matrix of size 
400 × 400 for each of the 17 carrier frequencies. In what follows, 
we refer to these correlation matrices as “functional connectivity 
(FC)” matrices.

To compare the empirical results to the results obtained from 
simulations of a neural mass model (see computational modeling 
below), we repeated the above-described procedure for computing 
source-level FC matrices, but now at a coarser granularity. To this 
end, we selected the 76 cortical regions of the Automated Anatomical 
Labeling (AAL) atlas (70), excluding the cerebellum and subcortical 
regions (see table S2 for included regions). Source locations were 
first arranged on an equally spaced grid (of 4-mm by 4-mm by 
4-mm resolution) covering the entire brain, and each grid point was 
either assigned to 1 of the 76 selected cortical AAL regions or omitted 
from further analysis. For each of the vertices that were assigned to 
1 of the 76 AAL regions, frequency-specific source-level estimates 
for each time point Xsrc(r, t, f) were computed following the proce-
dure outlined above. Next, for each source location within region i 
(with i∈ {1,…,76}), we computed its average orthogonalized power 
envelope correlation to all vertices of region j (after Fisher transfor-
mation). This was repeated for all vertices of region i after which the 
correlation values were again averaged across all vertices within re-
gion i. This procedure was repeated for all 76 regions, resulting in a 
76 × 76 FC matrix for each of the 17 carrier frequencies.
Quantification of the topology of MEG correlation structure
Degree centrality. We computed frequency-resolved degree centrality 
k(f) (i.e., collapsed across all nodes) and local degree ki(f) for each of 
the i = 1…400 source locations (fig. S2, B and C). Degree is defined 
by the number of edges that connect a given node to all other nodes in 
the network (71). To this end, the FC matrices of all participants (400 × 
400 × 28) were first submitted to a procedure described previously 
(6, 33). For each connection between nodes i and j, where i = 1…400 
and j = 1…400, we assessed whether a connection was present as 
follows: A connection was determined to be present if the correla-
tion between i and j was significantly larger (P < 0.05, two-sided 
t test) than the correlations from i to all other nodes or from j to all 
other nodes. In case of a present connection, the corresponding en-
try in the adjacency matrix A(i, j) was set to 1. If no connection was 

present, then A(i, j) was set to 0. This was repeated for all possible 
pairs of vertices, and the full adjacency matrix was computed. From 
this, we computed degree by

   D  i   =  (N − 1)   −1   ∑ j=1  N   A(i, j)  (5)

where N denoted the number of cortical vertices (N = 400).
Statistical tests of MEG effects
Cortex-wide changes in  cortical correlations.  We adopted a previ-
ously described two-stage procedure for an unbiased statistical as-
sessment of cortex-wide changes in power envelope correlations 
(68). The procedure is illustrated in fig. S3 (A to C). The rationale 
behind the analysis was as follows: Both neuromodulator classes 
(catecholamines and acetylcholine) might, in principle, increase 
correlations between some pairs of areas and, at the same time, sup-
press correlations between other pairs of areas (13). In this case, 
drug effects might cancel when averaging correlations indiscrimi-
nately across all area pairs and comparing average FC between con-
ditions. Instead, our procedure first identified any pairs exhibiting 
drug-induced increases or decreases above a certain threshold and 
then tested whether the fraction of these pairs was significantly dif-
ferent from what would be expected by chance, separately for pairs 
with increased and decreased correlations. This procedure was re-
peated across a wide range of frequencies, yielding the spectra of 
drug effects shown in Fig. 1E.

For each center frequency f, we statistically compared the Fisher- 
transformed FC matrices, across participants, between the two drug 
conditions and placebo, using a two-sided paired t test. Then, we 
counted the number of significantly positively (P < 0.05 and T > 0) 
and the number of significantly negatively altered correlations 
(P < 0.05 and T < 0). The resulting value was divided by the number 
of region pairs M (with M = N × N − N, where N = 400 or 76; see 
above) to obtain the fraction of significantly altered correlations for 
both effect directions. This procedure was repeated for all 17 fre-
quencies bands (fig. S3). We used a single threshold permutation 
procedure to derive P values that accounted for multiple compari-
sons across frequencies (72). For each of Np = 10,000 permutations, 
the experimental labels (drug conditions) were randomly reassigned 
within participants, and the aforementioned procedure was repeated. 
This resulted in a Np × 17 matrix for both effect directions (signifi-
cantly increased and significantly decreased correlations). Next, for 
each permutation, the maximum value across all frequencies (inde-
pendently for increased and decreased correlations) was determined, 
yielding a maximum permutation distribution. To derive P values, 
the empirical results were compared to this maximum permutation 
distribution. To test the robustness of the obtained results, we re-
peated the procedure described above using various alpha values for 
the initial paired t test, ranging from  = 0.01 to  = 0.10, which led 
to numerically different but qualitatively similar results (fig. S5, B and C).

Significant alterations in the correlations between two regions 
can be achieved in different ways. A decrease in correlations, for 
instance, can mean that a positive correlation becomes weaker or 
that a negative correlation becomes more negative. However, only 
the former would qualify as a meaningful reduction in correlation, 
whereas the latter correlation gets numerically smaller (i.e., more 
negative) but stronger in terms of the linear dependence between 
two signals. Hence, a “significant decrease/increase” does not always 
carry the same meaning. In this dataset, the number of positive cor-
relations far outnumbered the number of negative correlations: In 
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the alpha and beta frequency range, where the main effects for 
atom oxetine and donepezil are observed, more than 90% of all con-
nections were positive (across all blocks and contexts; placebo 
only). While it is possible that changes in the few negative connec-
tions contribute substantially to any observed overall change in cor-
relation, we here interpret an increase (decrease) in correlation in 
terms of a positive correlation becoming stronger (weaker).

Cortex-wide changes in local cortical variability. Changes in the 
correlation between two signals can be driven by changes in their 
covariance (numerator of correlation coefficient) and changes in 
the variance of one or both of the signals (denominator). To rule 
out this second possibility, we tested for drug-related changes in the 
variance of local power envelopes across frequencies (fig. S5A). To 
this end, we have adopted a procedure similar to the one used to 
assess changes in cortex-wide activity correlations. First, we com-
puted the variance of the power estimates across half-overlapping 
temporal segments (see spectral estimation), separately for each of 
the 17 carrier frequencies. Next, we counted the fraction of nodes 
that exhibited significantly altered variance, separately for increases 
and decreases. We used the same permutation procedure described 
above to derive corresponding permutation distributions from which 
P values were computed (two-sided single threshold permutation test). 
Analogous to the “fraction of significantly altered correlations,” this 
procedure yielded, per frequency band, the fraction of vertices 
(nodes) with significantly positively or negatively altered variance.
Peak frequency analysis (MEG)
To estimate the peak frequencies of alpha-band activity (~10 Hz) in 
the MEG data, we first removed the arrhythmic component from 
the source-level power spectra. To this end, we used the “spectral 
parametrization” algorithm (73) implemented in the “fooof” tool-
box. We modeled each power spectrum (computed via MATLAB’s 
built-in “pwelch” function with 50% overlap and a frequency reso-
lution of 0.05 Hz) as a combination of periodic components (mod-
eled as Gaussians defined via three parameters: width, height, and 
center frequency) and an arrhythmic component (modeled as a 
Lorentzian function with an offset and an exponent; note that we set 
the knee parameter to 0 for the present analysis). To constrain the 
fitting algorithm, the maximum number of possible peaks in each 
spectrum was set to 6, a minimum peak height of 0.05 was assumed, 
and the minimum and maximum bandwidth of each peak was de-
fined as 1 and 8 Hz, respectively. We fitted the model to the power 
spectra (from 3 to 40 Hz) of all 76 nodes of the cortical AAL nodes 
and removed the arrhythmic component. We subsequently identi-
fied peaks in the residual fitted power spectra through MATLAB’s 
built-in “findpeaks” algorithm within the alpha range (6 to 14 Hz). 
In case only one peak was found within this range, the location of 
the peak (in hertz) was defined as the peak frequency. In case of two 
or more peaks, peak frequency was defined as the weighted average 
of the peak locations (in hertz), with the contribution of each peak 
being determined by its relative height.

Cortical circuit modeling
Large-scale neural mass model
Single-node dynamics. We simulated neural activity using a popula-
tion firing rate model based on the Wilson-Cowan (WC) equations 
(36, 74). Each local WC node consists of an excitatory and an inhib-
itory neuronal population (Fig. 2A). The dynamics of the E and I 
populations of each node are governed by the following stochastic 
differential equations

     E     dE ─ dt   =  F  E  (E, I ) = − E + ( w  EE   E −  w  EI   I +  b  E   + ∆  b  E   ) + ,  (6)

     I     dI ─ dt   =  F  I  (E, I ) = − I + ( w  IE   E −  w  II   I +  b  I   + ∆  b  I   ) + ,  (7)

where E and I represent the firing rates of excitatory and inhibitory 
populations, respectively. The model parameters were chosen to 
generate neural dynamics similar to those observed with MEG, with 
a spectral peak in the alpha range (~7 to 14 Hz; fig. S6E). The local 
synaptic weights interconnecting the excitatory and inhibitory pop-
ulations were given as wEE = 12, wIE = 16, wII = 4  , and wEI = 12. 
bE and bI represent external background inputs to the excitatory 
and the inhibitory, respectively, ∆bE, I represents task-induced input 
(∆bE = ∆bI = 0, for resting state), and  was uncorrelated Gaussian 
noise with amplitude equal to 0.005. Time constants were set to E = 
9 ms and I = 18 ms for excitatory and inhibitory populations, re-
spectively. The (nonlinear) transfer function converting input cur-
rents into output firing rates, (u), was chosen to be a sigmoid

  (u ) =   1 ─ 1 + exp(− gu)  ,  (8)

where g determined the slope of the input-output function for both 
excitatory and inhibitory populations (i.e., gain of the node).

The solutions (E*, I*), or fixed points, of the coupled Eqs. 6 and 
7, were given by E* = (wEEE* − wEII* + bE) and I* = (wIEE* − wIII* + 
bI), yielding solutions depending on the external inputs (bE, bI), 
which are the bifurcation parameters of the system. In the (bE, bI) 
parameter space, we observed a region of noise-driven oscillations 
(i.e., a spiral, damped oscillations that, in the presence of noise, re-
sult in noisy oscillations) and a region of sustained oscillations (i.e., 
a limit cycle) (fig. S6A).

Two coupled nodes. We first studied the effect of gain modula-
tion on correlations during REST and TASK in a minimal network 
composed of two WC nodes (Fig. 2B, left). This step will provide 
intuitions before studying the whole-brain network composed of 
76 nodes interconnected through a structural connectome. Let the 
excitatory populations of the nodes be connected through a reciprocal 
coupling c (in the two-node model, c = 1; see below for cortex-wide 
model), the firing rates of node 1 evolve as

     E     d E  1   ─ dt   = −  E  1   + ( w  EE    E  1   −  w  EI    I  1   + c  E  2   +  b  E   + ∆ b ) +   (9)

     I     
d I  1   ─ dt   = −  I  1   + ( w  IE    E  1   −  w  II    I  1   +  b  I   + b) +   (10)

and analogously for the firing rates, E2 and I2, of node 2.
To study the correlations between nodes in the parameter space, 

we used a linear noise approximation described in detail in the Sup-
plementary Materials. Using this approximation, we studied how 
changes in gain, i.e., g → g + ∆g, and inputs, i.e., (bE, bI) → (bE + ∆b, 
bI + ∆b), change the correlation between the two excitatory popula-
tions both during REST (∆b = 0) and TASK (∆b ≠ 0). In this way, 
we can test hypotheses on the parameter changes induced by 
ATOMOXETINE and DONEPEZIL, assuming that TASK changed 
the background inputs bE and bI and the drugs changed g. Note that 
in the case of the two-node model, the task-related change of the 
background inputs was equal for E and I, i.e., ∆bE = ∆bI = ∆b.
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In summary, the change in correlation between excitatory popu-
lations during REST was given as

  ∆  c  EE   =  c  EE  ( b  E  ,  b  I  , g + ∆ g ) −  c  EE  ( b  E  ,  b  I  , g)  (11)

and the change in correlation between excitatory populations during 
TASK was given as

 ∆  c  EE   =  c  EE  ( b  E   + ∆ b,  b  I   + ∆ b, g + ∆ g ) −  c  EE  ( b  E   + ∆ b,  b  I   + ∆ b, g ) .  (12)

Figure 2C maps the change of correlations during REST under 
gain modulation in the (bE,bI)-plane. The combined effect of the 
drugs on parameters bE and bI and the effect of TASK were obtained 
by translating the state of the system in this map.

Cortex-wide model. To directly compare the computational model 
to the empirical results, we simulated a cortex-wide variant of the 
model. For each of the 76 cortical AAL nodes, the dynamics were 
governed by the following differential equations

    E      
d E  i   ─ dt   = −  E  i   + ( w  EE    E  i   −  w  EI    I  i   + c  ∑ j      C  ij    E  j   +  b  E   + ∆  b  E   ) +   (13)

     I     
d I  i   ─ dt   = −  I  i   + ( w  IE    E  i   −  w  II    I  i   +  b  I   +  b  I   ) +   (14)

where i, j ϵ {1,2, …,76}. The long-range cortical connectivity be-
tween all possible pairs of regions, Cij, was given by a structural con-
nectivity matrix used in previous studies [e.g., (75)] and was estimated 
by means of diffusion tensor imaging. Details can be found in the 
respective publications. The connectivity matrix Cij was scaled by 
the global coupling parameter c. For the simulation, Eqs. 13 and 14 
were integrated using the Euler method with dt = 0.01.

The model was run for a wide range of background inputs to 
excitatory (bE)  and inhibitory populations (bI). To assess activity 
correlations (functional connectivity) in the model, we computed 
all-to-all (76 × 76) pairwise correlations between the raw time series 
of excitatory firing rates Ei. The model was simulated, for a total of 
58.5 s for each parameter combination before each run, initial con-
ditions were randomized, and the first 1.8  s were excluded from 
further analysis to avoid transient effects due to the initial condi-
tions. All simulations and corresponding analyses were carried out 
in MATLAB 2019b.

Identification of the oscillatory regime in the cortex-wide model. In 
all model-based analyses, we assume that the (healthy) human brain 
never resides in a dynamical regime of sustained oscillations (fig. 
S6A, top; see also the Supplementary Materials). We therefore iden-
tified, and excluded, parameter combinations resulting in sustained 
oscillations in the cortex-wide model (see above). To identify pa-
rameter combinations where simulated population activity settled 
in the oscillatory regime, the cortex-wide model was simulated without 
noise (i.e.,  = 0) for a total of 58.5 s (plus 1.8 s of initialization, as 
outlined above). Next, for nonoverlapping segments of 27 ms, the 
maximum and minimum of rE was computed. In a regime of noise- 
driven (damped) oscillations, the activity relaxes back to a fixed 
point over time (fig. S6A, middle and bottom). Hence, the computed 
maximum and minimum should converge on the same value. In a 
regime of sustained oscillations, on the other hand, the maximum 
and minimum will remain different throughout the entire simula-
tion (fig. S6A, top). Consequently, the regime was defined as non-
oscillatory or noise driven if (i) the maximum and minimum were 

identical at any point in time or (ii) the difference between maxi-
mum and minimum decreased monotonously over time (indicative 
of a damped oscillation); if none of the two were true, then the sig-
nal was defined as a sustained oscillation (see the Supplementary 
Materials).

Model fitting procedure. We fitted the free parameters of the cortex- 
wide model through an iterative procedure. The purpose of this 
procedure was to identify two working points, mimicking the two 
behavioral conditions (REST and TASK). To this end, we estimated the 
global coupling parameter . This end, we simulated the cortex- wide 
model (76 regions) over a range of 41 different coupling parameters  
(with  ϵ {0,0.05, …,2}) and across 61 × 61 combinations of back-
ground inputs (with IE ϵ { − 4, − 3.9, …, − 1} and II ϵ { − 5, − 4.9, …, 
− 2}). We then estimated the similarity of the simulated functional 
connectivity matrix FCsim and the empirical functional connectivity 
matrix FCemp (rest and placebo only; averaged across frequencies 
that showed significant changes for both drugs; see Fig. 1E), sepa-
rately for each combination of IE and II, by means of a distance met-
ric  based on Pearson correlation (76)

   = 1 −  (     1 ─ N    ∑ i=1  N        F C  sim  ,F C  i,emp    −  (〈   1 ─ N    ∑ i=1  N   F  C  i,emp   〉 − 〈F  C  sim   〉)   
2
  )     (15)

where FCsim,FCi,emp was the correlation (i.e., pattern similarity) 
between the empirical FC matrix for subject i (averaged across fre-
quencies, with i ϵ {1,2, …,28}) and the simulated FC matrix and 〈 〉 
denotes the average across all possible connections. We averaged 
the resulting distance values  across all external background inputs 
(bE and bI) while omitting parameter combinations where the net-
work activity settled into a regime of sustained oscillations (see 
above). This resulted in a mean distance 〈〉 for each level of global 
coupling  (fig. S6C). In addition, we repeated the procedure but 
instead computed Pearson correlation between FCsim and FCemp 
(fig. S6D). We identified the level of , where the mean distance 〈〉 
between FCsim and FCemp was minimized ( = 1.15). The parameter 
with lowest 〈〉 also yielded a high correlation between FCsim and 
FCemp (fig. S6D).

After having fixed the global coupling parameter, we aimed to 
identify the combination of bE and bI for each individual partici-
pant, which resulted in the highest similarity between FCsim and 
FCemp during REST and PLACEBO (i.e., lowest distance). To this 
end, we first identified the combinations of bE and bI where the dis-
tance between FCsim and FCemp was below the 2.5th percentile. The 
resulting binary matrix was then submitted to a clustering procedure 
(using MATLAB’s “bwlabel” function), and the single largest cluster 
was extracted. This was to reduce the influence of spurious correlations 
on the fitting procedure. Next, the geometric center of the largest 
cluster was computed and defined as the best fitting combination of 
IE and II, yielding a working point for RESTsim. This procedure was 
repeated separately for each of the 28 participants (fig. S6G). To 
determine the corresponding TASK parameter TASKsim, we as-
sumed that the constant visual stimulation during TASK increases 
both excitatory (bE) and inhibitory drive (bI), consistent with elec-
trophysiological recordings in rodent visual cortex V1 (see the 
Supplementary Materials) (39). Thus, to simulate TASK, we increased 
the background input to both excitatory and inhibitory popula-
tions, i.e., bE and bI. We chose to increase background input to in-
hibitory populations by ∆bI = 0.475 and to excitatory population by 
∆bE = 0.25 (Fig. 2, D and E, cortex-wide model), homogeneously 
across all nodes.
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Parameters yielding qualitative correspondence between model 
and MEG data. To identify combinations of changes in gain and 
changes in global coupling where the difference in the model’s 
activity correlations was consistent with the empirically observed 
drug effects (Fig. 2, F and G, and fig. S8), we first averaged the sim-
ulated functional connectivity matrices across the upper triangular 
part, for each combination of gain and global coupling, yielding the 
mean functional connectivity 〈FCsim〉. Next, we searched for combi-
nations of changes in gain (∆g) and global coupling (∆c), where all 
of three following conditions were satisfied (Fig. 2G, in red; similarly 
fig. S8, bottom row). For model correspondence with the observed 
effects of atomoxetine

(1) ∣〈FCSim, ∆g∆c, Rest〉 − 〈FCSim, Pbo, Rest〉∣ < c
(2) 〈FCSim, ∆g∆c, Task〉 − 〈FCSim, Pbo, Task〉 > c
(3) (〈FCSim, ∆g∆c, Rest〉 − 〈FCSim, Pbo, Rest〉) − (〈FCSim, ∆g∆c, Task〉 − 

〈FCSim, Pbo, Task〉) < − c
where c was a criterion value and the subscript “Pbo” denotes the 
placebo state, with ∆g = ∆c = 0. Hence, condition (1) describes the 
absence of an effect (or only a small effect) on mean FC during 
REST, (2) the atomoxetine-related increase of FC during TASK, 
and (3) the corresponding behavioral context-dependence.

For model correspondence with the observed effects of donepe-
zil, we identified the regions of the parameter space where the con-
ditions below were satisfied (Fig. 2G, in blue)

(1) 〈FCSim, ∆g∆c, Rest〉 − 〈FCSim, Pbo, Rest〉 < − c
(2) ∣〈FCSim, ∆g∆c, Task〉 − 〈FCSim, Pbo, Task〉∣ < c
(3) (〈FCSim, ∆g∆c, Rest〉 − 〈FCSim, Pbo, Rest〉) − (〈FCSim, ∆g∆c, Task〉 − 

〈FCSim, Pbo, Task〉) < − c
where (1) describes the donepezil-related decrease in correlation 
during REST, (2) the absence (or weaker) effect during TASK, and 
(3) the corresponding observed behavioral context dependence. For 
Fig. 2G and fig. S8, we used a criterion value of c = 0.0015, which 
corresponds to a 7.6% change in mean correlation relative to the 
mean correlation of the simulated REST and a 12.1% change rela-
tive to the mean correlation of the simulated TASK. For comparison, 
the average atomoxetine-related increase in the MEG data during 
TASK was 16.3% (averaged across 9.51 to 16 Hz) and the average 
donepezil-related decrease was 14.4% (averaged across 9.51 
to 19.0 Hz).

Model with  heterogeneous task-related inputs.  In an additional 
variant of the neural mass model, we added task-related inputs only 
to a subset of nodes, rather than to the entire network. To this end, 
we first identified the AAL nodes that exhibit a significant (P < 0.05, 
two-sided paired t test) reduction in power during TASK compared 
to REST (averaged across the frequencies where we observed signif-
icant changes in correlations for both drugs; Fig. 1E). Next, for each 
subject’s combination of bE and bI (obtained from fitting the model 
to REST), we added an additional task-related input ∆bE and ∆bI to 
the nodes identified in the previous step. We simulated this version 
with two different task-related input strengths: (i) ∆bI = 0.475 and 
∆bE = 0.25 (fig. S10A; similar to the homogeneous version of the 
model) and (ii) ∆bI = 0.50 and ∆bE = 0.30 (fig. S10B).
Local microcircuit models
Microcircuit model of local node. To assess how changes in neural 
gain can be achieved through specific changes in synaptic weights, 
we simulated a model of a canonical cortical microcircuit, as a con-
ductance-based neural network composed of 400 leaky integrate- 
and-fire units (20% inhibitory). Model equations and parameters 
follow (44), with some modifications as mentioned below. The 

model architecture is depicted in Fig. 2H. The membrane potential 
dynamics of the excitatory units below threshold were governed by

   C  m     dV(t) ─ dt   =  g  L  (V(t ) −  V  L   ) −  I  syn  (t) ) (16)

Here, Isyn(t) denotes the total synaptic current, which was com-
posed of two glutamatergic excitatory currents [with AMPA and 
NMDA (N-methyl-d-aspartate) components] and GABAergic in-
hibitory currents. External input and external noise to the network 
were mediated exclusively via AMPA receptors. Baseline parame-
ters were identical to the original version (44), with the exception of 
gI → E, GABA = 1.99 nS (conductance of inhibitory to excitatory syn-
apses) and gext → E, AMPA = 2.5 nS (synaptic conductance of external 
input to excitatory neurons). Moreover, the rate of the external 
Poisson input to excitatory and inhibitory neurons was changed to 
vext = 881 Hz (originally vext = 2400 Hz). From these baseline values, 
we parametrically scaled the conductance parameters gE → E, AMPA 
and gI → E, GABA [AMPA-mediated recurrent excitation and GABA 
(-aminobutyric acid)–mediated feedback inhibition, respectively] 
to achieve plausible spontaneous dynamics (see the Supplementary 
Materials and fig. S9 for details). After simulating the network for 3 s, 
we selected parameters for gE → E, AMPA (0.1625 nS) and gI → E, GABA 
(6.97 nS), where the network showed a population firing rate of 
4.14 Hz and low spike count correlations of 0.05 (see fig. S9 for al-
ternative values). Next, we presented the network with stimuli in 
form of external excitatory input (added to the background input) 
to all excitatory cells, mediated through AMPA receptors, and as-
sessed the effect on resulting excitatory population firing rate (25). 
In visual cortex, neurons respond to stimuli with increasing con-
trast with higher firing rates. This relation between a neurons out-
put and the visual input strength is well-described by a hyperbolic 
ratio function known as the Naka-Rushton function

  R(C ) =  R  max      C   n  ─ 
 C   n  +  C 50  n  

    + S  (17)

where R(C) is the firing rate at input contrast C, Rmax is the response 
gain, S reflects the level of the spontaneous (background) activity, 
and C50 is the stimulus strength that yields a firing rate at half the 
maximum. Using this equation, we generated a set of stimuli (with 
varying “contrast,” i.e., varying levels of C) that were trans-
formed into firing rates of different frequency and were subsequent-
ly fed into the network as an AMPA-mediated excitatory Poisson 
input. The parameters used in the current study were identical to 
the parameters used in a previous theoretical study on the effects of 
excitation and inhibition on response gain of single neurons (25): 
Rmax = 2000 Hz, C = 20.133, n = 1.2, and S = 0. This approach al-
lowed us to measure the response of a neural population to inputs 
of varying contrast strength, which is typically depicted as a con-
trast-response curve (Fig.  2H, right). To assess the effect of exci-
tation-inhibition ratio on the shape of the contrast-response curve, 
we decreased the feedback inhibition in the model by adjusting 
gI → E, GABA (see the Supplementary Materials for details). Using non-
linear least squares estimation, we fitted the hyperbolic ratio func-
tion (Eq. 17), with four free parameters (Rmax,   C 50  n   , S, and n), to the 
resulting contrast-response curves. This yielded, among others, re-
sponse gain parameters (Rmax) for different levels of feedback inhi-
bition (Fig.  2H, right). The network was simulated for 2.5 s per 
parameter combination, with continuous external stimulation. All 
simulations and analyses were carried out in Python 2.7.15 using 
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the Brian spiking neural network simulator (version 1.4.4) (77), the 
Elephant toolbox for Python, and custom code. The Python code for 
the model simulations was adapted from publicly available code (78).

Decision circuit.  To understand how the increase in reported 
perceptual transitions during ambiguous visual stimulation under 
atomoxetine (Fig. 3A and fig. S11) could be related to changes in 
synaptic activity, we extended the above neural circuit by equipping 
the model with two excitatory populations, which competed for 
dominance via common feedback inhibition. The synaptic equa-
tions were identical to the homogeneous microcircuit described in 
the previous section. Unless stated otherwise, the model architecture 
and parameters were identical to the original description (Fig. 3B, 
left) (44). The circuit consisted of N = 2000 leaky integrate-and-fire 
neurons, endowed with full connectivity. One thousand six hundred 
neurons were excitatory, and 400 neurons were inhibitory. The ex-
citatory cells were assigned to one of the three subpopulations: two 
decision populations (240 neurons each), D1 and D2, as well as one 
nonspecific population (DN; 1120 neurons). The two decision pop-
ulations were assumed to represent the populations that encode the 
two possible perceived rotation directions of the ambiguous stimu-
lus. All neurons, excitatory and inhibitory, of all populations (D1, 
D2, DN, and I) received independent AMPA-mediated excitatory 
background input in the form of a Poisson spike train with a fre-
quency of 2880 Hz. In addition, the neurons of the decision popula-
tions D1 and D2 received independent AMPA-mediated excitatory 
input with a mean firing rate of 55.6 Hz, which was to reflect the 
stimulus-related sensory input. The identical mean in input to both 
decision populations was to mimic the ambiguous nature of the 
structure-from-motion stimulus. Recurrent connections within D1 
and D2 were stronger than connections within DN by a factor of w+ 
= 1.6. The network was simulated for 600 s, and population firing 
rates were estimated for time bins of 100 ms in length. Perceptual 
transitions in the model were defined as the time points where the 
firing rate of one decision population exceeded the firing rate of the 
other decision population, i.e., at those time points where the differ-
ence between firing rates of D1 and D2 changed in sign (Fig. 3B, 
right). To attenuate the effect of very fast fluctuations on the num-
ber of perceptual transitions, we low-pass filtered the firing rates of 
both decision populations before computing the perceptual transi-
tions (cutoff frequency of 1 Hz). To understand the effect of exci-
tation and inhibition on perceptual transitions, we again modified 
feedback inhibition by means of adjusting gI → E, GABA and computed 
the number of perceptual transitions for each level of feedback inhi-
bition. For each level of feedback inhibition, the network was simu-
lated 20 times.

Pharmacological behavioral experiment  
(value-based choice task)
Participants
We measured 32 participants (21 females, age range of 20 to 36, 
mean of 27.28) that performed two sessions of a value-based choice 
task (Fig. 4A and fig. S12A) after informed consent. All included 
participants were nonsmokers. The study was approved by the ethical 
committee responsible for the University Medical Center Hamburg- 
Eppendorf. We excluded three participants from the analysis 
based on foraging efficiency, which we here defined as the fraction 
of collected rewards over the total number of available rewards: We 
excluded participants whose foraging efficiency deviated more than 
three times the median from the median, scaled by a constant 

(c ≈ 1.4826, using MATLAB’s “isoutlier” function). On the basis of this 
criterion, the same three participants were excluded for both experi-
mental sessions (Fig. 4D). This resulted in 29 included participants.
Experimental design
General protocol.  We manipulated the levels of catecholamines 
(noradrenaline and dopamine) in a double-blind, randomized, 
placebo-controlled pharmacological intervention using atomoxetine 
(see above the “Pharmacological MEG experiment” section). Each 
participant completed two experimental sessions, consisting of 
drug or placebo intake, a waiting period of 1.5 hours, and perform-
ance of the behavioral task during MEG recordings. During task 
performance, participants were seated on a chair inside a magneti-
cally shielded chamber, and the (visual) task stimuli were presented 
on a screen in front of them (Fig. 4A and fig. S12A). Because this 
was a standard trial-based task design entailing many sensory and 
motor transients, the MEG data from this task were not used for the 
analysis of correlations between intrinsic fluctuations in cortical ac-
tivity. The MEG data will be reported in a separate paper.

Behavioral task. We used a modified version of a dynamic forag-
ing used in a previous monkey physiology study (49). Participants 
chose freely between two visual target stimuli (identified by orienta-
tion and randomized by position), which were associated with dif-
ferent histories of monetary rewards. The sequence of events during 
each trial is shown in fig. S12A. Participants were asked to fixate a 
white box in the center of a uniform gray background. Each trial 
started with the presentation of the two targets (full-contrast Gabor 
patches with vertical or horizontal orientations) that were presented 
on either side of the fixation mark (eccentricity of ~8.5° and diame-
ter of ~4.25° visual angle). The horizontal target’s (left versus right) 
location was randomly drawn on each trial, under the constraint 
that it would appear equally frequently on each side within a block 
of trials with equal “income ratio” (see below). After a 0.5- to 1.5-s 
delay, the fixation mark changed shape (from box to diamond), 
prompting the subject’s choice. Participants then pressed a button 
with their left or right index finger to choose the target at the corre-
sponding location. After another variable delay (2 to 5 s), participants 
received auditory feedback on the outcome of their choice (reward 
or no reward) by means of a low- or high-pitched tone (low, 200 Hz; 
high, 880 Hz; each with duration, 150 ms). The mapping of the 
tones to “reward” or “no reward” was counterbalanced across par-
ticipants and instructed before the start of each experimental ses-
sion. Participants attempted to maximize the number of rewarding 
feedback tones, which was translated into a corresponding bonus 
payment at the end of the experiment. Participants were rewarded €0 to 
€20 bonus based on performance. The lower boundary was chance 
level performance; the maximum bonus could be earned by per-
forming on par with an ideal observer model, which chose based on 
full information about the reward ratio at every trial.

If the participant had not yet responded within a deadline of 3 s, 
then another tone (440 Hz, 50 ms) signaled their missed response 
(no reward), and the trial was aborted. Targets disappeared after 
feedback tone so that only the fixation mark remained for an inter-
trial interval of 2 to 5 s, during which the participants kept fixating. The 
next trial started upon the new onset of the targets. Trial duration 
varied between 4.5 and 11.5 s plus reaction time (reaction times 
could range between 0 and 3 s), respectively, with an average trial 
duration of 8 s plus reaction time (0 to 3 s). Participants completed 
525 trials in each experimental session, taking about 75 min, ex-
cluding breaks in between blocks of 100 trials.

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 09, 2021



Pfeffer et al., Sci. Adv. 2021; 7 : eabf5620     16 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

15 of 18

Each target was baited with a separate Poisson process for gener-
ating rewards, under the following constraints (Fig. 4, B and C): (i) 
The “income” (i.e., reward) rate averaged across both targets was 
0.8 rewards per trial; (ii) the ratios between the reward rates associ-
ated with each target for a given block of trials (see below) were 
drawn from a predefined set {7:1, 5:1, 3:1, 1:1, 1:1, 1:3, 1:5, 1:7}; (iii) 
a reward assigned to a target (i.e., orientation) remained available 
there until this target was chosen; and (iv) when a reward was avail-
able at a target, no new reward could become available there (i.e., 
there was never more than one reward available per target). Corre-
spondingly, both or one or none of the targets could carry a reward 
in a given trial—the rewards associated with both targets were 
uncoupled.

The ratios between reward rates, called “local income ratios” in 
accordance with (49), changed between blocks of trials, without this 
being signaled to the participants. The block duration was sampled 
from a uniform distribution that ranged between 40 and 60 trials 
(Fig. 4C). Participants were not informed about these changes. Because 
of this dynamic nature of the foraging task, a successful policy is to 
integrate rewards earned from choosing each target, but only locally 
in time, over the last trials [see (49) and the “Behavioral modeling” 
section].

Participants were not instructed about the statistics of the process 
generating the rewards. They were only instructed (i) to try to earn 
as many reward (i.e., positive feedback tones; see above) as possible 
and that this would translate to a bonus payment at the end of the 
session and (ii) to be flexible in their behavior because the relative 
income of the two targets could change over time.
Pupil analysis
The pupil diameter recordings were preprocessed similar to experi-
ment 1 (see the “Pharmacological MEG experiment” section). Mean 
pupil diameter was computed in a pretarget baseline interval from 
500 to 0 ms before target onset. Pupil recordings were not available 
for four participants. Hence, the analysis was performed for the 
remaining 25.
Behavioral modeling
We fitted an algorithmic model of behavior to quantify the effects of 
atomoxetine on the different computations governing decision- 
making in the task. Our model, schematically depicted in Fig. 4F, 
extended a model previously developed to account for monkey choices 
in the task (49, 50). Model choices were computed as follows: (i) 
leaky integration of the rewards gathered from choosing each option 
over the recent trials; (ii) combination of the earned rewards into a 
relative value signal, the local fractional income (LFI); (iii) nonlinear 
(softmax) transformation of LFI into a probability of choosing the 
horizontal option; (iv) a weighted contribution of a ‘win-stay, lose-
switch’ (WSLS) heuristic; and (v) a weighted contribution of general 
bias (preference for the horizontal target) to the final choice proba-
bility. Leaky reward integration was applied to account for rapid 
adaption to the hidden changes in income ratio across blocks [see 
above the “Experimental design” section and (49, 50)].

Please note that the WSLS heuristic had been suppressed, by de-
sign, in the monkey study introducing this task (49) through a 
so-called “change-over-delay” (i.e., punishment for switching targets 
after one choice). We did not include this change-over-delay in our 
task to render the foraging task more ecological. We found that par-
ticipants’ behavior could be well accounted for by a linear mixture of the 
leaky reward integration described by steps (i) to (iii) and the heu-
ristic from step (iv) (Fig. 4F). A model containing only the reward 

integration fits the data far better than a model containing only the 
WSLS heuristic, indicating that a reward integration mechanism 
was needed to account for the data (fig. S12C).

We fitted the model by minimizing the negative log likelihood 
between the model choice probability from step (iv) and the participants’ 
binary choices, giving the set of parameter values. We first found 
the minimum in a rough grid search. These parameter values were 
then used as starting point for a bounded search.

For each trial t, the model computed LIhor(t), the local income 
earned from choosing the horizontal option, as follows

   LI  hor  (t ) =   1 ─ 
 e   −t/ 

   ∙  o 1:t  
hor   (18)

where   o 1:t  
hor   were the outcomes of horizontal choices on trials 1 : t and 

 was the reward integration time constant (model leak   =  1 _    ). Now, 
rewards earned from choosing the vertical option were coded as 1 
and all other outcomes as 0. The same equation was used to update 
LIver; now, coding rewards were earned from choosing the vertical 
option as 1 and all other outcomes as 0.

The LFI on trial (t) LFIhor was defined as

   LFI  hor  (t ) =    LI  hor   (t) ─   LI  hor  (t ) +  LI  ver  (t)    (19)

LFIhor was transformed into the choice probability p(ct = hor), 
defined with respect to the horizontal target, through a sigmoidal 
(softmax) function (50)

  p( c  t   = hor ) =    e   ∙ LFI  hor  (t)   ────────────  
  e   ∙ LFI  hor  (t)  +  e   ∙ LFI  ver  (t) 

  ,  (20)

where  was the inverse temperature parameter that governed deci-
sion noise, i.e., corrupting the mapping from LFI to the behavioral 
choice.  ranged from 0 to infinity (no noise). Depending on the 
outcome and the choice on the previous trial, a WSLS value was 
calculated for the current trial

  WSLS( c  t  ∣ o  t−1   ) = 
{

   c  t−1  , if  o  t−1   = 1   
− 1 ×  c  t−1  , if  o  t−1   = 0

   (21)

where ct = 1 for horizontal choices and ct = − 1 for vertical choices at 
trial t. The probability of choosing horizontal, p(ct = hor), was then 
combined with the WSLS quantity and a general bias , which could 
range between −1 (all choices to vertical option) and 1 (all choices 
to horizontal option). The placement of the softmax transformation 
was motivated by formal comparison between two versions of the 
models in which the softmax was either applied before or after the 
integration of the WSLS term. This indicated a better fit of the mod-
el with softmax transformation before the combination with WSLS 
(fig. S12D).

Specifically, the choice probability for horizontal (model quantity 
fitted to the data) was given by

    
p( c  t   = hor∣ c  1:t−1  ,  o  1:t−1   ) = (((1 −  ω  WSLS   ) ∙

     
  (      e   β∙ LFI  hor  (t)   ────────────  

 e   β∙ LFI  hor  (t)  +  e   β∙ LFI  ver  (t) 
   )   +  ω  WSLS   ∙ WSLS( c  t  ∣ o  t−1   ) ) + δ) 

   (22)

where p(ct = hor ∣ c1 : t − 1, o1 : t − 1) was the probability of horizontal 
choice on trial t (constrained between 0 and 1), given the choices 

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 09, 2021



Pfeffer et al., Sci. Adv. 2021; 7 : eabf5620     16 July 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

16 of 18

made and outcomes (rewards) received from trial 1 to trial t − 1, 
WSLS was a free parameter (ranging from 0 to 1) that controlled the 
contribution of the WSLS heuristic to the choice probability, and  
was the bias term toward horizontal.
Logistic regression analysis of choice behavior
In a mechanistically agnostic approach complementary to the above 
reward integration mode, we fitted choice behavior with a logistic 
regression model with five regressors

  P( c  t   = 1∣WSLS )   =  + (1 −  −  ) ∙  g( ∙    hist   +    WSLS   WSLS +    0  )   (23)

where ct was the choice on trial t (1 or −1 for horizontal and vertical, 
respectively),  and  were parameters quantifying the lower and 
upper lapse rates (e.g., attention lapses or motor errors), g was the 
logistic function  g(x ) =   1 _ 1 +  e   −x     in which  was a “slope” parame-
ter, hist quantified the impact of previous trial history (see below) 
on choice, 0 was a general bias toward horizontal parameter, 
and WSLS was the weight of the WLSLS heuristic, defined as 
in Eq. 21.

The history term hist captured the impact of the choice and motor 
response from the previous trial and the choice outcomes (product 
of choice and reward) from the past n = 6 trials. Specifically, hist 
was calculated as

     hist   =  ∑ k=1  n+2       k    h  kt    (24)

with the vector ht

   h  t   = (  b  t−1   ∙  b  t   ∙  c  t  ,  c  t−1  ,  o  t−1  ,  o  t−2  ,  o  t−3  ,  o  t−4  ,  o  t−5  ,  o  t−6  )  (25)

k was the weight parameter for the kth element of the ht vector 
(Eq. 25), c coded the choice (horizontal versus vertical), and o coded 
the choice outcome (horizontal choice rewarded = 1, vertical choice 
rewarded = −1, and no reward = 0). The term (bt − 1 ∙ bt ∙ ct) was in-
troduced to capture any possible systematic tendency to repeat (or 
alternate) the left- or right-hand motor response from the preceding 
trial (1 = left, −1 = right), which was, by design, orthogonal to the 
vertical/horizontal target choice (see above the “Experimental de-
sign” section). The weight for this motor response repetition regressor 
was slightly negative on average across participants and did not differ 
between placebo and atomoxetine sessions (P  =  0.452, two-sided 
paired permutation test).

The logistic regression model was fitted by minimizing negative 
log likelihood using MATLAB’s “fminsearchbnd” with the follow-
ing bounds: the lapse rates  and  [0, 1], general bias 0 [−1, 1], the 
weight on the WSLS-heuristic WSLS [0, 1], and the slope of the 
logistic function  [0, 100].

We estimated the time constant of the outcome history impact 
on current by fitting the six outcome-related weights (3 to 8 , cor-
responding to the ot−1 to ot−6 elements of vector ht) to the following 
exponential function

  f(x ) =  e   (−x+)/   (26)

where  was an offset parameter shifting the exponential function 
horizontally,  was the time constant, and x was the lag (e.g., x = 1 for 3).
Deviance between actual and reward-maximizing 
choice fractions
The deviance between participants’ actual and reward-maximizing 
choice fractions in a given block served as a model-free behavioral 

diagnostic of increases in decision noise. The deviance was the dif-
ference between the subject’s actual choice fraction and the choice 
fraction that corresponded to the generative reward ratio for a given 
block (Fig. 4H). The reward integrator model predicted that actual 
choice fractions would always deviate from reward-maximizing 
fractions in the direction toward 0.5. Therefore, the computed devi-
ance needed to take the different directions of the deviance for re-
ward rates symmetric about 0.5 into account. The direction of the 
deviance was upward for the reward ratio of 1:3 and downward for 
3:1. We first computed the differences (D) between actual and 
reward-maximizing choice fractions for each of these two ratios, in-
verted the sign of the difference for the ratio of >0.5 (here, 3:1), and 
then averaged the resulting difference values across the pair. The 
same computation was done for all pairs of reward ratios symmetric 
about 0.5 (i.e., excluding the ratio 1:1), and the result was averaged 
across reward ratios (excluding 1:1) into the final deviance measure.

We computed this deviance measure after excluding the first 
block of each session reasoning that behavior was likely not yet well 
accounted for by the integrator model in this early phase of the 
session. Further, we also excluded the first 23 trials of each block, 
because simulations of the integrator model showed that differences 
in deviance between conditions of low and high decision noise were 
maximized at the asymptotic levels of choice fractions. The cutoff of 
23 trials was determined by taking four times the group average 
time constant (inverse of leak, collapsed across drug and placebo), 
corresponding to approximately 98% of the asymptotic value of a 
leaky integrator.

For the simulations of the leaky accumulator model shown in 
Fig. 4H (bottom), the following parameters were used: leak: 0.1667 
to 0.8333, in steps of 0.1667; decision noise (1/): 0.3333, 0.5, 1, 2, 
and 3. The decision noise values were multiplied by the average esti-
mated (through fitting) decision noise parameter, averaged across all 
participants and the two conditions (placebo and atomoxetine). WSLS: 
0 to 1, in steps of 0.25; bias: −0.0702, −0.0351, 0, 0.0351, and 0.0702.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/29/eabf5620/DC1

View/request a protocol for this paper from Bio-protocol.
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