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1. Introduction
Climate change and human activities have altered river regimes globally, posing significant challeng-
es for water resource managers (Mahé et al., 2013). Flood and drought patterns are changing calling for 
robust flood hazard and risk assessment. Many river basins are currently ungauged or sparsely gauged 
(Hannah et al., 2011), as monitoring efforts and data accessibility have severely declined in recent decades 
(Vörösmarty et al., 2001). However, a reasonable hydraulic representation of river channels is key to pro-
ducing meaningful large-scale flood models and typically relies on ground monitoring. Simulating river 
hydraulics at a large scale in poorly instrumented regions requires adapted model structures and simpli-
fications to compensate for constraints on computational resources and insufficient ground observations.

Remote-sensing observations can be used to retrieve hydraulic parameters and have become a key supple-
ment to in situ observations in hydrological studies. Calibration is an important step of hydraulic modeling 
to ensure that the simulated quantities agree with observations of the system. Very often, bathymetry and 
channel roughness need to be estimated through calibration or assumptions made by the modeler, for ex-
ample, regarding channel geometry (Alsdorf et al., 2007). Effective estimation methods in data-poor regions 
are needed.

Satellite radar altimeters can measure the water surface elevation (WSE) of inland water bodies, which 
can be used as an alternative to in situ level observations. WSE from satellite radar altimetry has been 
used increasingly in hydrodynamic model calibration studies as a supplement to in situ gauge data (Paiva 
et al., 2013; Schneider, Tarpanelli, et al., 2018) or even as a possible surrogate in ungauged basins (Getirana 
et al., 2013; Jiang et al., 2019; Liu et al., 2015). Dense water level profiles have been proven useful in the 

Abstract Geodetic altimeters provide unique observations of the river surface longitudinal profile 
due to their long repeat periods and densely spaced ground tracks. This information is valuable for 
calibrating hydraulic model parameters, and thus, for producing reliable simulations of water level for 
flood forecasting and river management, particularly in poorly instrumented catchments. In this study, 
we present an efficient calibration approach for hydraulic models based on a steady-state hydraulic 
solver and CryoSat-2 observations. In order to ensure that only coherent forcing/observation pairs are 
considered in the calibration, we first propose an outlier filtering approach for CryoSat-2 observations 
in data-scarce regions using a simulated runoff produced by a hydrologic model. In the hydraulic 
calibration, a steady-state solver computes the water surface elevation (WSE) profile along the river for 
selected discharges corresponding to the days of CryoSat-2 overpass. In synthetic calibration experiments, 
the global search algorithm generally recovers the true parameter values in portions of the river where 
observations are available, illustrating the benefit of dense spatial sampling from geodetic altimetry. The 
most sensitive parameters are the bed elevations. In calibration experiments with real CryoSat-2 data, 
validation performance against both Sentinel-3 WSE and in situ records is similar to previous studies, 
with Root Mean Square Deviation ranging from 0.43 to 1.14 m against Sentinel-3 and from 0.60 to 0.73 
against in situ WSE observations. Performance remains similar when transferring parameters to a one-
dimensional hydrodynamic model. Because the approach is computationally efficient, model parameters 
can be inverted at high spatial resolution to fully exploit the information contained in geodetic CryoSat-2 
altimetry.
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estimation of distributed hydraulic parameters (F. O’Loughlin et al.,  2013; Paris et al.,  2016; Schumann 
et al., 2010). To capture the small-scale variability of river morphology, the spatial sampling must be denser 
than what can be achieved with short-repeat missions (down to 52 km at the Equator for the two Sentinel-3 
satellites). In that respect, geodetic altimeters such as CryoSat-2 provide the opportunity to extract longitu-
dinal profiles of rivers.

Although not designed for hydrological applications, the benefit of high spatial sampling density of geo-
detic missions for hydraulic studies has been proven in recent years (Jiang et al., 2019; Schneider, Ridler, 
et  al.,  2018; Schneider, Tarpanelli, et  al.,  2018; Tourian et  al.,  2016). Schneider, Ridler, et  al.  (2018) and 
Schneider, Tarpanelli, et al. (2018) exploited the dense spatial sampling of CryoSat-2 to calibrate channel 
roughness in the well-gauged Po River at a finer spatial resolution. They compared homogenous roughness 
parameters to spatially distributed parameters with increasing the spatial resolution from subreach level to 
10-km long sections. The Root Mean Square Error (RMSE) against in situ observations improved by up to 
29 cm. They showed a strong correlation between the channel sinuosity and the spatially variable calibrated 
channel roughness. Jiang et al. (2019) showed that missions with high spatial coverage, such as CryoSat-2, 
improved the RMSE against ground observations by up to 4 cm compared to missions with wider ground 
track spacing (i.e., the spacing between satellite tracks) such as Envisat or Jason-2 and -3. Furthermore, the 
sharpness of the parameter estimates increased with decreasing ground track spacing and increasing spatial 
detail. Tourian et al. (2016) reached a similar conclusion in a study on spatiotemporal densification of altim-
etry over rivers. The quality of time series at virtual stations deteriorated slightly when including CryoSat-2 
data due to assumptions pertaining to the spatial interpolation. However, CryoSat-2 decreased the bias by 
increasing the spatial representation of the river profile.

An important step in using satellite altimetry for inland water applications is outlier filtering. Typically, 
outliers are removed using secondary data sets such as a Digital Elevation Model (DEM) or binary water/
land masks (Jiang et al., 2017; Schneider et al., 2017; Schwatke et al., 2015) or by evaluating the observa-
tions themselves, for example, the return waveforms or the backscatter coefficients (e.g., Boergens, Buhl, 
et al., 2017; Boergens, Nielsen, et al., 2017; Dinardo et al., 2018; Schwatke et al., 2015; X. Zhang et al., 2020). 
For larger water bodies or short return missions, statistical outlier removal can be used to further refine the 
filtering (e.g., Nielsen et al., 2015; Schwatke et al., 2015; X. Zhang et al., 2020). For medium-sized rivers, the 
number of observations per ground track may be too low to perform meaningful statistical outlier removal. 
When bathymetry is unknown, WSE is dominated by the unknown bed elevation and errors larger than 1 m 
may be difficult to detect. This poses a challenge particularly for geodetic missions such as CryoSat-2, where 
the seasonal signal cannot be removed due to the long revisit time. The dense spatial sampling pattern is im-
practical for on ground validation and comparison to traditional gauging stations would require the aggre-
gation of observations at the expense of the valuable spatial resolution to obtain time series. Therefore, ro-
bust outlier removal procedures are needed to extract useful observations from geodetic altimetry datasets.

Water levels alone can only provide limited information, and the modeling and calibration problems must 
be adequately formulated to reflect the available observations. Getirana et al. (2013) and Liu et al. (2015) 
achieve good simulation results when calibrating channel roughness and bed elevation parameters simulta-
neously in spite of model equifinality. Jiang et al. (2019) investigated the information contained in altimetry 
WSE and the capability to recover parameter values (bed elevation, channel roughness, and channel geom-
etry) through calibration. Only the bed elevation could be consistently retrieved in combination with one 
of the other parameters. To avoid ambiguity, channel geometry can be inferred, for example, by assuming 
rectangular river cross sections (Biancamaria et al., 2009; Jiang et al., 2019) or power channel shapes (Neal 
et al., 2015) and information from satellite imagery and global databases.

The inverse problem to determine hydrodynamic model parameters is highly nonlinear and non-convex. 
Studies have used local iterative search algorithms such as Levenberg-Marquardt (Jiang et al., 2019; Sch-
neider, Tarpanelli, et al., 2018) or global search algorithms (Getirana et al., 2013; Liu et al., 2015) to identify 
the optimal parameters. Global search algorithms are less sensitive to the starting point for non-convex 
problems; however, a higher number of simulations are usually required to search the parameter space ad-
equately. The computational requirements to calibrate spatially distributed hydraulic parameters increase 
with the number of estimated parameters. Furthermore, solving the shallow water equations—even with 
efficient solvers—still requires long simulation time, including warm-up periods (Neal et al., 2012). Using 
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a hydrodynamic solver in the inverse problem combined with a global search algorithm is infeasible due 
to resource requirements. Therefore, efficient calibration approaches balancing parameter accuracy and 
resource requirements are greatly needed.

In this study, we evaluate the combination of a steady-state solver of the shallow water equations and a 
global search algorithm for efficient calibration of hydraulic parameters against robustly selected CryoSat-2 
observations. Specifically, we

1.  Propose an outlier filtering method for CryoSat-2 observations suited for data-scarce regions based on 
runoff simulations.

2.  Evaluate the capability of retrieving spatially distributed parameter values (i.e., channel roughness and 
bed elevation at least every 20 km) using a steady-state solution of the Saint-Venant equations and Cry-
oSat-2 sampling pattern in synthetic calibration experiments.

3.  Evaluate the method using real-world CryoSat-2 observations.
4.  Assess the performance of the calibrated parameters in dynamic state using a hydrodynamic solver.

The proposed method is most valuable in ungauged catchments, where observations of the targeted cali-
brated parameters are unavailable. Synthetic experiments allow us to evaluate how the calibration performs 
and to identify potential limitations (e.g., parameter interactions and behavioral parameters). The full work-
flow is then assessed for tributaries of the Zambezi, by comparing Sentinel-3 water level and in situ gauge 
data with the water levels simulated using a 1D hydrodynamic model parameterized with the calibrated 
parameters.

2. Study Area
The Zambezi is located in Southern Africa and is the fourth largest river in Africa. It is 2,574 km long and 
drains a 1.4 million km2 basin. Precipitation follows a declining North-to-South gradient, with an average 
of 1,500 mm in the North and 500 mm in the South. The wet season is between October and March. Flow 
is driven largely by precipitation climatology but also by retention in large swamps and floodplains, and 
artificial reservoirs in the basin.

The Zambezi provides key ecosystem services, supporting large populations of fauna and flora, but is also 
an important resource for the people living in the basin. We select three regions within the Zambezi as study 
areas: the Kafue, the Luangwa, and the Upper Zambezi, upstream of the Barotse floodplain, specifically the 
tributaries Kabompo and Lungwebungo (Figure 1).

3. Data
3.1. Radar Altimetry

3.1.1. CryoSat-2

CryoSat-2 Level 2 data were provided by the National Space Institute, Technical University of Denmark 
(DTU Space) for the period July 16, 2010 to March 21, 2018. The data are based on the 20 Hz Level-1b ESA 
data set and has been retracked at DTU Space using an empirical retracker based on a sub-waveform thresh-
old (Villadsen et al., 2016). In the Zambezi, CryoSat-2 operates only in Low Resolution Mode (LRM). The 
DEM and CryoSat-2 observations are reprojected onto the EGM2008 using VDatum (Myers et al., 2007).

3.1.2. Sentinel-3

The Sentinel-3 data set is independent of the data used to calibrate the steady-state model and its virtual 
stations' monitoring network is denser and with more recent observations than the ground network. Sen-
tinel-3 Level-2 WSE observations were obtained from the ESA GPOD (Grid Processing on Demand SAR 
Versatile Altimetric Toolkit for Ocean Research and Exploitation) service (available on https://gpod.eo.esa.
int/). The data have been described and evaluated in Kittel et al. (2021). Performance was quantified in the 
Upper Zambezi with Root Mean Square Deviation (RMSD) varying between 2.9 and 31.3 cm. In the rest of 
the river catchment, there was good coherence between historical seasonal trends and the Sentinel-3 water 
surface elevation.

https://gpod.eo.esa.int/
https://gpod.eo.esa.int/
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3.2. In Situ Observations

In situ observations were available for five subcatchments in the Upper Zambezi and in the Kafue, and two 
out of 12 subcatchments in the Luangwa (Table S1 and Figure S1). The Zambezi River Authority (ZRA) 
kindly provided in situ observations in the Upper Zambezi, completing the data set from Michailovsky and 
Bauer-Gottwein (2014). In situ discharge was used for the calibration of the rainfall-runoff model, while in 
situ stage at two stations (Kabompo and Chavuma) was used to validate the hydraulic model. To avoid bias 
related to the vertical datum of the data sets, all records are referenced to their long-term mean and only 
amplitudes are compared.

3.3. Ancillary Datasets

The river network is delineated using TauDEM v. 5 (Tarboton, 2015) and the Multi-Error-Removed Im-
proved-Terrain Digital Elevation Model (MERIT DEM, Yamakazi et al., 2017). The model is forced using 
remote sensing observations: Global Precipitation Model (GPM) precipitation (Huffman et al., 2014) and 
European Centre for Medium range Weather Forecasts-Interim Reanalysis (ECMWF ERA-Interim) (Berris-
ford et al., 2011) temperature observations for the period 2001 to August 2019.

Figure 1. Study area and in situ gauging stations. Calibration is performed for the five highlighted reaches (Lungwebungo, Kabompo, Upper Zambezi, Kafue, 
and Luangwa).
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4. Methods
The entire workflow starting from data selection and ending with hydrodynamic simulation of water levels 
is shown in Figure 2. The methodology uses remote-sensing inputs and two different models: a rainfall-run-
off model and a hydraulic model in steady state and dynamic mode.

4.1. CryoSat-2 Pre-Processing

First, we use the water occurrence maps from Pekel et al. (2016) to extract observations over the river. We 
use a threshold of 10% water occurrence frequency and allow a 90-m buffer zone around the river mask 
based on the results from Schneider, Ridler, et al. (2018) and Schneider, Tarpanelli, et al. (2018). The foot-
print in LRM is several km wide (2.5 km2 with a diameter of 1.64 km), and a return signal from the water 
surface can be captured before and after the satellite has crossed the river. Parabolic distortions of the water 
levels due to this so-called “hooking effect” (Frappart et al., 2006; Maillard et al., 2015) are expected to be 
negligible at the scale of the buffer applied.

Second, we remove observations deviating from the local value of the MERIT DEM by more than 30 m. This 
ensures that the surface elevation is indeed within the 60 m satellite reception window. In total, CryoSat-2 
crossed the Zambezi basin 3,724 times during the observation period, resulting in 291,287 observations over 
water bodies in the basin. Of those, 38,697 observations are over the river network itself. The rejection rate 
in step one is 10.5%, yielding 34,647 observations after this step.

Unlike previous studies, the third step takes into account the river dynamics by using the output of the 
rainfall-runoff model. We fit a one-dimensional smoothing spline in the space domain to the CryoSat-2 
observations on each river reach. The spline curve is assumed to represent the mean water level for the days 
of observation. The expected deviation, E y, from the mean level, ymean, associated with the simulated dis-
charge, Q, at the time of sensing assuming uniform flow and a wide rectangular channel is estimated using 
Manning's equation for a wide rectangular channel

Figure 2. Schematic diagram presenting an overview of the main inputs, models, and outputs of the calibration 
workflow presented in this study.
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E Q is the river discharge (m3/s), E S is the bed slope (m/m), E n is the channel roughness, and E y is the channel 
depth. Equation 1 can be written for the mean discharge and water level and for the specific conditions on 
the day of CryoSat-2 overpass. By taking the log-transform and subtracting the two, we can isolate the E y
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We calculate the mean discharge, meanE Q , using only the days with CryoSat-2 observations. We use error prop-
agation to estimate the total uncertainty of E y based on assumed uncertainties of the discharge estimate, 
width, slope, and Manning's number (Table 1). The effect of the spline function smoothing factor on the 
magnitude of the level deviation from the mean is mitigated by using an ensemble of spline curves using 
varying smoothing factors (0.01–4 times the number of observations in the reach). From the ensemble, we 
obtain different estimates of the deviation from the mean water level (E y) for each CryoSat-2 observation. 
If the deviation falls outside of the predicted confidence interval of E y for all smoothing factors, the obser-
vation is rejected.

4.2. Hydraulic Model

4.2.1. Steady-State Solver

The steady-state solver is based on the Saint-Venant equations, which express the mass balance and mo-
mentum balance equations for gradually varied one-dimensional flow in an open channel. The equations 
for the steady-state solver are detailed in Text S1.

Equation 4 is the general form of the equations to solve, when assuming steady flow (i.e., constant discharge 
over time) and lateral inflow in a rectangular channel, where RHS (Right Hand Side) is the collection of 
terms not containing the derivative of the depth with respect to the chainage

  

  
     
 

   



2 2
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Q A Q Q qS
xgA K gAdh

dx Q A
hgA

dh x h x
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 (5)

where h is the channel depth [m] along the chainage or distance along the channel, x [m], Q the discharge 
[m3/s], g the acceleration due to gravity (set to 9.81 m2/s), A the flow cross-sectional area [m2], q the lateral 
inflow at chainage x, S0 the bed slope [m/m], and K the conveyance [m3/s]. Lateral inflow consists of runoff 

Parameter Estimate Error propagation

Q Daily discharge from rainfall-runoff model ±25%

Slope From univariate spline function (minimum fixed at 10−5) 2 × standard deviation over the reach

Manning's n 0.035 Calibration range: 0.02–0.05

Width GRWD database ±25%

Table 1 
Assumed Uncertainties of Parameters Used to Estimate the Confidence Interval of the Water Surface Elevation (WSE) 
Deviation E y
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generated by the rainfall-runoff model in tributary subcatchments, which enters the hydrodynamic model 
at the most upstream node, and runoff produced in the subcatchment itself, which is distributed along the 
chainage proportionally to the contributing area.

The solver is initialized by calculating the downstream water level boundary condition using Manning's 
equation and a downstream slope of 2e−4 m/m at chainage, i. The downstream slope condition was chosen 
based on the average slope in the catchment and only affects the most downstream cross section. The level 
is then calculated stepwise at E x spatial increments, moving upstream along the channel and solving Equa-
tion 5 either implicitly (Equation 6) or explicitly (Equation 7):

           1 1 1
1 RHS , RHS ,
2i i i i i ih h x h x h x (6)

     1 RHS ,i i i ih h x h x (7)

The explicit solution is faster but requires smaller steps E x to be stable, while the implicit solution is less sen-
sitive to the spatial increments but requires the solution of a nonlinear implicit equation for 1iE h  at each time 
step. We tested the speed of the two solvers using a hypothetical formulation of the Kabompo reach chan-
nel. The solutions are virtually identical when solving the equations for steps of less than 500 m. The implic-
it solver runs in 5.3 s, whereas the explicit solution needs 0.06 s. Even when applying the implicit solution 
only to cross-sections with observations, the fastest computational time remains slower (0.17 s), and the 
large spatial increments affect the final solution. We therefore use the explicit solver using 250 m spatial 
steps. If the solution becomes numerically unstable, the spatial step is subdivided into 1 m increments.

We define calibration cross-sections every 20 km and at each CryoSat-2 observation. Although the steady-
state solver is less computationally demanding than a full hydrodynamic calibration, the number of model 
parameters must still be constrained. Because of the CryoSat-2 orbit configuration, some observations and 
thus cross-sections are very closely spaced. This increases the number of calibration parameters and the 
risk of parameter correlation. We therefore remove cross-sections less than 5 km apart for shorter reaches 
(Kabompo and Upper Zambezi) and 10 km apart for longer reaches (Lungwebungo, Kafue, and Luangwa).

4.2.2. Hydrodynamic Model

LISFLOOD-FP is a coupled 1D/2D hydrodynamic model simulating the propagation of flood waves along 
channels (in 1D) and over floodplains (in 2D). LISFLOOD-FP has three solvers available for calculating 
channel flow. The kinematic wave routing model only considers the friction slope, assuming that local and 
convective acceleration terms are negligible and that the free surface gradient is equal to the bed slope. The 
diffusive wave model includes an additional pressure term. The subgrid channel solves the full shallow 
water equations with the exception of the convective acceleration term (Neal et al., 2012). All three formula-
tions are numerically stable (De Almeida et al., 2012). The model is specifically designed for poorly gauged 
catchments and has been implemented for a number of sites, including the Niger River (Neal et al., 2012), 
the Congo (F. E. O’Loughlin et al., 2020), and rivers in the United Kingdom (Sosa et al., 2020).

We use LISFLOOD-FP to simulate the channel hydrodynamics in the transient state. The model requires 
information about channel geometry in the form of channel slope, channel width, and bankfull depth from 
a DEM or surveyed cross section. The bank elevation is derived from the MERIT DEM, the width from the 
GRWD database, and the bed elevation and channel roughness from the calibrated steady-state solver. The 
bankfull depth is the difference between the bed and bank elevations. The resolution of the input files is 
900 m instead of the 250 m used by the steady-state solver to ensure reasonable computation time. The 
model is forced with daily discharge from headwater catchments and lateral inflow, both simulated by the 
rainfall-runoff model. Runoff increments are distributed according to the contributing area to each channel 
pixel, obtained from the river delineation. The model is run in 1D as a means to compare the steady-state 
solver to a transient solver by burning in the channel bed elevation into the DEM.

4.3. Hydrologic Model

The CryoSat-2 pre-processing and the hydraulic model require runoff estimates. In ungauged catchments, 
these can be obtained using a hydrologic model. In this study, we use a conceptual rainfall-runoff model of 
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the Zambezi basin. The rainfall-runoff model is described in Kittel et al. (2018) and is based on the work by 
L. Zhang et al. (2008) who extended the Budyko framework's concept of limits to monthly and daily time 
steps. The model builds on a representation of the water balance through demand and supply at various 
levels. At each time step, Fu's representation of the Budyko curve (L. Zhang et al., 2008) is used to parti-
tion precipitation into catchment retention and runoff, and catchment retention into evapotranspiration, 
groundwater recharge, and root-zone storage. The model is coupled to a Nash cascade of linear reservoirs 
simulating tributary processes.

The model is calibrated against in situ discharge records from 1990-present after careful analysis to ensure 
hydrometeorological stationarity can be assumed between the observation and simulation periods. In order 
to parametrize ungauged subcatchments, we use the same catchment characteristics as proposed in Kittel 
et al. (2020): the subcatchments were grouped into calibration clusters using the European Space Agency 
Climate Change Initiative Land Cover map v.2 (ESA, 2017) and the MERIT DEM and calibrated holisti-
cally using an aggregated objective function at catchment scale allowing trade-offs between parameters in 
nested subcatchments. The regionalization and resulting calibration zones are summarized in Table S2. 
Performance was then evaluated based on the flow duration curves using equal flow volume classes as de-
scribed in Westerberg et al. (2011) and on the daily discharge climatology RMSD. Additionally, we use the 
Kling-Gupta Efficiency to quantify post-calibration performance (Gupta et al., 2009). The model setup and 
performance are summarized in Tables S1 and S2.

4.4. Hydraulic Model Calibration

4.4.1. Global Search Algorithm and Performance Statistics

The bed elevation and channel roughness are calibrated for each cross section using the Shuffled Com-
plex Evolution algorithm from the University of Arizona (SCEUA) developed by Duan et al., (1992) and 
implemented in Python using SPOTPY (Houska et al., 2015). The algorithm uses “complexes” to sample 
the parameter space. The complexes are groups of parameter samples, which are evolved independently 
and shuffled after each evolution cycle to ensure an efficient global search. The bed elevation parameters 
are initialized using a spline function interpolating between the CryoSat-2 WSE observations minus one 
meter to adjust for the water level. The bed elevation can vary between −5 and 3 m from this initial value. 
The channel roughness is initialized at 0.04 and allowed to vary between 0.018 and 0.055. The calibration 
objective function consists of a data misfit term comparing the residuals between the CryoSat-2 WSE and 
the simulated WSE

    2,WSEi i i C iE w z (8)

and a smoothness preference for the two parameters along the chainage

 


2

1

smooth

i i

i

p p
Sm

f
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smoothE f  is the smoothness preference: smaller values will give higher weight to E Sm and force the solver to 
move toward a smoother solution with less abrupt changes in bed elevation or channel roughness, repre-
sented by p in Equation 9. The calibration objective is
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The smoothness preference must be chosen to balance a realistic water surface and allowing features 
from the bed and channel roughness to be simulated. The preference is set to 1, giving equal weight to the 
smoothness and error objectives due to the types of parameters evaluated. Thus, the difference in magni-
tude between the objectives are balanced while still prioritizing a good fit between data and observation.

We compute three additional diagnostic performance measures to evaluate the post-calibration performance 
of the hydraulic model: the Pearson correlation coefficient, Spearman's rank correlation coefficient, and the 
non-parametric Kling-Gupta Efficiency (Pool et al., 2018). The Kling-Gupta Efficiency (KGE) combines the 
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Pearson correlation coefficient and the biases between mean and observed mean discharge and between 
the simulated and observed standard deviation. In the non-parametric version, the rank correlation is used 
instead, and the discharge variability performance is computed using the flow duration curve. This method 
is less sensitive to assumptions of data linearity, data normality, and outliers (Pool et al., 2018).

4.4.2. Synthetic Experiments

Synthetic calibration experiments are used to evaluate the capabilities of the steady-state solver and cali-
bration algorithm to retrieve the bed elevation and channel roughness using CryoSat-2-type observations of 
WSE. We generate a synthetic set of parameters (i.e., bed elevation and Manning's n at all cross sections) to 
produce synthetic CryoSat-2 observations in the Kabompo reach, that is, a synthetic representation of the 
true WSE. To reflect data uncertainties, the synthetic truth is perturbed with normally distributed random 
noise with varying standard deviations. The resulting three experiments are:

1.  Three-centimeter standard deviation representing in situ water level accuracy.
2.  Twenty-centimeter standard deviation representing high accuracy for altimetry WSE.
3.  Forty-centimeter standard deviation representing average accuracy for altimetry WSE.

Parameter sensitivity is evaluated by conducting an extended Fourier amplitude sensitivity test (FAST) 
(Saltelli et al., 1999) as implemented in SPOTPY (Houska et al., 2015). We compare the total sensitivity of 
the bed elevation and channel roughness at each cross-section to assess the spatial sensitivity of the two 
parameters along the river chainage. Over 686.000 model runs are performed to achieve the recommended 
sampling of the parameter space based on the number of calibration parameters in the synthetic example 
(Houska et al., 2015; Saltelli et al., 1999).

4.4.3. Calibration Against Real-World Observations

We then use the real-world CryoSat-2 observations and calibrate the bed elevation and channel roughness in 
five reaches in the Zambezi catchment. To ensure that the steady-state assumption is reasonable, we choose 
CryoSat-2 observations where the 10-day discharge gradient is less than 5% of the mean discharge. This is 
the case for 69.9% of the CryoSat-2 observations. To minimize the impact of uncertainties related to the 
CryoSat-2 observations and runoff simulations, we classify the simulated runoff and CryoSat-2 observations 
into discharge classes based on the runoff histogram and time of observation. The steady-state model is run 
for each class and residuals are calculated for all CryoSat-2 observations within the class.

5. Results
5.1. CryoSat-2 Outliers Filtering

Figure 3 illustrates the CryoSat-2 river longitudinal profiles and outlier filtering for each of the five reaches. 
In the downstream part of the Upper Zambezi, water level increases of 5 m are unlikely during the low-flow 
season; therefore, the associated CryoSat-2 observations are rejected. However, a similar increase may occur 
during the high-flow season, highlighting the benefit of a dynamic threshold. The rejection rate is between 
10% for Lungwebungo and 24% for Luangwa.

The main challenges in terms of outlier filtering are adequately fitting the spline function, so it is represent-
ative of the mean water surface profile along the river line. In the Upper Zambezi, Kafue, and Kabompo, 
we removed observations deviating from the spline function by more than twice the residual standard de-
viation and fitted a new spline function through the remaining observations, resulting in rejection rates of 
18%, 19%, and 23%, respectively. This was necessary due to the combination of large variations in WSE and 
changes in the reach slope. There is a fine balance between overfitting outliers and smoothing the mean 
water level.

The Luangwa River runs from North-East to South-West. CryoSat-2 predominantly crosses the Luangwa 
between March and end of November, thus missing the wet season. Therefore, the CryoSat-2 observations 
are expected to be relatively close to the mean water elevation with very small predicted residuals. In this 
case, the outlier filtering is particularly sensitive to the estimation of the mean water surface profile. How-
ever, reducing the smoothing factors of the spline curve ensemble also increased the risk of admitting clear 
outliers.
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5.2. Synthetic Test

The synthetic tests evaluate the impact of observation uncertainties by using respectively 3, 20, and 40 cm 
standard deviations to perturb the synthetic CryoSat-2 observations. The results are shown in Figure 4.

A difference in performance is seen when increasing the observation uncertainty, as seen in the performance 
statistics (Table 2) and the spread in the scatter plot in Figure 4. The RMSD is in the order of magnitude 
of the observation uncertainty. For all assumed uncertainty levels, parameter retrieval is most improved at 
cross sections with synthetic observations. This was expected and confirms the advantage of using spatially 
dense observations to calibrate hydrodynamic parameters. The weighted objective used in calibration in-
cludes a smoothness factor. There is good consistency between the RMSD and calibration objective, with the 
smoothness factor forcing a reduction in variations where the observation density is low.

The downstream sections are most sensitive during calibration according to the FAST sensitivity analysis. 
The Saint-Venant equations account for backwater effects; therefore, changes in downstream parametriza-
tion have an impact on all upstream evaluation points. Tweaking upstream parameters will mainly impact 
the upstream predictions in the steady-state solver and thus have limited effect on the overall performance. 

Figure 3. Selection of CryoSat-2 observations in the Zambezi. Left: the longitudinal profile of each studied river reach 
and right: the illustration of the outlier filtering process for a subset of each reach.
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Sensitivity is driven by the observation density, as seen for the parameters 
at cross-section 12, which correspond to the first large gap in observations 
and are not sensitive at all (Figures 4 and 5).

The analysis also confirms that the objective function is less sensitive to 
the channel roughness, n, than the datum offset, z, as shown in Figure 5 
(top). The scatter plots in Figure 5 provide information on whether trade-
offs during calibration can explain the low sensitivity of the channel 
roughness. We plot the results of the low uncertainty calibration, to re-
move the effect of observation uncertainty on parameter retrieval. During 
calibration, the parameters converge to relatively narrow parameter spac-
es. The synthetic truth is not always within the optimum range, which is 
due to the global objective function and trade-offs between parameters at 
the different cross-sections.

The bed elevation and channel roughness have similar local effects: over-
estimating the channel roughness raises the water level but can be com-
pensated by slightly decreasing the bed elevation locally. Previous studies 
have shown that the two parameters impact the water surface different-
ly over different characteristic spatial scales (Durand et al., 2014; Wood 
et al., 2016). When calibrating a single, global roughness parameter, the 
bed elevation will tend to have a local impact, whereas adjustments of 
the friction parameter will have a more diffuse effect and impact a longer 
portion of the reach. Thus, the two parameters can be retrieved simul-
taneously. In this study, both parameters are calibrated locally and both 
have a local impact. This can be seen at cross-section 0, where the best 
performing parameter samples (objective function less than 0.2) form a 
straight line toward the synthetic truth. Thus, although parameters can 
be retrieved successfully at some cross-sections, there is still model ambi-
guity (e.g., at cross-section 4). The ambiguity can be partially resolved by 
increasing the observation density.

5.3. Calibration Using Real-World CryoSat-2 Observations in the Zambezi

Figure 6 shows the calibrated longitudinal water surface profiles at the five locations in the Zambezi after 
calibrating the steady-state solver against real-world CryoSat-2 observations. Overall, the simulated WSE 
corresponds quite well to the CryoSat-2 observations.

LISFLOOD-FP models are run for each reach using the calibrated channel roughness and bed elevation. 
Table 3 summarizes performance statistics of the calibration and evaluation based on the steady-state solver 
and the transient solution, respectively. We compare the simulated and observed water level by subtracting 
calibrated bed elevation from the satellite altimetry WSE. This removes the otherwise dominating effect 
of elevation on the performance. Overall performance is good and consistent across performance metrics. 

Figure 4. Top: Simulated against synthetic water level (the calibrated bed 
elevation is subtracted) for the three experiments. Bottom: Retrieval of 
synthetic Manning's roughness, n (left) and offset from the initial datum 
guess (right) by the model. The black crosses indicate the chainage of the 
synthetic observations consistent with the CryoSat-2 observation density.

Observation uncertainty E  = 40 cm E  = 20 cm E  = 3 cm

WSE objective 0.26 0.15 0.09

RMSD [m] 0.33 0.17 0.08

Datum offset RMSD [m] 0.75 0.49 0.56

Considering only gauged 
cross-section

0.53 0.39 0.39

Manning's n RMSD [s/m1/3] 0.0083 0.0072 0.0075

Note. RMSD, Root Mean Square Deviation.

Table 2 
Calibration Performance for the Synthetic Experiments at All Cross-Sections and at Cross-Sections With Synthetic Observations (Gauged Cross-Sections)
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Figure 5. Top: FAST sensitivity analysis of the synthetic calibration test with 20 cm standard deviation; the parameters 
are numbered from downstream to upstream cross-sections. Bottom: Sampling pattern and model performance during 
calibration at three randomly selected cross-sections. Cross-section numbering is from downstream to upstream. The 
objective is lowered during calibration.

Figure 6. Calibrated longitudinal profile of the bed elevation and the water surface elevation (WSE) simulated by the 
steady-state solver for the five subreaches in the Zambezi—the calibrated WSE is computed using the discharge of the 
corresponding day of observation by CryoSat-2 assuming steady state.
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The weighted objective includes a smoothness and shallowness preference and is therefore generally larger 
than the RMSD. There is a good correlation between the simulated WSE and CryoSat-2 WSE. The RMSD is 
between 0.58 and 0.88 m.

Figure 7 shows the WSE time series simulated by LISFLOOD-FP against the in situ records at Chavuma 
and Watopa and against the Sentinel-3 WSE. We note that there are some timing issues in the water level 
prediction, particularly at Chavuma, and in the low-flow predictions at Watopa. These are consistent with 
uncertainties in the rainfall-runoff model, which forces the steady-state hydraulic model and hydrodynamic 

Data source

Weighted objective RMSD Non-parametric KGE Pearson r2 Spearman r2

C2 C2 S3 In situ C2 In situ C2 S3 In situ C2 S3 In situ

Solver SS SS versus L SS L L L L L L L L L L L

Upper Zambezi 0.68 0.39 0.83 0.79 0.71 0.73 0.79 0.25 0.91 0.79 0.84 0.79 0.82 0.92

Lungwebungo 0.78 0.98 0.88 1.31 0.43 0.50 0.37 0.58 0.53 0.58

Kabompo 0.45 0.32 0.61 0.71 1.14 0.60 0.89 0.49 0.90 0.69 0.90 0.90 0.79 0.90

Kafue 0.74 0.35 0.89 1.05 0.62 0.78 0.85 0.91 0.85 0.90

Luangwa 0.54 0.17 0.66 0.60 0.99 0.11 0.58 0.43 0.44 0.61

Note. The Pearson and Spearman correlation coefficients are calculated by subtracting the calibrated bed elevation from the CryoSat-2 observations to remove 
the effect of elevation on the performance. A p-value below 2.5% is considered significant—in all cases the p-value is below the threshold and the correlation 
is significant.
KGE, Kling-Gupta Efficiency; RMSD, Root Mean Square Deviation.

Table 3 
Steady-State (SS) Solver and LISFLOOD-FP (L) Performance Statistics Using Calibrated Parametrization and CryoSat-2 Observations (C2), Sentinel-3 (S3) Water 
Surface Elevation (WSE), and In Situ Water Level Observations

Figure 7. Dynamic water surface elevation (WSE) at in situ stations Chavuma (Upper Zambezi—top row) and Watopa 
(Kabompo—middle row) and simulated by LISFLOOD-FP and Sentinel-3 WSE versus simulated WSE by LISFLOOD-
FP at Sentinel-3 VS (bottom row). The shaded area represents the expected uncertainty of Sentinel-3 of up to 50 cm.
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models. Sentinel-3 is a SAR altimeter and expected to have a lower uncertainty than a conventional altime-
ter (3–30 cm in the Zambezi, according to Kittel et al., 2021). We represent the Sentinel-3 data with a slightly 
higher uncertainty, as the stations used in this study could not all be evaluated against in situ observations. 
A conservative upper bound of 50 cm, consistent with previous studies on altimetry observations of inland 
water (Villadsen et al., 2016) was therefore selected to indicate the Sentinel-3 uncertainty in Figure 7.

The steady-state and transient solutions differ by around 20–40 cm in RMSD against CryoSat-2 observations, 
which is in the order of magnitude of the expected CryoSat-2 uncertainty in LRM (Villadsen et al., 2016). 
The difference between the steady-state and transient solution (22–98 cm) can be partly explained by (a) 
the difference between the subgrid representation of the channel and the 1-dimensional line representation 
of the steady-state solver and (b) the coarser spatial resolution (900 m instead of 250 m) needed to allow 
reasonable computation time. The performance metrics remain comparable or better than results reported 
in previous studies.

Overall, the performance is consistent with previous studies with RMSD values between 0.60 and 1.31 m. 
Jiang et al. (2019) obtained RMSD between the simulated and altimetry WSE between 0.72 and 1.6 m, when 
using various combinations of altimetry data sets, with CryoSat-2 alone giving a calibration performance of 
1.28 m. Domeneghetti et al. (2014) obtained a RMSD of around 1 m using Envisat data to calibrate a hydro-
dynamic model of the Po River. F. E. O’Loughlin et al. (2020) achieved RMSD between 0.84 and 2.02 m in 
the Congo when comparing a large-scale hydraulic model forced with in situ and simulated discharge. As 
in this study, the channel depths and friction were calibrated against satellite altimetry WSE observations; 
however, the study used a global channel friction parameter.

6. Discussion
6.1. CryoSat-2 Data Selection

The CryoSat-2 observations used in the calibration must be accurate and representative of the river WSE. 
CryoSat-2 is not error-free and is difficult to validate due to the high spatial sampling but low temporal sam-
pling frequency. In this study, we used hydrological simulations from a calibrated hydrological model to as-
sess the validity of the CryoSat-2 observations. Instead of selecting a fixed threshold to assess the deviation 
of a given CryoSat-2 observation from the local river surface longitudinal profile, we predict the expected 
range of water level deviation based on the hydrological conditions in the reach at the time of observation.

Robust outlier removal is essential but highly challenging in poorly instrumented catchments. By exploit-
ing simulations of discharge, which are already available as input to the hydraulic model, a more refined 
method was developed in this study. Valid observations may be rejected due to errors in the corresponding 
simulated discharge. This is likely to occur in poorly gauged catchments, where calibration is constrained 
by data availability. Retaining these observations may introduce errors in the calibration, as it fits the param-
eters to produce water levels, which are unlikely to have occurred under the simulated flow conditions. In 
this study, we demonstrate the method in a sparsely gauged catchment, where the added value of altimetry 
WSE is high. In future studies, we recommend applying this method in a highly instrumented catchment 
to validate the proposed method.

6.2. Model Performance

The steady-state assumption of the solver is a simplification of the actual hydrodynamic conditions; it can 
be run for specific time steps corresponding to satellite overpasses greatly reducing computational time. The 
results are in the order of magnitude of the calibration data uncertainty and comparable to previous studies. 
This confirms that the method can be used to calibrate hydraulic models efficiently against spatially dense 
WSE observations.

Furthermore, simplifications are necessary to represent poorly instrumented river channels for hydraulic 
modeling. In particular, some assumption on the cross-section geometry is required (e.g., trapezoidal, rec-
tangular channel, and power channel). In this study, we select a simple rectangular shape and use global 
river width databases to obtain the missing information about the mean width. An alternative approach 
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could be to use a power law to correlate the area and water depth and the conveyance and water depth, 
removing the need for an explicit definition of the channel shape.

Neal et al.  (2015) investigated incorporating the channel cross-section uncertainty into large-scale flood 
inundation models of data sparse areas and showed that performance improved in models with calibrated 
channel friction and rectangular channels. Their results suggest that a channel shape parameter, roughness 
and elevation could be fitted simultaneously, provided sufficient dynamic observations are available in the 
reach. Neal et al. (2015) also showed that informing the model with even basic information about the chan-
nel geomorphology, such as width-discharge curves from optical or radar satellite imagery improved model 
calibration against level observations. The shape and friction have similar effects locally and calibrating the 
shape parameter may be more appropriate than calibrating friction for narrow channels, where the assump-
tion of a rectangular shape is less appropriate.

The calibration of local variations in channel roughness greatly increases the parameter space and poses a 
further challenge. Jiang et al. (2019) demonstrated that altimetry alone is insufficient to calibrate geometry 
parameters as well as spatially distributed channel roughness. The reason for this is clear: local channel 
conveyance depends on both the channel roughness and flow area. Thus, there is model ambiguity and ad-
ditional data sets are required to constrain the increased parameter space (e.g., channel width under known 
flow conditions). The unknown channel bed elevation prevents a satisfactory calibration of the level to area 
relationship and channel roughness. Thus, an interesting future path could include exploring whether the 
geometry parameters could be sufficiently constrained from alternative or new remote sensing observa-
tions, or whether calibrating local changes in channel geometry may be more robust than calibrating the 
channel roughness.

6.3. 1D Versus 2D Hydrodynamic Model

The steady-state solver is one-dimensional and thus does not include bank overflow and floodplain process-
es. This will introduce errors in shallow reaches during extreme events, where the peak water level might 
be overpredicted to accommodate the high flow in a rectangular channel. Therefore, we only consider trib-
utary branches of the Zambezi. The subgrid solver in LISFLOOD-FP calculates the floodplain water level 
when the level in the channel exceeds the bank elevation. This requires a robust match between bed and 
bank elevation. Figure 8 illustrates the calibrated cross-sections versus the DEM at selected locations of the 
five reaches. Because the steady-state solver only calibrates the bed elevation, the bank elevation is extracted 
from the DEM. This poses a challenge if the calibrated bed is equal to or higher than the DEM elevation 
height, for example, in the Upper Zambezi (Figure 8). The calibration information then becomes obsolete. 
If the difference is too small, the channel might overflow too often (as might be the case at Kabompo). Thus 
to apply the results in a 2D modeling setup, the bank elevation must be corrected to ensure the channel is 
correctly burned into the floodplain, for example, using SAR imagery to deduce the bank and bed elevation 
relationship (Wood et al., 2016). Despite the higher demands for parametrization and computation power, a 
two-dimensional solver would be necessary to adequately model the entire Zambezi, particularly the delta, 
which is not included in this study. The proposed method may, however, still be a useful stepping-stone for 
more complex modeling efforts, particularly in poorly instrumented catchments.

The DEM will usually give the elevation of the water surface in the channel at the time of observation. 
This means that the calibrated bed elevation is more likely to be below than above the DEM elevation. The 
opposite occurs at Chavuma, where the slope is very high. CryoSat-2 observations before and after the drop 
in elevation force a compromise.

7. Conclusion
A reasonable hydraulic representation of river channels for large-scale flood modeling is essential but chal-
lenging to obtain in data poor regions. In this study, we propose using a steady-state solver to calibrate 
hydraulic parameters against geodetic altimetry observations. We propose an informed outlier rejection 
framework based on simulated discharge to select CryoSat-2 observations for calibration. The approach 
successfully removes obvious outliers, while allowing reasonably large deviations from the estimated mean 
level, provided there is coherence with the hydrological conditions on the day of observation. Furthermore, 
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it ensures that only coherent forcing/observation pairs are included in the calibration. The method enables 
filtering spatially dense WSE observations from geodetic satellite altimetry missions in data-sparse regions, 
where traditional outlier identification methods fail.

Hydraulic parameter retrieval was evaluated in synthetic experiments, focusing on the impacts of observa-
tion density and quality, and on the calibration setup. Bed elevation was retrieved with a RMSD of 42–75 cm 
and channel roughness with a RMSD of 0.007–0.009 s/m1/3. The calibration revealed a higher sensitivity 
to the elevation offset compared to the roughness parameter, resulting in a poor retrieval of the upstream 

Figure 8. Selected calibrated river cross-sections versus Multi-Error-Removed Improved-Terrain Digital Elevation 
Model (MERIT DEM) bed and bank elevations (left) and calibrated bed elevation versus the MERIT DEM river surface 
longitudinal profiles (right).
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channel roughness. Furthermore, we noted the effect of the WSE observation density, with the most suc-
cessful performance occurring in densely observed segments of the reach. Observation uncertainty affect-
ed the retrieval of parameters at ungauged cross-sections, and performance was more similar at gauged 
cross-sections for the three investigated data quality scenarios.

By carefully selecting observations where the steady-state assumption is reasonable, five reaches of the 
Zambezi were calibrated with satisfactory model performance using real CryoSat-2 observations. Calibra-
tion against real-world CryoSat-2 observations was evaluated using a range of statistical diagnostics to con-
firm model behavior and compared to Sentinel-3 and in situ observations of WSE to evaluate the temporal 
patterns of WSE in the river channels. The method yielded at least as good performance as past studies at 
far reduced computational cost and the parameter transfer from the steady-state to the transient solver did 
not impact performance significantly.

Geodetic altimetry missions clearly hold valuable information for hydrological studies, particularly in un-
gauged basins. However, the dense spatial sampling requires careful data selection and comes at a compu-
tational cost because, in the hydraulic inversion, WSE must be simulated at all points of observation by the 
hydraulic forward model. The approach presented in this study integrates the altimetry observations in a 
fast and efficient, global calibration approach at low cost compared to a 1D hydrodynamic model.

Data Availability Statement
The data can be requested from the ZRA for research purposes. The Sentinel-3 data used in this study can 
be freely processed on and downloaded from the ESA GPOD (Grid Processing on Demand SAR Versatile 
Altimetric Toolkit for Ocean Research and Exploitation) service (available on https://gpod.eo.esa.int/, last 
accessed October 14, 2020). The MERIT DEM used as reference elevation and in the river delineation was 
obtained from http://hydro.iis.u-tokyo.ac.jp/∼yamadai/MERIT_DEM/ (last accessed October 14, 2020). 
The rainfall-runoff model source code is open source and part of the GlobWetland Africa QGIS Toolbox 
(available on http://globwetland-africa.org/?wpdmpro=globwetland-toolbox-1-5, last accessed November 
17, 2020). LISFLOOD-FP can be accessed at http://www.bristol.ac.uk/geography/research/hydrology/mod-
els/lisflood/downloads/ (last accessed November 17, 2020). The CryoSat-2 observations and model parame-
ters are available on Zenodo (doi:10.5281/zenodo.4899864).
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