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GSA-SOM: a metaheuristic optimisation algorithm guided by
machine learning and application to aerodynamic design

A. González Pérez∗; C. B. Allen†; D. J. Poole‡

Department of Aerospace Engineering, University of Bristol, Bristol, UK

Typical algorithms used in optimisation problems can be classified into gradient-based or
agent-based optimisers. Gradient-based optimisers boast very fast convergence due to their
ability to extract topological information from the local gradient of the objective function,
but can often get trapped in a local minimum. Agent-based optimisers use a series of agents
to traverse the search space stochastically and are thus much more prone to find the global
minimum, but their cost may be unacceptable in typical engineering optimisation problems.
The question remains on whether convergence of agent-based algorithms can be accelerated
using design space information. A novel optimisation algorithm is introduced that usesmachine
learning in the form of a Self-Organising Map (SOM) to extract topological information from
the optimisation design space and guide the agents of a Gravitational Search Algorithm (GSA).
The proposed optimiser is benchmarked against a set of unconstrained analytical optimisation
functions, and it is shown to outperform classical agent-based optimisers. The algorithm
is further applied to an engineering design problem in the form of constrained transonic
aerodynamic shape optimisation, confirming its robustness and higher performance.

I. Introduction
The solution of numerous engineering problems across several disciplines typically involves the execution of

computationally-demanding simulations [1–4]. Habitually, solutions to engineering design problems are non-unique,
and it is the duty of the designer to find the best possible solution with respect to some meaningful metric. Available
computational resources or simulation time limit the number of simulations that can be performed before a final solution
is assimilated.

Optimisation is the branch of engineering dealing with the exploration of the space of all possible solutions to a
particular design problem (the design space), aiming to find the solution with the best fitness as evaluated by an objective
function. Mathematically, Vanderplaats [5, 6] defines an optimisation problem in the following form:

minimise :
subject to :

f (α)
g (α) ≤ 0
h (α) = 0

αl
i ≤ αi ≤ αu

i

(objective function)
(inequality constraint)
(equality constraint)
(side constraints)

(1)

where α = {α1, ..., αi, ..., αD} is the vector of design variables. The objective function represents the metric to rank
possible solutions based on their fitness, whereas constraints define the set of possible solutions. Side constraints
represent the boundaries of the search space.

It is then evident that when dealing with costly design problems, an efficient exploration of the underlying design
space is imperative, since every objective function evaluation requires a call to the simulation model used. Even when
the cost of the objective function is minimal, search space volume increases exponentially with problem size and so an
exhaustive exploration of the search space remains impractical; the ’curse of dimensionality’. Attempts to reduce cost of
optimisation problems come in two streams: 1) using algorithms to efficiently traverse the search space; 2) reducing the
dimensionality of the search space.

Typically, two types of search algorithms are used in optimisation; gradient-based and global search algorithms.
Gradient-based algorithms compute the local gradient of the objective function at the evaluation points to determine
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the search direction. The simplest of these are generally variations of steepest descent, Newton methods or conjugate
gradients, although more advanced algorithms based on Sequential Quadratic Programming (SQP) are also popular [7, 8].
Gradient-based methods boast fast convergence due to their ability to extract local topological information about the
search space from the gradient of the objective function. Unfortunately, this guarantees convergence to a local minimum
only, which is often not the global minimum for multimodal problems.

Global optimisation algorithms over the last decades have found inspiration in numerous physical [9–11] and
natural [12–15] phenomema. They use a number of agents to search the design space, the positions of which get updated
throughout iterations based on their relative fitness and some stochastic parameter to ensure convergence is independent
of the initial position of the search agents. Global optimisation algorithms thus lie within the field of heuristics and
provide greater success at finding the global minimum at the expense of an increase in function calls.

Minimising the cost of global optimisation algorithms has been attempted through surrogate modelling [16–19]
by using a limited number of objective function evaluations to generate a statistical model of the design space. The
surrogate model can be explored instead of the physical design space, thus significantly reducing the computational cost
of the optimisation. Unfortunately, the fidelity of surrogate models is greatly compromised by the dimensionality of the
problem, and the number of function evaluations required to generate a surrogate model of high-dimensional spaces is
usually greater than that required by the optimiser itself [20].

Reducing the dimensionality of the problem can alleviate these issues to some extent. Considerable efforts have been
made over the last decades to develop a robust dimensionality reduction method for optimisation. Principal Component
Analysis (PCA) [21], generally through Proper Orthogonal Decomposition (POD), has been successfully demonstrated
to reduce the dimensionality of the optimisation problem, both as a procedure to generate reduced order models of the
design space [22–24] and, more recently, as an efficient parameterisation method [25, 26].

Unfortunately, for high-dimensional problems, surrogate models lack enough fidelity to justify the savings in
computational cost and further efforts are needed to obtain a robust optimisation within the computational budget.
The objective of this paper is to introduce a new global optimisation algorithm that uses machine learning to guide
the direction of the search. Firstly, the machine learning framework is presented, followed by its integration within
the optimisation algorithm. The robustness of this novel approach is then demonstrated against a series of analytical
functions. Finally, an application of the algorithm in a set of aerodynamic design problems is presented to demonstrate
its performance in a real-world engineering design problem.

II. Self-Organising Maps
Artificial Neural Networks (ANNs) are computational models consisting of a series of processing elements, or

neurons, that respond to input data based on some set of predefined activation functions [27]. Each neuron has an
associated weight vector, encoding topological information about the input space. ANNs must be trained to match the
input space using either unsupervised (using the input data only) or supervised (using input-output data pairs) learning.

Self-Organising Maps (SOMs) [28] are a type of unsupervised ANN consisting of a single layer of competitive
neurons that provide a discretised representation of an input space of training data. Training of the SOM follows a
simple philosophy: similar data points in the input training space must be associated with nodes that are closer in the
grid, whilst more dissimilar data must be situated gradually away in the competitive layer [29].

The central idea surrounding training of the SOM is that every input value must be associated to the node that
best matches it, or Best Matching Unit (BMU), and both the node and its neighbours in the computational grid must
be updated for better matching. The SOM thus exhibits two characteristics that differentiate it from other ANNs: 1)
training happens through competitive learning (neurons must compete to represent subsets of the input data) and 2) the
topological ordering of the input space is preserved thanks to the existence of a neighbourhood relationship amongst
neurons [30]. A schematic of the SOM is provided in Figure 1.

Since the competitive nature of the training of the SOM results in clustering of data with similar features, a SOM
could be used to identify the most promising areas within the design space of an optimisation problem. This is possible
since the SOM retains the topological relationships of the design space and thus allows to not only identify the existence
of promising regions of the design space in the competitive layer, but also to locate and link back to the corresponding
regions in the input design space. SOMs can therefore be regarded as a method for dimensionality reduction; in fact, they
could be considered mathematically as a non-linear extension of PCA [31]. The potential of the SOM for identification
of topological properties [32–34] and clustering of data [35, 36] has been widely demonstrated in literature, and coupling
with optimisation algorithms has proved successful for improving the training strategy for the SOM [37, 38].
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Fig. 1 Schematic of the Self-Organising Map.

A. Stepwise training of the SOM
Training of the SOM was originally presented by Kohonen as a stepwise, recursive procedure [28] where each

training point in the input dataset is sent to the SOM once. The BMU is found as the node such that the distance
between its associated weight and the input vector is the smallest of all nodes. Let c be the index of the BMU in a
competitive layer of nw nodes. Let {mi(t)} be a sequence of n-dimensional real vectors representing the nodal weights
in the competitive layer at any training step t. Given a real, n-dimensional input vector x(t), the index of its BMU is:

c = arg min
i ∈ [1, nw ]

{| |x(t) − mi(t)| |} (2)

The weights of the BMU and its neighbouring neurons are then updated to better match the input vector. A
neighbouring relationship between neurons must therefore be defined before the updating can take place. The gaussian
neighbourhood function – Eq. (3) – has been used in this study for its simplicity and popularity in other SOM
implementations. Let r i be the bidimensional position vector of the ith node in the competitive layer, the gaussian
neighbourhood function between the ith and jth nodes is defined as:

hi j(t) =


exp

(
−||r i − r j | |2

2σ2(t)

)
if | |r i − r j | | < σ(t)

0 otherwise
(3)

where σ(t) is the influence radius of each node in the net at the current training iteration t. The mathematical nature of
the influence radius is not important in itself, provided that it is a monotonically decreasing function. This is imperative
since a large initial support radius is necessary to establish the topological order of the map during the initial training
phases, whereas a smaller training radius improves the statistical accuracy of the SOM in the later training stages. Eq.
(4) shows one such function where the influence radius decreases from an initial value of σ0 to a value of unity after nt
iterations.

σ(t) = σ0 exp
(
− ln(σ0) t

nt

)
(4)

Once the neighbourhood relationship has been established, the updating procedure can be outlined. The stepwise
computation of the SOM requires the introduction of a learning term α(t), which must decrease monotonically throughout
training (similarly to the influence radius). The updating procedure for the nodes in the SOM, after the BMU with index
c has been found, is presented in Eq. (5). It must be noted that, since the neighbourhood function is null outside of the
influence radius, only the nodes closer to the BMU get updated.

mi(t + 1) = mi(t) + α(t)hci(t) [x(t) − mi(t)] (5)
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The expert reader may be familiar with Eq. (5) from an optimisation background. This expression is in fact similar
in nature to the updating procedure of gradient descent optimisation. A direct corollary of this parallelism is that the
dimensionality reduction encoded in the competitive layer of the SOM is an optimal representation of the topology of
the input layer. Since gradient-based is a local optimisation algorithm, it is also expected that the resulting SOM be
dependent on the order of data input and the initial conditions of the SOM.

Mu-Chun Su, Yu-Xiang Zhao, and Lee [39] pioneered the usage of SOMs in optimisation by presenting an algorithm
exploiting the analogous behaviour between gradient descent and training of the SOM. Said algorithm replaced the
BMU identification procedure with stochastic identification of the neuron with the best fitness. This resulted in an
improved gradient-descent algorithm that makes use of the SOM dimensionality reduction to avoid convergence to the
nearest local minimum. Unfortunately, this modified version of the SOM loses the ordering potential of the original
SOM, and the performance of the algorithm is severely compromised by increasing dimensionality.

B. Batch training of the Self-Organising Map
By considering the convergence of the stepwise training process to a stable state of the SOM, a mathematical

expression can be derived for the asymptotic value of the nodal weights: Eq 6.

mi →

nt∑
t=1

hci(t)x(t)
nt∑
t=1

hci(t)
(6)

It must be noted that this expression is an implicit relationship, since the index c of each winning node is still
dependent on an individual x(t) and mi(t). The sum of nj input parameters with a common BMU of index j can be
approximated by a weighted mean x̄ j . Mathematically:

mi(t + 1) =

nw∑
j=1

njhi j(t)x̄ j(t)

nw∑
j=1

njhi j(t)
(7)

This expression is the explicit equivalent to Eq 6. It can be easily proved that both expressions converge to the same
steady-state result, but Eq. 7 does so faster since the whole training set is traversed at once, thus requiring just a few or a
few dozens of iterations to converge. This updating procedure is also safer, since no learning rate comes into play and
the weights are updated by weighted averages of the input data set instead, hence making the resulting SOM independent
of the order of traversal of the input data or the initial weights of the SOM. This training procedure is known as the
batch computation of the SOM, and has been used in the implementation of the SOM described in this report.

The implementation of the batch training of the SOM simply consists of a list associated to each node. Each training
point is added to the list associated to its BMU. Once the whole set of training has been traversed, the nodal weights get
updated to a weighted average of the training data in the lists of the nodes lying within its influence radius, as shown in
Eq. 7. This process is then repeated a number of times, reducing the influence radius after every iteration.

A significant corollary of the batch training principle is that evaluations of an input vector’s BMU are completely
independent of each other during training. This results in an algorithm that lends itself particularly well to parallelisation.
In fact, due to the simplicity of the training algorithm and since training data need only be sent once to the training
algorithm to update the nodal weights of the whole map, the training algorithm can be implemented for execution in GPU
with at most two communications between CPU and GPU. The performance improvements of such implementations
have been widely demonstrated in literature [40, 41].
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III. The GSA-SOM algorithm

A. Gravitational Search Algorithm
The Gravitational Search Algorithm (GSA) is an agent-based global search algorithm mimicking the physical laws

of Newtonian gravity to converge to an optimal result [11]. In Rashedi, Nezamabadi-pour, and Saryazdi’s algorithm,
each particle is assigned a mass based on its fitness, and the relative attraction among all the masses is used to update
the positions of the agents.

The simplicity of the algorithm, alongside its robustness and superior performance, makes it a suitable candidate to
explore the potential of SOMs in global optimisation. A SOM-guided modification of the classical GSA algorithm is
presented here: the GSA-SOM algorithm. Physically, the GSA-SOM algorithm can be regarded as representing the
gravitational interaction of masses (GSA) submerged in a gravitational potential field (SOM).

Given a set of ng agents initialised randomly within the boundaries of the design space, the mass of each agent as
per the GSA algorithm is given by the fitness of the agent:

mi(t) = fiti(t) − worst(t)
best(t) − worst(t) (8)

where the best and worst fitnesses are taken from the fitnesses of the agents at the current iteration. The masses are then
normalised based on their relative values:

Mi(t) = mi(t)
ng∑
j=1

mj(t)
(9)

The accelerations of the particles are then calculated using Newton’s law of universal gravitation. It must be noted
that newtonian gravitational attraction decays with the square of the distance between the masses, and that this influence
decay is not desirable for the transmission of information between the optimisation agents, so a modified version of
newtonian gravity that decays linearly in distance is used. The force Fi j(t) exerted on the ith agent by the jth agent,
located at positions xi(t) and x j(t) respectively, at the evolution t of the algorithm is given by:

Fi j(t) = G(t) Mi(t)Mj(t)

xi(t) − x j(t)


 (

x j(t) − xi(t)
)

(10)

whereG(t) corresponds to the "universal gravitational constant", which despite its nomenclature decreases over evolutions
of the algorithm to permit convergence. Let G0 be the initial value of the gravitational constant and α, the gravitational
decay parameter. The value of G(t) for an evolution t of a total of nt algorithm evolutions can be expressed as:

G(t) = G0 exp
(
−α t

nt

)
(11)

The total force acting on each particle is then a stochastic summation of all the individual forces. To prevent less
feasible particles from influencing more feasible particles excessively, a discriminating procedure was suggested by
Rashedi, Nezamabadi-pour, and Saryazdi whereby the number of particles exerting a force on the others decreases over
time. Thus, only the forces caused by the Kbest

GSA agents with the best feasibilities act upon the agents, where Kbest
GSA is a

scalar that linearly decreases from ng to 2% of the initial value. Thus, let randj be an n-dimensional vector of random
variables with uniform probability in the range [0,1], the force acting on particle i is:

Fi(t) =
Kbest
GSA∑
j=1

randj ◦ Fi j(t) (12)

where ◦ defines the element-wise multiplication operator. The updating procedure of the algorithm is based in Newtonian
mechanics, with particle accelerations aGSAi (t) defined as:

aGSAi (t) = Fi(t)
Mi(t) (13)
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This value is used to update the particle velocity vi(t) in a stochastic fashion:

vi(t + 1) = randi ◦ vi(t) + aGSAi (t) (14)

The position of each search agent is then updated accordingly:

xi(t + 1) = xi(t) + vi(t + 1) (15)

Particles that fall outside of the search space are reinitialised randomly within the search bounds. The fitness of
each particle is then re-evaluated using their new positions and the updating process repeated until a certain number of
iterations are completed or convergence has been achieved based on some criterion (e.g. standard deviation of the most
recent solutions).

B. Self-Organising Map-guided Gravitational Search Algorithm (GSA-SOM)
The GSA algorithm provides a simple yet robust global optimisation algorithm with superior efficiency compared to

other algorithms commonly used in optimisation; Rashedi, Nezamabadi-pour, and Saryazdi demonstrated the superior
performance of the algorithm against popular Particle Swarm Optimisation (PSO) for the optimisation of a suite of
analytical functions [11] and an engineering problem [42].

A significant property of the GSA algorithm is that it is a memory-less algorithm, where the updating procedure of
the search agents is based solely on the current position of the particles, resulting in an effectively “blind" exploration of
the search space. Sun and Peng [43] proposed a PSO-GSA hybrid that makes use of the collective memory property of
the PSO algorithm, whereby search agents remember their historical best position and use it to update their positions.
These modifications of the original GSA algorithm resulted in an overall improvement in robustness; however, the best
historical position of the agents does not provide enough information about the search space to overcome the “blindness"
of the agents.

In this section, a novel optimisation framework that uses a Self-Organising Map for extraction of knowledge from
the search space is presented. This knowledge is used to guide the search agents in the GSA algorithm, providing an
intelligent exploration of the design space.

The Self-Organising Map-guided Gravitational Search Algorithm (GSA-SOM) uses the historical positions of the
GSA search agents to train a SOM on each iteration. The nodal weights are then treated as a separate set of masses and
used to update the position of the search agents.

A set of training vectors is needed to train the SOM at each iteration. These are taken from the historical positions
of the search agents, up to a total of ntrain vectors. Each training point is an (n+1)-dimensional vector resulting from
concatenating the n-dimensional position vector of the corresponding agent and its fitness. Since only the regions of the
search space with best fitnesses are relevant, the SOM is trained using the agents’ historical best positions. Thus, the
SOM can extract the topological relationships amongst them and map the most promising areas, guiding the agents
towards them and hence reducing the dimensionality of the search space.

The iterative training of the SOM allows the competitive layer to quickly map the gross features of the search space
during the initial iterations, where not only the velocities and accelerations of the search agents are larger, but also the
influence radius of the neurons in the competitive layer. As only the best ntrain historical positions are used in training,
the influence of less promising areas on the SOM eventually decays, but their contribution to the global ordering remains.

The map is trained once at each iteration using the batch training algorithm (Eq. 7). The resulting nodal weights
are then extracted and considered as an alternative set of nw masses; these are (n+1)-dimensional vectors, the first n
dimensions of which correspond to the position of the masses, and the remaining dimension, to their fitness. The masses
of the SOM nodes are calculated through the classical GSA algorithm independently of the search agent masses using
Eqs. 8 and 9, and the forces they exert on the search agents using Eqs. 10-12. An elitist check is applied in the same
manner as in classical GSA such that only the KSOM

best masses with the highest fitness produce acceleration on the search
agents. In the GSA-SOM algorithm, the acceleration of each search agent is therefore a weighted sum between the
accelerations induced by the other search agents and the accelerations induced by the SOM nodal weights:

ai(t) = (1 − w) aGSAi (t) + waSOMi (t) (16)

Physically, the SOM can be thought of as a gravitational potential field representing the topology of the search
space. The masses from the SOM do not interact with one another directly, but rather redirect the agents towards the
most feasible regions of the search space. Since the labour of the SOM is to guide the search agents rather than search
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the design space itself, it is important that the weighting w of the accelerations caused by the SOM nodes be smaller
than the weighting (1 − w) of the accelerations caused by the search agents themselves. Figure 2 shows a comparison
between the update framework for the GSA and GSA-SOM algorithms.

M1

M2

M3

M4

F12

F13

F14

F1

(a) GSA

M1

M2

M3

M4

Mα

Mβ

FGSA

Fα

Fβ

FSOM

F1

(b) GSA-SOM

Fig. 2 Update frameworks of the GSA and GSA-SOM algorithms

The pseudocode for the GSA-SOM algorithm is shown in Algorithm 1 for ng search agents and nw competitive
neurons. The algorithm is executed for a total number of nt iterations or until some convergence criterion is met.
Figure 3 shows the flow chart of the GSA-SOM algorithm.

Algorithm 1: GSA-SOM Algorithm
Initialise ni particles at random positions within search space boundaries
Initialise Self-Organising Map of nw neurons with random weights
for t = 1→ nt do

for i = 1→ ng do
Evaluate fitness of particle i from objective function
Evaluate mass of particle i: Eqs. 8 and 9
Calculate GSA acceleration of particles: Eqs. 10-12
if size(training set) < ntrain or fit(i) better than worst(training set) then

Insert location and fitness of particle i in training set
end

end
Crop training set to ntrain vectors
Train Self-Organising Map: Eq. 7
Identify best and worst fitness of the Self-Organising Map
for i = 1→ nw do

Evaluate mass of SOM weight i: Eqs. 8 and 9
Calculate SOM acceleration of particles: Eqs. 10-12

end
for i = 1→ ng do

Calculate acceleration of particle i: Eq. 16
Update position and velocity of particle i: Eqs. 14 and 15

end
end
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Initialise SOM & Search Agents

Evaluate fitness of each agent

Train SOM

Evaluate forces and move agents

Update G(t) & σ(t)

Solution meets end criterion?

Return best solution

No

Yes

Fig. 3 The GSA-SOM algorithm.

C. Complexity of the algorithm
The GSA-SOM algorithm is implemented as a base GSA optimiser coupled to a SOM. In order to understand the

computational time complexity of the algorithm, both modular components must be analysed separately, and their
interaction carefully considered.

Training of the SOM takes three steps: a) computing the distances between input vectors and nodal weights, b)
updating the training list of the BMUs and c) updating the nodal weights. The three steps ares linear in number of
training points ntrain, dimensions n and nodes nw .

Most of the GSA operations are iterations over the population of search agents, all of them linear in dimensions
and agent population ng. There are two exceptions to this; the first arises from the inclusion of an elitist check, which
requires sorting agents by fitness, with complexity O(nglog ng). The other exception is the computation of particle
forces, which requires each agent to sum the forces caused by a factor of the other agents, resulting in O(n2

g) complexity.
The GSA-SOM algorithm requires maintaining a set of training vectors consisting of the historical positions and

fitnesses of the best particles. With particles are previously sorted by fitness, this is done in linear time O(max(ntrain,ng)).
Forces on the search agents by the SOM particles are computed in O(ngnw); since the number of neurons is expected to
be smaller than the number of agents, the GSA-SOM algorithm is bounded by O(n2

g), same as classical GSA.
Memory requirements increase by the addition of the SOM to the algorithm and maintenance of the training library,

but these costs have linear complexities: O(nw) and O(ntrain).

IV. Optimisation of analytical functions using GSA-SOM
The performance of the GSA-SOM algorithm for unconstrained optimisation has been tested against a series of test

functions common to many optimisation problems. These are presented mathematically in Table 1 with search space
bounds S and number of dimensions n. These functions present a wide range of design space topologies, with varying
levels of modality and expected optimiser performance. All functions are shifted in f (x) so their minimum value is 0.

Three optimisers were used to minimise the proposed functions: GSA, PSO and GSA-SOM. GSA-SOM was tested
using both a sparsely trained configuration with 20 training vectors in the training set and a more densely trained
configuration with 2000 training points. Both GSA and GSA-SOM used an initial gravitational constant G0 = 100 with
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gravitational decay α = 20. Weighting of the SOM forces was w = 0.3. The SOM consisted of an 8 × 8 hexagonal
neuron lattice with initial radius σ0 = 3. All optimisers used 50 search agents over 1000 evolutions.

Table 1 List of analytical test functions.

Function S n Minimum

Unimodal functions

f1(x)=
n∑
i=1

x2
i

[−5.12,5.12]n 30
f1(x) = 0

xi = 0

f2(x)= (x1 − 1)2 +
n∑
i=2

i(2x2
i − xi−1)2 [−10,10]n 30

f2(x) = 0

xi = 2−
2i−2

2i

f3(x)=
n/4∑
i=1
[(x4i−3 + 10x4i−2)2 + 5(x4i−1 − x4i)2+

(x4i−2 − 2x4i−1)4 + 10(x4i−3 + 10x4i)4]
[−10,10]n 30 f3(x) = 0

xi = 0

f4(x)=
n∑
i=1
(xi − 1)2 +

n∑
i=2

xi xi−1 − n
(n + 4)(n − 1)

6 [−n2,n2]n 30
f4(x) = 0

xi = i(n + 1 − i)

f5(x)=
n−1∑
i=1
[100(xi+1 − x2

i )2 + (xi − 1)2] [−2.038,2.038]n 30
f5(x) = 0

xi = 1

f6(x)=
n∑
i=1

i∑
j=1

x2
j + rand(0,1) [−65.536,65.536]n 30

f6(x) = 0
xi = 0

f7(x)=
n∑
i=1

rand(0,1)xi +
n∏
i=1

rand(0,1)xi [−10,10]n 30
f7(x) = 0

xi = 0

Multimodal functions

f8(x)= 418.9829n −
n∑
i=1

xi sin
√
|xi | [−500,500]n 30

f8(x) = 0
xi = 420.9687

f9(x)= 10n +
n∑
i=1
[x2

i − 10 cos(2πxi)] [−5.12,5.12]n 30
f9(x) = 0

xi = 0

f10(x)=−20 exp

(
−0.2

√√
1
n

n∑
i=1

x2
i

)
− exp

(
1
n

n∑
i=1

cos(2π.xi)
)

+20 + e

[−600,600]n 30 f10(x) = 0
xi = 0

f11(x)= 10n +
n∑
i=1

x2
i

4000
−

n∏
i=1

cos
(

xi√
i

)
+ 1 [−32.768,32.768]n 30

f11(x) = 0
xi = 0

f12(x)=−
n∑
i=1

sin(xi) sin20
(

ix2
i

π

)
+ 29.630883850324413 [0, π]n 30

f12(x) = 0

xi = π
√

2 2i−1
2n

f13(x)= sin2(πwi) +
n−1∑
i=1
(wi − 1)2[1 + 10 sin2(πwi + 1)]

+(wn − 1)2[1 + sin2(2πwn)], where wi = 1 + xi−1
4

[0, π]n 30 f13(x) = 0
xi = 1

f14(x)= 39.16599n + 1
2

n∑
i=1
(x4

i − 16x2
i + 5xi) [−5,5]n 30

f14(x) = 0
xi = −2.903534
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The updating procedure for the PSO algorithm is shown below:

vi(t + 1) = K(t)vi(t) + c1randi1 ◦
(
pi(t) − xi(t)

)
+ c2randi2 ◦ (s(t) − xi(t)) (17)

xi(t + 1) = xi(t) + vi(t + 1) (18)

where c1 and c2 are two constants known as the cognitive and social parameters; K(t) is an inertia weight that decreases
with optimiser evolutions, and pi(t) and s(t) represent the particle’s and swarm’s historical best positions, respectively.
Further details about PSO can be found in [13, 44]. Values of c1 = 2 and c2 = 2 have been taken, with K(t) decreasing
linearly from 0.9 to 0.2.

Each optimiser was executed a total of 50 times per function. The results are summarised in Table 2. As can be seen,
GSA-SOM outperforms classical GSA for most benchmark functions. When using only 20 training points, GSA-SOM
obtained generally better results than for the 2000 training point case, confirming that using a smaller number of training
points accentuates the dimensionality reduction properties of the SOM, only mapping the most promising area at each
iteration. An exception to this behaviour is appreciated for Rastrigin function ( f9(x)), with the 2000 training point
GSA-SOM outperforming the 20 training point configuration. This behaviour is not repeated for the mathematically
similar Griewank function f11(x).

Table 2 Minimisation results of benchmark functions.

Function Minimum GSA PSO GSA-SOM GSA-SOM
(ntrain = 20) (ntrain = 2000)

f1(x)

8.72E-18 3.56E+00 2.29E-18 4.28E-18 Best
f1(x) = 0 2.21E-17 1.24E+01 4.01E-18 7.27E-18 Median

3.65E-17 3.13E+01 6.01E-18 1.39E-17 Worst
xi = 0 2.27E-17 1.45E+01 4.02E-18 7.71E-18 Mean

6.45E-18 6.84E+00 7.93E-19 2.08E-18 Std. Dev.

f2(x)

7.66E-17 2.37E+03 8.94E-18 3.18E-03 Best
f2(x) = 0 1.50E-16 1.48E+04 2.04E-17 5.07E-01 Median

1.18E+00 6.44E+04 3.24E-17 2.99E+00 Worst
xi = 2−

2i−2
2i 2.36E-02 1.76E+04 2.05E-17 7.26E-01 Mean

1.67E-01 1.27E+04 6.00E-18 7.03E-01 Std. Dev.

f3(x)

3.49E-01 3.70E+02 2.96E-02 7.63E-01 Best
f3(x) = 0 5.98E+00 1.79E+03 2.96E+00 4.47E+00 Median

1.05E+02 6.17E+03 1.52E+01 3.48E+01 Worst
xi = 0 1.14E+01 2.31E+03 3.66E+00 5.92E+00 Mean

1.82E+01 1.66E+03 3.20E+00 6.11E+00 Std. Dev.

f4(x)

3.14E+04 9.95E+04 9.70E+03 5.34E+04 Best
f4(x) = 0 7.70E+04 2.82E+05 3.96E+04 1.07E+05 Median

1.57E+05 7.17E+05 9.68E+04 2.02E+05 Worst
xi = i(n + 1 − i) 8.19E+04 3.10E+05 4.27E+04 1.12E+05 Mean

3.29E+04 1.31E+05 2.27E+04 2.85E+04 Std. Dev.

f5(x)

2.53E+01 1.42E+02 2.56E+01 2.76E+01 Best
f5(x) = 0 2.61E+01 3.21E+02 2.59E+01 2.79E+01 Median

2.79E+01 6.28E+02 2.65E+01 2.81E+01 Worst
xi = 1 2.62E+01 3.37E+02 2.59E+01 2.79E+01 Mean

3.56E-01 1.12E+02 1.74E-01 9.71E-02 Std. Dev.

f6(x)

1.00E-01 6.92E+03 1.54E-02 2.38E+01 Best
f6(x) = 0 2.06E-01 2.93E+04 4.59E-02 2.83E+02 Median

1.29E+00 6.04E+04 7.69E-01 1.74E+03 Worst
xi = 0 2.76E-01 2.92E+04 7.84E-02 3.96E+02 Mean

2.30E-01 1.07E+04 1.17E-01 3.16E+02 Std. Dev.

f7(x)

7.20E-08 6.03E+00 3.89E-09 2.99E-09 Best
f7(x) = 0 2.25E-07 1.03E+01 5.49E-09 5.26E-09 Median

1.27E-06 2.02E+01 7.77E-09 1.02E-08 Worst
xi = 0 3.17E-07 1.12E+01 5.60E-09 5.96E-09 Mean

2.62E-07 3.59E+00 9.52E-10 1.81E-00 Std. Dev.
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Table 2 Minimisation results of benchmark functions (continued).

Function Minimum GSA PSO GSA-SOM GSA-SOM
(ntrain = 20) (ntrain = 2000)

f8(x)

8.20E+03 3.41E+03 8.80E+03 8.95E+03 Best
f8(x) = 0 9.71E+03 5.51E+03 9.67E+03 9.70E+03 Median

1.05E+04 6.62E+03 1.02E+04 1.05E+04 Worst
xi = 420.9687 9.65E+03 5.47E+03 9.64E+03 9.69E+03 Mean

4.57E+02 6.46E+02 3.50E+02 3.74E+02 Std. Dev.

f9(x)

6.96E+00 7.21E+01 3.98E+00 7.11E-15 Best
f9(x) = 0 1.54E+01 1.08E+02 9.95E+00 1.60E-14 Median

2.89E+01 1.39E+02 1.79E+01 2.98E+00 Worst
xi = 0 1.53E+01 1.05E+02 9.91E+00 7.36E-01 Mean

4.17E+00 1.79E+01 3.11E+00 8.72E-01 Std. Dev.

f10(x)

2.27E-09 1.12E+01 1.20E-09 1.28E-09 Best
f10(x) = 0 3.78E-09 1.39E+01 1.60E-09 1.79E-09 Median

4.86E-09 1.61E+01 1.97E-09 2.31E-09 Worst
xi = 0 3.71E-09 1.36E+01 1.61E-09 1.80E-09 Mean

6.27E-10 1.28E+00 1.59E-10 2.22E-10 Std. Dev.

f11(x)

1.26E+00 1.46E+01 3.33E-16 7.97E+00 Best
f11(x) = 0 3.73E+00 4.76E+01 1.15E+00 1.74E+01 Median

8.96E+00 8.57E+01 3.70E+00 3.16E+01 Worst
xi = 0 3.99E+00 4.84E+01 1.18E+00 1.78E+01 Mean

1.67E+00 1.87E+01 7.95E-01 4.94E+00 Std. Dev.

f12(x)

6.59E-01 6.45E+00 6.93E-01 1.10E+00 Best
f12(x) = 0 2.22E+00 9.97E+00 2.01E+00 3.78E+00 Median

4.48E+00 1.45E+01 3.92E+00 9.38E+00 Worst
xi = π

√
2 2i−1

2n 2.13E+00 1.01E+01 2.06E+00 3.81E+00 Mean
7.50E-01 1.50E+00 9.83E-01 1.69E+00 Std. Dev.

f13(x)

5.28E-18 3.16E+00 5.63E-19 1.58E-18 Best
f13(x) = 0 8.55E-18 1.17E+01 1.59E-18 3.11E-18 Median

4.54E-01 2.28E+01 2.44E-18 5.28E-18 Worst
xi = 0 9.09E-03 1.22E+01 1.60E-18 3.23E-18 Mean

6.43E-02 4.11E+00 3.86E-19 8.48E-19 Std. Dev.

f14(x)

2.83E+01 1.48E+02 -5.27E-03∗ 1.41E+01 Best
f14(x) = 0 7.07E+01 2.46E+02 4.95E+01 5.65E+01 Median

1.27E+02 3.53E+02 1.13E+02 5.70E+02 Worst
xi = 0 7.15E+01 2.40E+02 5.46E+01 7.53E+01 Mean

2.58E+01 4.57E+01 3.09E+01 8.36E+01 Std. Dev.

The disparity in optimiser performance for these two functions lies in the search boundaries for each, plotted in
Figure 4. Clearly, the effect of multimodality is much more significant for the Rastrigin function as defined by its
boundaries; more than 20 points are necessary for the SOM to map the whole design space and capture the more subtle
global trend. This is not necessary for Griewank’s function, where the quadratic trend dominates and the collective
learning of the SOM throughout evolutions can identify it and guide the agents using only 20 training points.

Some of the unimodal functions optimised consisted of steep regions followed by shallow areas near the minimum,
for which small variations in some dimensions can produce significant changes of fitness compared to other dimensions.
Trid’s function ( f4(x)) is a good example, with PSO getting minima of the order of 105. The SOM can only slightly
alleviate these performance issues, as its training procedure makes it susceptible to large variations in the input data.

Figure 5 shows a comparison of the convergence behaviour of the GSA-SOM algorithm with classical GSA and
PSO. As can be appreciated, GSA-SOM exhibits similar convergence behaviour to that of classical GSA, but it is much
less likely to get trapped in a local minimum. Typically, the GSA-SOM algorithm requires a dozen or a few dozen
iterations less than GSA to obtain similar results. This characteristic, along with the lower standard deviation of the
GSA-SOM optimisation results shown in Table 2, confirms the robustness of the GSA-SOM algorithm.

∗ f14 was shifted so its minimum would be zero, the negative result is due to numerical inaccuracy of the shift.
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(a) Rastrigin function, xi ∈ [−5.12, 5.12] (b) Griewank function, xi ∈ [−600, 600]

Fig. 4 2D design space of functions f9(x) and f11(x).
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Fig. 5 Convergence plots of minimisation of selected benchmark functions.
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V. Aerodynamic Shape Optimisation using GSA-SOM
Having demonstrated the performance of the GSA-SOM algorithm for finding the minimum of a series analytical

functions, the next step is to demonstrate the suitability of the algorithm for a typical engineering optimisation problem.
A series of benchmark Aerodynamic Shape Optimisation (ASO) cases are presented in this section and the integration
of the GSA-SOM algorithm into the optimisation process is discussed.

A. Surface parameterisation and mesh motion
The parameterisation method used in this report was first presented by Poole, Allen, and Rendall [26] and is based

on performing a Proper Orthogonal Decomposition (POD) via Singular Value Decomposition (SVD) of a training
library of aerofoils. A training library of 1300 aerofoils extracted from the UIUC Airfoil Coordinates Database† has
been used in this study. All aerofoils are normalised to a chord length of 1 with their leading edge and trailing edge
points fixed at [0,0] and [1,0], respectively. The following geometrical distribution was used for all aerofoils [45]:

xi =
1
4

[
1 − cos

(
π

i − 150
150

)]2
∀i ∈ [0,300] (19)

The UIUC library contained numerous aerofoils of varied quality for the transonic optimisation cases considered. It
is expected that the quality of the parameterisation for the optimisation problem be dependent on that of the training
library, so a prior filtering of the training library based on performance of the training aerofoils at the transonic regime
was performed. This allowed to reduce the dimensionality of the search space (and hence the modality [46]) without
impacting the performance of the parameterisation scheme.

The Korn technology factor, κ [47], was used to rank the performance of training aerofoils, such that the 100
aerofoils with highest κ were extracted from the database. SVD was then performed on the training set to obtain the
modal deformations. For a library of m aerofoils with a consistent parameterisation, such that every aerofoil has N
points with the same distribution of x-coordinates, the matrix of deformations is evaluated as the vector difference of
the z-coordinates amongst all aerofoils. The resulting n × mdef matrix, where mdef = m(m − 1)/2 corresponds all the
possible permutations of aerofoils in the training library, is shown in Eq. 20:

Z =
©­­­«
∆z11 · · · ∆z1mdef
...

. . .
...

∆zN1 · · · ∆zNmdef

ª®®®¬ (20)

Given a rectangular matrix Z , its SVD is defined as the following decomposition:

Z = UΣVT (21)

where U is a unitary matrix, the columns of which are modal deformations. Σ is a diagonal matrix containing the
singular values of X [48] and V, a weighting matrix. Physically, the squares of the elements of Σ represent the relative
energy of the modes in U [21]. A typical criterion for deciding the number of modes to use in the parameterisation
is conserving a certain amount of the total energy. In this study, a fixed number of 12 modal deformations was used,
providing a satisfactory imbalance between design space coverage and optimiser performance.

New aerofoil shapes are then obtained by adding a weighted sum of the modal deformations (the columns Ui of the
left-singular matrix U) to a base aerofoil – as shown in Eq. 22 for nm modes. The linear weighting coefficients αi are
thus the design variables of the optimisation problem.

X → X +
nm∑
i=1

αiUi (22)

Figure 6 shows the resulting modal deformations. The first two modes represent parameters similar in nature to
thickness and camber. Modes 3 and 4 exhibit characteristics modifying the leading edge roundness and trailing edge
thickness distributions (in particular, the third mode depicts the characteristic thickness distribution of supercritical
aerofoils). Higher order modes provided different oscillatory deformations necessary to regenerate the training set of
aerofoils.

†Aerofoil database available online at https://m-selig.ae.illinois.edu/ads/coord_database.html.
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(a) Mode 1. (b) Mode 2. (c) Mode 3.

(d) Mode 4. (e) Mode 5. (f) Mode 6.

Fig. 6 Exaggerated modal deformations superimposed to NACA-0012 aerofoil.

A mesh deformation scheme is needed to translate aerofoil deformations to the aerodynamic mesh, and a method
based on Radial Basis Functions (RBFs) has been used here. This scheme was first presented by Rendall and Allen [49]
and is based on the application of RBFs for interpolation of scattered data presented byWendland [50] and Buhmann [51].

RBFs translate the deformations of a set of control points to a zone of influence around them. Control points were
placed on the aerofoil surface to directly link aerofoil deformations to control point deformations. Masters, Taylor,
Rendall, Allen, and Poole [45] showed that 20-25 control points suffice to represent an exhaustive aerofoil library with
manufacturing tolerance, so 24 control points are used here.

The interpolation is built using Wendland’s C2 function [50], and a support radius of one chord was used. Figure 7
shows a sample mesh deformation using RBFs.

Y X

Z

(a) Undeformed (NACA-0012).

Y X

Z

(b) Deformed (Mode 3).

Fig. 7 Sample deformation of 257 × 97 O-mesh for NACA 0012 aerofoil.

B. Flow solver
The flow solver used for the optimisation is a structured multiblock solver solving the compressible Euler (inviscid

cases) or Reynolds-Averaged Navier-Stokes (RANS, viscous case) equations. Convective terms are evaluated using a
third-order van Leer flux vector splitting [52]. Diffusive terms are evaluated using second order central differencing and
turbulence is modelled using the Spalart-Allmaras single equation model [53, 54]. A five-stage Runge-Kutta with local
timestepping is used for time integration and convergence is accelerated through V-cycle multigrid [55].

For inviscid cases, single block 257 × 97 O-meshes were generated, extending to 50 chords at farfield [56, 57]; these
are shown in Figure 8. For the viscous optimisation test case, a three-block C-mesh was generated, having 385 points
around the aerofoil, 129 points into the farfield and 65 points along the wake line; the C-mesh generated is depicted in
Figure 9.

14



Fig. 8 257 × 97 O-mesh for NACA0012 and RAE2822 aerofoils.

Fig. 9 385 × 129 × 65 Three-block C-mesh for RAE2822 aerofoil.

C. Aerofoil optimisation test cases
A total of five aerofoil optimisation test cases have been studied: four inviscid drag minimisation cases and a viscous

drag minimisation case; these are summarised in Table 3. The test cases are based on those presented by Poole, Allen,
and Rendall [58], with the viscous optimisation case originally presented by Chernukhin and Zingg [46].

All cases provide examples of constrained optimisation. Constraints are handled using a modified 3S-GSA
algorithm [59]. The basis for this method is that feasible and infeasible particles are separated into sub-swarms. Feasible
particles are updated using the GSA (or GSA-SOM) procedure, whereas infeasible particles are updated using PSO,
with the particle and swarm’s best positions decided using a dominance approach: if feasible, the particle with better
fitness wins; if unfeasible, the particle with lower constraint violation wins; feasible particles always win unfeasible ones.
A new objective function definition is required to account for constraint violations, as shown in Eq. 23. Only feasible
particles are used to train the SOM to avoid mapping the infeasible subspace. Full details of the 3S-GSA algorithm can
be found in [59, 60].

Table 3 Aerodynamic optimisation test cases.

Constraints
Aerofoil M∞ α CL Re Objective Lift Moment Area

Case 1 NACA 0012 0.700 3.00 0.53 - CD CL ≥ C0
L
|Cm | ≤ |C0

m | A ≥ A0

Case 2 RAE 2822 0.700 3.00 1.00 - CD CL ≥ C0
L
|Cm | ≤ |C0

m | A ≥ A0

Case 3 NACA 0012 0.850 0.00 0.00 - CD CL = 0 |Cm | = 0 A ≥ A0

Case 4 NACA 0012 0.650 5.00 1.21 - CD CL ≥ C0
L
|Cm | ≤ |C0

m | A ≥ A0

Case 5 RAE 2822 0.729 2.07 0.69 7.0E+06 CD CL ≥ C0
L
|Cm | ≤ |C0

m | A ≥ A0
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f P(xi) =


f (xi) if xi feasible
G∑
j=1

max(0,gj(xi)) +
H∑
j=1
|hj(xi))| otherwise (23)

The classical GSA and GSA-SOM optimisers were used for the drag minimisations using the 3S constraint handling
approach. GSA parameters G0 and α were set to 30 and 10, respectively, and PSO parameters c1 and c2, to 2. Poole,
Allen, and Rendall [58] proved that these values provided the best results for the 3S-GSA algorithm. A search population
of 98 search agents over 1000 evolutions was used for the inviscid case, these values chosen based on the computational
budget. Due to the higher cost of the viscous optimisation, only 84 agents over 800 evolutions were used.

The GSA and GSA-SOM optimisers were implemented in parallel. Objective function evaluations of the agents
were performed in parallel in the MPI environment. Particle updates and SOM training were performed by the master
rank using shared-memory parallelism in OpenMP.

The optimisation results are summarised in Table 4. The GSA-SOM noticeably outperforms the classical GSA
algorithm in all test cases. Using 2000 training points provided lower drag for all inviscid cases than using just 20
training points, except for case 2, where the results of both optimisations are fairly similar. This could be indicative of
highly multimodal design spaces, where the variations in drag at each of the local minima are more significant than
the underlying convexity of the search space. The opposite effect is seen in the viscous case, where 20 training points
provide faster convergence, suggesting lower presence of modality in the design space.

Table 4 Aerodynamic drag minimisation results (drag counts).

Initial GSA
GSA-SOM GSA-SOM
(ntrain = 20) (ntrain = 2000)

Aerofoil M∞ α CL Re CD CD ∆CD CD ∆CD CD ∆CD

Case 1 NACA 0012 0.700 3.00 0.53 - 090.2 010.5 -88.4% 008.9 -90.1% 7.9 -91.2%
Case 2 RAE 2822 0.700 3.00 1.00 - 068.2 020.8 -69.5% 019.9 -70.8% 20.1 -70.5%
Case 3 NACA 0012 0.850 0.00 0.00 - 474.2 084.5 -82.2% 062.5 -86.8% 48.4 -89.8%
Case 4 NACA 0012 0.650 5.00 1.21 - 222.9 095.5 -57.2% 094.2 -57.7% 88.9 -60.1%
Case 5 RAE 2822 0.729 2.07 0.69 7.0E+06 115.8 106.4 0-8.1% 104.0 -10.1% 106.0 0-8.5%

Figure 10 shows the convergence behaviours of the algorithms for the different optimisation cases. The trends
evidence the faster convergence of the GSA-SOM algorithm, which can obtain similar results to classical GSA in circa
one order of magnitude less objective function evaluations.
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Fig. 10 Convergence plots of inviscid drag minimisation cases.
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Fig. 10 Convergence plots of inviscid drag minimisation cases (continued).

Optimal aerofoil shapes are presented along their pressure distributions in Figures 11-15. All inviscid cases exhibit
some element of oscillatory pressure distributions, a common result in inviscid ASO. Curvature penalties would mitigate
this issue. Viscosity provides a natural penalty for oscillatory surfaces, resulting in a smooth surface and pressure
distribution as shown in Figure 15. The optimisers successfully eliminate the transonic flow in cases 1, 2 and 5, but are
unable to do it for the high free-stream Mach in optimisation case 3 and highly loaded aerofoil in case 4.
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Fig. 11 Comparison of optimum shapes and pressure distributions for inviscid case 1.
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Fig. 12 Comparison of optimum shapes and pressure distributions for inviscid case 2.
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Fig. 13 Comparison of optimum shapes and pressure distributions for inviscid case 3.
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Fig. 14 Comparison of optimum shapes and pressure distributions for inviscid case 4.
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Fig. 15 Comparison of optimum shapes and pressure distributions for viscous case.
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VI. Conclusions
The potential of machine learning for guiding a global search algorithm in optimisation problems has been considered

and presented here, by coupling a Self-Organising Map (SOM) to a Gravitational Search Algorithm (GSA). Two different
training strategies have been analysed and their efficiency compared first against a set of benchmark analytical functions
typically used in optimisation and finally in a set of two-dimensional aerodynamic shape optimisation problems.

The Self-Organising Map-guided Gravitational Search Algorithm (GSA-SOM) outperformed the GSA and Particle
Swarm Optimisation algorithms in most of the unconstrained benchmark functions analysed. GSA-SOM was also
shown to outperform GSA for constrained aerodynamic optimisation problems, once again proving its robustness and
superior performance.

Usage of a large number of data points to train the SOM was observed to result in a reduction of the modality of the
search space through mapping on the SOM neural network, whereas a smaller number of training points proved to
accelerate convergence in optimisation problems where modality of the search space is not as exacerbated.

The GSA-SOM algorithm, although resulting in a moderate increase in computational cost, due to the training costs
of the SOM structure, was shown to lend itself well to parallelisation, and exhibited the same time complexity as the
classical GSA algorithm, confirming it as a robust alternative for high-cost optimisation problems.
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