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A shallow water theory is developed which applies to

surface wave propagation over structured bathymetry

comprised of rapid abrupt fluctuations in depth

between two smoothly-varying levels. Using a

homogenisation approach coupled to the depth-

averaging process which underpins shallow water

modelling, governing equations for the wave elevation

are derived which explicitly relate local spatially-

varying anisotropy of wave speeds to properties of the

microstructured bed.

The model is applied to two water wave scattering

problems to demonstrate both the complex wave

propagation characteristics exhibited by structured

beds and to provide examples of how to use

structured beds to engineer bespoke wave propagation.

This includes propagating waves with practically zero

reflection and loss of form through circular bends in

channels.

1. Introduction

Linear shallow water theory is a well-established tool

for predicting long-wave propagation in shallow water

over variable beds. It is based on the assumption that

the typical depth to lengthscale ratio, H/L≪ 1, whilst

also requiring that the surface elevation is sufficiently

small (see, for example, Stoker (1957), Whitham (1974)).

Thus a rescaling of physical variables in the governing

equations followed by a perturbation expansion in the

small parameter (H/L)2 gives, at leading order, the well-

known linear shallow water equation

ζtt = g∇ · (h∇ζ) (1.1)

describing the evolution of the free surface elevation

ζ(x, y, t) over the variable fluid depth h(x, y) subject

to gravity, g. Under this description waves are non-

dispersive and the wave speed is
√
gh.
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Recently Porter (2019) described an extension to the linear shallow water equations which

includes higher-order terms at O((H/L)2) in the expansion and leads to a governing equation

with the same structure as (1.1).

These equations incorporate weak dispersion and demonstrate that the wave speed is also

slowed by gradients in h. As a consequence of this, it was highlighted in Porter (2019) that

there can be differences in the speed of waves propagating in different directions over variable

bathymetry.

The independent control of the wave speed components at every point in space is a demand

often made in the design of so-called metamaterials. These are structures which interact with,

and alter the propagation of, waves in a manner that is either not accessible or not encountered in

conventional settings. They have been considered extensively in electromagnetics, acoustics and

elasticity though less so when related to surface waves on water. Typically, the properties of a

metamaterial are determined by the macroscopic effect of a microstructure whose lengthscale is

significantly smaller than the lengthscale of the underlying field variable (for us, the wavelength).

One of the most common features exhibited by metamaterials is negative refraction (e.g. Smith et

al. (2004)), the ability to reverse the direction of a plane wave front as it crosses a straight interface

from a conventional medium into a metamaterial. It is integral to producing exotic phenomena

such as invisibility cloaking and perfect lensing (e.g. Fleury & Alú (2014), Pendry (2000)).

Whilst Porter’s (2019) work shows that conventional bathymetry exhibits anisotropy of wave

speeds its practical scope as a device for the bespoke manipulation of surface waves is limited by

its restricted definition in terms of a single function h(x, y).

Farhat et al. (2008) proposed the first water wave metamaterial, introduced as a device for

cloaking a circular cylinder from surface waves. The cloak design involved an annular region

occupied by a large periodic array of vertical posts extending uniformly through the depth but

varying in cross-section radially within the annular array with a design which dictated spatially-

varying and anisotropic wave speeds in the radial and angular directions. Exploiting the contrast

in lengthscale between the vertical posts and the underlying wavelength, homogenisation was

used to determine an effective shallow water wave equation. The coordinate transformation of

space used by Farhat et al. (2008) required a further spatially-varying material parameter in the

effective shallow water model in addition to those that introduce effective anisotropic depth

effects which they did not address. Later, Zareei & Alam (2015) revisited the cylinder cloaking

problem using a non-linear transformation which relaxed this additional requirement at the

expense of introducing non-perfect impedance matching conditions at the edge of the cloak.

Zareei & Alam (2015) showed that cloaking improved as the size of the cloak increased and as

the impedance mismatch was reduced. They did not discuss a water wave metamaterial design

needed in the cloak.

Closely-spaced periodic arrays of vertical cylinders were also used by Farhat et al. (2010)

as a negative refraction lensing device for surface waves. A similar solution was used by

Iida & Kashiwagi (2018) although they described their metamaterial as being comprised as a

periodic network of narrow shallow vertically-walled water channels rather than a periodic array

vertical posts surrounded by fluid. Their assumed geometrical configuration allowed the effective

medium to be described by the exchange of wave information at junctions on the network

of fluid channels between neighbouring junctions along which information propagates at the

conventional shallow water wave speed.

It is also possible to control wave speeds by placing structures in the surface of the fluid (as

proposed by Zareei & Alam (2016)) or on the bed of the fluid and this is where the current work

is focused. In Berraquero et al. (2013) conventional shallow water theory was used in a standard

‘layered-medium’ homogenisation formulation (e.g. Mei & Vernescu (2010)) as the foundation of

a design of structured bed with rapid fluctuations between two constant depths. This device was

used to consider the transmission of waves through a parallel-walled waveguide containing a

sharp change in direction along its length. However, conventional shallow water theory assumes

small bed gradients and can only be used to determine propagation of waves over a discontinuous
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change in depth in a asymptotic sense. Thus, it will only apply to structured beds when the

fluctuations in the depth are no more rapid than the wavelength. In view of this Maurel et al.

(2017) conducted a formal multiple-scales homogenisation, once again in a shallow water setting,

to determine revised effective depths as solutions to a potential flow problem in a fundamental

periodic cell.

More recently Maurel et al. (2019) have considered shallow water wave scattering by a

structured bed of finite width by adopting the model of Maurel et al. (2017) and with a particular

focus on determining effective matching conditions at the discontinuity between a conventional

bed and a structured bed. This is done through a careful matched asymptotic process. At

leading order matching conditions of pressure and flux are determined, as in the case of shallow

water scattering by a discontinuous change in conventional bathymetry, but more sophisticated

conditions are derived at the next order in the shallowness parameter, H/L.

In the current work we revisit the structured bed considered by Berraquero et al. (2013)

and Maurel et al. (2017) and employ a formal multi-scale homogenisation approach under the

assumption that the vertical protrusions that comprise the structured bed are closely spaced.

The analysis is performed in a shallow water setting without the need to determine solutions to

potential flow problems. Thus the model, developed in Section 2, determines the effective depths

for waves propagating parallel and perpendicular to the structured array of barriers explicitly.

The model that emerges coincides with the one proposed in Porter (2018) who use basic physical

principles and conservation laws. In Section 3, we compare our expressions with the results of

Berraquero et al. (2013) and Maurel et al. (2017). In Section 4, we consider scattering of waves by

structured beds to both illustrate and quantify the negative refraction properties of these beds.

In Section 5 we demonstrate the use of structured beds in the bespoke manipulation of waves

in curved channels. The basis for this is a coordinate transformation similar to that used by

Berraquero et al. (2013) for sharp bends in channels. The paper is summarised in Section 6.

2. Formulation of shallow water equations

(a) Description of the geometry

The theory is developed in a Cartesian framework (x, y, z) with z directed vertically upwards and

z =0 coinciding with the undisturbed free surface of a fluid of density ρ. The fluid is bounded

below by a rigid structured bed which consists of a periodic arrangement of protrusions aligned

with the y-axis of rectangular cross section and extending vertically between a lower surface

described by the function z =−h+(x, y) and an upper surface given by z =−h−(x, y) such

that h+ ≥ h− – see Fig. 1. Each vertical protrusion is of thickness Θl, Θ ∈ (0, 1), where l is the

periodicity of the structure in the x-direction. The barriers are thin when Θ→ 0 (we shall refer to

this case as Θ=0) and the gaps close when Θ→ 1. We make a close-spacing assumption implying

l/h± ≪ 1.

We consider waves propagating on the surface of the fluid with amplitude ζ(x, y, t) where t

is the time variable and assume that waves are of small steepness so that |∇ζ| ∼ |ζ|/λ≪ 1 where

λ is a characteristic wavelength (here, and in what follows, ∇= (∂x, ∂y)). In addition it will be

assumed that h±/λ≪ 1 which expresses the shallow water condition.

(b) Governing equations

The fluid is assumed to be inviscid and incompressible and its motion is represented by the

velocity field (u(x, y, z, t), w(x, y, z, t)) where u= (u, v) are the horizontal components of the

flow. Within the fluid, mass conservation requires that

∇ · u+ wz = 0 (2.1)
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Figure 1. Illustrative sketch of a structured bed, with the horizontal (x, y) axes lying in the plane of the mean free surface.

be satisfied and momentum conservation is expressed as

ρut + ρ(u · ∇ +w∂z)u=−∇p, ρwt + ρ(u · ∇+ w∂z)w=−pz − ρg (2.2)

where p= p(x, y, z, t) is the pressure and g is gravitational acceleration.

The kinematic and dynamic conditions on the surface of the fluid are

w(x, y, ζ, t)− u · ∇ζ = ζt, and p(x, y, ζ, t) = pa (2.3)

where pa is constant atmospheric pressure. Finally the no-flow conditions applied to the

submerged boundary which consists of the union of a periodic arrangement of two surfaces

z =−h+ and z =−h− on which

w +∇h± · u=0, on z =−h± (2.4)

and vertical walls joining them on which

ux =0. (2.5)

(c) Non-dimensionalisation

There are four lengthscales in the problem: (i) L is a characteristic horizontal lengthscale either

representing the underlying wavelength or the scale over which macroscopic changes to the fluid

depth occur; (ii) H is a characteristic depth of fluid; (iii) l is the lengthscale of the structured bed;

(iv) A is a characteristic wave height.

We form three dimensionless quantities from these parameters:

µ=H/L, ǫ= l/L, and δ=A/H (2.6)

which represent, respectively, shallowness, microstructure contrast and linearisation (wave

steepness) parameters. Each one is supposed to be small and we demand the theory to work

in the limit δ→ 0 independently of the size of ǫ and µ. This ensures we operate within in a

linearised setting. These other two parameters are coupled by the geometry and we assume that

that ǫ=O(µ2).

In the definition of dimensionless variables, we also take into account the two distinct

lengthscales in the x-direction to perform a multiple scales expansion in x. Thus, we write

x= lX′ + Lx′, y =Ly′, z =Hz′, ζ =Aζ′ (2.7)

and accordingly h=Hh′ for h= h±. Then we select a timescale, T =L/
√
gH based on the

shallow water dispersion relation so that t= (L/
√
gH)t′ whilst the characteristic vertical velocity
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scale is set by A/T so we write

w= (A/L)
√

gHw′ while u= (A/H)
√

gHu
′ (2.8)

is set by requiring a balance of terms at leading order in the continuity equation. Finally, the

pressure references the background pressure with p= ρgHp′. Under the transformation above

the governing equations read

∇′ · u′ + w′
z′ +

1

ǫ
u′X′ =0 (2.9)

where ∇′ = (∂x′ , ∂y′) with

δu′t′ =−1

ǫ
p′X′ − p′x′ , δv′t′ =−p′y′ , δµ2w′

t′ =−p′z′ − 1, (2.10)

neglecting the non-linear terms in the momentum equation since they are O(δ2), with boundary

conditions

w′ = ζ′t′ , p′ = p′a (2.11)

on z′ = δζ′ and, for now, we abbreviate the set of conditions on the fixed submerged bed as

(u′, w′) · n̂= 0 where n̂ is normal to the bed.

(d) Expansion

We drop the primes from the dimensionless variables and expand the unknowns as

p≈ p(0)(x, y, z, t;X) + δ(p(1) + ǫp(2) + . . .) (2.12)

with

u≈ u(1) + ǫu(2) + . . . , v≈ v(1) + ǫv(2) + . . . , w≈w(1) + ǫw(2) + . . . (2.13)

in which all functions, not just p(0), are presumed to depend upon the variables x, y, z, t,X . These

expansions will be valid away from the interface z =−h−(x, y) around which local effects will

require a rescaling of coordinates. Additionally, we write

ζ ≈ ζ(1)(x, y, t;X) + ǫζ(2)(x, y, t;X) + . . . . (2.14)

The expansion of variables in δ is limited to capture only terms up to and including O(δ)

consistent with linearisation of the momentum equations. Then (2.9) becomes

1

ǫ
u
(1)
X +∇ · u(1) + w

(1)
z + u

(2)
X +O(ǫ) = 0 (2.15)

and three equations in (2.10) become

1

ǫ
p
(0)
X + p

(0)
x + δ

(

1

ǫ
p
(1)
X + u

(1)
t + p

(1)
x + p

(2)
X +O(ǫ)

)

= 0 (2.16)

with

p
(0)
y + δ

(

v
(1)
t + p

(1)
y +O(ǫ)

)

=0 (2.17)

and

p
(0)
z + 1 + δ

(

p
(1)
z +O(ǫ)

)

=0. (2.18)

In the last of these, the assumption that µ2 =O(ǫ) has been used. The dynamic boundary

condition is expanded, neglecting O(δ2) terms, to give

pa = p(0) + δ
(

ζ(1)p
(0)
z + p(1) +O(ǫ)

)

, on z = 0 (2.19)
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whilst the kinematic boundary condition is

w(1) = ζ
(1)
t , on z = 0 (2.20)

to leading order. No-flow conditions on the surfaces of the structured bathymetry include















w(n) +∇h− · u(n) =0, z =−h−, 0<X <Θ,

w(n) +∇h+ · u(n) =0, z =−h+, Θ <X < 1,

u
(n)
X = 0, −h+ <z <−h−, X =Θ, 1

(2.21)

for n= 1, 2, . . ..

From (2.18) and from (2.16), (2.17) and (2.19) we have

p(0) = pa − z (2.22)

which is just the background hydrostatic pressure in the fluid.

From the O(ǫ−1) terms in (2.15), (2.16) we have that u(1) = u(1)(x, y, z, t) and p(1) =

p(1)(x, y, z, t) are both independent of the microscale coordinate X . Then from (2.18) with (2.19)

we have p
(1)
z =0 and p(1) =−ζ(1)p

(0)
z on z = 0 so that

p(1) = ζ(1)(x, y, t). (2.23)

We also have v
(1)
t =−p

(1)
y which means that

v
(1)
t =−ζ

(1)
y (2.24)

and v(1) = v(1)(x, y, t) is therefore independent of both z and X .

We can also see that first order variables are defined by

∇ · u(1) + w
(1)
z =−u

(2)
X (2.25)

with

u
(1)
t + p

(1)
x =−p

(2)
X (2.26)

in terms of higher-order quantities. In −h− < z < 0 above the structured bed where the fluid is

continuous we use the multiple-scales assumption that p(2) is a periodic function of X and since

the left-hand side of (2.26) has been shown to be independent of X we can integrate over a period,

0<X < 1, to give

u
(1)
t =−ζ

(1)
x (2.27)

after use of (2.23). Combining with (2.24) implies

u
(1)
t =−∇ζ(1) (2.28)

in −h− <z < 0. Thus u(1) = u(1)(x, y, t) only.

Returning to (2.25), u(2) is periodic in X for −h− < z < 0 and integrating from 0<X < 1 gives

u
(1)
x + v

(1)
y +

∫1
0
w
(1)
z dX = 0. (2.29)

Integrating over −h− <z < 0 gives

h−(u
(1)
x + v

(1)
y ) =−

∫1
0
w(1)|z=0 − w(1)|z=−h−+0 dX

=−ζ
(1)
t −∇h− · u(1) +

∫1
0

(

w(1) +∇h− · u(1)
)

z=−h−+0
dX (2.30)

after using (2.20) and the first boundary condition in (2.21) with n= 1. We note that although

equations above have been stated as applying through −h− < z < 0, formally they apply away
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from the boundary z=−h− where local effects due the flow transition from the fluid above the

interface to the fluid in the channels below should be taken into account. A matched asymptotic

expansion scheme is the formal manner in which this interface can be addressed and in (2.30) the

evaluation is made at z =−h− + 0 indicating that this is the inner limit of the outer solution in z

far away from h−. We access the inner matching region with a rescaling of the vertical coordinate

defined by z =−h−(x, y) + ǫZ. Under this rescaling, the dominant contributions from (2.15) to

(2.18) are in the form

u
(1)
X + w

(1)
Z = 0, p

(1)
X = p

(1)
Z =0. (2.31)

Therefore, in this inner region p(1) = p(1)(x, y, t) does not depend on the local spatial coordinates

X , Z. Leading order matching to the regions above and below z =−h− implies the leading order

hydrodynamic pressure variation in z <−h− is also p(1)(x, y, t) (i.e. there is no jump in pressure

across the interface between the microstructure and the fluid above). In turn, from (2.17) and (2.23)

we have

v
(1)
t =−p

(1)
y =−ζ

(1)
y , in −h+ < z <−h− (2.32)

is unchanged from the region −h− < z < 0 and v(1) = v(1)(x, y, t) in the fluid in the narrow gaps.

Next, we use the fact that v(1) does not depend on a local scale Y and integrate the first equation in

(2.31) over a local cell volume D= {0<X,Y < 1, 0<Z <Z∗} ∪ {Θ<X < 1, 0<Y < 1, − Z∗ <

Z < 0} to give, using the divergence theorem,

0=

∫
D
(u

(1)
X + v

(1)
Y +w

(1)
Z ) dX dY dZ =

∫
∂D

(u(1), v(1), w(1)) · n̂ dS (2.33)

and n̂ points out of D. Using the periodicity of u(1) across X = 0, 1 in Z > 0, the local Neumann

conditions expressed by (2.21) and the independence in Y of v(1) and implies that

∫1
0
(u(1), w(1)) · n̂|Z=Z∗ dX +

∫1
Θ
(u(1), w(1)) · n̂|Z=−Z∗ dX = 0. (2.34)

Asymptotic matching implies the inner limit of the incoming flux from the outer solution away

from the interface matches the outer limit (Z∗ →∞) of the flux in the inner solution in (2.30). That

is to say,

∫1
0

(

w(1) +∇h− · u(1)
)

z=−h−+0
dX =

∫1
Θ

(

w(1) +∇h− · u(1)
)

z=−h−−0
dX. (2.35)

Away from the interface in −h+ <z <−h−, the equation (2.15) at leading order gives us u
(1)
X =0

and, with the last boundary condition in (2.21), n= 1, we have u(1) = 0, whilst at the next order

v
(1)
y + w

(1)
z =−u

(2)
X holds for Θ<X < 1. We integrate over this interval using (2.21) again with

n= 2, to give

(1−Θ)v
(1)
y +

∫1
Θ
w
(1)
z dX =0 (2.36)

after using the independence from X and z of v(1) in the channels and integrating this over the

depth −h+ <z <−h− gives

(h+ − h−)(1−Θ)v
(1)
y =−

∫1
Θ
w(1)|z=−h−−0 − w(1)|z=−h+ dX

=−(1−Θ)h+y v(1) + (1−Θ)h−y v(1) −
∫1
Θ

(

w(1) + h−y v(1)
)

z=−h−−0
dX

(2.37)

after using (2.21) and the fact that u(1) = 0 in the channels.
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We can now use (2.30) and (2.37) in the asymptotic matching condition (2.35) and this results

in

ζ
(1)
t + (h−u(1))x +

(

Θh− + (1−Θ)h+)v(1)
)

y
=0 (2.38)

or, more compactly,

ζ
(1)
t +∇ · hu(1) = 0 (2.39)

where

h=

(

h− 0

0 h̄

)

, h̄=Θh− + (1−Θ)h+ (2.40)

in tensorial form. It is more natural to use, in place of u(1), the quantity

q
(1) = hu

(1) (2.41)

since this represents the horizontal flux of fluid and then (2.39) is just

ζ
(1)
t =−∇ · q(1) (2.42)

which is presented in the form of a standard conservation law that one might have arrived at

using physical principles without any detailed asymptotic analysis (as in Porter (2018)).

This leading order theory is completed by cell-integrating the horizontal momentum equations

established in (2.28) and (2.32) above and below the interface z =−h− so that

0=

∫1
0

∫0
−h−

(

u
(1)
t +∇ζ(1)

)

dz dX +

∫1
Θ

∫−h−

−h+

(

v
(1)
t + ζ

(1)
y
)

ŷ dz dX (2.43)

all quantities being independent of X and z and this provides us with

q
(1)
t =−h∇ζ(1). (2.44)

Finally, we can eliminate between (2.42) and (2.44) to get either

ζ
(1)
tt =∇ · (h∇ζ(1)) (2.45)

or

q
(1)
tt = h∇(∇ · q(1)). (2.46)

Returning to dimensional variables with ζ(x, y, t)≈ ζ(1)(x, y, t) introduces a factor of g into the

right-hand side of (2.44) and (2.45) reads

ζtt = g∇ · (h∇ζ) (2.47)

which is the extension of (1.1) for structured bathymetry.

3. Comparison with other models

As indicated in the Introduction, the shallow water equation developed in Section 2 is not the

only model that has been developed for wave propagation over structured bathymetry.

Previously, Berraquero et al. (2013) and Maurel et al. (2017) have presented methods for

determining the effective depth component in the tensor h= diag{h1, h2} in a shallow water

setting. In both these models, a value of h2 =Θh− + (1−Θ)h+ is deduced and coincides with

the expression of h̄ derived in Section 2. There are differences between the models in the definition

of h1. The shallow water model of Berraquero et al. (2013) sets

h1 = 1/(Θ/h− + (1−Θ)/h+) (3.1)

which tends to h− when Θ→ 1 and h+ when Θ→ 0. This contrasts with the constant value of

h1 = h+ deduced in Section 2. For reasons described in the Introduction, we expect the model
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Θ
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(a)
(b)

(c)

h−

Figure 2. Reproduction of Fig. 8 (a) from Maurel et al. (2017) for h+ =1.4, h− = 0.4, measuring the variation of

effective depths h1 and h2 as a function of Θ: h2 = h−Θ + (1 −Θ)h+ (solid line) is common too all models; h1 =

1/(Θ/h− + (1− Θ)/h+) (chained) the Berraquero et al. (2013) model; h1 = h− (our model); and computations for:

(a) l/h+ = 0.04, (b) l/h+ =0.4, (c) l/h+ =4.

of Berraquero et al. (2013) to work for protrusions which are widely-spaced (on the scale of the

wavelength, or l/h+ ≫ 1) whilst we have assumed the opposite limit that protrusions are closely-

spaced, or l/h+ ≪ 1.

Spanning these two limiting cases is the numerically-determined value proposed by the

Maurel et al. (2017) model which arises through a formal homogenisation of the governing

equations, following the methodology introduced by Rosales & Papanicolaou (1983). This was

performed under a shallow water assumption without assumptions on the size of l/h+ but

requires the full depth-dependent potential theory description. Maurel et al. (2017) provide the

details to determine the value of h1 numerically and then compare, in their Fig. 8(a) (and

reproduced here in Fig. 2), the values of h1 from this method against the value of h1 given by

(3.1) from the effective shallow water model of Berraquero et al. (2013) as the thickness parameter

Θ varies for three different values of l/h+.

As l/h+ increases the computed values of h1 tend slowly to the wide-spacing shallow water

model of Berraquero et al. (2013), as we have argued for above. As l/h+ decreases their results

converge quite rapidly to the constant value of h1 = h− which is the result from our effective

shallow water model. As Maurel et al. (2017) discuss, it is this closely-spaced arrangement with

Θ= 0 which gives rise to the largest contrast between h1 and h2 and hence the greatest anisotropy

in propagating wave speeds.

4. Analysis of wave transmission across structured beds

We assess the basic characteristics of the structured metamaterial bed by considering the

propagation of plane waves from a constant depth h0 in x < 0 obliquely incident on a

metamaterial bed in x > 0 having constant values of h+, h− and Θ. We also allow the structured

bed in x > 0 to be rotated through an anticlockwise angle δ as illustrated in Fig. 3.

In other words (1.1) holds in x < 0 whilst (2.42), (2.44) hold for functions ζ̃(x̃, ỹ, t) and q̃(x̃, ỹ, t)

in a coordinate system (x̃, ỹ) rotated by δ from (x, y). That is

(

x̃

ỹ

)

=R
(

x

y

)

, where R=

(

cos δ sin δ

− sin δ cos δ

)

. (4.1)
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δ

h0

h− h+
z y

x

Figure 3. Sketch of transition from a constant depth in x< 0 to a structured bed in x> 0. The diagram indicates thin

barriers where Θ= 0.

Making the change of variables from (x̃, ỹ) aligned with the structure to (x, y) in x> 0 we have

ζt =−∇ · q, and qt =−gRT
hR∇ζ (4.2)

and we let

hδ =RT
hR=

(

h11 h12

h12 h22

)

(4.3)

whose elements are defined by

h11 = h− cos2 δ + h̄ sin2 δ, h12 = (h− − h̄) cos δ sin δ, h22 = h̄ cos2 δ + h− sin2 δ. (4.4)

The governing equation for ζ is now

ζtt = g∇ · (hδ∇ζ). (4.5)

Assuming time-harmonic motion of angular frequency ω so that ζ =ℜ{η(x, y)e−iωt}, the general

solution of (1.1) in x< 0 due to a plane wave incident from minus infinity propagating at an angle

θ0 with respect to the x-axis is

η(x, y) = (eiα0x +Re−iα0x)eiβ0y (4.6)

where R is the reflection coefficient, α0 = k0 cos θ0, β0 = k0 sin θ0 and k20 = ω2/gh0 defines the

wavenumber.

The general solution of (4.5) in x > 0 which inherits the variation of η in y from x< 0 and

satisfies a radiation condition at infinity is

η(x, y) = T eiα
+

1
xeiβ0y (4.7)

where T is the transmission coefficient and α+
1 is determined from the governing equation (4.5)

by

α±
1 =

−h12β0 ±
√

h212β
2
0 + h11(k20h0 − β2

0h22)

h11
(4.8)

where ω2/g= k20h0 has been used. We will discuss the nature of the roots of this equation and

how this relates to the previously stated radiation condition being satisfied in a moment. For

now, the solution is completed by imposing matching conditions at x= 0. Formally this needs

to be done asymptotically since both conventional and structured bed shallow water models do

not apply in the vicinity of discontinuities in properties of the bed. We face a similar issue to

the one encountered in the derivation of the model in Section 2 across the level z =−h−. At

leading order, a local scaling of the coordinate system reveals that the pressure depends only

on a macroscale coordinates and the consequence of this is that η is continuous across x= 0.

The second condition that arises at leading order in the asymptotic matching is that the depth
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averaged flux is continuous across x= 0. These leading-order matching conditions, as well as

higher-order conditions, have been determined by Maurel et al. (2019) and Marigo & Maurel

(2017) for two particular configurations. The adoption of higher-order conditions in the matching

at x= 0 would be inconsistent with the use of the shallow water model over the structured bed

which has neglected them. Thus the first condition η(0−, y) = η(0+, y) gives us

1 +R= T (4.9)

and the flux condition is expressed as h0ηx(0
−, y) = x̂ · hδ∇η(0+, y) which results in

α0h0(1−R) = T (α+
1 h11 + β0h12). (4.10)

Eliminating between (4.9) and (4.10) gives

R=
cos θ0 −Q

cos θ0 +Q
, T =

2 cos θ0
cos θ0 +Q

(4.11)

where

Q = (k0h0)
−1
√

h
2
12β

2
0 + h11(k

2
0h0 − β2

0h22) (4.12)

=

√

(h12/h0)2 sin
2 θ0 + (h11/h0)(1− (h22/h0) sin

2 θ0). (4.13)

after β0 = k0 sin θ0 is used. Note that R and T are independent of k0; it is typical of leading-

order shallow water theory that scattering is purely geometric. In fact for wave scattering over a

step change in water depth of conventional bathymetry, the adoption of a higher-order matching

condition introduces a dependence on k0 which only affects the phase of R but not |R| (see Mei

(1983)). Note also that R and T are symmetric in θ0, the incident wave angle, and δ, the rotation

of the structured bed. These are also features of the related work of Porter (2021) on refraction of

water waves by plate arrays extending through the depth over a flat bed.

We return to (4.8) where there are three distinct cases to consider. The first is that k20h0 −
β2
0h22 > 0 from which it follows that Q and α+

1 are real and α+
1 > 0. This therefore holds when

sin2 θ0 <h0/(h̄ cos2 δ + h− sin2 δ), (4.14)

a condition which is guaranteed to hold if h+ and h− are both less than h0.

The second case is that k20h0 − β2
0h22 ≤ 0 but Q and hence α+

1 remains real. In this case α+
1 ≤ 0

which implies from (4.7) that x-component of the phase speed of the transmitted wave is negative.

Whilst this seems counterintuitive, the radiation condition at infinity is satisfied since this requires

that the flux of energy is directed away from x= 0. Thus, rearranging (4.8) for ω, the group

velocity is

cg =

(

∂ω

∂α+
1

,
∂ω

∂β0

)

= (g/ω)(k0h0Q,β0h22 + α+
1 h12) (4.15)

and the x-component is positive, as required.

In the third case h
2
12β

2
0 + h11(k

2
0h0 − β2

0h22)< 0 and now Q= iP , P > 0, to ensure that η→ 0

as x→∞. It follows from (4.11) that |R|= 1 whilst T represents the amplitude of what is now an

evanescent wave field in x> 0. As in the second case, this can only happen if the bed depth h+

in x > 0 is greater than h0 in x< 0 and is analogous to total internal reflection of oblique waves

travelling from shallow water into deeper water over conventional bathymetry.

Figs. 4(a),(b) show |R| as a function incident wave angle θ0 for wave reflection by a structured

bed in x> 0 having a raised protrusions h0/h
− = 2 from a sunken bed at h+/h0 =2. For the

purposes of comparison, in the figures the short-dashed lines represent the variation of |R|
for a conventional/unstructured raised bed in x> 0 (h0/h

− = 2) and the long-dashed line a

conventional/unstructured sunken bed in x > 0 (h+/h0 = 2) exhibiting total internal reflection

for |θ0|> 45◦. These two values are equal for normal incidence (θ0 =0) and given by a value

of (
√
2− 1)/(

√
2 + 1)≈ 0.17. The sequence of solid curves show the effect of the width of the
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Figure 4. Modulus of reflection coefficient as a function of incident wave angle θ0 for a structured bed in x > 0 with

h0/h− =2, h+/h0 =2 for Θ= 0, 1

2
, 2

3
, 3

4
(shown against solid curves) and: (a) δ =0◦ ; (b) δ= 90◦ .

protrusions, through the variation of Θ on reflection. In each figure Θ→ 1 approaches scattering

by a conventional raised bed as the gaps between the protrusions are cut-off.

In Fig. 4(a) the protrusions in the structured bathymetry are aligned with the y-axis and the

variation of |R| with θ0 is quite significantly affected by the thickness of the protrusions compared

to Fig. 4(b) where the protrusions are aligned with the x-axis. Of particular note is the value of Θ=
2
3 in Fig. 4(a) which shows that |R| is independent of θ0. This can be understood by considering

(4.11) with (4.13) and noting that Q is proportional to cos θ0 provided

h0 = h22 − h
2
12/h11 (4.16)

resulting in

R= (
√

h0 −
√

h11)/(
√

h0 +
√

h11). (4.17)

There is nothing special about the parameters used to produce Fig. 4(a) and there are many

configurations for which (4.16) holds and |R| is independent of θ0. In particular, it is possible

to find parameters for which h11 = h0 in addition to (4.16) being satisfied, implying that R=0 for

all incident wave angles θ0 (in addition to all wavenumbers k0) ! Thus, we require

h̄/h0 = (1±
√

1− 4 sin2 δ cos2 δ)/(2 sin2 δ), h− = (1− h̄ sin2 δ)/ cos2 δ. (4.18)

For example, with Θ=0, δ =30◦ this perfect transparency be achieved with h0/h
− = 3, h̄/h0 = 3.

This device could be used as a bathymetric lens with refractive characteristics defined by Fig. 6.

In addition to determining R and T we are interested how waves propagate into x > 0 and

assign the angle θ1 to the direction in which energy propagates, or the direction of cg in (4.15),

This also coincides with the direction of the flux vector but is, in general, for structured beds not

aligned to the phase velocity as we have already suggested and as later figures will illustrate.

In Fig. 5 the direction of energy propagation over the structured bed, θ1, is plotted as a function

of incident angle, θ0, for thin protruding thin barriers (Θ=0) rotated through δ= 45◦. In Fig. 5(a)

we have set the lower level of the structured bed at the depth in x< 0 (h+ = h0) and varied the

height of the protruding thin barriers, h0/h
−, from 2 to 8. Obviously, when h0/h

− = 1 there is just

a flat bed in x > 0 of depth h0 and no scattering (represented in the plot by the dotted line θ1 = θ0).

When θ0 =−45◦ the incident waves pass uninterrupted between the thin barriers and so θ1 =

−45◦ for all h0/h
−. As h0/h

− increases, the thin plates in the structured bed approach the surface

and the curves tend towards θ1 =−45◦ (dotted line) for all θ0, coinciding with the limiting case

considered in Porter (2021) in which the barriers extend throughout the depth. Negative refraction

occurs whenever θ0 and θ1 are different signs. For h0/h
− & 4 negative refraction occurs across all
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Figure 5. The variation of wave propagation, θ1, over the structured bed due to an incident wave of angle θ0 for δ= 45◦,

Θ= 0: (a) h+/h0 = 1 and h0/h− = 2, 3, 4, 8; (b) h0/h− = 1 and h+/h0 = 2, 4, 8, 16.
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θ1

θ0
Figure 6. The variation of wave propagation, θ1, over the structured bed due to an incident wave of angle θ0 for an

all-angle/all-frequency perfectly transmission parameters δ= 30◦, Θ= 0, h+/h0 = 3 and h0/h− = 3.

incident wave angles and for h0/h
− . 4 negative refraction is restricted to a range of incident

angles. In Fig. 5(b), the top of the thin barriers are set at the depth in x < 0 (h0/h
− =1) and the

depth of troughs between the barriers, h+/h0 is varied from 2 to 16. Obviously for h+/h0 =1

we have a flat bed at a depth h0 in x> 0 and there is no scattering (dotted line θ1 = θ0). When

θ0 = 45◦ the waves pass over the depth h− = h0 without scattering and so all curves pass through

θ1 = 45◦. The principle difference between Figs. 5(a),(b) is the onset of total internal reflection

for waves travelling into structured beds with a sunken component for incident waves that are

sufficiently oblique. We see that as h+/h0 increases the structured bed in x> 0 has thin barriers

occupying an increasing proportion of the fluid depth and the results tend towards θ1 =−45◦

again as in Fig. 5(a). In this example, negative refraction is exhibited when the incident wave

angle lies between 0◦ and 45◦.

Surface plots of refracted wave fields are presented as part of the sectionthat follows. What is

evident from these plots is that solutions being discussed here can also be interpreted as wave

propagation in parallel-walled channels with walls in x< 0 angled at θ0 and at θ1 in x> 0, joined

at x= 0 through a sharp bend. This is therefore a generalisation of the analysis of Berraquero et
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al. (2013) who considered the specific case of a channel in x < 0 with θ0 =0. Their work used a

coordinate transformation to map a straight uniform waveguide into a bent waveguide which

introduced an anisotropic effective depth tensor h related to the mapping angle θ1 and was

designed to be reflectionless. Those symmetric tensor elements were equated to the symmetric

tensor hδ for a rotated structured bed having constant properties, Θ, h− and h+, exactly as

described here and this provided three equations for the three independent parameters, h−, h̄

and δ (in the notation of Berraquero et al. (2013) h‖, h⊥ and α). This allowed them to design

experiments to test the theory.

We can recreate Berraquero et al. (2013)’s device by setting θ0 =0 and defining θ1, the direction

of the the flux vector, aligned to cg , and to the walls of the bent section of the waveguide in x > 0

by

tan θ1 = h12/h0, and h11 = h0 (4.19)

from requiring R= 0 from (4.17). This specifies just two conditions for the three independent

parameters which can be expressed alternatively as

h−/h0 =1 + tan θ1 tan δ, and h̄/h0 = 1− tan θ1/ tan δ. (4.20)

That is, there is not a unique configuration as suggested by Berraquero et al. (2013)’s analysis.

For example, with θ1 =30◦ we can choose δ =−45◦ upon which h−/h0 =1− 1/
√
3 and h̄/h0 =

1 + 1/
√
3; but δ can take other values (see the paragraph below). The additional constraint of

Berraquero et al. (2013), which can be confirmed by comparing their analysis to ours, is the

satisfaction of the equivalent of our (4.16) implying that their structured waveguide in x > 0

would have worked for any angle of waveguide in x< 0, not just the θ0 = 0 case that they

envisaged. This is evidently because their coordinate transformation was applied to x> 0 with

no information about the geometry in x < 0.

As discussed in Section 3, Berraquero et al. (2013) used a wide-spacing homogenisation

for the structured bed which is not appropriate for the scale of their experiments. We have

computed results for their configuration using the more appropriate close-spacing shallow-water

homogenisation developed here. For example, in their third case of a bend of 30◦, with their

parameters h+ = 3.225h0 , h− = 0.310h0 , δ =−53.05◦ and Θ= 0.5 we find that θ1 =29.43◦ and

|T |= 0.946. This is remarkably close to their intended design of θ1 =30◦ and |T |= 1 and helps

explains why their results were so impressive. Using (4.20) with the bend design of θ1 = 30◦ and

adopting their parameters δ =−53.05◦ , Θ= 0.5 predicts that the revised values of h+ =2.636h0
and h− = 0.232h0 would result in perfect transmission.

(a) Scattering by a structured bed of finite width

Consider now that the structured bed is confined to a strip of finite width 0<x<L, −∞< y <∞
with a conventional fluid depth h0 in x< 0 and x>L. A wave is obliquely incident from x < 0

making an angle θ0 with the positive x-axis as before. The solution in x < 0 is (4.6) whilst in x >L

the solution is

η(x, y) = T eiα0xeiβ0y (4.21)

where T is the transmission coefficient. In 0<x<L the general solution is

η(x, y) = (Aeiα
+

1
x +Beiα

−

1
x)eiβ0y (4.22)

where the two wave components propagate flux/energy at angles ±θ1 as determined from the

direction of cg in (4.15). Matching η and fluxes across x=0 and x=L determines the solution.

We find, after some routine algebra, that

R=
((α0h0)

2 −Q2) sin(QL/h11)

((α0h0)2 +Q2) sin(QL/h11) + 2iα0h0Q cos(QL/h11)
(4.23)
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Figure 7. Instantaneous free surface plot on axes (x/h0, y/h0) for a structured bed with L/h0 = 2, for δ= 45◦, Θ= 0

at wavenumber k0h0 =5: (a) h+/h0 =1, h0/h− =4 and θ0 = 45◦ ; (b) h0/h− = 1, h+/h0 =4 and θ0 =−45◦.

and A, B, T are also determined explicitly. We see that R= 0 either when Q= α0h0 or when

QL/h11 = nπ, n an integer. Unsurprisingly the first of these is the same condition as for total

transmission and zero reflection across a single interface – see equation (4.11). The second

condition is a common multiple interference effect.

We can also consider wave trapping above the structured bed by considering β0 > k0 as a

long-shore wavenumber independent from k0 in the absence of an incident wave field. In doing

so, waves in x < 0 and x >L are evanescent and we assume parameters in 0<x<L are chosen

such that α±
1 are real (so that Q is real) implying waves over the structured bed. Matching general

solutions across x= 0 and x=L as above leads us to the condition for trapped waves of

tan(QL/h11) =
2γ0h0Q

Q2 − (γ0h0)2
(4.24)

with γ0 =
√

β2
0 − k20 and Q defined by (4.12). The only requirement for (4.24) to have solutions

β0(k0), apart from β0 >k0, is that Q is real.

Trapped modes are known to exist for raised rectangular steps of finite width (e.g. Mei (1983))

and were also found in Porter (2021) for tilted plate arrays of finite width extending through a

constant depth fluid.

In Fig. 7 we have illustrated surface plots for scattering over a structured bed of finite extent

with L/h0 =2 at wavenumber k0h0 =5 chosen for illustrative purposes (shallow water demands

k0h0 ≪ 1). In both sub plots δ =45◦ and Θ= 0. In the left-hand panel h+ = h0 and thin barriers

protrude above the depth h0 to a value of h0/h
− = 4. The incident wave angle is θ0 = 45◦ and

we know that there is perfect transmission across the bed and, from the results in Fig. 6 we have

θ1 ≈−11.3◦ implying negative refraction. In the right-hand panel, h− = h0 and the thin barriers

sit on a sunken level of h+/h0 = 4 with their tops level with h0. The incident wave angle here is

θ0 =−45◦ which also gives perfect transmission due to the symmetry of R with respect to θ0 and

the fact that an incident wave with θ0 = 45◦ does not feel a change in depths over the structured

bed. In this example, θ1 ≈−65◦.

In Fig. 8 we present an instantaneous surface plot for a structured bed of width L/h0 =

2 having the properties δ =30◦, h0/h
− =3, h+/h0 = 3 and with wavenumber k0h0 =8. To

highlight the refractive features of the beds, a Gaussian beam is incident from x < 0 centred

around three different incident wave angles, −50◦, 0◦ and 50◦. The structured bed corresponds

to the case highlighted in Fig. 6 in which perfect transmission across the bed and into x >L

occurs across all wave angles. Since the Gaussian beam is formed by integrating incident over all

wave angles with respect to Gaussian weight function centred on the principal wave heading we

observe no reflection from the boundaries. In each sub-plot of Fig. 8 we observe varying degrees

of negative refraction over the structured bed manifested as a shift in wave fronts as they pass

from x< 0 to x>L. Fig. 8(a) provides us with an example of in which the x-component of the
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Figure 8. Instantaneous free surface plot on axes (x/h0, y/h0) for a structured bed defined by δ= 30◦ , Θ= 0,

h+/h0 = 3, h0/h− = 3 L/h0 =2 at wavenumber k0h0 =8 under a Gaussian beam centred around the incident

wave angle θ0 =−50◦ , θ0 = 0◦, θ0 =50◦ .

phase velocity of both waves over the structured bed are negative (the direction of the phase

velocity of the two wave modes are −107◦ and −153◦ with respect to the positive x-axis).

5. Propagating waves in curved channels

In this example, a more complex structured bed is used to propagate water waves through

curved channels without reflection and retaining uniform wave crests. In related problems in

acoustics and electromagnetics, see Han & Tang (2018) who proposed the use of a locally resonant

metamaterial to propagate waves through curved channels without reflection.

Consider an infinitely-long waveguide of constant depth h0 with walls along y= a and y=

b for −∞<x<∞. Under the shallow water description of fluid motion, the surface elevation

ζ(x, y, t) satisfies (1.1) with ζy = 0 on y= a and y= b, representing no flux normal to the walls.

Waves propagate at the shallow water phase speed c0 =
√
gh0.

Now consider the mapping from (x, y) to (r, θ) defined by

x=Lθ/α, y = a+ (r2 − a2)/(b + a). (5.1)

from the rectangular domain 0<x<L, a< y < b to the annular domain a< r < b, 0<θ <α.

Under this mapping, ζ̃(r, θ, t) = ζ(x, y, t), satisfies

1

r

∂

∂r

(

rh1
∂ζ̃

∂r

)

+
1

r

∂

∂θ

(

h2
r

∂ζ̃

∂θ

)

=
1

g
ζ̃tt (5.2)

provided we define

h1(r) = h0
(b+ a)2

4r2
, h2(r) = h0

α2r2

L2
. (5.3)

In addition, ζ̃r =0 on r= a, b.
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Thus (5.2) is also a shallow water equation since, expressed in polar coordinates, we have

g∇ · (h∇ζ̃) = ζ̃tt. (5.4)

where h= diag{h1, h2} represent effective depths experienced by waves propagating in radial

and tangential directions (respectively). There are two possible structured bed configurations to

choose from: corrugations in the bed can be aligned to r̂, the radial direction or θ̂, the tangential

direction. We imagine here that the bathymetry has radially-aligned corrugations and h1 = h−(r)

represents the depth below the surface of the protrusions which decrease from a value 1
4h0(b+

a)2/a2 at the inner wall to 1
4h0(b+ a)2/b2 at the outer wall. Then h2 = h+(r) (taking Θ= 0 for

simplicity) is the depth of the troughs between thin protruding barriers which increases from a

value α2a2/L2 to α2b2/L2 across the width of the channel.

Although depths h+(r) and h−(r) can technically overlap within a < r < b provided the

orientation of the corrugations is reversed, it is easier to imagine this does not happen and this

requires that L< 2αa2/(b + a) be satisfied.

The mapping can be used to consider two different problems. First, by letting α= 2π we

can consider waves propagating in an annular waveguide of inner radius a and outer radius b

provided we ensure periodicity by setting k0L=2πm for m a positive integer. The solution is

ζ̃(r, θ, t) = cos(k0Lθ/2π − ωt) and the amplitude, being independent of radius. Note, however,

that this solution does not require a structured bed and can be realised under a conventional

shallow water bed depth of h(r, θ) = h0α
2r2/L2. In either case, the solution is distinct from waves

propagating in a annular waveguide with a constant fluid depth h0 where amplitudes depend on

the radius being related to Bessel functions of argument k0r.

Secondly, we can consider the reflection and transmission of incident waves propagating along

a straight waveguide at the junction with a curved waveguide.

Writing ζ(x, y, t) =ℜ{η(x, y)e−iωt}, the general solution to (1.1) in x< 0 subject to the channel

wall conditions and incorporating a plane wave incident from minus infinity is

η(x, y) = eik0x +
∞
∑

n=0

Rne
−iκnx cos(nπ(y − a)/(b− a)) (5.5)

where κn =
√

k20 − (nπ/(b− a))2 = i
√

(nπ/(b− a))2 − k20 and Rn are amplitudes of reflected

waves, either propagating (i.e. “cut-on” modes) or evanescent (i.e. “cut-off” modes) depending

on wavenumber. In the curved guide, again with ζ̃(r, θ, t) =ℜ{η̃(r, θ)e−iωt}, the general solution

of (5.2) subject to Neumann conditions on r= a, r= b is

η̃(r, θ) =

∞
∑

n=0

Tne
iLκnθ/α cos(nπ(r2 − a2)/(b2 − a2)). (5.6)

By design, the expansion in (5.6) overlaps with (5.5) under the mapping (5.1). We have written

(5.6) assuming that the curved guide extends indefinitely and waves are transmitted with

transmission coefficients Tn as θ increases with no reflections returning from further up-wave

junctions. The two solutions must be matched along the single fluid interface at x= 0−, θ=0+

for a < r < b and upon which r= y. The leading order matching conditions from conventional

bed depth h0 in x < 0 to the structured bed in θ > 0 are that pressure and flux are continuous and

this provides us with

η(0−, y) = η̃(y, 0+), h0ηx(0
−, y) =

h2(y)

y
η̃θ(y, 0

+), a < y < b. (5.7)

The non-linear nature of the mapping between r and y in (5.1) means that solutions are not

perfectly matched without reflection by (5.7). Applying (5.7) to (5.5) and (5.6) using orthogonality

the eigenfunctions in x< 0 gives rise to the system of equations

∞
∑

n=0

Tn(Kmn + Lmn) = 2δm0 (5.8)
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Figure 9. Reflection coefficients against wavenumber for scattering at the junction between straight and curved channels

a/h0 =2, b/h0 = 3 which under average impedance matching condition αa/L=0.8.

with δm0 =1 for m=0 and zero otherwise, wherein

Rm =−δm0 +
∞
∑

n=0

TnKmn (5.9)

and where

Kmn = ǫm

∫1
0
cos(mπt) cos(nπt(2a+ (b− a)t)/(b+ a)) dt (5.10)

Lmn =
κn
κm

αǫm
L

∫1
0
(a+ (b− a)t) cos(mπt) cos(nπt(2a+ (b− a)t)/(b+ a)) dt (5.11)

with ǫ0 = 1, ǫm = 2 for m= 1, 2, . . .. For k0 <π/(b− a) only one cut-on mode propagates in the

channel and conservation of energy flux gives rise to the relation

|R0|2 +
1

2

α

L
(b+ a)|T0|2 = 1. (5.12)

For larger values of k0 a revised energy equation can be established and is used as a check on

the accuracy of numerical solutions Numerically, energy conservation was found to be satisfied

to within 10−9 after truncation of (5.8) and (5.9) to fifty terms.

Although solutions cannot be perfectly impedance matched point-wise across x= θ=0, a <

r= y < b, we can consider an impedance condition which arises from matching the flux averaged

across the width of the channel and gives us

1

2

α

L
(b+ a) = 1. (5.13)

This places a condition on the otherwise arbitrary dimensionless factor αa/L which encodes the

stretching of the linear x-coordinate into the circular θ-coordinate in the curved guide.

In Fig. 9 we have imposed (5.13) and show the variation with k0h0 of |R0| and, for k0 >π/(b−
a), |R1| in the case of a/h0 = 2 and b/h0 = 3. Prior to the first cut-on at k0h0 = π there is very little

reflected energy. In Fig. 10 we show the corresponding wave elevation for k0h0 =3 in the case

that (5.13) is satisfied (requiring αa/L=0.8) and for αa/L=0.4. In the first case |R0|=0.0109

and the wave propagates with no noticeable loss of form or reflection into the curved channel. In

the second case, |R0|=0.3378, and there a more noticeable signature of reflection and a distortion

of the wave field in the curved section due to imperfect impedance matching at the boundary.

For this problem supplementary calculations have shown that a structured bed is not necessary

to guide incident plane waves from a straight-walled channel into a curved channel and that a

conventional bed produces almost identical results. Thus, when h1 = h2 = h0α
2r2/L2 the general
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Figure 10. Instantaneous free surface plot on axes (x/h0, y/h0) for waves under transition from a depth h0 in x < 0 to

a structured bed in the bend for a/h0 = 2, b/h0 =3 and k0h0 = 3 with: (a) αa/L=0.8 and (b) αa/L=0.4.

solution to (5.2) in the curved guide with η̃r = 0 on r= a, b is, by separating variables,

η̃(r, θ) = T0e
ik0Lθ/α +

∞
∑

n=1

Tn

(

(r/b)iλn−1

(iλn − 1)
− (r/b)−iλn−1

(−iλn − 1)

)

eiLsnθ/α (5.14)

where λn = nπ/ ln(a/b) and sn =
√

k20 − α2(1 + λ2n)/L2 = i
√

α2(1 + λ2n)/L2 − k20 . Matching to

the general solution (5.5) via the conditions (5.7) in the same manner as previously described

provides the solution here. A numerical and experimental study performed by Wang et al. (2015)

used a similar device for bending waves through curved channels.

The study of curved channels with a fixed depth h0 has a long history with analogues in

acoustics and electromagnetics. Their solution via separation of variables is complicated – see

the review article of Rostafinski (1991) – since the eigenvalues of the Sturm-Liouville system

that arises determine the complex order of Bessel functions. A variety of approximations and

computational methods have thus been devised to determine solutions to this problem (e.g. Felix

& Pagneux (2001)). Because of this, we have not provided comparisons with propagation through

a curved channel with constant depth h0.

Although we’ve shown in the two problems here involving curved channels that structured

bed are not necessary to engineer predetermined wave characteristics, there are examples where

structured beds are essential. For instance, in the cloaking of cylinders as described by Zareei &

Alam (2015) or as a wave rotator device as described by Chen et al. (2009).

6. Conclusion

In this paper we have provided a formal derivation based on multi-scale homogenisation of a

shallow water theory for structured bathymetry comprised of rapidly-fluctuating corrugations.

The model provides explicit expressions for the effective depth tensor components and

complements existing models of Berraquero et al. (2013), which implicitly assumes wide-spacing

between vertical protrusions and Maurel et al. (2017)’s semi-numerical scheme.

We have used the model to investigate and characterise the negative refraction of oblique plane

waves propagating across the interface from conventional to structured bathymetry defined by

spatially-constant effective depths. In doing so, we have shown that waves propagating energy

away from the interface over the structured bathymetry can have a phase velocity directed

towards the interface. We have also shown that there example of beds which are reflectionless for

all incident wave angles and (under shallow water theory) frequencies, but which refract incident

waves in a non-trivial way.

A demonstration of the use of spatially-varying effective depths is provided by an example

involving engineering waves to propagate through curved channels without reflection or change

in wave elevation.

This work could be a useful foundation to develop bathymetric devices for the protection of

coastal assets such as harbours or for the bespoke manipulation of waves for ocean wave energy

harnessing schemes.
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