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Abstract

Background: Mendelian randomization has been previously used to estimate the effects

of binary and ordinal categorical exposures—e.g. Type 2 diabetes or educational attain-

ment defined by qualification—on outcomes. Binary and categorical phenotypes can be

modelled in terms of liability—an underlying latent continuous variable with liability

thresholds separating individuals into categories. Genetic variants influence an individu-

al’s categorical exposure via their effects on liability, thus Mendelian-randomization anal-

yses with categorical exposures will capture effects of liability that act independently of

exposure category.

Methods and results: We discuss how groups in which the categorical exposure is invari-

ant can be used to detect liability effects acting independently of exposure category. For

example, associations between an adult educational-attainment polygenic score (PGS)

and body mass index measured before the minimum school leaving age (e.g. age

10 years), cannot indicate the effects of years in full-time education on this outcome.

Using UK Biobank data, we show that a higher educational-attainment PGS is strongly

associated with lower smoking initiation and higher odds of glasses use at age 15 years.

These associations were replicated in sibling models. An orthogonal approach using the

raising of the school leaving age (ROSLA) policy change found that individuals who

chose to remain in education to age 16 years before the reform likely had higher liability

to educational attainment than those who were compelled to remain in education to age

16 years after the reform, and had higher income, lower pack-years of smoking, higher

odds of glasses use and lower deprivation in adulthood. These results suggest that
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liability to educational attainment is associated with health and social outcomes indepen-

dently of years in full-time education.

Conclusions: Mendelian-randomization studies with non-continuous exposures should

be interpreted in terms of liability, which may affect the outcome via changes in expo-

sure category and/or independently.

Key words: Mendelian randomization, liability, educational attainment, categorical exposures

Introduction

Mendelian randomization can be implemented as an instru-

mental variables analysis using genetic variants to evaluate

causal relationships of potential exposures (e.g. low-density

lipoprotein cholesterol) on outcomes (e.g. coronary heart

disease).1,2 For example, the Mendelian-randomization

Wald estimator—the ratio of the associations of the genetic

variants with the outcome and the exposure—can be used

to estimate the effect of an exposure on an outcome.

Mendelian-randomization analyses require the three core in-

strumental variable assumptions: (i) the genetic variants are

associated with the exposure (relevance), (ii) there are no

unmeasured confounders of the genetic variant–outcome as-

sociation (independence) and (iii) that the genetic variants

only influence the outcome via their effect on the exposure

(the exclusion restriction).3–5 Mendelian randomization has

been widely used to estimate the effects of continuous expo-

sures and to estimate the effects of binary and ordinal cate-

gorical exposures such as Type 2 diabetes status6–9 and

educational attainment.10–12

Conceptually, binary exposures, such as disease status, can

be modelled by assuming an underlying continuous liability—

a normally distributed latent (unmeasured) variable.13–20

Liability models can be deterministic (liability explains all of

the variation in the exposure) as in the Falconer liability-

threshold model.13,16 In this model, an individual’s binary dis-

ease status is completely determined by whether the value of

their liability to the disease is higher or lower than a threshold

value. Here, liability is a combined measure of all sources of

variation influencing disease risk: genetic variation, the

environment and stochastic/chance variation.13,15,21 Although

the liability-threshold model is most often used for binary dis-

ease states, it can be extended to ordinal categorical pheno-

types,22 i.e. any phenotype with a finite number of possible

values but a clear continuous ordered dimension. For example,

considering years spent in full-time education, individuals

across a population have an underlying liability to educational

attainment and their duration in the full-time education cate-

gory is determined by their liability with respect to multiple

population-level thresholds (Figure 1/Box 1).

Here, we start by discussing how to interpret the effects of

categorical exposures in Mendelian-randomization analyses.

In particular, we describe three possible causal mechanisms be-

tween a categorical exposure and an outcome. Next, we out-

line how performing analyses in a population in which the

Key Messages

• Genetic variants influence categorical exposures via their effects on liability, an underlying latent variable.

• Mendelian-randomization analyses with categorical exposures may be biased by effects of liability that are

independent of the exposure.

• Exposure-independent liability effects can be detected using populations in which the exposure is invariant.

• Liability to educational attainment likely influences smoking behaviour and risk of glasses use independently of

measured education.

Figure 1 Years spent in full-time educational attainment as a function of

underlying continuous liability. Individuals in the population can spend

11, 12, 14 or 17 years in full-time education (started at the age of 4 years

and left aged 15, 16, 18 and 21 years, respectively). The educational-at-

tainment category is determined by their underlying liability with re-

spect to population-level thresholds.
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categorical exposure is invariant (all individuals have the same

value for the categorical exposure) can be used to inform the

most likely causal mechanism. We then use empirical data

from UK Biobank to evaluate whether educational-attainment

polygenic scores (PGSs), used as proxies for liability to educa-

tional attainment, are associated with childhood phenotypes

[glasses wearing, smoking initiation and body mass index

(BMI)]. As the outcomes are measured in children below the

minimum school leaving age, associations cannot reflect effects

of additional educational attainment (years in full-time educa-

tion). Finally, we use a previous UK-wide school-reform and

UK Biobank data to further investigate the mechanism via

which educational attainment affects later-life outcomes.

Theoretical basis for estimating the effects
of categorical exposures using Mendelian
randomization

The interpretation of non-continuous exposures in Mendelian-

randomization analyses has been previously discussed.23–25

Taylor et al. described how Mendelian-randomization analyses

of the effects of smoking using categorical exposures based on

reported cigarettes per day, are likely to be biased compared

with more precise measures such as blood cotinine.23 Burgess

and Labrecque discussed how to interpret the effects of binary

exposures. In particular, they note that the exclusion-restric-

tion assumption requires that the genetic variants do not influ-

ence the outcome except via the binary exposure status.25 For

example, genetic variants may only influence chemotherapy

treatment status via cancer diagnosis. If this does not hold, e.g.

if the underlying latent continuous trait influences the outcome

independently of the binary exposure, then this would lead to

bias in Mendelian-randomization estimates.25,26 We extend

previous discussion by outlining theoretical models for inter-

preting the effects of categorical (binary or ordinal) exposures.

Generally, Mendelian-randomization studies with bi-

nary or ordinal categorical exposures are interested in esti-

mating the effect of a change in category (C). For example,

estimating the effect of being exposed or not for a binary

exposure (e.g. the effect of having a disease or not) or the

effect of increasing by a level of categorical variable (e.g.

the effect of getting 12 rather than 11 years of educa-

tion)—rather than the effects of the underlying liability to

the categorical variable (L).24,27 However, genetic

Box 1 How the interpretation of liability to educational attainment can differ across study populations

1. Differences across countries

In some countries (e.g. the UK), remaining in school for an additional year is an indicator of an individual choosing to

remain in education for longer. However, in other countries, students may remain in school for longer if they are held

back a year (e.g. the USA). Therefore, an additional year of education does not necessarily mean higher liability to edu-

cation. In the USA, individuals who are kept back a year are likely to have a lower liability to educational attainment

than those who are not. This caveat can be mitigated by defining years of educational attainment using qualifications

rather than the years an individual spent in full-time education.

2. Differences over time

Schools and universities have changed greatly over the last century. In most countries, the proportion of individuals

remaining in school after the age of 16 years has substantially increased, with the proportion of individuals attending

university also rising. This means that the distribution of individuals attending university has changed over time to in-

clude individuals with lower liability to education than previously. As a result, the implications of an additional year of

education or attending university may be very different in 1950 than in 2020.

3. Differences in type of education

Even within countries, education is a very heterogenous phenotype, between different types of educational establish-

ment, and even within schools and universities. For example, there may be large differences in liability to education be-

tween individuals who attend one university or another, or between individuals who attend private schools or state-

funded education.

These differences across countries, over time and across different types of institution will not necessarily be reflected

in the ordinal measures of education used in many studies. Hence, it is useful to conceptualize educational measures in

terms of the participant’s underlying liability to education, rather than as a highly specific effect of making a specific ed-

ucational choice (e.g. choosing to remain in school at age 16 years or attending a private school or choosing to go to

university).
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instruments, with the possible exception of some variants

relating to monogenic phenotypes, are not deterministic

and so influence L. For many phenotypes, L it is difficult

to conceptualize in terms of an observable phenotype as it

is often a latent measure of an individual’s risk of a pheno-

type. For orofacial clefts, L could be thought of as a pheno-

type relating to lip fusion in utero; for a myocardial

infarction (MI), L would relate to arterial phenotypes such

as atherosclerosis; and for educational attainment, L could

be a measure of an individual’s enthusiasm for education.

In many instances, L could plausibly affect an outcome

O via pathways involving changes in C and also via path-

ways independently of C (I) (Equations 1 and 2). For ex-

ample, liability to MI could clearly impact mortality via

having an MI event but underlying liability to MI relating

to atherosclerotic disease could also affect mortality

amongst individuals independently of having an MI event.

Similarly, a combination of Type 2 diabetes and related

metabolic disturbances may contribute to the increased in-

cidence of coronary heart disease risk amongst Type 2 dia-

betics.28,29 It follows that the association between genetic

instruments for a categorical exposure and O will capture

effects of L on O, via both I and C. If the effects via I are

non-zero, then this would lead to a violation of the

exclusion-restriction assumption in a Mendelian-randomi-

zation analysis:

O ¼ kLþ 2 (1)

O ¼ k1Cþ k2I þ 2 (2)

where k represents the total effect of L on O, k1 represents

the effect of L on O mediated by C, k2 represents the effect

of L on O mediated by I and 2 represents the remaining

sources of variation in O.

Three possible causal mechanisms between a categorical

exposure and an outcome are:

i. the liability-exclusive model: L influences O but via

pathways I, independently of C;

ii. the threshold-exclusive model: L influences O only via

threshold effects relating to changes in C (stepwise);

iii. the combined model: L influences O via both I and C.

Mendelian-randomization estimates can be interpreted as

reflecting each of these models under different assumptions.

For the estimates to reflect the liability-exclusive model [(i)

above], we must assume that changing C, holding L con-

stant, has no effect on the outcome. For example, a

Mendelian-randomization study of obesity may suggest that

obesity affects the risk of Type 2 diabetes. However, this re-

lationship is likely entirely driven by the underlying variable

BMI. Alternatively, we could assume that the estimates

solely reflect the effect of the threshold model [(ii) above]

and that L has no effect on the outcome except via C. For

example, children born with orofacial clefts require surgery;

this is likely to be entirely mediated by whether someone

has a cleft or not, with the underlying liability having no im-

pact independently of cleft status. Finally, it is possible that

the estimates reflect a combination of the two models, i.e.

effects of L mediated by, and independent of, C (Figure 2).

Evaluating the ‘threshold-exclusive’ model

The ‘threshold-exclusive’ model can be tested using genetic

variants associated with the exposure in a population in

which there is no variation in the categorical exposure.

Consider the example of genetic-risk variants associated

with coronary heart disease in adults amongst children—a

group likely to be free of coronary heart disease.30 In this

context, assuming that the variants identified in adults influ-

ence the liability to coronary heart disease in childhood (rel-

evance), no confounders of the genetic instrument–outcome

association (independence) and that changes to the genetic

components of liability lead to the same changes in the out-

come as changes to environmental components (gene–envi-

ronmental equivalence),31 associations between a coronary

heart disease genetic score and outcomes (e.g. metabolites in

childhood28,30) would be indicative of effects of liability to

coronary heart disease independently of disease status.

Liability effects in this context could be interpreted as evi-

dence that the outcome could be a phenotype on the path-

way to coronary heart disease. For example, metabolic

disturbance in childhood could be an early precursor of ath-

erosclerosis. We note an additional caveat that causal rela-

tionships may differ between childhood and adulthood32

and so this approach is sensitive to heterogeneity in effects

by age. For example, liability to coronary heart disease

could influence metabolites in adults but not children.

Another approach could be to stratify individuals by ex-

posure category, i.e. split a study of elderly adults into indi-

viduals with and without a disease and determine whether

the genetic score is associated with the outcome within

each stratum. This approach is not generally advisable be-

cause stratifying on the exposure will likely induce collider

bias. For example, disease-free individuals with high ge-

netic risk for the disease are likely to have low non-genetic

liability to the disease, e.g. coronary heart disease33

(Figure 3). Similarly, measurement error could induce

associations in the stratified analysis even if effects are en-

tirely via threshold effects.

Analysis in stratified subgroups can be susceptible to

collider bias but stratification on factors that cannot be

influenced by the exposure and the outcome is unlikely to

induce bias (e.g. sex or age).34,35 If an exposure is invariant

in either sex, in an age group or perhaps in a country, it is
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possible to evaluate the ‘threshold-exclusive’ model with-

out collider concerns. For example, a similar approach has

been used in previous Mendelian-randomization studies of

alcohol consumption in East Asian populations to investi-

gate whether associations between alcohol-related genetic

variants and outcomes are via alcohol consumption. In

these populations, women have very low alcohol consump-

tion compared with men so if the effect is via alcohol con-

sumption, then associations between genetic variants and

outcome should be null in women (assuming they consume

very low to zero alcohol).36–38

Educational-attainment PGS and childhood
phenotypes in UK Biobank

We sought to use a population invariant for educational at-

tainment (as measured by years in schooling) and an

Figure 2 Causal graph illustrations of interpreting causal relationships between non-continuous exposures and outcomes. Illustrations of the liabil-

ity-exclusive, threshold-exclusive and combined models for interpreting causal relationships between ordinal categorical exposures and outcomes.

(A) Under the liability-exclusive model, liability influences the outcome solely via effects that are independent of the exposure category. For

example, an MR study of obesity (i.e. BMI> 30) and Type 2 diabetes would suggest that obesity increases the risk of Type 2 diabetes. However, this

effect is likely to be solely due to the effects of continuous body mass index (liability to obesity) rather than threshold effects relating to body mass

index categories. (B) In the threshold-exclusive model, liability to the exposure influences the outcome entirely via threshold effects relating to the

categories of the exposure (i.e. a stepwise effect). For example, individuals born with an orofacial cleft are likely to have corrective surgery but indi-

viduals who do not develop an orofacial cleft will not, irrespective of their underlying liability to orofacial clefts. (C) In the combined model, liability

influences the outcome via the categorical exposure and via pathways independently of the categorical exposure. For example, spending longer in

full-time education involves reading books but individuals with high liability to educational attainment may also be more likely to read books inde-

pendently of educational attainment. G, genetic factors; BMI, body mass index.

Figure 3 A causal graph illustrating the potential for associations be-

tween genetic and non-genetic liability when conditioning on exposure

category. By stratifying on the exposure category, associations could

be induced between genetic and non-genetic determinants of liability.

For example, if a diseased case has low genetic liability to a disease

then, depending on the model, they may be more likely to have higher

non-genetic liability (environment/stochastic). Dotted lines illustrate in-

duced correlations and a backdoor path between genetic liability and

the outcome that could be induced by conditioning on the exposure if

there are confounders of the exposure–outcome relationship.
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educational-attainment PGS to investigate the ‘threshold-

exclusive model’. We used self-reported childhood pheno-

type data from adults in UK Biobank; relative body size at

age 10 years, wearing glasses by age 15 years and smoking

initiation by age 15 years. The minimum school leaving

age during this time period was 15 years (or 16 years from

1972 onwards) so associations between the educational-at-

tainment PGS and these childhood phenotypes cannot re-

late to effects of additional educational attainment, but

could relate to effects of liability to educational

attainment.

Using a sample of 337 006 individuals of recent

European ancestry, we found strong evidence that a 1 stan-

dard deviation (SD) higher educational-attainment PGS

(173 independent variants with P< 1 x 10–5 from an inde-

pendent sample) is associated with higher odds of wearing

glasses [odds ratio (OR) 1.05; 95% confidence interval

(CI) 1.04, 1.06] and lower odds of smoking initiation (OR

0.88; 95% CI 0.87, 0.89), both at age 15 years.

Contrastingly, we did not find strong evidence for an asso-

ciation between the educational-attainment PGS and body

size at age 10 years (per SD increase in PGS: Beta¼0.000;

95% CI –0.002, 0.003), although the measure was ordinal

rather than continuous, limiting power (Table 1). These

results suggest that liability to educational attainment

increases the wearing of glasses and reduces smoking initi-

ation independently of years of educational attainment.

To investigate whether family-level factors (e.g. effects

of parental educational attainment on offspring pheno-

types39) or demography (assortative mating, population

stratification) were driving these associations, we repeated

analyses for glasses wearing and smoking phenotypes using

a within-sibship model (robust against these potential

biases40,41) in UK Biobank. Using a sample of 41 497 sib-

lings from 19 588 sibships, we found consistent evidence

that the educational-attainment PGS was associated with

increased glasses wearing (per SD increase in PGS; OR

1.05; 95% CI 1.01, 1.10) and reduced smoking initiation

(per SD increase in PGS; OR 0.89; 95% CI 0.84, 0.94) at

age 15 years. These results are further indicative of the

effects of liability to education independently of additional

educational attainment.

Information on UK Biobank and the PGS analyses are

contained in the Supplementary Methods (available as

Supplementary data at IJE online).

Raising of the school age and liability to
educational attainment

An alternative, and widely used, source of evidence about

the effects of educational attainment are policy reforms

that affected the amount of schooling that people re-

ceived—such as the raising of the school leaving age

(ROSLA). In 1972, the minimum school leaving age was

increased by 1 year from 15 to 16 years old. This meant

that individuals born before September 1957 could leave at

age 15 years, whereas those born in September 1957 or af-

terwards had to stay in school until at least age 16 years.

ROSLA has been previously used to estimate the effects of

an additional year in full-time education on health out-

comes in UK Biobank.27

Here, we use the schooling reform to investigate

whether individuals who would have chosen to stay in full-

time education to 16 years even before the reform have bet-

ter outcomes than individuals who would prefer to leave;

this is a measure of liability to educational attainment. To

distinguish this analysis from the ROSLA analyses de-

scribed above, which investigate the effects of additional

educational attainment, we refer to this analysis as

ROSLA-L. We selected participants who reported leaving

school at age 16 years in the year before the reform (born

in September 1956—August 1957) and the year after the

reform (born in September 1957—August 1958). This

sample consists of individuals who were not affected by

the reform (pre-reform cohort), who chose to remain in

school until age 16 years and who were affected by the re-

form and may have been forced to stay until age 16 years

(post-reform cohort). The post-reform cohort will include

individuals who would have preferred to leave full-time ed-

ucation at age 15 years given the choice. We estimated the

difference in outcomes between the pre- and post-reform

cohorts. Assuming no time effects, differences in outcomes

between the pre- and post-reform cohorts are likely to re-

flect group-level differences between individuals choosing

Table 1 Educational-attainment PGS and pre-adulthood BMI, smoking and glasses use

Outcome Change per 1 SD increase in educational-at-

tainment PGS (95% CI)

Body size at age 10 years (0, 1, 2)a Beta (95% CI) 0.000 (–0.002, 0.003)

Wears glasses at age 15 years (yes/no) OR (95% CI) 1.05 (1.04, 1.06)

Smoking at age 15 years (yes/no) OR (95% CI) 0.88 (0.87, 0.89)

aBody size at age 10 years compared with peers; 0¼ thinner, 1¼ average, 2¼ plump.

BMI, body mass index; PGS, polygenic score.
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to stay in full-time education until 16 years and individuals

who would have preferred to leave at 15 years.

In UK Biobank, there were 2592 participants in who left

full-time education at age 16 years in the pre-reform cohort

and 4064 who left full-time education at 16 years in the

post-reform cohort from England and Wales. Individuals in

the post-reform cohort had a lower average educational-at-

tainment PGS (–0.06 SD; 95% CI –0.11, –0.01) than the

pre-reform cohort, indicative of differences in liability to ed-

ucational attainment as hypothesized. We found strong evi-

dence that the post-reform cohort had higher pack-years of

smoking, a lower proportion with household income of

>£18 000 and higher deprivation than the pre-reform co-

hort. Contrastingly, there was little evidence for group-level

differences in BMI or systolic blood pressure (SBP), but the

conclusions are limited by modest sample sizes (Table 2).

The ROSLA-L results suggest that individuals with

higher liability to educational attainment smoke less, have

lower deprivation, have higher income and are more likely

to wear glasses independently of measured educational at-

tainment (as both cohorts left school at age 16 years).

However, we cannot determine whether these associations

relate to direct effects of liability to educational attainment

or reflect effects of one component of liability (e.g. effects

of parental educational attainment) but not all of the com-

ponents (which would be effects of liability).

Information on the ROSLA-L analysis is contained in

the Supplementary Methods (available as Supplementary

data at IJE online).

Discussion

Here, we discuss how to interpret Mendelian-randomization

studies with non-continuous (binary or ordinal categorical)

exposures, extending previous literature on binary expo-

sures.24,25,27 Phenotypic variation in binary disease outcomes

is often modelled using liability13—an underlying latent

continuous trait reflecting genetic, environmental and stochas-

tic components—and we describe how the liability model can

also be applied to ordinal categorical traits. Interpretation of

the effects of non-continuous exposures from Mendelian-ran-

domization analyses is nuanced because genetic instruments

for categorical exposures capture liability to the categorical

exposure rather than purely variation in the categorical expo-

sure itself. Interpreting effect estimates in terms of the categor-

ical exposure requires making assumptions about how genetic

instruments influence the outcome, either by their effect on

the exposure category (‘threshold-exclusive’ model), their ef-

fect on the underlying liability (‘liability-exclusive’ model) or

some combination of both (‘combined’ model).

We discussed how this assumption can potentially be

evaluated by determining whether genetic instruments are

associated with the outcome in subgroups in which the ex-

posure category is invariant, such as selecting a subgroup of

the population who cannot have the categorical exposure,

e.g. testicular cancer in women. We recommend only strati-

fying on factors that cannot be influenced by the exposure

and outcome (e.g. sex or age) because stratification on other

factors could induce collider bias, complicating interpreta-

tion. Similar negative control approaches have been used

previously in Mendelian-randomization analyses as sensitiv-

ity analyses to test whether genetic instruments are associ-

ated with the outcome when the exposure is invariant. For

example, sex-stratified analyses have been used in the con-

text of alcohol consumption in East Asian populations

exploiting alcohol-behaviour differences between men and

women.36–38 Previous studies have also looked at associa-

tions between PGS for adulthood diseases and cigarette

smoking and outcomes in cohorts of children.30,42,43 Here,

associations are likely to relate to effects of disease liability

because children are unlikely to have experienced disease

events or started smoking (if under a certain age).

For educational attainment, one could similarly per-

form analysis using phenotypes from individuals under the

Table 2 Adulthood phenotypic differences between the pre- and post-reform cohorts

Phenotype

(study baseline)

Pre-reform (N¼2592) Post-reform (N¼4064) Heterogeneity

Left school at age 16 years the

year before reform

Left school at age 16 years the

year after reform

P-value

BMI: mean (SD) 27.9 (5.0) 28.0 (5.0) 0.40

Smoking pack-years: mean (SD) 21.8 (15.3) 23.7 (17.1) 0.0095

SBP: mean (SD) 136.6 (18.0) 136.2 (18.0) 0.35

Townsend deprivation index: mean (SD)a –1.33 (3.0) –0.93 (3.1) 2.6�10–7

Household income (% with >£18 000) 83.2% 80.5% 0.0080

Glasses wearingb (yes/no) 90.2% 88.0% 0.0051

aA greater score implies a greater degree of deprivation.
bIncludes contact lenses.

BMI, body mass index; SBP, systolic blood pressure.
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minimum school leaving age, as effects of the genetic instru-

ments in this population cannot be via additional schooling.

For example, previous studies have showed that educational-

attainment PGS are associated with childhood school perfor-

mance suggestive of liability-exclusive effects.44–46 Using this

approach, we found evidence that educational-attainment PGS

are associated with glasses use and smoking initiation by age

15years as recalled by adult UK Biobank participants. These

associations were replicated in within-sibship models suggest-

ing that the associations were not driven by indirect genetic

effects, assortative mating or population stratification.41,47,48

One limitation of this analysis is that the childhood phenotypes

were recalled by adult study participants decades later so are

susceptible to measurement error. An orthogonal approach,

ROSLA-L, using a policy change also provided evidence that

individuals with higher liability to education have better later-

life outcomes independently of schooling. The PGS and

ROSLA-L results indicate that liability to educational attain-

ment likely affects health and social outcomes independently

of educational thresholds. For example, individuals who are

more likely to enrol in additional education may smoke less in-

dependently of educational attainment.

This has implications for Mendelian-randomization analy-

ses of the effects of educational attainment; genetic variants

are proxying for liability to educational attainment so causal

estimates are unlikely to reflect the pure effects of an additional

year of education. Indeed, Mendelian-randomization estimates

scaled in terms of years in full-time education should not be

interpreted as indicating purely threshold-exclusive effects of

remaining in school for an additional year. Mendelian ran-

domization has been previously used to demonstrate that mea-

sured educational attainment influences myopia and smoking

behaviour.49,50 The associations we report here between the

educational-attainment PGS and related outcomes in 15-year-

olds suggest that the reported effects of additional educational

attainment on these outcomes are unlikely to be purely due to

whether a participant remained in school to age 15, 16, 18 or

21years.

In general, genetic instruments are unlikely to only affect an

outcome via changes in exposure category but this may be the

case when an intervention relates to a specific threshold. For

example, being prescribed statins may relate to cholesterol lev-

els reaching a certain threshold or being born with a birth de-

fect (e.g. an orofacial cleft) could result in disrupted schooling

because of surgical interventions.51 Mendelian-randomization

analyses with ordinal categorical exposures can be interpreted

in terms of the effects of liability that act via and independently

of the categorical exposure. As with conventional Mendelian-

randomization analyses, interpretation is also sensitive to het-

erogeneity of the estimate effect of the exposure across the ge-

netic instruments and directional pleiotropy, with a liability

model assuming that all genetic instruments have consistent

effects on the outcome. For example, our findings suggest that

Mendelian-randomization analyses of educational attainment

should be interpreted as the effects of liability to educational

attainment that are likely to be mediated by a combination of

measured educational attainment and other independent fac-

tors. We note that conventional Mendelian randomization,

which divides by the genetic variant–categorical exposure asso-

ciation, may provide biased estimates of the total effect of lia-

bility because there are pleiotropic pathways from the genetic

variant to the outcome within levels of the categorical expo-

sure. With some additional steps, the total effect of liability

can be estimated assuming a liability-threshold model for the

genetic variant–categorical exposure relationship.52 Identifying

this point estimate requires additional assumptions about the

homogeneity of the genetic instruments and the relationship

between the exposure and the outcome.53 In principle, future

work could combine prospective data and dated events with

Mendelian randomization to disentangle threshold and

liability-exclusive effects as such an investigation is limited

with existing data sets.

In comparison to Mendelian randomization, ROSLA

analyses27,54–56 will identify the effects of continuous edu-

cational attainment (i.e. days in the classroom) and also

the effects of getting any qualifications (the threshold).

ROSLA estimates using the entire sample will not capture

the effects of individual liability to educational attainment,

as population-level average liability to educational attain-

ment is unlikely to have changed before and after the re-

form. However, the average liability to educational

attainment of those who chose to remain in school to age

16 years before the reform is likely to be higher than that

of those who remain in full-time education to age 16 years

after the reform, as the latter includes individuals who

would otherwise have left at age 15 years.

To conclude, we have demonstrated that interpreting

Mendelian randomization with non-continuous categorical

exposures requires assumptions about the underlying

causal model. We described how this assumption could be

evaluated using subsets of the population invariant for the

exposure. However, the practical uses of this test are lim-

ited because stratifying can induce collider bias unless the

stratifying factor cannot be influenced by the exposure or

outcome. Evidence from genetic and school-reform analy-

ses suggested that liability to educational attainment

affects social and health outcomes in UK Biobank indepen-

dently of categorical measures of education attainment.

Mendelian-randomization studies with categorical expo-

sures such as disease status or educational attainment

should be interpreted in terms of liability, which may act

via pathways through the categorical exposure and via in-

dependent pathways.
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