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Abstract  

 

Mendelian randomization (MR) is a method of studying the causal effects of modifiable exposures (i.e. 

potential risk factors) on health, social and economic outcomes using genetic variants associated with 

the specific exposures of interested. MR provides a more robust understanding of the influence of these 

exposures on outcomes since germline genetic variants are randomly inherited from parents to offspring 

and, as a result, should not be related to potential confounding factors that influence exposure-outcome 

associations. The genetic variant can therefore be used as a tool to link the proposed risk factor and 

outcome, and to estimate this effect with less confounding and bias than conventional epidemiological 

approaches. We describe the scope of Mendelian randomization, highlighting the range of applications 

being made possible as genetic datasets and resources become larger and more freely available. We 

outline the Mendelian randomization approach in detail, covering concepts, assumptions and estimation 

methods. We cover some common misconceptions, provide strategies for overcoming violation of 

assumptions, and discuss future prospects for extending the clinical applicability, methodological 

innovations, robustness and generalizability of MR findings.  

 

 

 

 

 

 

 



 

2 

 

Background  

 

Mendelian randomization (MR) was developed as a method to help provide a robust understanding of 

environmentally modifiable influences on disease [1]. It was proposed to offer a more reliable strategy 

than conventional observational epidemiological studies which have traditionally been plagued by issues 

such as confounding (where a common cause of an exposure X and outcome Y may distort the 

association between X and Y), reverse causation (where Y – or the disease process leading to Y - 

influences X) and other forms of bias, thus resulting in potentially misleading causal inference [2]. The 

clearest examples are shown through observational epidemiological studies which have indicated an 

apparent causal effect that has later failed to be confirmed in large-scale randomized controlled trials 

(RCTs) [3]. The proposed protective effects of vitamin and antioxidant supplements on cardiovascular 

disease [4, 5], beta carotene on lung cancer [6, 7], and selenium on prostate cancer [8, 9] are 

noteworthy examples. Such spurious findings from observational studies have had negative 

consequences, including the launch of expensive trials based on inadequate evidence, and increased 

uptake of nutritional supplements in the general population, some of which have subsequently been 

found to have adverse effects [7, 9].    

 

MR utilizes genetic variants robustly associated with exposures to strengthen inference regarding their 

potential causal influence on a particular outcome [1, 10]. The online “MR Dictionary” [11] offers a full 

description and definitions of terminology specific to MR which will be useful to refer to as we elaborate 

on the concepts and scope of the approach in this paper.  

 

The MR approach draws on Mendel’s laws of segregation and independent assortment, whereby genetic 

variants are allocated independently of environment and other genetic factors (except those in close 

physical proximity to the variant of interest, which tend to be inherited together through linkage 

disequilibrium (LD)) [3]. Based on the premise that the random inheritance of genetic variants from 

parents to offspring is reflected at a population level, genetic variants can identify groups that differ, on 

average, by a modifiable exposure. Here, group membership should not be associated with a range of 

behavioral, social and physiological factors that may confound observational associations [12]. By 

design, genetic associations should therefore be largely free from confounding and so any difference in 

outcomes between genetically defined groups can be directly attributed to the exposure.  
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The association between an outcome and a genetic variant known to proxy a particular risk factor 

mimics the link between the outcome and the proposed risk factor, and can be used to estimate this 

relationship with less confounding and bias than conventional epidemiological approaches.  Other 

qualities of (germline) genetic variants which make them useful in causal inference analysis are that 

they: can be robustly associated with modifiable exposures (i.e. can serve as strong genetic proxies); are 

fixed at conception and not influenced by disease processes (i.e. are less susceptible to reverse 

causation); are subject to relatively little measurement error and typically have long-term effects (i.e. 

are less liable to the underestimation of the exposure-outcome association, referred to as regression 

dilution bias) [13].   

 

Exposures of interest are typically modifiable and so evidence of causality can – in principle - be used to 

infer that intervening on an exposure will lead to a change in the outcome under investigation. Making 

such inference depends upon considering it reasonable to accept the principle of gene-environment 

equivalence: that perturbation of a phenotype by either a (hypothetical) change in genotype or by 

environmental change would produce the same downstream effect on an outcome [14-17]. For 

example, under this assumption, we would anticipate genotypic influence on circulating cholesterol 

level would lead to the same effect on coronary heart disease (CHD) as would a similar change in 

cholesterol level induced by dietary influences. While many exposures can be closely proxied by genetic 

variation, for others it is unlikely that genetic variation will mimic environment exactly, for example in 

capturing aspects of social deprivation and income [18]. Gene-environment equivalence is a 

fundamental principle in MR which also brings to the fore the issue of the time-depth of the exposure 

that is being examined, since genetic variants that influence a phenotype will do so over an extended 

period. We will come back to the issue of time, discussed at length in the MR literature since its 

inception [1, 13, 19].  

 

Within a causal inference framework, MR can be implemented as a form of instrumental variable (IV) 

analysis where the genetic variants serve as proxies or IVs for the modifiable factors of interest (Figure 

1) [20]. If we suppose X and Y are the exposure and outcome of interest, C is a set of variables that 

affects X and Y (i.e. potential confounding factors), and U is a further set of variables that affect Y, we 

can use a further variable G (the genetic variant of interest) as an IV in order to establish the causal 

effect of X on Y if it satisfies the following assumptions [21]:  

1) G is robustly associated with X (“relevance”);  

2) G does not share common causes (C and U) with Y (“independence” or “exchangeability”);  
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3) G affects Y exclusively through its effect on X (“exclusion restriction”)   

 

These assumptions are described in more detail in the “Assumptions of Mendelian Randomization and 

Instrumental Variable analysis” section.   

 

Scope of Mendelian Randomization  

 

Mendelian randomization has been used to:  

• appraise the causal relevance of both endogenous (e.g. blood pressure, low-density lipoprotein 

(LDL) cholesterol) and exogenous exposures (e.g. alcohol, smoking) 

• confirm and uncover causal effects for known risk factors of clinical relevance 

• establish the causal role of behavioral traits 

• evaluate causality in relation to social and economic factors 

• assess lifecourse effects 

• elucidate intergenerational influences 

• characterize difficult to measure environmental exposures 

• proxy for modifiers of environmental exposure (e.g. metabolism or detoxification) 

• mimic drug targets 

• evaluate the role of modifiable mediators between upstream exposures and disease outcomes  

• evaluate the effects of genetic liability to a particular disease.  

 

A selection of studies in Table 1 illustrates how MR has been previously used across a wide variety of 

contexts.  

 

When the basic principles of MR were initially formalized there were few examples of genetic variants 

which had robust associations with potentially modifiable exposures, and it was recognized that the future 

potential of MR would depend upon identifying such associations [1]. There has been very substantial 

progress in this area. Improvements and cost reductions in array-based genotyping techniques, 

complemented by DNA sequencing and imputation of information from human genome reference sets, 

have led to a dramatic increase in our understanding of the genetic contribution to disease risk. Such 

improvements have also permitted the widespread use of genome-wide association studies (GWAS) which 

have been successful at detecting replicable associations between common genetic variants and a host of 

traits in a hypothesis-free approach.  
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The establishment of genome-wide association study consortia, each focused on investigating different 

complex traits and diseases, has encouraged numerous population-based studies to contribute genetic 

data for meta-analysis (Table 2). This has in turn increased sample sizes for the discovery and robust 

replication of GWAS findings. Many of these consortia have also made their GWAS summary data 

publicly available which, aided by data resources hosting such summary data [22], has catalyzed the 

development of summary data-based MR studies (described in more detail in “MR Methods”).  

 

The recent availability of massive genotyped and phenotyped datasets, including biobank resources 

(Table 2), has added considerably to GWAS efforts. GWAS of phenotypic data from these resources are 

increasingly performed in an automated fashion, with summary statistics made freely available online 

(Figure 2). Efforts such as these have uncovered a host of genetic variants related to a range of traits, 

which may leverage greater explanatory power by acting as stronger genetic proxies or instruments in 

MR [23].  

 

Assumptions of Mendelian Randomization and Instrumental Variable analysis  
 

The key assumption of MR is that of gene-environment equivalence, as discussed above. When using the 

properties of germline genetic variants to strengthen causal inference, the confidence that a particular 

modifiable exposure is implicated in the causation of a disease can be enhanced by identifying the 

direction and magnitude of the effect. This can be estimated through IV analysis. The large majority of 

MR studies are now implemented within an IV framework, and therefore the IV assumptions are central 

to MR analysis. 

 

1) Relevance assumption: The genetic variant must be robustly associated with the exposure  

 

The most common method of deriving genetic instruments in recent MR studies is via GWAS, whereby 

single nucleotide polymorphisms (SNPs) which pass genome-wide significance (p<5 x 10-8) are typically 

considered for inclusion. However, it is important that the strength of the instrument is tested 

separately to appraise the relevance assumption, which is often done by means of the proportion of 

variance explained (r2) and the related F-statistic, which additionally takes into account the size of the 

sample under investigation. Increasingly, multiple genetic variants are found to be independently 

associated with traits investigated in GWAS and these may be combined in genetic risk scores or 
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through meta-analysis approaches to explain more variation in the trait [23]. This in turn can be used to 

increase power, obtain more precise causal estimates and minimize risk of weak instrument bias (i.e. 

uncertainty in the SNP-exposure association which can bias causal estimates) [24]. 

 

2) Independence/exchangeability assumption: There are no confounders of the association 

between the genetic variant and outcome  

 

Since genetic variants are randomized at conception, they should be allocated independent of 

environmental and other genetic variants excluding those in LD. This means that at a family level, 

genetic associations should be largely free from conventional confounding. While MR was explicitly 

introduced in 2003 within a parent-offspring design, data availability did not generally allow use of such 

designs at the time. It was suggested, however, that population-based studies with appropriate control 

for population stratification could approximate the parent-offspring design [1, 3]. Concerns about 

potential violation of this assumption at a population level relate to confounding by ancestry or 

population stratification, which can influence variation in both allele frequency and disease risk in 

population(s) being investigated (Figure 3). Approaches to limit spurious associations generated because 

of population groups include use of genetic associations derived from homogeneous populations or with 

adequate control for population structure e.g. through principal components analysis or linear mixed 

models [25]. However, the independence assumption can also be violated by dynastic effects (when 

parental genotypes directly affect offspring phenotypes), or by assortative mating (when individuals 

select a partner based on a particular phenotype). These biases will likely differ depending on the 

exposure(s), outcome(s) and population(s) under study.  

 

It is impossible to fully prove the independence assumption in an MR study because, while attempts can 

be made to account for ancestry and examine how genetic variants relate to measured confounders, 

associations with unknown confounders cannot be demonstrated. In addition, while previous 

recommendations have been to assess associations between the genetic instrument and a wide range of 

potential confounders of the exposure-outcome association [12], where associations are observed, this 

is unlikely to be due to a direct effect of the confounders on the genotypes and instead could indicate 

confounding by ancestry (Figure 3) or horizontal pleiotropy, as described below (Figure 4). 
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3) Exclusion restriction assumption: The genetic variant should only influence the outcome of 

interest via the exposure  

 

Biological pleiotropy is the phenomenon whereby a genetic variant influences multiple traits and is a 

major threat to the exclusion restriction assumption. However, it is important to make the distinction 

between vertical and horizontal pleiotropy [10, 26].  Vertical (or mediated) pleiotropy occurs where the 

genetic variant (G) is associated with the outcome (Y) because G affects Y through the exposure (X). This 

fulfils the exclusion restriction assumption and is the essence of the MR approach. Horizontal 

(unmediated or biological) pleiotropy occurs when G affects both X and Y but through different 

pathways. This will often yield biased estimates in MR if a genetic instrument influences the outcome via 

a mechanism other than the exposure of interest [27]. Such pleiotropy can be direct, as in the path from 

G to Y (uncorrelated pleiotropy), or can be indirect, e.g. when G affects X and Y through a shared 

confounder, U (correlated pleiotropy) [28] (Figure 4). The latter may occur in cases of mis-specifying the 

primary phenotype, such as when a genetic variant is used to proxy for a trait secondary to the trait with 

which it is directly associated.  

 

While it is not possible to prove that the exclusion restriction assumption holds in any MR study, various 

approaches may be taken to minimize risk:  

 

Use a functional polymorphism for the exposure of interest  
 

One method of ensuring that the genetic variant is unlikely to influence the outcome via another 

pathway is to use a SNP which has known biological function or is located in a gene which directly codes 

for the exposure of interest. For example, variants within or near the protein-encoding locus for C-

reactive protein (CRP) are known to alter serum levels of CRP and are likely to have a predominant 

influence on any outcomes via this pathway [29].  

 

While single SNPs serve as valid instruments in some situations, in other cases their use is limited if 

variants do have a pleiotropic effect which cannot be directly estimated. This may be particularly 

problematic if a variant:  

• is associated with multiple biomarkers on separate biological pathways (e.g. genetic variants 

influencing the branched-chain alpha-ketoacid dehydrogenase (BCKD) enzyme are associated 

with different branch chain amino acids [30]);  
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• disrupts the normal function of the exposure (e.g. an IL6R variant increases circulating 

interleukin 6 (IL-6) but reduces IL-6 signaling and therefore decreases risk of coronary heart 

disease [31]);   

• is associated with multiple dependent traits on overlapping pathways, and if those traits have 

different roles in disease (e.g. ALDH2 is associated with both alcohol consumption and 

acetaldehyde level, a known carcinogen, which makes it difficult to disentangle the effects of 

alcohol and acetaldehyde on risk of esophageal carcinoma [32].  

 

For a detailed description of these scenarios and applied examples see Holmes et al [19]. While 

functional SNP analyses may therefore appear plausible, they can have their drawbacks and many of the 

sensitivity analyses used for evaluating pleiotropy cannot be applied with a single SNP (see “Methods for 

assessing and accounting for horizontal pleiotropy”). Instead, it is recommended that associations 

between the SNP and a wide range of traits are investigated, as described below.  

 

Assess associations between genetic variants and other factors  
 

The presence of associations between genetic variants and other factors may reveal violations to the 

independence and/or exclusion restriction assumption. A common approach to appraise this is to assess 

whether the genetic variants used to instrument the exposure (and those variants in LD with the genetic 

instrument) have been associated with other phenotypes in genome-wide association studies, for 

example by searching PhenoScanner [33]. While this may highlight genetic variants with horizontal 

pleiotropy, it can also pick up vertical pleiotropy (e.g. a SNP related to body mass index (BMI) may 

appear in a GWAS of blood pressure via its influence on BMI). In addition, truly horizontal pleiotropic 

SNPs may not be detected by this method if the GWAS of the phenotype on the pleiotropic path is 

absent or underpowered. As such, it is not sufficient to simply exclude the variants which appear in 

other GWAS as a way to assess the exclusion restriction assumption.  

 

Conduct stratified analysis in a subgroup of the population where the genetic variant is not associated 
with the exposure of interest   
 

In some instances, conducting a stratified analysis can provide evidence against the possibility of 

horizontal pleiotropy. When a genetic variant is not related to the exposure of interest in a particular 

subgroup of the population, this variant should also not be associated with the outcome of interest in 

this subgroup (given an absence of the association with the exposure). For example, ALDH2, coding for 
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aldehyde dehydrogenase 2, is a common polymorphism in East Asian populations which has been used 

as a genetic instrument for alcohol consumption [32, 34, 35]. In East Asian populations, where women 

are much less likely drink to alcohol than men, this polymorphism is not strongly associated with alcohol 

intake among women [34]. This approach has been used to assess the presence of pleiotropy and 

evaluate a causal relationship between alcohol consumption and increased blood pressure [34] and risk 

of vascular disease [35]. For example, if the effects of alcohol consumption on blood pressure and 

vascular disease are causal, we would expect to find evidence of association between variation in ALDH2 

and the outcomes in East Asian men, but not East Asian women. Any association observed between 

ALDH2 and the outcomes in East Asian women, in the absence of alcohol intake, would indicate 

pleiotropy. Such an approach can be considered a negative control design [36] and additional models 

build on this approach to detect and adjust for the pleiotropic effects and provide valid estimates in 

such instances [37, 38] (see “Methods for assessing and accounting for horizontal pleiotropy”).  

However, genetic variants which are not associated with the exposure in a subgroup of a population 

may be difficult to identify, and so such direct assessment of pleiotropy is often not as straightforward.  

 

Do not condition on the exposure to assess exclusion restriction  
 

While it may seem intuitive to assess whether statistical adjustment for the exposure leads to 

attenuation of the gene-outcome relationship, this is not a recommended approach for testing the 

exclusion restriction assumption. This is because adjusting for the exposure may induce collider bias, 

where another factor which causes the exposure becomes correlated with the genetic instrument by 

conditioning on the exposure in this manner [39] (Figure 5). It is also worth emphasizing that the 

stratification approach used in the alcohol consumption example above may also lead to a similar bias if 

genotypes are not randomly distributed within the strata of exposure. While stratifying by sex is not 

problematic in this context, since biological sex is not caused by other factors, it is a potential problem in 

instances where genetic effects are investigated within other subsets of the population, for example if 

we were to stratify on alcohol drinker status itself [40]. Further to this, bias induced through adjustment 

for the exposure may be magnified by potential measurement error in the exposure [41].  

 

More advanced methods have been developed to assess violation of the exclusion restriction, including 

techniques that explicitly model and adjust for pleiotropy, and those that are naturally robust to 

pleiotropy [26]. These are described in more detail in the “MR Methods” section. 
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MR Methods  

Direct genotype associations  
 
The simplest MR approach to evaluate the presence of a causal relationship is to assess the association 

between a genetic variant known to influence or modify an exposure and the outcome of interest. 

However, this does not allow for the magnitude of causal effect to be estimated, which is most often the 

estimate of interest, especially when considering the translational implications and clinical utility of 

findings. In addition, multiple pathways can often explain the association between a genetic variant and 

a particular outcome, so more knowledge of the exposure of interest and its association with the genetic 

variant is generally required for a valid interpretation [19].  

 

Original applications of one-sample Mendelian randomization  
 

In the pre-GWAS era, most examples of applied MR were conducted using known polymorphisms 

assayed within one dataset, i.e. where genetic variants, exposure and outcomes of interest obtained 

from individuals in the same sample (Figure 6A). In such a scenario, the causal effect of the exposure on 

the outcome can typically be estimated using 2-stage least-squares (2SLS) regression [42]. In the first 

stage, the exposure is regressed on the genetic instrument and in the second stage the outcome is 

regressed against the predicted values from the first stage. The effect estimate can then be interpreted 

as the change in the outcome per unit increase in the exposure. The genetic instrument used in one-

sample analysis can be a single SNP, multiple SNPs, or a genetic risk score i.e. a summation of risk alleles 

for each individual which can be unweighted or weighted to give those genetic variants with the 

strongest effect on the exposure more weight [23].  

 

Studies with more individual-level data may also permit an assessment of associations between genetic 

variants and confounders of the exposure-outcome relationship in order to investigate the 

independence and exclusion restriction assumptions. Additional approaches to evaluate violation of the 

exclusion restriction assumption in one-sample MR include the Sargan test [43] which evaluates 

heterogeneity of the individual SNP estimates, and IV approaches which can estimate the causal effect 

in the presence of invalid (e.g. pleiotropic) instruments [44, 45].  

 

Early one-sample MR studies suffered the limitation of low power since few large datasets with relevant 

genotypic and phenotypic data were available. To counteract this, a number of MR studies were 

conducted using meta-analysis of causal estimates obtained from independent studies which was 
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greatly aided by the existence of large genetic consortia [46]. However, the development of two-sample 

MR analysis has vastly improved the scope of MR applied to large-scale datasets.  

 

Development of two-sample Mendelian randomization  
 
It is possible to use MR to estimate causal effects where genetic associations with the exposure and the 

outcome have been estimated in different samples (Figure 6B). This approach, now known as two-

sample MR [24], has greatly increased both the scope and popularity of MR analysis (Figure 7).  While 

the initial extended exposition of MR in 2003 [1] included examples of what is now called two-sample 

MR, the rise in popularity in recent years is attributed to the public availability of GWAS summary data, 

as well as the development of methods to harmonize and integrate datasets and compute causal 

estimates when the SNP-exposure and SNP-outcome associations come from different studies [47].   

 
The two-sample approach eliminates the requirement to have access to raw genetic data on individuals 

within a study and also makes performing MR less time-consuming. In terms of data requirements, all 

that is needed are the details of the genetic association between the variant(s) and the trait from the 

exposure GWAS (sample one) and the outcome GWAS (sample two). This typically includes information 

on the effect and other allele, effect allele frequency, effect estimate and standard error from both 

GWAS. In addition, the development of web software and code for summary-level data makes MR very 

straightforward to implement (see “Novel informatic tools”). It also increases the scope of MR analyses, 

with a wealth of exposure and outcomes available for interrogation which may be infeasible or 

expensive to measure in the same set of individuals. Furthermore, a series of methods have been 

developed within this setting in recent years to assess and correct for potential pleiotropy (see 

“Methods for assessing and accounting for horizontal pleiotropy”).  

 

The simplest approach for using summary-level data in an MR framework is to derive a Wald ratio for a 

single SNP. This is the effect estimate for the SNP-outcome association (from sample 2) divided by the 

coefficient of the SNP-exposure association (from sample 1), with the standard error of the Wald ratio 

often approximated by the delta method [48]. In the presence of multiple genetic instruments, a meta-

analysis approach (usually inverse-weighted meta-analysis (IVW)) may be used to combine Wald ratio 

estimates of the causal effect obtained from different SNPs [23]. The point estimates from an IVW MR 

are equivalent to a weighted linear regression of the SNP-outcome associations on SNP-exposure 

associations when the intercept is constrained to zero. The effect estimates obtained should also be 
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equivalent to the effect estimated in 2SLS when sample sizes are large, SNPs independent and there is 

limited heterogeneity in the Wald ratios. 

 

One- versus two-sample MR 
 

Despite its ease of application, there are various limitations of the two-sample MR which also require 

consideration. These have been discussed in detail elsewhere [49, 50] and are also summarized in Table 

3. In part because of these limitations, and also because of the recent availability of large-scale 

genotyped and phenotyped datasets (Table 1), there has been a recent resurgence of one-sample MR.  

Major benefits of the one-sample MR approach are the flexibility to perform rigorous MR, and the 

ability to assess the independence and exclusion restriction assumptions through assessment of 

individual-level confounders.  

 

However, weak instrument bias may threaten the estimation of causal effects in one-sample datasets 

[51], where uncertainty in the SNP-exposure association could bias the causal estimate (Table 3). 

Importantly, where weak instruments will bias causal estimates in the direction of the null in a two-

sample setting, weak instrument bias will be towards the observational association in a one-sample 

setting [50]. In addition, selection bias due to Winner’s curse could lead to biased causal estimates if the 

genetic variants were discovered in the same sample under investigation. This is a phenomenon which 

occurs in GWAS by using a p-value cut-off, which can lead to chance over-estimation of the effect size of 

SNPs with the strongest genetic signals in the GWAS discovery sample [52].  

 

While two-sample methods can be used for one-sample MR analysis [53], these may produce biased 

estimates and type 1 error rate inflation (i.e. incorrectly rejecting the null hypothesis of no association), 

something learnt from two-sample MR analyses when genetic consortia have overlapping samples [54]. 

It is advised that the covariance between the SNP-exposure and SNP-outcome association estimates are 

taken into account and that external weights be used where possible to minimise the risk of bias. 

Specifically, genetic variants can be weighted by the magnitude of their association with the exposure in 

an independent dataset [55], in what could be described as a “one-and-a-half sample MR” design. 

 

Extensions to the basic MR approach 

 

Other methods  
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A series of developments have been made to extend the application of MR to:  

• consider the prevailing direction of causality between two traits (bidirectional MR) 

• evaluate intermediates on the causal pathway between exposures and outcomes (two-step, 

network or mediation MR) 

• assess the causal role of closely related traits and to establish independent effects of each 

(multivariable MR)  

• evaluate combined causal effects of risk factors (factorial MR or exposure interactions). 

 

Descriptions, directed acyclic graphs (DAGs) and applied examples for each of these methods are 

outlined in Table 4.  

 
Novel informatic tools   
 

The recent widespread availability of GWAS summary data for a range of traits, with large data 

repositories and bioinformatic resources for performing MR, provides a powerful and user-friendly way 

of investigating causal relationships between many different traits [22]. For example, MR-Base is a 

platform which has retrospectively collected GWAS datasets for more than 20,000 traits, as well as 

protein-, methylation- and expression-quantitative trait loci (pQTL, mQTL and eQTL) statistics for tens of 

thousands of molecular markers [47]. Together with its web-based interface which allows the user to 

explore a range of causal relations, there is an accompanying R package (TwoSampleMR) which allows 

for LD pruning of genetic instruments in the exposure GWAS, the identification of SNPs and tagging SNPs 

for each instrument in the outcome GWAS, the careful harmonization of summary statistics between 

exposure and outcome GWAS, as well as the use of sensitivity analyses to promote evaluation of the MR 

assumptions. 

 

Methods for assessing and accounting for horizontal pleiotropy  
 

Violation of the exclusion restriction assumption via horizontal pleiotropy is a major threat to the 

validity of MR analyses and so various methods have been developed in recent years to try to overcome 

this. These methods: i) can test for potential pleiotropy (e.g. heterogeneity and outlier tests), ii) can 

directly model and correct for pleiotropy (e.g. MR Egger regression [56] and MR-TRYX [57]) or iii) are 

"naturally robust” to pleiotropy (e.g. mode and median estimators [58, 59]). These typically use IV 

estimates as the basis of the sensitivity analyses and can be used to explore how robust MR findings are 

to the assumption that the genetic instruments used have no horizontal pleiotropic effects.  
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If the estimate obtained for a causal effect is of a consistent magnitude across multiple independent 

variants, then pleiotropy is less likely to be a concern. However, often effect estimates are not 

consistent across independent instruments, with some “outlying” variants having an observed 

association with the outcome which is substantially different to that expected given their association 

with the exposure. If the instrument is valid, it should have an effect on the outcome which is 

proportional to the effect on exposure. Formal tests for examining heterogeneity include the Sargan’s 

test for 2SLS and Cochran’s Q statistic, Rucker’s Q and likelihood ratio tests in two-sample MR [26, 60].  

For detecting outliers, the following approaches can be considered: leave-one-out analysis, Cook’s 

distance, studentized residuals, Q-contribution, and the MR-PRESSO global and outlier tests [27].  

 

Graphical assessment is also helpful for assessing potential pleiotropy. Heterogeneity can be visualized 

in scatter plots (Figure 8), where estimates derived from each genetic variant do not align with the 

regression line i.e. do not converge to the same causal estimate, or in forest plots where there is clear 

variation in the causal estimates obtained from each variant. Funnel plot displays of MR estimates of 

individual genetic variants against their precision will show asymmetry if some variants have unusually 

strong effects, indicative of pleiotropy. Leave-one-out plots can be used to assess the influence of 

individual outliers; and the Galbraith Radial plot can be considered in place of the scatter plot for 

detecting outliers and influential datapoints [61].   

 

While random variation could result in different effects estimated by the individual variants, the 

presence of heterogeneity in the causal effect estimated by individual SNPs could also indicate 

horizontal pleiotropy. The simplest method of accounting for this is with the use of a random effects 

IVW meta-analysis model [23]. However, this approach can only be used where horizontal pleiotropy is 

balanced (i.e. where the random effects have zero weighted mean) [26]. The first method developed for 

assessing and counteracting the extent of unbalanced or directional pleiotropy was the application of 

the Egger regression technique to MR analysis [56]. This approach, first introduced in the context of 

small study bias within meta-analysis, allows the intercept of the weighted linear regression line of the 

SNP-outcome on the SNP-exposure association to vary freely (Figure 8). Directional pleiotropy can be 

tested by assessing the extent to which the intercept deviates when it is not constrained to the origin (as 

in IVW), and the gradient of the line can be used to provide a causal estimate in the presence of 

directional pleiotropy using the MR Egger approach.  It is important to report both estimates.  
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Additional pleiotropy-robust approaches include the modal and median based estimators which both 

avoid the contribution of some invalid instruments [58, 62]. Both of these methods can be viewed as 

implicit outlier correction techniques, since they only allow certain more “reliable” SNPs to contribute to 

the overall estimate. Use of a weighted approach for both of these methods is typically advocated to 

maximize statistical power.  

 

Additional methods attempt to account for pleiotropy include: direct outlier removal (e.g. MR-PRESSO 

[27], generalized summary MR (GSMR) [63], and Cook’s distance [64]), outlier penalization (e.g. MR-

TRYX [57]); “no-relevance point” approaches including negative controls [65],  generalized gene-

environment interaction models (MR GxE [37]), pleiotropy-robust MR [66]; and techniques which 

attempt to directly model pleiotropic pathways including multivariable MR [67], structural equation 

modelling (SEM) [68] and the Direction of Causation approach (MR-DOC) [68, 69]. These methods are 

described in more detail elsewhere [26, 70, 71]. 

 

It should be emphasized that while these approaches can relax or bypass the exclusion restriction 

assumption of conventional MR analysis, they in turn come with their own assumptions [26] (Table 5). In 

addition, these approaches are typically less well powered than the IVW approach. As such, these 

methods for assessing and accounting for pleiotropy should be viewed as sensitivity analyses to 

conventional approaches such as IVW.  

 

Common misconceptions  

With rising popularity of the MR approach which is now becoming a common element of GWAS papers, 

there are a number of common misconceptions which require debunking in order to ensure that the 

findings from MR analysis are interpreted appropriately:  

 

“There are three assumptions on which MR relies for estimating causal effects”   

While there are three core IV assumptions that apply to many MR studies (relevance, independence and 

exclusion restriction), additional assumptions are needed to quantify the effect or to consider that the 

study is informative about effects that may be produced by manipulation of the exposure. The latter is 

made under the gene-environment equivalence assumption already discussed.   

 



 

16 

 

Another assumption in instrumental variable analysis which is relevant for effect estimation is the 

assumption of homogeneity [72]. This assumption relates to assessing whether the causal effect 

obtained in MR is uniform across the population, and so represents an average treatment effect (ATE). 

For example, if investigating the effect of body mass index on cardiovascular disease (CVD), we would 

assume that a kg/m2 increase in BMI would elevate risk of CVD irrespective of the person’s gender or 

age. The homogeneity assumption can also be replaced by imposing monotonicity, which assumes that 

an increase in the number of risk alleles will never lower the likelihood of exposure [73] (e.g. a BMI 

genetic risk score should not increase BMI for some individuals and decrease it for others). This allows 

for an estimation of a local average treatment effect (LATE) among those individuals whose exposure 

level is affected by their genotype. Such assumptions must be made in order for the effect estimate 

obtained from any MR analysis to be interpreted as the causal effect of the exposure on the outcome. 

While they cannot be explicitly tested, the assumptions can be interrogated through various means. One 

possibility is to estimate causal effects in different subpopulations and to evaluate whether the 

estimated effects differ. Alternatively, as non-homogeneity in the genetic variant – exposure association 

would lead to non-homogeneity in the genetic variant – outcome association, evaluating the variance of 

exposure and outcome groups by genotype would provide a test for the presence and degree of 

violation of this assumption [74]. Large GWAS allow variance to be characterized well, and so may be 

interrogated to investigate this [75].   

 

An instance where it is difficult to obtain relevant treatment effects from MR estimates is in the 

presence of binary exposures [76]. As the assumptions of homogeneity and monotonicity are less likely 

to hold when interpreting causal estimates with binary exposures using MR, it is often simpler to report 

on the existence and direction (rather than the magnitude) of the causal effect [76]. If these 

assumptions can be made, there are options for causal estimation with a binary exposure which allow 

estimates to be converted onto a more clinically meaningful scale. In one-sample data with timed 

events, it is possible to estimate the causal effect of a binary exposure. However, when conducting two-

sample MR, the causal effect estimates should be interpreted as reflecting the effects of the genetic 

liability to the exposure, rather than the exposure itself [77].  

 

Interpretation of causal effects on binary outcomes is also challenging [78]. While it is empirically 

possible to calculate causal estimates in a similar manner to continuous variables, for example with use 

of the log odds scale, the MR effect estimate may only be approximate in the case of a binary outcome 

[79]. This is because the “non-collapsibility” of odds ratios means that these estimates may not be 
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constant across strata, and so cannot be used to obtain a precise causal effect [80]. Alternatively, 

analyses can be conducted on the risk difference scale, which reduces the risk of bias due to non-

collapsibility.  

 

As mentioned, while sensitivity analyses may relax some of the core IV assumptions, e.g. exclusion 

restriction in the case of pleiotropy-robust methods, they impose their own set of (albeit weaker) 

assumptions (Table 5). Two-sample MR also imposes additional assumptions to the one-sample MR 

approach, including exchangeability of the two samples (i.e. whether they are both drawn from the 

same underlying population), as well as the assumption that the two samples are non-overlapping [81].  

 

“MR is analogous to a randomized controlled trial”  

An analogy has often been made between and MR study and an RCT, where genotypes are said to 

randomize participants into different levels of exposure or treatment, independent of confounding [82]. 

In particular, it is this random allocation of genetic variants from parents to offspring which can be 

viewed as analogous to an RCT [3]. Often this analogy is useful, particularly when it is possible to scale 

causal effect estimates to that of interventions, for example in the case of (retrospectively) predicting 

the null effect of selenium on risk of prostate cancer using MR (RR 1.01 (95% CI 0.89, 1.13) per 114 ug/L 

in MR vs RR 1.04 (95% CI 0.91, 1.19) per 114 ug/L in RCT) [83]. However, the analogy is not perfect since 

RCTs typically involve interventions of short duration, whereas an individuals’ genotype could reflect 

lifelong exposures, time-dependent or critical period effects, as well as potential developmental 

compensation that may arise over time [1, 84]. Causal estimates obtained from MR analyses may 

therefore differ in magnitude to those seen or anticipated in an RCT, although can also be useful in 

providing added value regarding lifecourse effects, for example of knowledge that cholesterol lowering 

in earlier life is likely to be important for preventing cardiovascular disease [85]. In addition, in MR 

analysis conducted at a population- rather than family-level, the analogy is only approximate, as 

described below.  

 

“Genetic variants are not influenced by confounding factors”  

Under Mendel’s laws of segregation and independent assortment, it is assumed that genetic variants 

should be inherited independently of other genetic and environmental factors. While population-level 

genetic variants are typically much less associated with many potential confounders than directly 

measured exposures [12], the random inheritance of genetic variants from parents to offspring does not 

guarantee that genetic variants and confounders will be independent in samples of unrelated 
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individuals. For example, an obvious violation of this is created due to population stratification which 

can introduce confounding of genotype-disease associations by factors related to subpopulation group 

membership within the overall population. This might occur even within groups of relatively 

homogeneous ancestry, due to underlying substructure [86, 87], or also at the family level, for example 

due to assortative mating [88]. One potential violation of the second IV assumption is that of “dynastic” 

or “genetic nurture” effects, where parental genotypes affect the offspring via the environment that 

parents create for their offspring by affecting the parental phenotype [89]. As a result, a genetic 

instrument in the offspring will be correlated with the environment created by the parents. One solution 

to this problem is to perform MR analysis between siblings who have a shared family background and 

whose genotype differences will not be confounded by parental or family factors (within-family MR) [89, 

90]. In the initial presentation of MR it was suggested that the most robust form would be within 

families [1] and with increasing sources of data for family-based studies, this approach offers potential 

for elucidating causal effects for those traits which are most likely to be influenced by dynastic effects 

(e.g. socio-economic factors).  

 

“The exclusion restriction assumption is violated due to pleiotropy”  

The exclusion restriction assumption is sometimes referred to as the “no pleiotropy assumption”, 

although it can be violated in a number of other ways, including timing effects, interactions, 

measurement error, reverse causation, collider bias and LD, as previously described [91].  

 

In particular, the following sources of collider bias may induce spurious associations between a genetic 

variant and factors other than the exposure of interest that may influence the outcome (Figure 5):  

• The use of instruments generated from a GWAS which conditions on another phenotype 

• Ascertainment bias in case-control studies 

• Selection and loss-to-follow up bias in cohort studies  

• Survival bias when investigating later-life outcomes  

• Evaluation of disease progression in a case-only setting   

 
When there are only moderate effects of a phenotype on selection, bias is generally small [92]. 

However, where collider bias is likely to exist, it is recommended that sensitivity and simulation studies 

are carried out to evaluate the extent to which bias might distort estimates [93]. In addition, alternative 

approaches such as inverse-probability weighting, modeling competing risks, adjusting for index event 

bias [94, 95], and the use of negative control outcomes can also be considered [96].   
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Another way in which the exclusion restriction may be violated is when genetic instruments are in LD 

with other variants which have an effect on the outcome not via the exposure. In this instance, genetic 

colocalization approaches [97] may be used which attempt to evaluate whether two traits share the 

same causal variant at a particular locus, and thus contribute to evaluation of whether the exclusion 

restriction assumption is likely to hold.  

 

 “Reverse causation is not an issue for MR”  

Since germline genotypes are fixed at conception, they cannot be influenced by reverse causation, and 

therefore it is often claimed that reverse causation is not an issue for MR. While this is true, a scenario 

where reverse causation might pose a problem for MR is where there are bidirectional effects between 

two traits (X and Y) and where the genetic instruments GX and GY are not well characterized [10] (Table 

4).  If trait X influences trait Y, then a GWAS with adequate statistical power will identify a genetic 

variant with its primary influence of trait X as being associated with trait Y (for example the CHRNA5 

variant related to smoking intensity has been identified at genome-wide significance in relation to lung 

cancer [98]). This will lead to spurious conclusions if this variant were then used as a genetic instrument 

for trait Y (e.g. that lung cancer causes smoking), i.e. by mis-specifying the primary phenotype.  One way 

to minimize this problem is to ensure that the two instruments are independent of each other by 

excluding the genetic variants which they have in common. However, this may also increase the risk of 

type II error if variants are excluded from the genetic instruments which reflect vertical pleiotropy (e.g. if 

the CHRNA5 variant were removed from both the smoking and lung cancer instruments). Alternatively, 

for a two-sample MR analysis with a binary outcome, it may be possible to investigate the number of 

“cases” of the outcome in the sample used to run the exposure GWAS. Here a low prevalence of the 

outcome in the exposure sample would minimize risk of such a reverse signal. Another approach which 

can be used in this context is the Steiger method applied to MR [99]. This has been developed to 

investigate whether the genetic variants being used to instrument trait X are more strongly correlated 

with trait Y than X, in which case they will be excluded from the instrument for X.  

 

One way in which this kind of reverse causation can be leveraged within an MR study is with the notion 

of “reverse MR” [100]. Here a disease-associated genetic risk score would be expected to associate with 

causes of the disease e.g. a genetic risk score for lung cancer would be associated with smoking because 

the CHRNA5 variant is included in the score. If the outcome of interest cannot plausibly cause the 

exposure being considered (for example in a subgroup where the outcome is not prevalent, e.g. among 
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young study participants in the case of lung cancer), then this situation can be used to confirm causal 

exposures. This principle has been applied to investigate perturbations in proteins and metabolites in 

relation to later cardiometabolic disease risk [101, 102]. However, alternative scenarios such as 

pleiotropy, a causal effect of disease liability, or early stages of disease which influence the exposure 

(e.g. pre-diagnostic cholesterol lowering in cancer [103]) also need to be considered.  

 

Overcoming limitations  

 

Limitations of the MR approach have been discussed extensively elsewhere [1, 3, 10, 13, 49, 50, 91]. 

While some of the early concerns of the MR approach such as a lack of genetic instruments, horizontal 

pleiotropy and low power have been ameliorated with larger datasets and novel methods, some 

limitations remain and new constraints have been recognized.  

 

Lack of reliable polymorphisms for studying modifiable exposures of interest  
 

Genetic instruments extracted from a single gene with a well-understood biological function, and 

therefore most likely to meet the MR assumptions, are not available for all exposures.  While the 

proliferation of GWAS has increased the availability of genetic variants to use as potential instruments, 

the role of the variants identified often requires careful consideration to assess their validity in MR. 

Polygenic influences on most phenotypes imply individual SNPs of small effect size, each with a marginal 

contribution to the variance explained in a trait. This is both a threat to the exclusion restriction and can 

lead to problems of weak instruments, unless the variants can be combined into a genetic risk score or 

applied in large sample sizes.   

 

The use of genetic variants may sometimes lead to counterintuitive results. For example, while it would 

be expected that longer term IL-6 levels would elevate the risk of CHD [104], genetic variation in the IL-6 

receptor which increases circulating IL-6 levels has actually been found to decrease risk of CHD [31]. This 

can be explained since carriers of this polymorphism exhibiting higher circulating IL-6 levels but reduced 

membrane-bound IL-6, with reduced IL-6 signaling, which in turn reduces risk of CHD [31]. Similarly, if 

genetic polymorphisms are associated with multiple aspects of a single trait, for example variation in 

CHRNA5 which is associated with different dimensions of smoking behavior (e.g. number of puffs per 

cigarette, depth of inhalation) [105], this can also lead to problems of the interpretation of causal effects 

for any particular dimension of the trait.   
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A further limitation posed by a lack of understanding of genetic variants poses is that of “contamination” 

of the instrument by variants associated with traits “upstream” of the trait of interest, leading to mis-

specification of the primary phenotype. This is a particular concern as GWAS sample sizes increase, since 

it increases the power to detect genetic variants which act indirectly on the trait of interest. For 

example, genetic variants with a primary influence on BMI appear among the top hits in GWAS of C-

reactive protein [106], but should not be used as instruments for CRP levels.  This has already been 

discussed within the context of a bidirectional relationship, where genetic variants which influence the 

exposure through reverse cause may be picked up. In addition, it may re-introduce confounding if 

confounders are picked up as genetic variants for the exposure. For example, genetic variants identified 

in relation to drinking behavior have been found to be strongly related to socio-economic factors [107]. 

This may lead to confounding in MR studies if the genetic variants used to instrument the exposure 

(here drinking behavior) are primarily associated with factors upstream of the exposure (e.g. 

educational attainment) and may explain the opposite genetic correlations observed between alcohol 

quantity and intake frequency (which are differentially associated with educational attainment) in 

relation to various health outcomes in a recent study [108]. Multivariable MR can be used in this 

instance to estimate the "true” effect of the phenotype being investigated, for example accounting for 

educational attainment to estimate direct effects of drinking behaviour, but this requires knowing the 

structure of the underlying phenotypes.  

 

Horizontal pleiotropy  
 

There is a clear trade-off between including more variants in a genetic instrument to maximize variance 

explained in the exposure and the increased risk of pleiotropy by including more poorly characterized 

variants. However, the potential advantage of including more variants is the ability to use the suite of 

approaches already described. These approaches relax the exclusion restriction assumption but each has 

its own sets of assumptions (Table 5). If results are largely consistent across methods which have 

orthogonal biases [109], there can be more confidence in drawing robust conclusions. Alternatively, in 

the presence of inconsistent results across methods, a Bayesian model averaging framework may be 

used as a basis for efficient estimation in the presence of pleiotropy [110].  

 

Lack of independent instruments  
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While it is not necessary that a genetic variant used to instrument a modifiable exposure of interest in 

MR should be the causal variant for that trait, it is important to assess whether multiple SNPs used in 

the instrument are likely to be tagging the same causal variant. This is because including correlated 

variants will typically lead to erroneous precision in the causal estimate obtained. LD-based clumping or 

pruning can be used to exclude variants in strong LD, which can ensure independence of the 

instruments. Another approach is to use a weighted generalized linear regression method which takes 

into account correlation of multiple non-independent SNPs [111]. This approach is particularly useful 

when assessing causality of molecular phenotypes (e.g. DNA methylation, gene expression, protein 

levels), which are often characterized by few independent instruments in cis (genetic variants located 

close to the target locus/gene).  A method which is often utilized in conjunction with MR when there is, 

for example, one independent variant to instrument a molecular trait in cis, is the approach of genetic 

colocalization mentioned previously. Alternatively, the inclusion of trans instruments (genetic variants 

more distal to the target locus/gene) in the MR analysis can be considered, although it is more likely that 

these variants will violate the exclusion restriction criteria via horizontal pleiotropy. 

 

Need for optimal precision  
 

A failure to recognize the importance of both sample size and instrument strength in MR studies for the 

detection of expected effects has in the past led to uninformative findings which lack adequate precision 

to support or reject hypotheses about causal effects. Genotyping in large-scale epidemiological studies 

as well as the availability of GWAS summary statistics has vastly improved the power of MR studies and 

has revealed an increasing number of genetic variants which explain a larger proportion of trait 

variance.  Nonetheless, it is always recommended that power calculations for MR studies be conducted 

a priori [112]. Equivalence testing may also be used to evaluate observed effects within a priori defined 

equivalence bounds, in order to distinguish effects which are large enough in magnitude to be deemed 

robust.   

 

It is important to recognize that several of the extensions of the conventional MR approach, such as 

factorial MR, multivariable MR, sensitivity analyses such as MR-Egger, and within-family MR analyses all 

suffer from precision constraints which should be taken into consideration. This can be evaluated 

through additional tests, for example with the Sanderson-Windmeijer conditional F-statistic in the case 

of multivariable MR which can be used to assess instrument strength for multiple exposures when 

estimated jointly [113, 114]. Furthermore, precision can be limited in specific contexts, for example 
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when evaluating intergenerational causal effects which have previously been limited to studies with 

genetic data available in two generations [115]. In this context, new structural equation model (SEM) 

approaches have been developed which allow effects of parental exposures on offspring outcomes to be 

inferred without having to have intergenerational genetic data, and which leverage power from large 

GWAS summary data in a two-sample approach [68, 69].  

 

Weak instrument bias  

 
Methods to overcome potential weak instrument bias in MR include the use of SIMEX-corrected 

estimates when the assumption of no measurement error (NOME) cannot be met [116], the use of 

robust-adjusted profile scores [117], as well as a weak instrument and pleiotropy robust estimation 

method for use in multivariable MR [114].  

 

Winner’s curse 
 
It is recommended that the GWAS discovery sample is independent of the sample(s) used to conduct the 

MR analysis [49]. Ideally, the genetic variants used as instruments in an MR analysis will also have been 

replicated in an independent sample in order to further minimize risk of Winner’s curse. However, there 

is a clear trade-off between maximizing sample sizes of GWAS for discovery of genetic variants and 

avoiding the problem of Winner’s curse by retaining a sample for replication and implementation of the 

MR approach. In the largest datasets, it may be possible to perform a split-sample [118] or jack-knife 

analysis [119], whereby the dataset is partitioned to avoid problems of sample overlap and Winner’s 

curse.   

 

Canalization and time-varying effects  
 
The notion of canalization or developmental compensation is a potential limitation of MR for which 

there is no simple empirical assessment [1]. It refers to the buffering of genetic effects during 

development which may bias MR estimates and vitiate gene-environment equivalence, i.e. that 

perturbations caused by genotype have the same downstream effects as if they were caused by 

modifiable exposures. Canalization is a widespread phenomenon in gene knockout studies [1], although 

it is currently unclear whether the generally small phenotypic differences induced by common functional 

polymorphisms are sufficient to induce compensatory responses. A related consideration is the often-

stated assumption that genetic variants have lifelong effects, which has been used previously to explain 

large point estimates obtained from MR compared with other epidemiological approaches [120]. There 
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are clear examples of MR where exposures are time limited, and where canalization is therefore less 

likely to be an issue. For example, when assessing causal effects of exposures in utero, the maternal 

genetic variants being used as instruments will only have an effect on the offspring via mechanisms 

during the intrauterine period [115], and when assessing causal effects of exposures which occur 

predominantly in adulthood (e.g. alcohol consumption, childbearing), the genetic variants will only have 

an effect after the developmental stage where canalization is most likely to occur.  

 

While it is often difficult to model such time-varying effects in MR, they can bias causal estimates [121] 

and may have implications for determining optimal timing of interventions. New GWAS studies have 

started to reveal genetic variants with distinct timing effects [122], which may be leveraged to 

investigate timing-varying effects in an MR context. For example, a recent multivariable MR study used 

genetic variants with distinct effects on body size in childhood and adulthood to separate the causal 

effects of this trait at more than one stage of the lifecourse on risk of chronic disease [123]. 

 

Future prospects  

 
While the scope of MR has grown massively in recent years, there are several priority research areas 

which have not yet been fully evaluated. With increasing methodological and bioinformatic innovation, 

there is great potential to make progress in these areas. However, subject-specific knowledge, 

methodological insight and improved reporting of MR findings are required to ensure the robustness 

and reproducibility of findings.  

 

 

Extending clinical applicability  

 

Identifying factors underlying disease progression  

To date, the majority of GWAS have sought to identify genetic variants associated with risk of disease 

occurrence. Such variants are informative for disease prevention, but not necessarily for treatment 

aimed at influencing disease progression since the same genetic factors will not necessarily influence 

both disease onset and progression of the disease [124, 125]. In 2017, just 8% of genetic association hits 

in the GWAS Catalog had attempted to identify variants associated with disease progression or severity, 

and most with modest sample size [125]. Nonetheless, an increasing number of progression GWAS are 

being carried out, in studies such as the Genetics and Subsequent Coronary Heart Disease consortium 

(GENIUS-CHD; coronary heart disease, n>270k cases) [126], the Breast Cancer Association Consortium 
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(BCAC; breast cancer, n>47k cases) [127] and the Prostate Cancer Association Group to Investigate 

Cancer Associated Alterations in the Genome consortium (PRACTICAL; prostate cancer, n>45k cases) 

[128], allowing for MR studies of progression to be conducted.  

 

However, determining true causal effects on disease progression using MR in case-only datasets is made 

more challenging because of the issue of collider bias [93, 125]. In particular, when a group of 

participants are selected based on certain characteristics (e.g. presence of disease), this will introduce a 

spurious association between independent risk factors influencing selection which will then distort the 

relationships between each risk factor and disease progression (Figure 5).  This is a threat to both 

conventional observational associations and to studies of genetic influences, with confounding being 

reintroduced which can lead to violation of the MR assumptions. Methods for alleviating such biases are 

currently in development [93-95]. These attempt to estimate the bias adjustment factor based on 

estimates for the association of genetic variants with both incidence and progression.   

 

Drug trials  

While RCTs remain the gold standard approach for testing the efficacy and safety of a new drug, RCTs 

can be complemented by MR in terms of prioritizing drug targets, predicting the outcome of trials and 

optimizing trial design [129, 130]. Human genetic evidence is a strong predictor of drug success [131] 

and MR studies of proteins and metabolites are becoming fundamental in drug discovery and 

development [129, 130, 132, 133]. In particular, cis-acting variants may serve as genetic proxies for 

protein drug targets, and selection of such variants may be optimized to evaluate the potential causal 

relationships between those drug targets and a range of diseases [134-136].  A promising application of 

MR is in the prioritization of targets for disease prevention, for example revealing the role of PCKS9 

inhibitors for reducing LDL cholesterol [137], as well as de-prioritizing interventions based on null results 

from MR, for example showing that CRP concentration is unlikely to be a causal factor in CHD [138]. MR 

can also indicate potential side effects of drugs, including the elevated risk of type 2 diabetes among 

some lipid-lowering drugs [137], which has also been shown in the case of statin trials [139]. It has also 

been used to identify potential re-purposing opportunities of existing drugs [140]. Most recently, 

genetic variation in IL6R has been associated with lower risk of hospitalization from COVID-19, which is 

in line with findings from IL6-receptor therapeutic inhibition trials [141]. In addition to predicting the 

consequences of pharmacotherapy, MR has the potential to be used to optimize trial design, for 

example in relation to segmenting patients who are most likely to benefit from the drug or giving 
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insights into the timing of drug initiation [120, 129]. However, this typically requires the availability of 

prospective datasets of target populations with genetic data available [130].  

 

Scaling up feasibility trials using MR to robustly infer causal effects on clinical endpoints  

A novel application of MR has recently been proposed which may enhance the value of feasibility 

studies of interventions [142]. This approaches uses MR to predict causal effect of these interventions 

on long-term clinical outcomes via short-term intermediate biomarkers. Feasibility trials are small-scale 

studies which aim to assess the practicality and acceptability of implementing an intervention in a 

clinical setting. These are not usually powered to evaluate effects on clinical outcomes and are not 

typically followed up for enough time to assess long-term outcomes. However, intermediate measures 

may be collected which can serve as surrogate endpoints in such studies. These measures may lie on the 

causal pathway to clinical outcomes and MR can be used in this context to appraise the causal effect of 

those intermediate measures altered by the intervention on long-term outcomes, using a larger study 

base to the feasibility study in question to bolster power.  While these intermediate biomarkers serve as 

surrogate endpoints, which are well known to have limitations [143], the advantage of using MR in this 

context is that it is possible to explore both expected and unanticipated effects of manipulating an 

intermediate trait on a range of outcomes, including relatively rare ones, and with larger sample sizes.  

Furthermore, the approach may be used to uncover other causal intermediates which could validate 

choice of surrogate markers for use in future feasibility studies.  

 

Uncovering molecular mechanisms  

Building on the success of GWAS and the availability of cost-effective and robust technologies is the 

scaling up of other ‘omic technologies within population health. This is largely concerned with 

understanding how gene regulatory mechanisms or gene products influence health-related outcomes 

and is useful for investigating the molecular pathways that may underpin causal effects. In particular, 

such ‘omic measures are influenced by many environmental and endogenous factors and so can be 

considered as intermediate phenotypes through which causal effects may be investigated [10].  

 

Of particular utility are large-scale ‘omic scans for formulating novel hypotheses on biological processes 

underpinning complex traits and diseases. However, in contrast to germline genetic variation, ‘omic 

signatures are largely phenotypic, and are therefore subject to the same potential problems of 

confounding and reverse causation which afflict conventional epidemiology [144]. MR is being 

increasingly applied to elucidate causality for a range of molecular data, including epigenetics, 
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transcriptomics, gene expression, metabolomics and proteomics [145]. For this, approaches such as 

two-step, network and multivariable MR are of particular utility for determining whether these markers 

lie on the causal pathway between risk factors and disease (Table 4). Such approaches are being applied 

in increasingly complex and innovative ways, to consider the causal nature of a large number of 

molecular markers [146], integrating several types of ‘omics data to evaluate molecular pathways [147], 

as well as considering the tissue-specific nature of causal effects [148].  

 

Increasing ethnic diversity in MR studies 

Approximately two thirds of all previous GWAS have been performed in individuals of European 

ancestry [149]. Differences in allele frequencies and LD patterns between populations threaten the 

validity of identified genetic variants and therefore transferability of MR findings to other populations 

[149, 150]. While restricting GWAS and MR analysis to more homogeneous ancestries can help to 

reduce the threat of population stratification, other approaches such as Bayesian mixture model analysis 

can be taken to overcome this limitation while ensuring greater diversity in genetic studies [25]. Greater 

diversity is important as it allows for improved causal inference of risk factors and the clinical translation 

of genetic findings in other ethnic groups. Furthermore, allowing for diversity in MR studies can help to 

identify genetic variants which are typically rare in Europeans, where more common variation in other 

ethnic groups can bolster power in MR for determining causal effects [35, 151]. Some large-scale non-

European biobanks are available for genetic analysis (Table 2), with a recent GWAS of ~200,000 

individuals in Biobank Japan identifying a number of novel loci important for elucidating biology in the 

East Asian population [152].  

 

Methodological innovations  

A number of methodological extensions of the original MR approach have been discussed throughout 

this review and an increasing number are being developed. In particular, several recently developed 

whole-genome based approaches, including Genetic Instrumental Variable regression (GIV) [153] and 

Causal Analysis Using Summary Effect estimates (CAUSE) [28], are seemingly less vulnerable to 

environmental confounders that are correlated with genes than many of the methods already described  

(Figures 3 and 4). While the previously outlined methods are specifically designed to account for 

horizontal pleiotropy of the genetic instruments, GIV and CAUSE make use of full GWAS data to also 

account for other sources of bias. For example, if the primary phenotype has been mis-specified, the 

Instrument Strength Independent of Direct Effect (InSIDE) assumption of the MR Egger sensitivity 
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analysis is likely to be violated, and so the CAUSE method may be used as an additional test to 

determine the presence of correlated pleiotropy in this instance.      

 

While the range of methods now available allows for rigorous analysis and robust causal inference to be 

made, it can be difficult to navigate the various approaches and appraise their relative strengths and 

limitations. However, it has been emphasized that the best choice of method can often be context 

specific [154]. More generally, applying a number of approaches each with orthogonal biases can be 

helpful in “triangulating” evidence if the estimates obtained from the approaches converge on a similar 

causal estimate [109].  

 

Automation 

The development of bioinformatic platforms and software supports the systematic application of MR 

[22, 47]. There is scope to automate MR analyses in order to evaluate a multitude of causal relationships 

in a time-efficient manner. This can aid in the accelerated identification, prioritization and evaluation of 

intervention targets, for example through phenome-wide association studies (MR-PhEWAS) [155, 156], 

and the examination of causality in increasingly complex networks with the integration of molecular 

data [157]. However, limitations of these agnostic approaches include the multiple testing burden 

imposed as well as the possibility of false positives, which require careful follow-up in terms of 

evaluating patterns of bias and ensuring robustness of findings to the various assumptions. While 

machine learning and Bayesian model algorithms have been developed to help select the most 

appropriate model for evaluation [23, 110, 157-159], users should be careful that the use of automation 

and data repositories do not trivialize the analysis being conducted and interpretation of results [160].  

 

Improving reproducibility and reporting of MR results  

The relative ease at which MR analysis can now be performed can also threaten the design, conduct and 

reporting of the approach. This may lead to spurious and/or non-reproducible results and may 

encourage data fishing or the selective cherry-picking of findings, which can lead to study bias in the 

literature. Guidelines which describe and emphasize the importance of analytical choice considerations 

and appraise the transparency of MR reporting should help to maintain and improve the quality of MR 

studies being performed [70, 161, 162]. Code sharing and improved reproducibility of findings, for 

example emulating recommendations in GWAS to provide independent replication before publication, 

should also be encouraged.  
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Conclusions  

This paper provides an overarching summary of the Mendelian randomization approach, which uses 

genetic variants reliably related to modifiable exposures to provide a more robust understanding of the 

influence of these exposures on disease-relevant outcomes. The development of computational tools 

and availability of large GWAS datasets has enabled the automation of MR analyses for evaluating a 

multitude of causal relationships in a time-efficient manner, predominantly via the two-sample MR 

approach. This has led to the rapid expansion of MR publications and is accelerating the identification, 

prioritization and evaluation of intervention targets, the detection of novel causal relationships and the 

integration of molecular data to examine causality in increasingly complex networks. However, as MR is 

increasingly easy to implement, it may lead to the proliferation of poorly thought-out and conducted 

studies. It is therefore important that anyone applying the approach is well versed in its assumptions 

and limitations. We have discussed the current state of the field, highlighting current best practice 

methodology, methods of assessing the MR assumptions, attempts to overcome potential pitfalls, and 

some exciting future prospects. Several of the other papers in this collection elaborate on some of the 

novel methodological approaches, including multivariable MR and the use of MR for assessing mediation 

[163], polygenic MR methods for assessing pleiotropy  [23], as well as within-family MR methods [69]. 

Other papers describe the application of the approach for extending clinical applicability [129, 130] and 

uncovering molecular mechanisms [145]. 
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