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Abstract The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various

neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA

receptors. To provide a broader view of SNX27-associated pathologies, we performed proteomics

in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to

excitotoxicity, epilepsy, intellectual disabilities, and working memory deficits. Focusing on the

synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its

endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of

LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and

attenuated hippocampal long-term potentiation. Overall, our study provides an additional

mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and

plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed

function of SNX27 and LRFN2 in a range of neurological conditions.

Introduction
The endosomal network plays a central role in controlling the functionality of the cell surface through

orchestrating the sorting of endocytosed integral proteins between two fates: either degradation

within the lysosome or retrieval from degradation for active recycling back to the plasma membrane

(Cullen and Steinberg, 2018). While the molecular details of sorting to the degradative fate are rel-

atively well described, only recently, with the identification of sorting nexins (Kurten et al., 1996;

Stockinger et al., 2002; Joubert et al., 2004; Carlton et al., 2004; Strochlic et al., 2007;

Harterink et al., 2011), retromer (Seaman et al., 1998), retriever (McNally et al., 2017), and the

WASH, CCC and ESCPE-1 complexes (Derivery et al., 2009; Gomez and Billadeau, 2009; Phillips-

Krawczak et al., 2015; Simonetti et al., 2019), have the core and evolutionarily conserved sorting

complexes that orchestrate retrieval and recycling begun to be identified. Importantly, an increasing

body of clinical evidence is linking mutations in these sorting complexes with a variety of human

pathologies, most notably neurological diseases and disorders, metabolic conditions and pathogen

infections (Cullen and Steinberg, 2018). With the notable exception of defects in the CCC complex-

mediated retrieval and recycling of low-density lipoprotein (LDL) receptor and the clearance of circu-

lating LDL-cholesterol during hypercholesterolaemia and atherosclerosis (Bartuzi et al., 2016;

Fedoseienko et al., 2018), how defects in the cell surface proteome, that arise from perturbed
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endosomal sorting, relate to the aetiology of these complex disorders remains poorly understood. A

case in point is sorting nexin-27 (SNX27), in which destabilised expression is associated with Down’s

Syndrome and coding mutations are observed in patients with pleomorphic phenotypes that have at

their core epilepsy, developmental delay and subcortical white matter abnormalities (Damseh et al.,

2015; Parente et al., 2020; Wang et al., 2013).

SNX27 is unique within the sorting nexin family in that it contains an amino-terminal PSD-95, Disc-

large and ZO-1 (PDZ) domain. This serves a bifunctional role mediating two mutually exclusive pro-

tein:protein interactions: first, the binding to the heterotrimeric retromer complex (Gallon et al.,

2014; Steinberg et al., 2013); and secondly, the binding to a specific type of PDZ domain-binding

motif located at the carboxy-terminus of an array of integral proteins (Cullen, 2008;

Steinberg et al., 2013; Lauffer et al., 2010; Temkin et al., 2011). Through these interactions

SNX27 regulates the retromer-dependent retrieval of internalised integral proteins that contain the

specific PDZ domain-binding motif and promotes their recycling to the plasma membrane

(Lauffer et al., 2010; Temkin et al., 2011; Steinberg et al., 2013).

The identification and functional validation of a handful of neuronal integral proteins that rely on

SNX27 for their trafficking has provided some insight into the complex aetiology of SNX27-associ-

ated pathology. These proteins include a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) receptors (Wang et al., 2013; Hussain et al., 2014; Loo et al., 2014), N-methyl-D-aspartate

(NMDA) receptors (Cai et al., 2011), serotonin (5-HT) receptors (Joubert et al., 2004) and the G

protein–activated inward rectifying potassium channels (GIRK/Kir3) (Lunn et al., 2007). From studies

in SNX27 knockout mice, it is clear that SNX27 is required to maintain AMPA-receptor-mediated

postsynaptic currents during the process of synaptic plasticity (Wang et al., 2013; Loo et al., 2014;

Cai et al., 2011). Indeed, the de-regulation of SNX27 expression associated with Down’s syndrome

(Wang et al., 2013), is considered to lead to synaptic dysfunction, in part, through reduced SNX27-

mediated AMPA receptor trafficking. SNX27 therefore plays a pivotal role in the endosomal sorting

of AMPA receptors. The current dogma describing SNX27-mediated AMPA receptor sorting relies

upon the direct binding of the PDZ binding motif presented at the carboxy-termini of AMPA recep-

tor subunits to the PDZ domain of SNX27. However, using isothermal titration calorimetry Clairfeuille

and colleagues were unable to detect quantifiable binding of SNX27 to the AMPA receptor subunits

GluA1 and GluA2. Moreover, the authors failed to observe binding upon GluA1 phosphorylation, or

upon association of SNX27 with the retromer component VPS26, which is known to enhance SNX27

binding to other PDZ binding motif-containing cargoes (Clairfeuille et al., 2016). These data sug-

gest a need to reflect on the molecular details of SNX27-mediated endosomal sorting of AMPA

receptors.

Here, using unbiased proteomics, we define the SNX27 interactome in primary rat cortical neu-

rons and describe the identification of new SNX27-dependent neuronal cargo. Many of these inte-

gral proteins provide further molecular insight into the underlying neuronal de-regulation associated

with SNX27-associated pathologies. In particular, we functionally validate one specific cargo, the syn-

aptic adhesion molecule leucine-rich repeat and fibronectin type-III domain containing protein 2

(LRFN2). We identify that SNX27 directly associates with the carboxy-terminal PDZ binding motif of

LRFN2, while the amino-terminal region of LRFN2 associates with AMPA receptors. Functionally,

SNX27 is required for the cell surface recycling of endocytosed LRFN2 and AMPA receptors. By

establishing that LRFN2 knockdown also results in decreased surface expression of AMPA receptors

and, in ex vivo recordings, the reduction of synaptic activity and attenuation of hippocampal long-

term potentiation, we add to the known complexities of SNX27-mediated AMPA receptor endoso-

mal sorting by proposing a role for LRFN2 in bridging the indirect association of SNX27 with AMPA

receptors.

Results

A neuronal SNX27 interactome reveals new cargoes for SNX27-
mediated trafficking
To identify neuronal cargoes that depend on SNX27 for their trafficking, we took an unbiased prote-

omic approach to quantify the SNX27 interactome in primary rat cortical neuronal cultures. Here, we

transduced cortical neurons with sindbis virus expressing either GFP or GFP-SNX27 and verified that
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the GFP-SNX27 retained the ability to localise to endosomes as defined by co-localisation with the

early endosomal marker EEA1 (Figure 1A). After 24 hr, we performed GFP-nanotrap immunoisola-

tion followed by protein digestion and tandem mass tagging (TMT) of the resulting peptides. Inter-

actors were identified quantitatively using liquid chromatography-tandem mass spectrometry and

quantified across three independent biological repeats. A single list of SNX27-interacting proteins

(276 proteins) was initially resolved by excluding proteins not present in all three datasets

(Figure 1B and Supplementary file 1). We further refined these data by excluding proteins that had

an average log-fold change of GFP-SNX27:GFP of less than two and removed identified proteins if

they did not meet statistical significance (p<0.05). The resulting 212 proteins were considered to

comprise a high confidence cortical neuronal SNX27 interactome (Figure 1C and

Supplementary file 1).

Confirming the validity of our approach, many established SNX27 interactors were identified

including the retromer and WASH complexes (Steinberg et al., 2013) and OTU deubiquitinase with

linear linkage specificity (OTULIN) – a deubiquitinase with specificity for Met1-linked ubiquitin chains

(Stangl et al., 2019). We used gene ontology analysis (PANTHER Classification System; p < 0.05) to

assess the neuronal SNX27 interactome and found that many of the SNX27 interactors were classi-

fied in having a role in neuronal development and differentiation, as well as intracellular transport

(Figure 1D). Out of the 212 identified proteins sixteen contained a Type I PDZ binding motif with

the optimal acidic amino acid at the �3 position required for high-affinity binding to SNX27

(Clairfeuille et al., 2016). Within this cohort, seven proteins were classified as integral proteins

(shown in orange in Figure 1C and Supplementary file 1): the high-affinity glutamate transporter,

SLC1A3 (Storck et al., 1992) (PDZ binding motif – E�3-T-K-M�0) and the sodium bicarbonate co-

transporter, SLC4A7 (Thornell and Bevensee, 2015) (E�3-T-S-L�0); a sodium-dependent transporter,

SLC6A11 (Borden, 1996) (E�3-T-H-F�0); an outward rectifying potassium channel, KCNT2

(Bhattacharjee et al., 2003) (E�3-T-Q-L�0); a scaffold in neurotrophin signalling, KIDINS220

(Iglesias et al., 2000; Kong et al., 2001) (E�3-S-I-L�0); a receptor for the neuronal secreted protein

LGI1 (Fukata, 2006), ADAM22 (E�3-T-S-I�0), and LRFN2 (E�3-S-T-V�0), a protein previously impli-

cated in the synaptic clustering of glutamate receptors (Ko et al., 2006; Morimura et al., 2006;

Wang et al., 2006), and genetically associated with patients harbouring working memory deficits

(Thevenon et al., 2016).

Interestingly, we failed to classify any AMPA receptor subunits as components of the neuronal

SNX27 interactome. That said, GluA2 was quantified in one data set but did not fulfil the stringent

filtering criteria and hence was not annotated in the final interactome. This could reveal a weak, low

abundance association between SNX27 and GluA2, which may reflect an indirect mechanism of asso-

ciation. However, to independently examine the binding of SNX27 to the PDZ-binding motifs of

AMPA receptor subunits, we generated a series of amino-terminal GFP-tagged AMPA receptor

fusion proteins by cloning the carboxy-terminal tails of rat GluA1, GluA2, GluA3, and GluA4 into a

mammalian GFP expression vector. To act as positive controls, we also cloned the carboxy-terminal

tails of the high-affinity glutamate transporter SLC1A3 and the sodium bicarbonate co-transporter

SLC4A7. These two proteins contain an optimal motif for high-affinity binding to the SNX27 PDZ

domain as defined by an acidic residue at the �3 position of their Type I PDZ binding motif

(Clairfeuille et al., 2016; Figure 1E). The AMPA receptor PDZ binding motifs lack this optimal

sequence. Alongside the wild-type tails of SLC1A3 and SLC4A7, we also generated corresponding

PDZ binding motif mutants through removal of the last three carboxy-terminal amino acids. The

resulting series of plasmids were transiently transfected into human embryonic kidney (HEK293T)

cells prior to GFP-nanotrap immunoisolation and quantitative western blotting of the resulting pre-

cipitates. While both GFP-SLC1A3 and GFP-SLC4A7 efficiently pulled down endogenous SNX27, in

a manner dependent on their PDZ binding motifs (Figure 1F), we failed to observe detectable asso-

ciation of endogenous SNX27 with any of the GFP-tagged AMPA receptor subunits (Figure 1G).

To ensure that the lack of detectable binding did not arise from species cross reactivity, an

unlikely event given the high-sequence conservation between rat and human SNX27, we also per-

formed a series of co-immunoprecipitation experiments in HEK293T cells expressing the GFP-

tagged AMPA receptor carboxy-terminal tails and Flag-tagged full-length rat SNX27. Again, we

failed to observe a detectable association of AMPA receptor subunits with rat SNX27 (Figure 1—fig-

ure supplement 1). Finally, to examine whether SNX27 could potentially interact with AMPA recep-

tors specifically in the context of neurons we transduced primary rat cortical neuronal cultures with
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Figure 1. SNX27 interactome reveals new neuronal cargoes. (A) Immunofluorescence staining of endogenous early endosomal marker EEA1

(pseudocoloured in magenta) in DIV21 rat cortical neurons transduced with GFP or GFP-SNX27 expressing sindbis virus. Scale bars, 20 mm. White boxes

indicate the 20 mm section zoomed in. (B) TMT Interactome of SNX27 compared to the GFP control quantified across three independent experiments

(n = 3) in DIV21 rat cortical neurons. Plotted proteins were present in all three data sets and analysed using a one-sample t-test and Benjamini–

Figure 1 continued on next page
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sindbis virus expressing either GFP or GFP-SNX27. Twenty-four hr after transduction we carried out

GFP-nanotrap immunoisolation and quantitative western blotting for the endogenous AMPA recep-

tor subunits GluA1 and GluA2. Again, under these conditions, we failed to detect any association of

endogenous GluA1 or GluA2 with rat SNX27 (Figure 1H). Together these data are consistent with

the AMPA receptor PDZ binding motifs lacking the optimal sequence for high-affinity SNX27 binding

(Clairfeuille et al., 2016) and corroborate our proteomic data. Whilst our data do not exclude that

SNX27 may directly bind to AMPA receptors under specific circumstances, our data is more consis-

tent with the SNX27-dependent recycling of AMPA receptors being principally controlled by indirect

binding. Hence, we assessed the SNX27 interactome further, to identify any interactors that may

serve to ‘bridge’ the association of SNX27 with AMPA receptors. Of particular interest in this regard

was LRFN2, a protein known to be involved in synaptic clustering (Ko et al., 2006; Morimura et al.,

2006; Wang et al., 2006).

LRFNs interact with SNX27 through their PDZ-binding motifs
The LRFN family (also known as synaptic adhesion-like molecules [SALMs]) comprises five single

transmembrane spanning proteins, LRFN1 through to LRFN5, that each contain an extracellular

region of six leucine-rich repeats (LRR), an immunoglobulin (Ig) domain and a fibronectin type III

domain, but differ in their cytosolic facing carboxy-terminal tails with LRFN1, LRFN2, and LRFN4

containing a Type I PDZ binding motif (Lie et al., 2018; Seabold et al., 2008). Both LRFN1 and

LRFN4 were identified in the raw SNX27 proteomic data sets but were each filtered out from the

final high confidence interactome because they were not quantified across all three biological

repeats (Supplementary file 1). To validate the association of SNX27 with LRFN2, we cloned the

carboxy-terminal cytoplasmic tails of all five LRFNs into mammalian GFP expression vectors. Tran-

sient transfection into HEK293T cells followed by GFP-nanotrap immunoisolation of the GFP-LRFN

fusion proteins and quantitative western blotting revealed that only those LRFNs containing a PDZ

binding motif, LRFN1, LRFN2 and LRFN4, associated with endogenous SNX27 (Figure 2A). More-

over, each association was dependent on the presence of the corresponding PDZ binding motif as

deletion of the last three amino acids resulted in mutant LRFNs that failed to associate with SNX27

(Figure 2B).

The LRFN2 PDZ binding motif is defined by the sequence E�3-S�2-T�1-V0, where the valine resi-

due constitutes the carboxy-terminal amino acid. Mutation of the glutamic acid residue at the �3

position (LRFN2 (p.E786A)) or the carboxy-terminal valine (LRFN2 (p.V789A)) lead to the formation

of mutant proteins that each lost the ability to associate with SNX27 (Figure 2C). To define the

direct nature of the SNX27 PDZ domain binding to the LRFN2 PDZ binding motif, we turned to iso-

thermal titration calorimetry (ITC). This established that the isolated recombinant PDZ domain of

Figure 1 continued

Hochberg false-discovery rate (276 proteins). Vertical red line represents the threshold for enriched proteins in the SNX27 interactome (�2) compared

to the GFP control. Horizontal red line represents the threshold for statistical analysis (p�0.05). Pink circles are the protein interactors that are enriched

and meet statistical significance. Blue circles are the proteins that meet statistical significance but are not over twofold enriched. Grey circles are

interactions that are not statistically significant. (C) Filtered TMT interactome (212 proteins) showing only those proteins that were statistically significant

and over two log fold change. SNX27 is shown in green with retromer, and the WASH complex shown in blue. Transmembrane proteins that contain a

Type I PDZbm with the acidic residue at the �3 position are shown in orange. (D) Gene ontology analysis using the PANTHER classification system of

the filtered SNX27 interactome. (E) Schematic highlighting the last six amino acids of the C-terminal tails of isoform 1 of human GluA1, GluA2, GluA3,

GluA4, SLC1A3, and SLC4A7 (sequences are conserved in rat). Only SLC1A3 and SLC4A7 possess the optimal PDZ binding motif (PDZbm) consensus

sequence for high-affinity binding to SNX27 (highlighted in blue, j; hydrophobic amino acid). (F–H) Fluorescence-based western analysis after GFP-

Trap immunoprecipitation of the: (F) C-terminal tails of GFP-SLC1A3 and GFP-SLC4A7 (+/- PDZbm) with endogenous SNX27 in HEK293T cells.

Quantification from three independent experiments (n = 3). Data expressed as a percentage of the WT condition and analysed by an unpaired t-test.

Error bars represent mean ± SEM. ****, p�0.0001; ***, p�0.001. (G) C-terminal tails of AMPA receptors (GFP-GluA1-4) with endogenous SNX27 in

HEK293T cells. (H) Full-length GFP-SNX27 expressing sindbis virus with endogenous GluA1 or GluA2 in DIV20 rat cortical neurons.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Original immunoblots.

Source data 2. Data for Figure 1F.

Figure supplement 1. SNX27 does not directly interact with AMPA receptors.

Figure supplement 1—source data 1. Original immunoblots.
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Figure 2. LRFNs interact with SNX27 through their PDZ binding motifs. (A–C) Fluorescence-based western analysis after GFP-Trap

immunoprecipitation of: (A) the C-terminal tails of GFP-LRFN1-5 with endogenous SNX27 in HEK293T cells; (B) the C-terminal domains of LRFN1,

LRFN2, and LRFN4 (+/- PDZ binding motif (PDZbm)) with endogenous SNX27 in HEK293T cells. Quantification from three independent experiments (n

= 3). Data expressed as a percentage of the wild-type condition and analysed by an unpaired t-test; (C) the C-terminal domain of LRFN2 (+/- PDZbm

and mutants pE786A, pV789A) with endogenous SNX27 in HEK293T cells. Quantification from three independent experiments (n = 3). Data expressed

as a percentage of the wild-type condition and analysed by an unpaired t-test. (D) Binding of the LRFN2 peptide to the SNX27 PDZ domain, measured

by ITC either to SNX27 alone or in the presence of the retromer component VPS26. Top panel shows raw data and bottom panel shows integrated and

normalised data. (E) Fluorescence-based western analysis after GFP-Trap immunoprecipitation of full-length GFP-SNX27 with endogenous LRFN2 in

DIV20 rat cortical neurons. In all figures error bars represent mean ± SEM. ****, p�0.0001.

The online version of this article includes the following source data for figure 2:

Source data 1. Original immunoblots.

Source data 2. Data for Figure 2B and C.
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SNX27 directly bound to a synthetic peptide corresponding to the LRFN2 PDZ binding motif, S-S-E-

W-V-M-E�3-S-T-V�0 with a high micromolar affinity (Kd = 1.6 mM) (Figure 2D). Moreover, the affinity

of this interaction was enhanced upon inclusion of recombinant VPS26 (Kd < 1.0 mM), a retromer

component that directly associates with the PDZ domain of SNX27 and has been previously shown

to enhance the binding affinity between the SNX27 PDZ domain and PDZ binding motif-containing

peptides (Gallon et al., 2014; Chan et al., 2016).

Finally, to confirm that endogenous LRFN2 also associated with SNX27, we transduced primary

rat cortical neuronal cultures with sindbis virus expressing either GFP or GFP-SNX27. GFP-nanotrap

immunoisolation and quantitative western blotting confirmed the association between SNX27 and

full-length endogenous LRFN2 (Figure 2E). Together these data establish that by means of its car-

boxy-terminal PDZ binding motif LRFN2 directly associates with the PDZ domain of SNX27. We also

suggest that this mode of interaction holds true for LRFN1 and LRFN4.

The membrane trafficking of LRFN2 is dependent on SNX27
To examine the functional importance of SNX27 binding to LRFN2, we transduced primary rat hip-

pocampal neuronal cultures with sindbis virus encoding for GFP-tagged SNX27 and mCherry-tagged

full-length LRFN2 (we were unable to identify antibodies suitable for detecting the expression of

endogenous SNX27 or endogenous LRFN2 by immunocytochemistry in these primary cultures). Con-

focal microscopy revealed that the endosome associated SNX27 (see Figure 1A) co-localised with

LRFN2 punctae throughout the neuron including in the dendrites and the cell body (Figure 3A). To

determine the role of SNX27 in the steady-state localisation of LRFN2, we transduced primary rat

cortical neuronal cultures with SNX27 shRNA or a non-targeting control shRNA (Binda et al., 2019).

Following 7 days of incubation, during which time the expression of endogenous SNX27 was

strongly suppressed (Figure 3B), we biochemically quantified the total cellular levels of endogenous

LRFN2 by western analysis. Similar to a wide array of other integral proteins that require endosomal

SNX27 for their retrieval away from the lysosomal degradative fate (Steinberg et al., 2013), the sup-

pression of SNX27 expression led to a robust reduction in the total cellular level of LRFN2 (an

approximate 50% reduction, n = 5, unpaired t-test, t (8) = 4.6, p = 0.0017) (Figure 3C). We also per-

formed restricted cell surface biotinylation and streptavidin affinity capture coupled with quantitative

western analysis to quantify the cell surface level of the AMPA receptor subunits, GluA1 and GluA2,

and LRFN2. Consistent with published studies (Hussain et al., 2014; Loo et al., 2014; Wang et al.,

2013), the suppression of SNX27 expression led to a clear reduction in the cell surface level of

GluA1 and GluA2 (an approximate 37% reduction for GluA1, n = 4, unpaired t-test, t (6) = 3.9, p =

0.0078; and an approximate 64% reduction for GluA2, n = 4, unpaired t-test, t (6) = 4.0, p = 0.0074)

(Figure 3D). Transferrin receptor levels were also measured as a control and were found to be

unchanged (n = 4, unpaired t-test, t (6) = 0.6, p = 0.5774) (Figure 3E). Importantly, under these con-

ditions, SNX27 suppression also induced a robust reduction in the cell surface level of LRFN2 (an

approximate 52% reduction, n = 6, unpaired t-test, t (10) = 5.0, p = 0.0006) (Figure 3F).

To assess further the trafficking of LRFN2, we analysed the internalisation of LRFN2 after suppres-

sion of SNX27 in the neuroglioma H4 cell line. After 6 days of culturing with either a control or

SNX27 shRNA, the cells were transfected with mCherry-LRFN2 and left for another 24 hr. Surface

LRFN2 was labelled using an mCherry antibody, to detect the exofacial expressed mCherry of the

LRFN2 fusion protein, and then allowed to internalise for 2 hr. After fixation and permeabilisation,

the cells were co-stained with LAMP2 to label lysosomes. To detect the mCherry antibody, we used

an Alexa Fluor 405 conjugated secondary antibody. The colocalisation between LRFN2 and LAMP2

significantly increased after SNX27 suppression (an approximate 27% increase, n = 30, unpaired

t-test, t (58) = 2.4, p = 0.0200) (Figure 3G). Together these data establish LRFN2 as an integral pro-

tein that conforms to the dogma of SNX27-mediated membrane trafficking in that it requires SNX27

for its retrieval from lysosomal degradation, a pre-requisite for recycling back to the cell surface.

LRFNs interact with AMPA receptors
The LRFN family of synaptic proteins are considered adhesion molecules that cluster receptors at

the synaptic surface (Ko et al., 2006; Morimura et al., 2006; Wang et al., 2006; Lie et al., 2018).

For LRFN2, research has principally focused on its ability to cluster NMDA receptors (Wang et al.,

2006). To define whether LRFN2 also plays a role in regulating AMPA receptor trafficking, we first
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Figure 3. The membrane trafficking of LRFN2 is dependent on SNX27. (A) Immunofluorescence staining of DIV20 rat hippocampal neurons co-

transduced with mCherry-LRFN2 (pseudocoloured in magenta) and GFP-SNX27 expressing sindbis viruses. Scale bars, 20 mm. White boxes indicate the

20 mm section zoomed in. Representative fluorescence intensity plot shown of the 20 mm zoomed in section from (i). (B–C) Fluorescence-based western

analysis of DIV19 rat cortical neurons transduced with either a control or SNX27 shRNA for: (B) endogenous SNX27 (C) endogenous LRFN2. Actin was

used as a protein load control. Quantification from five independent experiments (n = 5). Data expressed as a percentage of the control shRNA and

analysed by an unpaired t-test. (D–E) Fluorescence-based western analysis after surface biotinylation and streptavidin agarose capture of membrane

Figure 3 continued on next page
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examined the relative cell surface localisation of LRFN2 and AMPA receptors in neurons. Here, we

transduced primary rat hippocampal neuronal cultures with sindbis virus encoding mCherry-tagged

LRFN2 such that the mCherry tag was exofacially expressed. After 24 hr of expression, we observed

the surface localisation of LRFN2 and AMPA receptors by indirect immunofluorescence using an

mCherry antibody (and Alexa Fluor 647 labelled secondary antibody), and antibodies against extra-

cellular epitopes of the endogenous AMPA receptor subunits GluA1 and GluA2, followed by fixa-

tion. This revealed points of overlap between the distribution of cell surface LRFN2 and endogenous

GluA1 and GluA2 in dendrites (Figure 4A and B and C).

To investigate the possible association of LRFN proteins with AMPA receptors, we transiently co-

transfected HEK293T cells with full-length mCherry-tagged versions of LRFN1, LRFN2, or LRFN4 and

either full-length super-ecliptic pHluorin (SEP)-tagged GluA1 or GluA2. Twenty-four hr later GFP-

nanotrap immunoisolation (targeting the SEP tag) and western analysis revealed that LRFN1, LRFN2,

and LRFN4 were all able to associate with GluA1 and GluA2 (Figure 4D). To map the region respon-

sible for this interaction, we engineered a series of amino-terminal truncations of the extracellular

region of LRFN2 (Figure 4E). The resulting mCherry-tagged deletion mutants were transiently co-

transfected into HEK293T cells alongside either SEP-GluA1 or myc-GluA2 encoding vectors prior to

RFP-nanotrap immunoisolation (targeting the mCherry tag) and western analysis of associating pro-

teins. While full-length LRFN2 associated with GluA1 and GluA2, deletion of the LRR and Ig domains

led to a reduction in binding (an approximate 56% reduction for GluA1, n = 4, unpaired t-test, t (6)

= 3.3, p = 0.0173; and an approximate 67% reduction for GluA2, n = 4, unpaired t-test, t (6) = 10.6,

p = <0.0001) that was further reduced upon removal of the juxtamembrane fibronectin type III

domain (an approximate 79% reduction for GluA1, n = 4, unpaired t-test, t (6) = 12.8, p = <0.0001;

and an approximate 94% reduction for GluA2, n = 4, unpaired t-test, t (6) = 40.5, p = <0.0001)

(Figure 4F). Taken together, this data demonstrates that LRFN2 and AMPA receptors show overlap-

ping distributions on the cell surface of dendrites, and that LRFN2 associates with the GluA1 and

GluA2 subunits of AMPA receptors through an interaction principally mediated by its extracellular

LRR and Ig domains.

To investigate whether LRFN2 suppression affects the surface levels of GluA1 and GluA2, we

turned to an immunofluorescence analysis in primary neurons. To relate this single-cell analysis with

the previously described population-based biochemical quantification of cell surface AMPA recep-

tors (see Figure 3E), we suppressed SNX27 expression through transduction of SNX27 targeting

shRNA into primary rat cortical neuronal cultures. After 7 days of culturing, the intensity of GluA1

and GluA2 staining were quantified with antibodies that specifically detect extracellular epitopes of

these subunits. Consistent with the aforementioned biochemical analysis this revealed a significant

reduction in cell surface GluA1 and GluA2 staining upon SNX27 suppression (GluA1: an approximate

16% reduction, n = 50, Mann Whitney test, U (730), p = 0.0003; GluA2: an approximate 34% reduc-

tion n = 50, Mann Whitney test, U (632), p < 0.0001) (Figure 5A). In a parallel analysis, the suppres-

sion of LRFN2 expression (Figure 5B) also caused a significant reduction in GluA2 surface

Figure 3 continued

proteins of DIV19 rat cortical neurons transduced with either a control or SNX27 shRNA for: (D) Endogenous surface GluA1 and GluA2. Total levels of

endogenous SNX27 are also shown. Quantification from four independent experiments (n = 4). Data expressed as a percentage of the control shRNA

and analysed by an unpaired t-test. (E) Endogenous surface Transferrin receptor. Total levels of endogenous SNX27 are also shown. Quantification from

four independent experiments (n = 4). Data expressed as a percentage of the control shRNA and analysed by an unpaired t-test. (F) Endogenous

surface LRFN2. Total levels of endogenous SNX27 are also shown. Quantification from six independent experiments (n = 6). Data expressed as a

percentage of the control shRNA and analysed by an unpaired t-test. (G) Immunofluorescence staining of internalised LRFN2 in H4 cells transduced

with either control or SNX27 shRNA. Cells were transfected with mCherry-LRFN2 and after 24 hr the surface LRFN2 labelled using an mCherry antibody.

The labelled mCherry-LRFN2 was allowed to internalise for 2 hr before fixation and permeabilisation. Cells were co-stained with LAMP2 as a lysosome

marker. Scale bars, 10 mm. Quantification of colocalisation of LRFN2 (pseudocoloured in magenta) and LAMP2 (pseudocoloured in green) from three

independent experiments (n = 30 cells analysed). Data analysed by an unpaired t-test. In all figures error bars represent mean ± SEM. ****, P�0.001; **,

P�0.01; *, P�0.05.

The online version of this article includes the following source data for figure 3:

Source data 1. Original immunoblots.

Source data 2. Data for Figure 3C – G.
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Figure 4. LRFNs interact with AMPA receptors. (A) Immunofluorescence staining of endogenous surface GluA1 and GluA2 in DIV20 rat hippocampal

neurons transduced with mCherry-LRFN2 expressing sindbis virus. An mCherry antibody was used to stain for surface LRFN2 expression followed by a

far-red labelled secondary antibody (pseudocoloured in magenta). Cells were co-stained with antibodies against extracellular epitopes of the

endogenous AMPA receptor subunits GluA1 and GluA2 (shown in green) Scale bars, 20 mm. White boxes indicate the 20 mm section zoomed in. Yellow

Figure 4 continued on next page
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expression (an approximate 40% reduction, n = 50, Mann Whitney test, U (556), p < 0.0001) but,

interestingly, had no significant effect on the cell surface expression of GluA1 (n = 50, Mann Whitney

test, U (1228), p = 0.8813) (Figure 5C).

To assess further the trafficking of the AMPA receptor subunit GluA2, we analysed the internalisa-

tion of GluA2 after suppression of SNX27 or LRFN2 in primary neurons. After 7 days of culturing

with shRNA treatment, surface GluA2 receptor subunits were labelled with an antibody that specifi-

cally detected the extracellular epitope of the GluA2 subunit. The GluA2 was allowed to internalise

for 1 hr before fixation. The antibody remaining on the surface was labelled with a secondary Alexa

Fluor 405 antibody. After permeabilisation, the neurons were co-stained with VPS35 to label the

endosome or LAMP1 to label the lysosome and internalised receptors were detected using a distinct

secondary Alexa Fluor 647 antibody. The intensity of internalised GluA2 was quantified in the cell

body and proximal dendrites and found to be significantly increased after suppression of both

SNX27 (an approximate 43% increase, n = 58, Mann Whitney test, U (827), p < 0.0001) and LRFN2

(an approximate 14% increase, n = 58, Mann Whitney test, U (1198), p = 0.0073) with the GluA2

overlapping with both VPS35 and LAMP1 (Figure 6A, B, C). This suggests that suppression of

SNX27 or LRFN2 perturbs the recycling of GluA2, increasing its retention time in the endo-lysosomal

system. Overall, these data establish a biochemical and functional connection between LRFN2 and

the SNX27-dependent membrane trafficking of the AMPA receptor subunit GluA2.

In vivo suppression of SNX27 and LRFN2 affects ex vivo AMPA
receptor activity in the hippocampus
In isolated neuronal cultures SNX27 and LRFN2 suppression regulates AMPA receptor membrane

trafficking and cell surface expression. To relate these phenotypes to the functional activity of synap-

tic AMPA receptors, we turned to an electrophysiological analysis in ex vivo slices. Here, we stereo-

taxically injected one dorsal hippocampal hemisphere of an adult rat with lentivirus encoding for

specific targeting shRNAs (targeting either SNX27 or LRFN2) and injected the other hemisphere of

the same animal with a control non-targeting shRNA lentivirus (all lentiviruses were engineered to

express GFP in order to visualise the transduced area). Six to eight weeks after surgery, we prepared

ex vivo hippocampal slices and performed electrophysiological recordings by stimulating Schaffer

collaterals and recording field excitatory postsynaptic potentials (fEPSPs) in the stratum radiatum of

GFP-positive regions of CA1 (Figure 7A). Input-output curves showed that SNX27 shRNA treatment

profoundly decreased excitatory synaptic transmission compared to the non-targeting control

shRNA (two-way repeated-measures ANOVA, between subjects, F (1,19) = 22.3, p = 0.0001)

(Figure 7B and C). Importantly, LRFN2 shRNA treatment also significantly decreased excitatory syn-

aptic transmission compared to the non-targeting control shRNA (two-way repeated-measures

ANOVA, between subjects F (1,12) = 6.7, p = 0.024) (Figure 7D and E). A direct comparison of

LRFN2 and SNX27 phenotypes revealed that SNX27 produced a larger reduction in glutamatergic

transmission than LRFN2 suppression (two-way repeated-measures ANOVA, between subjects F

(1,16) = 4.6, p = 0.047) (Figure 7F), whereas there was no difference in transmission between the

two non-targeting control shRNAs (F (1,15) = 0.95, p = 0.35), suggesting that SNX27, as well as

Figure 4 continued

arrows show points of overlap. (B) Representative fluorescence intensity plots of the 20 mm zoomed in sections for surface LRFN2 and GluA1 in A

(region i). (C) Representative fluorescence intensity plots shown of the 20 mm zoomed in sections for surface LRFN2 and GluA2 in (A; region iii). (D)

Fluorescence-based western analysis after GFP-Trap immunoprecipitation of full-length SEP-GluA1 or SEP-GluA2 co-expressed with full-length

mCherry-LRFN1, mCherry-LRFN2 or mCherry-LRFN4 in HEK293T cells. (E) Schematic of LRFN2 constructs mCherry-LRFN2 FL (full-length) and

N-terminal mutants. LRR, leucine-rich repeat; NT/CT, N/C-terminal domains of LRR; Ig, immunoglobulin domain; FNIII, fibronectin type-III; TM,

transmembrane; PDZbm, PDZ binding motif. (F) Fluorescence-based western analysis after RFP-Trap immunoprecipitation of mCherry-LRFN2 wild-type

(LRFN2 FL) or N-terminal mutants co-expressed with full-length SEP-GluA1 or myc-GluA2 in HEK293T cells. Quantification from four independent

experiments (n = 4). Data expressed as a percentage of the full-length mCherry-LRFN2 and analysed by an unpaired t-test. In all figures error bars

represent mean ± SEM. ****, P�0.0001; *, P�0.05.

The online version of this article includes the following source data for figure 4:

Source data 1. Original immunoblots.

Source data 2. Data for Figure 4F.
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Figure 5. SNX27 and LRFN2 suppression affects surface AMPA receptor expression. (A) Immunofluorescence staining of endogenous surface GluA1

and GluA2 in DIV19 rat hippocampal neurons transduced with either control or SNX27 shRNA. Scale bars, 20 mm. White boxes indicate the 20 mm

section zoomed in. Quantification of surface GluA1 and GluA2 from five independent experiments (n = 50 neurons analysed). Data analysed by a Mann-

Whitney U test. (B) Immunofluorescence staining of endogenous surface GluA1 and GluA2 in DIV19 rat hippocampal neurons transduced with either

control or LRFN2 shRNA. Scale bars, 20 mm. White boxes indicate the 20 mm section zoomed in. Quantification of surface GluA1 and GluA2 from five

independent experiments (n = 50 neurons analysed). Data analysed by a Mann-Whitney U test. In all figures error bars represent mean ± SEM. ****,

p�0.0001; ***, p�0.001; ns, not significant. Fluorescence-based western analysis shown of DIV19 rat cortical neurons transduced with either control or

LRFN2 shRNA for endogenous LRFN2. Actin was used as a protein load control.

Figure 5 continued on next page
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affecting LRFN2 expression, may also be regulating other LRFNs and/or other synaptic proteins that

can influence AMPA receptor activity. We are however cautious in over-interpreting such a

comparison.

Finally, loss of SNX27 has previously been shown to impair induction of hippocampal LTP

(Wang et al., 2013). Therefore, we asked whether LRFN2 suppression also affects activity-depen-

dent synaptic plasticity. Following high-frequency stimulation (HFS), we observed that the non-tar-

geting control-treated slices exhibited robust LTP (paired t-test, t (5) = 3.9, p = 0.011) (Figure 7G

and H) while no detectable LTP was induced in the LRFN2 shRNA-treated slices (paired t-test, t (4)

= 1.8, p = 0.15) (Figure 7G and I) indicating that LRFN2 suppression attenuates the induction of

LTP. Taken together these data indicate that LRFN2 plays an important role in the functional expres-

sion and activity of synaptic AMPA receptors and reveals a new player in the complex SNX27-medi-

ated regulation of AMPA receptor trafficking.

Discussion
Patients lacking SNX27 expression or expressing predicted damaging inherited SNX27 variants dis-

play a range of neuronal phenotypes that include developmental delays, abnormal neurocognitive

function, epilepsy, various types of seizure, and subcortical white matter abnormalities

(Damseh et al., 2015; Parente et al., 2020). While known SNX27-associated neuronal integral pro-

teins, such as NMDA receptors (Cai et al., 2011; Wang et al., 2006), 5-HT4 receptor

(Joubert et al., 2004), metabotropic glutamate receptor 5 (mGluR5) (Lin et al., 2015), neuroligin 2

(Binda et al., 2019; Halff et al., 2019), and Kir3 channels (Lunn et al., 2007), have provided some

insight into these complex phenotypes our unbiased quantitative identification of the neuronal

SNX27 interactome has revealed an additional cohort of integral neuronal proteins that associate

with SNX27. Besides LRFN2 (see discussion below), many of these proteins function in an array of

neuronal activities: the high affinity glutamate transporter, SLC1A3, and the sodium bicarbonate co-

transporter, SLC4A7, are associated with controlling glutamate neurotoxicity Rothstein et al., 1996;

Watase et al., 1998; Jen et al., 2005; Park et al., 2019; SLC6A11, a sodium-dependent trans-

porter, uptakes GABA and modulates GABAergic tone Borden, 1996; KCNT2, an outward rectifying

potassium channel, is associated with early infantile epileptic encephalopathies Bhattacharjee et al.,

2003; Gururaj et al., 2017; KIDINS220, a scaffold in neurotrophin signalling, is associated with spas-

tic paraplegia and intellectual disability Kong et al., 2001; DDD Study et al., 2016; and ADAM22 is

a receptor for the neuronal secreted protein LGI1 (Fukata, 2006), the product of the causative gene

for autosomal dominant partial epilepsy with auditory features (Muona et al., 2016). This significant

expansion in the neuronal targets for SNX27-mediated endosomal sorting has therefore broadened

our understanding of those integral proteins whose perturbed cell surface expression may underly

the complex neurological phenotypes observed in SNX27-associated pathologies.

A major functional role for neuronal SNX27 is as an established regulator of postsynaptic AMPA

receptor trafficking (Wang et al., 2013; Loo et al., 2014; Hussain et al., 2014). AMPA receptors

are one of the major types of ionotropic glutamate receptors present at the postsynaptic density of

excitatory synapses and, consequently, perturbed AMPA receptor trafficking has been implicated in

numerous neurological and psychiatric disorders (Henley and Wilkinson, 2016, Shankar et al.,

2008, Shepherd and Huganir, 2007, Walsh et al., 2002, Grooms et al., 2000, Yamashita and

Kwak, 2014). Four core AMPA receptor subunits, GluA1 through to GluA4, combine to produce

functionally diverse homo- and hetero-tetrameric channels which drive fast excitatory synaptic trans-

mission (Hollmann and Heinemann, 1994, Henley and Wilkinson, 2016). AMPA receptors utilise

membrane trafficking pathways to dynamically regulate their number, composition, and biophysical

properties at the postsynaptic membrane during the modulation of synaptic strength associated

with learning and memory (Henley and Wilkinson, 2016; Diering and Huganir, 2018; Huganir and

Figure 5 continued

The online version of this article includes the following source data for figure 5:

Source data 1. Original immunoblots.

Source data 2. Data for Figure 5A and B.
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Figure 6. Suppression of SNX27 or LRFN2 increases AMPA receptors in the endo-lysosomal system. (A–B) Immunofluorescence staining of endogenous

internalised GluA2 (pseudocoloured in green) in DIV19 rat hippocampal neurons transduced with either control, SNX27 or LRFN2 shRNA. Surface

labelled GluA2 was allowed to internalise for 1 hr before fixation and permeabilisation. Scale bars, 20 mm. Zoomed in images of the cell body (Yellow

boxes). Scale bars, 5 mm. For clarity only the internalised GluA2 images are shown. The surface GluA2 expression can be found in Figure 6—figure

Figure 6 continued on next page
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Nicoll, 2013). At the mechanistic level, the regulation of AMPA receptors by SNX27 is considered to

arise from the PDZ domain of SNX27 directly binding to the PDZ binding motifs present in the car-

boxy-terminal tails of AMPA receptor subunits. However, using unbiased proteomics and biochemi-

cal validation coupled with in cellulo and ex vivo analysis, we have presented evidence consistent

with SNX27 regulating the surface expression and activity of AMPA receptors through association

with the synaptic adhesion protein LRFN2 (Figure 8). LRFN2 belongs to the LRFN family, also known

as synaptic adhesion-like molecules (SALMs), and whilst these proteins have been associated with

inhibitory synapses (Li et al., 2018) and at the pre-synapse (Brouwer et al., 2019), their function has

principally been linked with excitatory synapses (Ko et al., 2006; Morimura et al., 2006;

Wang et al., 2006; Lie et al., 2018; Mah et al., 2010; Loh et al., 2016). In proposing LRFN2 as an

accessory protein in the dynamic AMPA receptor trafficking code (Diering and Huganir, 2018), our

data adds to the complex regulation of AMPA receptor-mediated synaptic transmission and

plasticity.

We have established that LRFN2 directly interacts with SNX27 and that this is required for its traf-

ficking to the plasma membrane and away from degradation in the lysosome. In addition, we have

shown that LRFN2 associates with the AMPA receptor subunits GluA1 and GluA2, interactions that

are principally governed by the extracellular LRR and Ig domains of LRFN2. This is consistent with

these domains mediating protein:protein interactions, most notably for the trans-synaptic interac-

tions of LRFNs with type-II receptor tyrosine phosphatases (Lin et al., 2018). In the hippocampus

the major forms of AMPA receptors include GluA1/2 and GluA2/3 heteromers, and GluA1 homo-

mers, with the differential trafficking of GluA1-containing and GluA1-lacking receptors having impor-

tant implications in transmission and plasticity (Diering and Huganir, 2018; Huganir and Nicoll,

2013; Wenthold et al., 1996). Our data indicates that LRFN2 helps maintain surface expression of

GluA1-lacking receptors, but suggests that other pathways that also rely on SNX27 may exist to

maintain surface expression of GluA1-containing receptors. Our focus in this study was LRFN2 as it

was the only LRFN retained through our high stringency data filtering, and because defects in

LRFN2 have been implicated in various neurological conditions, consistent with an important role in

brain development, function, and cognition (Morimura et al., 2017; Rautiainen et al., 2016;

Thevenon et al., 2016). However, given that LRFN1 and LFRN4 also associated with SNX27 and

contain an optimal PDZ binding motif for binding to the SNX27 PDZ domain, we consider that the

endosomal sorting of these proteins will also by mediated by SNX27 and that further studies into

LRFN1 and LRFN4 are therefore likely to provide additional insights into SNX27-associated patholo-

gies. Interestingly, LRFN1 has also been shown to interact with AMPA receptors on the synaptic sur-

face (Morimura et al., 2017). It is therefore tempting to speculate that redundancies between the

LRFN proteins may explain why GluA1-containing receptors are not affected after LRFN2

suppression.

Using electrophysiology in ex vivo slices, we have shown that suppression of SNX27 leads to a

dramatic loss of AMPA receptor-mediated synaptic activity, validating our biochemical data showing

reduced surface AMPA receptor expression. This supports previous findings showing reduced

AMPA receptor-mediated postsynaptic currents in SNX27+/- mice (Wang et al., 2013). Importantly,

we have also shown that LRFN2 depletion caused a loss of AMPA receptor-mediated synaptic activ-

ity, consistent with a role for LRFN2 in SNX27-dependent AMPA receptor trafficking. We also

observed an attenuated activity-dependent hippocampal LTP upon LRFN2 suppression, which sup-

ports the study of Li and colleagues who reported a reduction of LTP in an LRFN2 knockout mouse

model (Li et al., 2018). In contrast, Morimura and colleagues reported an increase in silent synapses

Figure 6 continued

supplement 1. (A) Cells were co-stained with VPS35 (pseudocoloured in magenta) as an endosomal marker. (B) Cells were co-stained with LAMP1

(pseudocoloured in magenta) as a lysosome marker. (C) Quantification of internalised GluA2 intensity from five independent experiments (n = 58

neurons analysed). The mean intensity of GluA2 was measured from the cell body and proximal dendrites. Data analysed by a Mann-Whitney U test. In

all figures error bars represent mean ± SEM. ****, P�0.0001; **, P�0.01.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Data for Figure 6C.

Figure supplement 1. Suppression of SNX27 or LRFN2 increases AMPA receptors in the endo-lysosomal system.
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Figure 7. In vivo suppression of SNX27 and LRFN2 affects ex vivo AMPA receptor activity in the hippocampus. (A) Representative infrared image of a

transduced rat dorsal hippocampal slice expressing the control shRNA lentivirus showing placement of electrodes to record Schaffer collateral

responses. Inset (i) shows GFP fluorescence of CA1 region. Animals were left for 6–8 weeks with the control shRNA injected into one hemisphere and

either SNX27 or LRFN2 shRNA into the other hemisphere. (B) Input-output curves from SNX27 and control shRNA treated slices. Quantification from six

Figure 7 continued on next page
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and an enhancement of LTP in another LRFN2 knockout mouse model (Morimura et al., 2017). The

distinct methodology used in our study, post-development suppression of LRFN2 compared with

developmental knockout of LRFN2, may in part explain these differences.

It is well established that AMPA receptors can interact with a multitude of transmembrane pro-

teins to stabilise and retain their expression at the postsynaptic density, including scaffolding pro-

teins, synaptic adhesion molecules, and auxiliary subunits, such as the transmembrane AMPA

receptor regulatory proteins (TARPs) and cornichon-like proteins CNIH2/CNIH3 (Schwenk et al.,

2009; Coombs and Cull-Candy, 2009). Whilst we have shown that LRFN2, analogous to these auxil-

iary proteins, plays important roles in the targeting of AMPA receptors to the post-synapse, we have

not examined the question of whether LRFN2 clusters AMPA receptors into slots at the postsynaptic

density (Henley and Wilkinson, 2016) nor have we investigated the trafficking of LRFN2 through

the biosynthetic pathway and how this may regulate LRFN2 surface levels (Seabold et al., 2012).

The PDZ binding motif present in LRFN1, LRFN2 and LRFN4 can associate with many other PDZ

domain-containing proteins including the synaptic scaffolding protein PSD-95 (Ko et al., 2006;

Morimura et al., 2006; Nam et al., 2011; Wang et al., 2006), suggesting that LRFNs could also

have a role in the anchoring and stability of AMPA receptors at the synaptic surface. It is possible

that LRFNs interact with the AMPA receptor subunits through their extracellular LRR and Ig domains

and PSD-95 through their PDZ binding motifs to stabilise AMPA receptors at the synaptic surface

(Figure 8). This would be an interesting avenue to explore further.

Interestingly, NMDA receptors, which are also required for excitatory transmission and synaptic

plasticity, interact with both SNX27 and LRFN2 (Wang et al., 2006; Thevenon et al., 2016;

Morimura et al., 2006; Cai et al., 2011; Wang et al., 2013; Clairfeuille et al., 2016). The associa-

tion of SNX27 with LRFN2 may therefore play multiple roles in regulating excitatory transmission

through regulating surface expression of glutamate receptors at the synaptic surface.

LRFN2 is increasingly being linked to a range of neurological conditions including antisocial per-

sonality disorder (Rautiainen et al., 2016), autism (Morimura et al., 2017), schizophrenia

(Morimura et al., 2017), working memory deficits, and learning disabilities (Thevenon et al., 2016).

A recent proteomic screen on pre-frontal post-mortem tissue also revealed that LRFN2 protein

expression was significantly decreased in people with Alzheimer’s disease, Parkinson’s disease with

dementia, and dementia with Lewy bodies, further highlighting the importance of LRFN2 for neuro-

nal function (Bereczki et al., 2018). LRFN2 had the highest level of reduction compared to other

synaptic proteins in all three forms of dementia, and its loss was strongly associated with rate of cog-

nitive decline (Bereczki et al., 2018). Our data demonstrating that LRFN2 can control AMPA recep-

tor activity therefore provides additional insight into the role of LRFN2 in these conditions.

In summary, we have identified LRFN2 as a high-affinity neuronal interactor of SNX27 that is

required for AMPA receptor-mediated synaptic transmission. Suppression of SNX27 leads to a

reduction in LRFN2 expression which results in a loss of surface expression of GluA2 and, corre-

spondingly, a loss of synaptic activity (Figure 8). The link between SNX27, LRFN2, and AMPA recep-

tors provides a new point of control for AMPA receptor-mediated synaptic transmission and

plasticity and provides additional insight into the association of LRFN2 and SNX27 with many neuro-

logical and psychiatric conditions.

Figure 7 continued

animals (n = 10 recordings) for the control and five animals (n = 11 recordings) for the SNX27 shRNA. Data analysed by a two-way repeated-measures

ANOVA. (C) Representative traces of the recordings from (B). (D) Input-output curves from LRFN2 and control shRNA-treated slices. Quantification from

five animals (n = seven recordings) for the control and five animals (n = seven recordings) for the LRFN2 shRNA. Data analysed by a two-way repeated-

measures ANOVA. (E) Representative traces of the recordings from (D). (F) Input-output curves comparing SNX27 and LRFN2 shRNA treatment. (G) LTP

response following high frequency stimulation (HFS) at t = 0. Quantification from five animals (n = six recordings) for the control and four animals (n =

five recordings) for the LRFN2 shRNA. (H) Representative traces and quantification of the LTP response after treatment with the control shRNA (follow-

up is the final 10 min of the recording). Control slices underwent LTP with data analysed by a paired t-test. (I) Representative traces and quantification

of the LTP response after treatment with the LRFN2 shRNA. LRFN2 shRNA treated slices were not significantly potentiated. In all figures error bars

represent mean ± SEM. ****, p�0.0001; *, p�0.05; ns, not significant.

The online version of this article includes the following source data for figure 7:

Source data 1. Data for Figure 7B - I.
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Materials and methods

Plasmids
The intracellular C-terminal tails of GluA1 (amino acids 827–907), GluA2 (amino acids 834–883),

GluA3 (amino acids 839–888), and GluA4 (amino acids 835–902) were cloned from rat whole brain

cDNA into the vector pEGFP-C3. The intracellular C-terminal tails of wild type human LRFN1,

LRFN2, LRFN3, SLC1A3, and SLC4A7 (last 40 amino acids) were cloned from HeLa cDNA into the
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Figure 8. SNX27 regulation of AMPA receptor trafficking through LRFN2 It is well established that SNX27 suppression results in a loss of AMPA

receptor expression and activity through a mechanism that evokes the direct sequence-dependent recognition of internalised AMPA receptors by

endosome associated SNX27 (1). In the absence of SNX27, internalised AMPA receptors fail to be recycled and enter the lysosomal degradative

compartment. This missorting leads to an overall reduction in AMPA receptor expression at the cell surface. Our data proposes that LRFN2 acts as a

‘bridging’ factor in SNX27-mediated AMPA receptor trafficking (2). Here, internalised LRFN2 directly associates with SNX27 through its PDZ binding

motif (PDZbm) and is a classical cargo for SNX27-dependent retrieval and recycling to the synaptic cell surface. Upon SNX27 suppression, internalised

LRFN2 is missorted to lysosomes where it undergoes degradation, leading to a reduction in LRFN2 levels at the synaptic surface. LRFN2 associates with

AMPA receptors and LRFN2 suppression leads to AMPA receptor missorting into the degradative pathway. Taken together, we propose that the

association of LRFN2 with AMPA receptors is required for the SNX27-dependent endosomal recycling of GluA1-lacking AMPA receptors. LRFN2 may

also display properties of an ‘auxiliary’ protein in aiding the retrieval and recycling of internalised AMPA receptors through the SNX27-positive

endosomal compartment and, in addition, may function as an adhesion molecule to anchor and stabilise AMPA receptor expression at the cell surface.

EE, early endosome; LE, late endosome.
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vector pEGFP-C1. The human LRFN4 (last 40 amino acids) was cloned from LRFN4 cDNA

(MHS6278-202832013, GE Healthcare) and the human LRFN5 (last 40 amino acids) generated by

combining oligonucleotides ordered from Eurofins genomics. The DPDZbm mutants (missing the last

three amino acids) were cloned either directly from cDNA or by site-directed mutagenesis of the

wild type plasmids. The LRFN2(pE786A) and LRFN2(pV789A) mutants were generated using site-

directed mutagenesis of the LRFN2 wild-type plasmid. The LRFN2 full length construct and N-termi-

nal mutants were cloned from HeLa cDNA and inserted into a pmCherryC1 vector containing the

LRFN1 signal peptide upstream of the mCherry tag. Flag-tagged rat SNX27 was produced by PCR

amplification of the SNX27 coding sequence from cDNA produced from PC12 cells with a FLAG tag

added to the forward primer. The resulting PCR product was then cloned into the vector pcDNA3.1.

SEP-GluA1 (Blanco-Suarez and Hanley, 2014) (64942; Addgene), SEP-GluA2 (Ashby et al., 2004)

(64941; Addgene), and N-terminally myc-tagged GluA2 (Leuschner and Hoch, 1999) constructs

have been reported previously.

Cell culture
All cells were cultured in a humidified incubator at 37˚C and 5% CO2. HEK293T (American Type Cul-

ture Association (ATCC)) and H4 cells (a gift from Dr Helen Scott and Professor James Uney) were

maintained in DMEM (D5796; Sigma-Aldrich) supplemented with 10% foetal bovine serum (F7524;

Sigma-Aldrich). For the GFP/RFP-based immunoprecipitations, HEK293T cells were transfected with

GFP/RFP- expressing constructs using polyethyleneimine (PEI) (Sigma-Aldrich). BHK-21 cells (ATCC)

were maintained in Alpha MEM (22561–021, Gibco) supplemented with 5% foetal bovine serum

(F7524; Sigma-Aldrich) and 1% Penicillin/Streptomycin (P0781, Sigma-Aldrich).

Primary neuronal cultures were prepared from embryonic day E18 Wistar rat brains as previously

described (Martin and Henley, 2004). In brief, dissociated cortical cells were grown in six well

dishes (500,000 cells/well), and hippocampal cells on 22 mm glass coverslips (150,000 cells/coverslip)

coated with poly-L-lysine (P2636; Sigma-Aldrich) in 2 ml plating medium (Neurobasal medium

(21103–049, Gibco) supplemented with 5% horse serum (H1270), 2% B27 (17504–044, Gibco) and

1% Glutamax (35050–038)) which was exchanged for 2 ml feeding medium 2 hr after plating (Neuro-

basal medium (21103–049, Gibco), 2% B27 (17504–044, Gibco), and 0.4% Glutamax (35050–038)).

Cells were then fed with an additional 1 ml of feeding medium 7 days after plating.

Lentivirus and Sindbis virus production
For lentivirus production, shRNAs driven by a H1 promoter were generated for the knockdown of

rat SNX27 (target sequence 5’-aagaacagcaccacagaccaa-3’) (Binda et al., 2019), human SNX27 (tar-

get sequence 5’- aagaacagtactacagaccaa-3’), rat LRFN2 (target sequence 5’-acgacgaggtactgattta-

3’), and a control (non-targeting sequence 5’-aattctccgaacgtgtcac-3’). Oligonucleotides were cloned

into a modified pXLG3-GFP viral vector and co-transfected into a 15 cm dish of HEK293T cells with

the helper plasmids Pax2/p8.91 and pMDG2 using PEI. For primary culture, the viruses were har-

vested 72 hr after transfection, spun down at 4000 rpm for 10 min at room temperature (RT) and fil-

tered through 0.45 mm filters before being stored at �70˚C. Neurons were transduced with shRNA

viruses on DIV12 and left for 7 days before analysis. Only those experiments where knockdown

resulted in more than 85% reduction of the protein of interest were used for analysis. For in vivo

injections, the lentiviral constructs were modified to include a Woodchuck Hepatitis Virus Posttran-

scriptional Regulatory Element (WPRE) to increase the GFP expression and the amount of HEK293T

cells were scaled up to 10 x 15 cm dishes/virus. The media was harvested 48 hr after transfection,

spun down at 4000 rpm for 10 min at RT and filtered through 0.45 mm filters. The filtered superna-

tant was then centrifuged in JA20 tubes at 6000 rpm overnight (O/N) at 4˚C (Avanti J-25, Beckman

Coulter). The following day the viral pellet was resuspended in 5 ml PBS and centrifuged at 20,000

rpm for 90 min at 4˚C (Optima XL-100K, Beckman Coulter). The pellet was then resuspended in the

required volume of PBS before being aliquoted and stored at �70˚C.

For sindbis virus production, full-length human SNX27 and LRFN2 were cloned into the pSinRep5

plasmid. GFP-SNX27 was amplified from pEGFP-C1 and the resulting PCR product cloned into pSin-

Rep5. The LRFN2 was subcloned from a pmCherryC1 vector which contained a mCherry fluorescent

tag immediately after a N -terminal signal peptide (LRFN1 signal peptide) followed by full-length

LRFN2. GFP- and mCherry- expressing pSinRep5 plasmids were created as controls. Five mg of in
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vitro-transcribed RNA (2.5 mg of SNX27/LRFN2 RNA and 2.5 mg of the defective helper plasmid) was

electroporated into 0.6x107 BHK-21 cells using a Gene Pulser II electroporation system (BioRad) in a

gene pulser cuvette (0.2 cm gap). The electroporation conditions were set as follows: voltage; 1.5

kV, capacitance; 25 mF for a period of 0.7–0.8 ms. The viruses were harvested 36–48 hr after electro-

poration before being stored at �70˚C. Neurons were transduced with sindbis viruses on DIV19/20

and left for 18–24 hr before analysis.

TMT proteomics
Immunoisolated samples were reduced (10 mM TCEP, 55˚C for 1 hr), alkylated (18.75 mM iodoaceta-

mide, RT for 30 min) and then digested from the beads with trypsin (2.5 mg trypsin: 37˚C, O/N). The

resulting peptides were then labelled with TMT six plex reagents according to the manufacturer’s

protocol (Thermo Scientific) and the labelled samples pooled and desalted using SepPak cartridges

according to the manufacturer’s instructions (Waters). Eluate from the SepPak cartridge was evapo-

rated to dryness and resuspended in 1% formic acid prior to analysis by nano-LC MSMS using an

Ultimate 3000 nano-LC system in line with an LTQ-Orbitrap Velos mass spectrometer (Thermo

Scientific).

In brief, peptides in 1% (vol/vol) formic acid were injected onto an Acclaim PepMap C18 nano-

trap column (Thermo Scientific). After washing with 0.5% (vol/vol) acetonitrile 0.1% (vol/vol) formic

acid peptides were resolved on a 250 mm � 75 mm Acclaim PepMap C18 reverse phase analytical

column (Thermo Scientific) over a 150 min organic gradient, using seven gradient segments (1–6%

solvent B over 1 min., 6–15% B over 58 min., 15–32% B over 58 min., 32–40% B over 5 min., 40–90%

B over 1 min., held at 90% B for 6 min and then reduced to 1% B over 1 min.) with a flow rate of 300

nl min�1. Solvent A was 0.1% formic acid and Solvent B was aqueous 80% acetonitrile in 0.1% formic

acid. Peptides were ionised by nano-electrospray ionisation at 2.0 kV using a stainless-steel emitter

with an internal diameter of 30 mm (Thermo Scientific) and a capillary temperature of 250˚C. Tandem

mass spectra were acquired using an LTQ- Orbitrap Velos mass spectrometer controlled by Xcalibur

2.1 software (Thermo Scientific) and operated in data-dependent acquisition mode. The Orbitrap

was set to analyse the survey scans at 60,000 resolution (at m/z 400) in the mass range m/z 300–

1800 and the top 10 multiply charged ions in each duty cycle selected for MS/MS fragmentation

using higher energy collisional dissociation (HCD) with normalised collision energy of 45%, activation

time of 0.1 ms and at a resolution of 7500 within the Orbitrap. Charge state filtering, where unas-

signed precursor ions were not selected for fragmentation, and dynamic exclusion (repeat count, 1;

repeat duration, 30 s; exclusion list size, 500) were used.

The raw data files were processed and quantified using Proteome Discoverer software v2.1

(Thermo Scientific) and searched against the UniProt Rat database (downloaded January 2019:

35759 entries) using the SEQUEST algorithm. Peptide precursor mass tolerance was set at 10 ppm,

and MS/MS tolerance was set at 0.6 Da. Search criteria included oxidation of methionine (+15.995

Da), acetylation of the protein N-terminus (+42.011 Da) and Methionine loss plus acetylation of the

protein N-terminus (�89.03 Da) as variable modifications and carbamidomethylation of cysteine

(+57.021 Da) and the addition of the TMT mass tag (+229.163 Da) to peptide N-termini and lysine

as fixed modifications. Searches were performed with full tryptic digestion and a maximum of two

missed cleavages were allowed. The reverse database search option was enabled, and all data was

filtered to satisfy false discovery rate (FDR) of 5%. The mass spectrometry proteomics data have

been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (http://www.

ebi.ac.uk/pride/archive/projects/PXD026289).

Surface biotinylations
All solutions were pre-chilled to 4˚C and all steps were carried out on ice to prevent internalisation.

Fresh membrane impermeable Sulpho NHS-SS-Biotin (21331, Thermo Fisher Scientific) was dissolved

in PBS at a final concentration of 0.2 mg/ml. Neurons were washed twice in PBS before being incu-

bated with biotin for 15 mins at 4˚C. The cells were then washed in PBS before being quenched in

quenching buffer (50 mM Triz, 100 mM NaCl, pH 7.5) for 10 min at 4˚C. The cells were lysed in 2%

Triton-X-100 (X100, Sigma) plus protease inhibitor cocktail tablets (A32953, Thermo Fisher Scientific)

in PBS and a BCA assay (23225, Thermo Fisher Scientific) carried out to determine protein
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concentration. Equal protein amounts of lysate were incubated with streptavidin beads (17-5113-01,

GE Healthcare) for 1 hr at 4˚C before being washed and analysed by western blotting.

Immunoprecipitation and western blot analysis
For immunoprecipitation experiments, cells were lysed in Tris-based immunoprecipitation buffer (50

mM Tris-HCl, pH 7.4, 0.5% NP-40, and Roche protease inhibitor cocktail in ddH2O) before being

subjected to GFP/RFP-Trap beads (gta-20, rta-20, ChromoTek). For whole cell levels, cells were

lysed in 1% Triton-X-100 plus Roche protease inhibitor cocktail in phosphate buffered saline (PBS). A

BCA assay was used to determine the protein concentration.

Proteins were resolved on NuPAGE 4–12% precast gels (NP0336BOX, Invitrogen) and then trans-

ferred onto polyvinylidene fluoride (PVDF) membranes (10600029, GE Healthcare), before being

blocked in 5% milk and incubated with primary antibody O/N at 4˚C. The membrane was washed in

Tris-buffered saline plus 0.1% Tween (TBS-T) before being incubated with Alexa Fluor secondary

antibodies (680 and 800, Invitrogen). After washing in TBS-T the protein bands were visualised using

an Odyssey infrared scanning system (LI-COR Biosciences). For measuring total protein abundance

all data was normalised to the protein loading control b–actin. For both total and surface protein

abundance, the data was expressed as a percentage of the control treatment.

ITC
The rat SNX27 PDZ domain and human VPS26A proteins were purified as described previously

(Gallon et al., 2014; McMillan et al., 2016; Chan et al., 2016). Proteins were gel filtered into ITC

buffer (50 mM Tris, pH 8, and 100 mM NaCl) using a Superose 200 column. The LRFN2 peptides

were purchased from Genscript (USA) and ITC experiments were performed on a MicroCal iTC200

instrument in ITC buffer. Peptides at a concentration of 1 mM were titrated into 40 mM SNX27 PDZ

domain solutions at 25˚C (supplemented with 40 mM hVPS26A proteins when required). Data were

processed using ORIGIN to extract the thermodynamic parameters DH, Ka(1/Kd) and the stoichiome-

try n. DG and DS were derived from the relationships: DG = �RTlnKa and DG = DH � TDS.

Immunofluorescence staining
For total protein expression, neurons were fixed in 4% (vol/vol) paraformaldehyde in PBS for 15 min

at RT before being quenched in 100 mM glycine. Neurons were permeabilised and blocked in 0.1%

Triton X-100 plus 2% BSA (05482, Sigma) for 15 min at RT followed by incubation for 1 hr at RT in

the indicated primary antibodies. The neurons were then incubated with the appropriate Alexa Fluor

secondary antibodies (488, 568 and 647; Invitrogen) for 1 hr before being mounted on coverslips

with Fluoromount-G (00–4958–02; eBioscience).

For surface expression of AMPA receptors, hippocampal neurons were incubated with primary

antibodies that recognise the N-terminal epitope for 15 min at 37˚C. For surface expression of trans-

duced mCherry-LRFN2, neurons were incubated with a mCherry antibody. Neurons were then

washed in PBS before being fixed in 4% paraformaldehyde (PFA, 28908, Thermo Fisher Scientific) in

PBS for 15 min at RT and quenched in 100 mM glycine (G/0800/60, Fisher Scientific). The surface

expressed AMPA receptors were detected using Alexa Fluor 568 secondary antibodies whilst the

surface expressed LRFN2 was detected using a far red (647) Alexa Fluor secondary antibody to dis-

tinguish from total levels.

Trafficking assays
For analysing LRFN2 internalisation H4 cells transduced with shRNA were transfected using Fugene

six transfection reagent (E2691; Promega) with mCherry-LRFN2 for 24 hr. The cells were placed on

ice, washed in ice-cold PBS and left for 5 min in CO2 independent media (18045–054, Gibco) sup-

plemented with 1% foetal bovine serum (F7524; Sigma-Aldrich). Surface LRFN2 was labelled using

the anti-rabbit mCherry antibody in CO2 independent media plus 1% foetal bovine serum for 30 min

at 4˚C. The cells were washed twice in ice-cold PBS and returned to the incubator in growth media

for 2 hr to allow internalisation of the labelled LRFN2. The cells were washed in PBS before being

fixed and permeabilised in 100% methanol for 4 min at �20˚C. The cells were blocked in 1% BSA for

10 min at RT followed by incubation for 1 hr at RT with the primary antibody against LAMP2. The

neurons were then incubated with the appropriate Alexa Fluor secondary antibodies (405 for the
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labelled LRFN2 to distinguish from total and 647 for the LAMP2; Invitrogen) for 1 hr before being

mounted on coverslips with Fluoromount-G (00–4958–02; eBioscience).

For analysing GluA2 internalisation hippocampal neurons transduced with shRNA were incubated

with a GluA2 primary antibody that recognised the N-terminal epitope for 15 mins at 37˚C. The neu-

rons were then placed back into their original media in the incubator for 1 hr for the labelled GluA2

receptors to internalise. Neurons were then washed in PBS before being fixed in 4% paraformalde-

hyde (PFA, 28908, Thermo Fisher Scientific) in PBS for 5 min at RT. The antibody remaining on the

surface was labelled with a secondary Alexa Fluor 405 antibody to block secondary binding sites for

receptors that remained on the surface. The neurons were then washed in PBS, fixed again in 4%

PFA for 5 min before being permeabilised and blocked in 0.1% Triton X-100 plus 2% BSA (05482,

Sigma) for 10 min at RT followed by incubation for 1 hr at RT in the indicated primary antibodies

(VPS35 or LAMP1). The neurons were then incubated with the appropriate Alexa Fluor secondary

antibodies (568 for VPS35/LAMP1 and 647 for labelled GluA2; Invitrogen) for 1 hr before being

mounted on coverslips with Fluoromount-G (00–4958–02; eBioscience).

Image acquisition and analysis
Images were captured using a confocal laser-scanning microscope (SP5 AOBS; Leica Biosystems)

attached to an inverted epifluorescence microscope (DMI6000; Thermo Fisher Scientific). A 63�, NA

1.4, oil immersion objective (Plan Apochromat BL; Leica Biosystems), and the standard SP5 system

acquisition software and detector were used. All settings were kept the same within experiments.

For the neuronal surface, immunofluorescence experiments single plane images were captured,

whereas for the trafficking experiments looking at internalised proteins Z-stacks were compiled.

To calculate the colocalisation of LAMP2 with LRFN2 in the H4 cells, Volocity was used to calcu-

late the Pearson’s correlation. Fiji ImageJ software (NIH) was used to process all neuronal images.

For colocalisation in the neurons, line traces were used across a 20 mm region of interest within the

proximal dendrites. To quantify AMPA receptor surface expression after shRNA treatment, 10 neu-

rons were imaged for each individual experiment across five independent experiments (number of

experiments N = 5; total number of neurons analysed: n = 50). The maximum fluorescence intensity

was measured across three 10 mm ROIs within the proximal dendrites and averaged for each neuron.

To quantify the internalised GluA2 intensity after shRNA treatment, 10/12 neurons were imaged for

each individual experiment across five independent experiments (number of experiments N = 5;

total number of neurons analysed: n = 58). The mean intensity was measured from the cell body and

proximal dendrites.

Viral surgical procedure
Experiments were carried out in naı̈ve male Lister Hooded rats (Envigo, UK) weighing 280–350 g at

the start of experiments. Animals were housed in groups of 2–4 under a 12 hr/12 hr light/dark cycle

with lights on 20:00-08:00 and were given ad libitum access to food and water. Sacrifice for ex-vivo

slices occurred 2–3 hr into the dark cycle. All animal procedures were conducted in accordance with

the United Kingdom Animals Scientific Procedures Act (1986) and associated guidelines. All efforts

were made to minimise suffering and number of animals used.

Each animal was injected with shRNA lentiviral vectors in the dorsal hippocampus (dHPC) of one

hemisphere and control vector in dHPC of the opposite hemisphere, with the experimenter blinded

to viral type and viruses left and right counterbalanced. Rats were anaesthetised with isoflurane (4%

induction, 2–3.5% maintenance) and secured in a stereotaxic frame with the incisor bar set 3.3 mm

below the interaural line. two burr holes per hemisphere were made in the skull at the following

coordinates with respect to bregma: anterior-posterior (AP) – 3.2 mm, mediolateral (ML) ± 2.4 mm

and AP �3.9 mm, ML ± 2.8 mm. Virus was front loaded into a 33-gauge needle attached to a 5 ml

Hamilton syringe. The needle was lowered 2.9 mm below bregma using the above AP and ML coor-

dinates and 1 ml of virus was delivered to each site at a (therefore each hemisphere received a total

of 2 mm of virus) rate of 200 nl.min�1, with the needle left in situ for 10 min after each injection.

Ex vivo slice preparation
Six to eight weeks following viral injection animals were anaesthetised with 4% isoflurane and decap-

itated. Brains were rapidly removed and placed into ice-cold sucrose cutting solution (in mM: 189
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sucrose, 26 NaHCO3, 10 D-glucose, 5 MgSO4, 3 KCl, 1.25 NaH2PO4, 0.2 CaCl2) saturated with 95%

O2/5% CO2. 350-mm-thick parasagittal hippocampal slices were prepared using a vibratome

(7000smz-2, Camden Instruments) and stored at room temperature in artificial cerebrospinal fluid

(aCSF; in mM: 124 NaCl, 26 NaHCO3, 10 D-glucose, 3 KCl, 2 CaCl2, 1.25 NaH2PO4, 1 MgSO4) satu-

rated with 95% O2/5% CO2 for �1 hr before recording. Slices were separated by hemisphere with

the experimenter blind to viral type.

Electrophysiology dHPC slices were placed into a submerged recording chamber and perfused

with 32–34˚C aCSF at a rate of ~2 ml.min�1. Wide field fluorescence was used to confirm lentiviral

transduction as indicated by GFP fluorescence. Two to 5 MW borosilicate glass electrodes (GC150-

10F, Harvard Apparatus) filled with aCSF were placed into the stratum radiatum of a GFP-positive

region of CA1 and a bipolar stimulating electrode (CBAPB50, FH-Co) was placed in adjacent stratum

radiatum to stimulate Schaffer collaterals. Recordings were obtained using a Molecular Devices Mul-

ticlamp 700A or 700B, filtered at 4 KHz and digitised at 20 KHz using WinLTP software. Paired-pulse

stimuli (50 ms inter-stimulus-interval) were delivered every 10 s using a digitimer DS2A constant volt-

age stimulator. Input-output curves were generated with a minimum of 3 stimuli at each stimulus

intensity prior to LTP experiments. LTP induction was achieved using a single tetanus of 100 stimuli

delivered at 100 Hz. Where possible two experiments per hemisphere per animal were made. Data

were acquired using WinLTP (Anderson and Collingridge, 2001).

Statistical analysis
All statistical analyses were carried out using GraphPad Prism 7. For biochemical data, a D’Agostino

and Pearson normality test was performed. For data that was normally distributed a parametric non-

paired t-test was used whereas for data not normally distributed a non-parametric Mann-Whitney U

test was used. For electrophysiological data, a Shapiro-Wilk normality test was performed, all data

were normally distributed. A two-way ANOVA or unpaired t-test was used to assess differences in

basal transmission. LTP was assessed by a paired t-test of raw fEPSP amplitudes. For all analysis

mean and standard error were calculated with *p � 0.05, **p � 0.01, ***p � 0.001, ****p � 0.0001

considered significant.
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D. 2018. Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain
141:582–595. DOI: https://doi.org/10.1093/brain/awx352, PMID: 29324989

Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK. 2003. Slick (Slo2.1), a rapidly-gating
sodium-activated potassium channel inhibited by ATP. The Journal of Neuroscience 23:11681–11691.
DOI: https://doi.org/10.1523/JNEUROSCI.23-37-11681.2003, PMID: 14684870

Binda CS, Nakamura Y, Henley JM, Wilkinson KA. 2019. Sorting nexin 27 rescues neuroligin 2 from lysosomal
degradation to control inhibitory synapse number. Biochemical Journal 476:293–306. DOI: https://doi.org/10.
1042/BCJ20180504, PMID: 30602588

Blanco-Suarez E, Hanley JG. 2014. Distinct subunit-specific a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) receptor trafficking mechanisms in cultured cortical and hippocampal neurons in response to
oxygen and glucose deprivation. Journal of Biological Chemistry 289:4644–4651. DOI: https://doi.org/10.1074/
jbc.M113.533182, PMID: 24403083

Borden LA. 1996. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochemistry
International 29:335–356. DOI: https://doi.org/10.1016/0197-0186(95)00158-1, PMID: 8939442

Brouwer M, Farzana F, Koopmans F, Chen N, Brunner JW, Oldani S, Li KW, van Weering JR, Smit AB, Toonen
RF, Verhage M. 2019. SALM1 controls synapse development by promoting F-actin/PIP2-dependent neurexin
clustering. The EMBO Journal 38:e101289. DOI: https://doi.org/10.15252/embj.2018101289, PMID: 31368584

Cai L, Loo LS, Atlashkin V, Hanson BJ, Hong W. 2011. Deficiency of sorting nexin 27 (SNX27) leads to growth
retardation and elevated levels of N-methyl-D-aspartate receptor 2C (NR2C). Molecular and Cellular Biology
31:1734–1747. DOI: https://doi.org/10.1128/MCB.01044-10, PMID: 21300787

Carlton J, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ.
2004. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-
curvature membranes and 3-phosphoinositides. Current Biology 14:1791–1800. DOI: https://doi.org/10.1016/j.
cub.2004.09.077, PMID: 15498486

Chan AS, Clairfeuille T, Landao-Bassonga E, Kinna G, Ng PY, Loo LS, Cheng TS, Zheng M, Hong W, Teasdale RD,
Collins BM, Pavlos NJ. 2016. Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in
osteoblasts during bone growth. Molecular Biology of the Cell 27:1367–1382. DOI: https://doi.org/10.1091/
mbc.E15-12-0851, PMID: 26912788

Clairfeuille T, Mas C, Chan AS, Yang Z, Tello-Lafoz M, Chandra M, Widagdo J, Kerr MC, Paul B, Mérida I,
Teasdale RD, Pavlos NJ, Anggono V, Collins BM. 2016. A molecular code for endosomal recycling of
phosphorylated cargos by the SNX27-retromer complex. Nature Structural & Molecular Biology 23:921–932.
DOI: https://doi.org/10.1038/nsmb.3290, PMID: 27595347

Coombs ID, Cull-Candy SG. 2009. Transmembrane AMPA receptor regulatory proteins and AMPA receptor
function in the cerebellum. Neuroscience 162:656–665. DOI: https://doi.org/10.1016/j.neuroscience.2009.01.
004, PMID: 19185052

Cullen PJ. 2008. Endosomal sorting and signalling: an emerging role for sorting nexins. Nature Reviews
Molecular Cell Biology 9:574–582. DOI: https://doi.org/10.1038/nrm2427, PMID: 18523436

Cullen PJ, Steinberg F. 2018. To degrade or not to degrade: mechanisms and significance of endocytic recycling.
Nature Reviews Molecular Cell Biology 19:679–696. DOI: https://doi.org/10.1038/s41580-018-0053-7,
PMID: 30194414

Damseh N, Danson CM, Al-Ashhab M, Abu-Libdeh B, Gallon M, Sharma K, Yaacov B, Coulthard E, Caldwell MA,
Edvardson S, Cullen PJ, Elpeleg O. 2015. A defect in the retromer accessory protein, SNX27, manifests by
infantile myoclonic epilepsy and neurodegeneration. Neurogenetics 16:215–221. DOI: https://doi.org/10.1007/
s10048-015-0446-0, PMID: 25894286

DDD Study, Josifova DJ, Monroe GR, Tessadori F, de Graaff E, van der Zwaag B, Mehta SG, Harakalova M,
Duran KJ, Savelberg SM, Nijman IJ, Jungbluth H, Hoogenraad CC, Bakkers J, Knoers NV, Firth HV, Beales PL,
van Haaften G, van Haelst MM. 2016. Heterozygous KIDINS220/ARMS nonsense variants cause spastic
paraplegia, intellectual disability, nystagmus, and obesity. Human Molecular Genetics 25:2158–2167.
DOI: https://doi.org/10.1093/hmg/ddw082, PMID: 27005418

McMillan, Banks, et al. eLife 2021;10:e59432. DOI: https://doi.org/10.7554/eLife.59432 25 of 32

Research article Cell Biology Neuroscience

https://www.ebi.ac.uk/pride/archive/projects/PXD026289
https://www.ebi.ac.uk/pride/archive/projects/PXD026289
https://doi.org/10.1016/S0165-0270(01)00374-0
https://doi.org/10.1016/S0165-0270(01)00374-0
http://www.ncbi.nlm.nih.gov/pubmed/11459620
https://doi.org/10.1523/JNEUROSCI.1042-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15175386
https://doi.org/10.1038/ncomms10961
https://doi.org/10.1038/ncomms10961
http://www.ncbi.nlm.nih.gov/pubmed/26965651
https://doi.org/10.1093/brain/awx352
http://www.ncbi.nlm.nih.gov/pubmed/29324989
https://doi.org/10.1523/JNEUROSCI.23-37-11681.2003
http://www.ncbi.nlm.nih.gov/pubmed/14684870
https://doi.org/10.1042/BCJ20180504
https://doi.org/10.1042/BCJ20180504
http://www.ncbi.nlm.nih.gov/pubmed/30602588
https://doi.org/10.1074/jbc.M113.533182
https://doi.org/10.1074/jbc.M113.533182
http://www.ncbi.nlm.nih.gov/pubmed/24403083
https://doi.org/10.1016/0197-0186(95)00158-1
http://www.ncbi.nlm.nih.gov/pubmed/8939442
https://doi.org/10.15252/embj.2018101289
http://www.ncbi.nlm.nih.gov/pubmed/31368584
https://doi.org/10.1128/MCB.01044-10
http://www.ncbi.nlm.nih.gov/pubmed/21300787
https://doi.org/10.1016/j.cub.2004.09.077
https://doi.org/10.1016/j.cub.2004.09.077
http://www.ncbi.nlm.nih.gov/pubmed/15498486
https://doi.org/10.1091/mbc.E15-12-0851
https://doi.org/10.1091/mbc.E15-12-0851
http://www.ncbi.nlm.nih.gov/pubmed/26912788
https://doi.org/10.1038/nsmb.3290
http://www.ncbi.nlm.nih.gov/pubmed/27595347
https://doi.org/10.1016/j.neuroscience.2009.01.004
https://doi.org/10.1016/j.neuroscience.2009.01.004
http://www.ncbi.nlm.nih.gov/pubmed/19185052
https://doi.org/10.1038/nrm2427
http://www.ncbi.nlm.nih.gov/pubmed/18523436
https://doi.org/10.1038/s41580-018-0053-7
http://www.ncbi.nlm.nih.gov/pubmed/30194414
https://doi.org/10.1007/s10048-015-0446-0
https://doi.org/10.1007/s10048-015-0446-0
http://www.ncbi.nlm.nih.gov/pubmed/25894286
https://doi.org/10.1093/hmg/ddw082
http://www.ncbi.nlm.nih.gov/pubmed/27005418
https://doi.org/10.7554/eLife.59432


Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D, Gautreau A. 2009. The Arp2/3 activator WASH controls
the fission of endosomes through a large multiprotein complex. Developmental Cell 17:712–723. DOI: https://
doi.org/10.1016/j.devcel.2009.09.010, PMID: 19922875

Diering GH, Huganir RL. 2018. The AMPA receptor code of synaptic plasticity. Neuron 100:314–329.
DOI: https://doi.org/10.1016/j.neuron.2018.10.018, PMID: 30359599

Fedoseienko A, Wijers M, Wolters JC, Dekker D, Smit M, Huijkman N, Kloosterhuis N, Klug H, Schepers A,
Willems van Dijk K, Levels JHM, Billadeau DD, Hofker MH, van Deursen J, Westerterp M, Burstein E,
Kuivenhoven JA, van de Sluis B. 2018. The COMMD family regulates plasma LDL levels and attenuates
atherosclerosis through stabilizing the CCC complex in endosomal LDLR trafficking. Circulation Research 122:
1648–1660. DOI: https://doi.org/10.1161/CIRCRESAHA.117.312004, PMID: 29545368

Fukata Y. 2006. Epilepsy-Related ligand/Receptor complex LGI1 and ADAM22 regulate synaptic transmission.
Science 313:1792–1795. DOI: https://doi.org/10.1126/science.1129947

Gallon M, Clairfeuille T, Steinberg F, Mas C, Ghai R, Sessions RB, Teasdale RD, Collins BM, Cullen PJ. 2014. A
unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by
SNX27-retromer. PNAS 111:E3604–E3613. DOI: https://doi.org/10.1073/pnas.1410552111, PMID: 25136126

Gomez TS, Billadeau DD. 2009. A FAM21-containing WASH complex regulates retromer-dependent sorting.
Developmental Cell 17:699–711. DOI: https://doi.org/10.1016/j.devcel.2009.09.009, PMID: 19922874

Grooms SY, Opitz T, Bennett MV, Zukin RS. 2000. Status epilepticus decreases glutamate receptor 2 mRNA and
protein expression in hippocampal pyramidal cells before neuronal death PNAS. 97:3631–3636. DOI: https://
doi.org/10.1073/pnas.97.7.3631, PMID: 10725374

Gururaj S, Palmer EE, Sheehan GD, Kandula T, Macintosh R, Ying K, Morris P, Tao J, Dias KR, Zhu Y, Dinger ME,
Cowley MJ, Kirk EP, Roscioli T, Sachdev R, Duffey ME, Bye A, Bhattacharjee A. 2017. A de novo mutation in
the Sodium-Activated potassium channel KCNT2 alters ion selectivity and causes epileptic encephalopathy. Cell
Reports 21:926–933. DOI: https://doi.org/10.1016/j.celrep.2017.09.088, PMID: 29069600

Halff EF, Szulc BR, Lesept F, Kittler JT. 2019. SNX27-Mediated recycling of Neuroligin-2 regulates inhibitory
signaling. Cell Reports 29:2599–2607. DOI: https://doi.org/10.1016/j.celrep.2019.10.096

Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, van Weering JRT, van Heesbeen R,
Middelkoop TC, Basler K, Cullen PJ, Korswagen HC. 2011. A SNX3-dependent retromer pathway mediates
retrograde transport of the wnt sorting receptor wntless and is required for wnt secretion. Nature Cell Biology
13:914–923. DOI: https://doi.org/10.1038/ncb2281, PMID: 21725319

Henley JM, Wilkinson KA. 2016. Synaptic AMPA receptor composition in development, plasticity and disease.
Nature Reviews Neuroscience 17:337–350. DOI: https://doi.org/10.1038/nrn.2016.37, PMID: 27080385

Hollmann M, Heinemann S. 1994. Cloned glutamate receptors. Annual Review of Neuroscience 17:31–108.
DOI: https://doi.org/10.1146/annurev.ne.17.030194.000335, PMID: 8210177

Huganir RL, Nicoll RA. 2013. AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704–717.
DOI: https://doi.org/10.1016/j.neuron.2013.10.025, PMID: 24183021

Hussain NK, Diering GH, Sole J, Anggono V, Huganir RL. 2014. Sorting nexin 27 regulates basal and activity-
dependent trafficking of AMPARs. PNAS 111:11840–11845. DOI: https://doi.org/10.1073/pnas.1412415111,
PMID: 25071192

Iglesias T, Cabrera-Poch N, Mitchell MP, Naven TJ, Rozengurt E, Schiavo G. 2000. Identification and cloning of
Kidins220, a novel neuronal substrate of protein kinase D. Journal of Biological Chemistry 275:40048–40056.
DOI: https://doi.org/10.1074/jbc.M005261200, PMID: 10998417

Jen JC, Wan J, Palos TP, Howard BD, Baloh RW. 2005. Mutation in the glutamate transporter EAAT1 causes
episodic ataxia, Hemiplegia, and seizures. Neurology 65:529–534. DOI: https://doi.org/10.1212/01.WNL.
0000172638.58172.5a, PMID: 16116111

Joubert L, Hanson B, Barthet G, Sebben M, Claeysen S, Hong W, Marin P, Dumuis A, Bockaert J. 2004. New
sorting nexin (SNX27) and NHERF specifically interact with the 5-HT4a receptor splice variant: roles in receptor
targeting. Journal of Cell Science 117:5367–5379. DOI: https://doi.org/10.1242/jcs.01379, PMID: 15466885

Ko J, Kim S, Chung HS, Kim K, Han K, Kim H, Jun H, Kaang BK, Kim E. 2006. SALM synaptic cell adhesion-like
molecules regulate the differentiation of excitatory synapses. Neuron 50:233–245. DOI: https://doi.org/10.
1016/j.neuron.2006.04.005, PMID: 16630835

Kong H, Boulter J, Weber JL, Lai C, Chao MV. 2001. An evolutionarily conserved transmembrane protein that is
a novel downstream target of neurotrophin and ephrin receptors. The Journal of Neuroscience 21:176–185.
DOI: https://doi.org/10.1523/JNEUROSCI.21-01-00176.2001, PMID: 11150334

Kurten RC, Cadena DL, Gill GN. 1996. Enhanced degradation of EGF receptors by a sorting nexin, SNX1.
Science 272:1008–1010. DOI: https://doi.org/10.1126/science.272.5264.1008, PMID: 8638121

Lauffer BE, Melero C, Temkin P, Lei C, Hong W, Kortemme T, von Zastrow M. 2010. SNX27 mediates PDZ-
directed sorting from endosomes to the plasma membrane. Journal of Cell Biology 190:565–574. DOI: https://
doi.org/10.1083/jcb.201004060, PMID: 20733053

Leuschner WD, Hoch W. 1999. Subtype-specific assembly of alpha-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid receptor subunits is mediated by their n-terminal domains. Journal of Biological Chemistry 274:
16907–16916. DOI: https://doi.org/10.1074/jbc.274.24.16907, PMID: 10358037

Li Y, Kim R, Cho YS, Song WS, Kim D, Kim K, Roh JD, Chung C, Park H, Yang E, Kim SJ, Ko J, Kim H, Kim MH,
Bae YC, Kim E. 2018. Lrfn2-Mutant mice display suppressed synaptic plasticity and inhibitory synapse
development and abnormal social communication and startle response. The Journal of Neuroscience 38:5872–
5887. DOI: https://doi.org/10.1523/JNEUROSCI.3321-17.2018, PMID: 29798891

McMillan, Banks, et al. eLife 2021;10:e59432. DOI: https://doi.org/10.7554/eLife.59432 26 of 32

Research article Cell Biology Neuroscience

https://doi.org/10.1016/j.devcel.2009.09.010
https://doi.org/10.1016/j.devcel.2009.09.010
http://www.ncbi.nlm.nih.gov/pubmed/19922875
https://doi.org/10.1016/j.neuron.2018.10.018
http://www.ncbi.nlm.nih.gov/pubmed/30359599
https://doi.org/10.1161/CIRCRESAHA.117.312004
http://www.ncbi.nlm.nih.gov/pubmed/29545368
https://doi.org/10.1126/science.1129947
https://doi.org/10.1073/pnas.1410552111
http://www.ncbi.nlm.nih.gov/pubmed/25136126
https://doi.org/10.1016/j.devcel.2009.09.009
http://www.ncbi.nlm.nih.gov/pubmed/19922874
https://doi.org/10.1073/pnas.97.7.3631
https://doi.org/10.1073/pnas.97.7.3631
http://www.ncbi.nlm.nih.gov/pubmed/10725374
https://doi.org/10.1016/j.celrep.2017.09.088
http://www.ncbi.nlm.nih.gov/pubmed/29069600
https://doi.org/10.1016/j.celrep.2019.10.096
https://doi.org/10.1038/ncb2281
http://www.ncbi.nlm.nih.gov/pubmed/21725319
https://doi.org/10.1038/nrn.2016.37
http://www.ncbi.nlm.nih.gov/pubmed/27080385
https://doi.org/10.1146/annurev.ne.17.030194.000335
http://www.ncbi.nlm.nih.gov/pubmed/8210177
https://doi.org/10.1016/j.neuron.2013.10.025
http://www.ncbi.nlm.nih.gov/pubmed/24183021
https://doi.org/10.1073/pnas.1412415111
http://www.ncbi.nlm.nih.gov/pubmed/25071192
https://doi.org/10.1074/jbc.M005261200
http://www.ncbi.nlm.nih.gov/pubmed/10998417
https://doi.org/10.1212/01.WNL.0000172638.58172.5a
https://doi.org/10.1212/01.WNL.0000172638.58172.5a
http://www.ncbi.nlm.nih.gov/pubmed/16116111
https://doi.org/10.1242/jcs.01379
http://www.ncbi.nlm.nih.gov/pubmed/15466885
https://doi.org/10.1016/j.neuron.2006.04.005
https://doi.org/10.1016/j.neuron.2006.04.005
http://www.ncbi.nlm.nih.gov/pubmed/16630835
https://doi.org/10.1523/JNEUROSCI.21-01-00176.2001
http://www.ncbi.nlm.nih.gov/pubmed/11150334
https://doi.org/10.1126/science.272.5264.1008
http://www.ncbi.nlm.nih.gov/pubmed/8638121
https://doi.org/10.1083/jcb.201004060
https://doi.org/10.1083/jcb.201004060
http://www.ncbi.nlm.nih.gov/pubmed/20733053
https://doi.org/10.1074/jbc.274.24.16907
http://www.ncbi.nlm.nih.gov/pubmed/10358037
https://doi.org/10.1523/JNEUROSCI.3321-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29798891
https://doi.org/10.7554/eLife.59432


Lie E, Li Y, Kim R, Kim E. 2018. SALM/Lrfn family synaptic adhesion molecules. Frontiers in Molecular
Neuroscience 11:105. DOI: https://doi.org/10.3389/fnmol.2018.00105, PMID: 29674953

Lin TB, Lai CY, Hsieh MC, Wang HH, Cheng JK, Chau YP, Chen GD, Peng HY. 2015. VPS26A-SNX27 Interaction-
Dependent mGluR5 recycling in dorsal horn neurons mediates neuropathic pain in rats. Journal of
Neuroscience 35:14943–14955. DOI: https://doi.org/10.1523/JNEUROSCI.2587-15.2015, PMID: 26538661

Lin Z, Liu J, Ding H, Xu F, Liu H. 2018. Structural basis of SALM5-induced ptpd dimerization for synaptic
differentiation. Nature Communications 9:268. DOI: https://doi.org/10.1038/s41467-017-02414-2

Loh KH, Stawski PS, Draycott AS, Udeshi ND, Lehrman EK, Wilton DK, Svinkina T, Deerinck TJ, Ellisman MH,
Stevens B, Carr SA, Ting AY. 2016. Proteomic analysis of unbounded cellular compartments: synaptic clefts.
Cell 166::1295–1307. DOI: https://doi.org/10.1016/j.cell.2016.07.041

Loo LS, Tang N, Al-Haddawi M, Dawe GS, Hong W. 2014. A role for sorting nexin 27 in AMPA receptor
trafficking. Nature Communications 5:3176. DOI: https://doi.org/10.1038/ncomms4176, PMID: 24458027

Lunn ML, Nassirpour R, Arrabit C, Tan J, McLeod I, Arias CM, Sawchenko PE, Yates JR, Slesinger PA. 2007. A
unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nature
Neuroscience 10:1249–1259. DOI: https://doi.org/10.1038/nn1953, PMID: 17828261

Mah W, Ko J, Nam J, Han K, Chung WS, Kim E. 2010. Selected SALM (synaptic adhesion-like molecule) family
proteins regulate synapse formation. Journal of Neuroscience 30:5559–5568. DOI: https://doi.org/10.1523/
JNEUROSCI.4839-09.2010, PMID: 20410109

Martin S, Henley JM. 2004. Activity-dependent endocytic sorting of kainate receptors to recycling or
degradation pathways. The EMBO Journal 23:4749–4759. DOI: https://doi.org/10.1038/sj.emboj.7600483,
PMID: 15549132

McMillan KJ, Gallon M, Jellett AP, Clairfeuille T, Tilley FC, McGough I, Danson CM, Heesom KJ, Wilkinson KA,
Collins BM, Cullen PJ. 2016. Atypical parkinsonism-associated retromer mutant alters endosomal sorting of
specific cargo proteins. Journal of Cell Biology 214:389–399. DOI: https://doi.org/10.1083/jcb.201604057,
PMID: 27528657

McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N, Danson CM, Nägele H,
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Appendix 1

Appendix 1—key resources table

Reagent
type
(species)

or resource Designation
Source or
reference Identifiers Additional information

Cell line
(H. sapiens)

Human kidney
cells (Hek293T)

AATC CRL-3216
RRID:CVCL_
0063

Authentication was from AATC. We did not
independently authenticate the cell line.

Cell line
(M. auratus)

Baby Hamster
Kidney cells
(BHK-21)

AATC [C-13] CCL-
10
RRID:CVCL_
1915

Authentication was from AATC. We did not
independently authenticate the cell line.

Cell line
(H. sapiens)

Neuroglioma
(H4)

A gift from
Dr Helen
Scott and
Professor
James Uney

Authenticated (STR profiling) and mycoplasma
tested (absent) (Eurofins)

Biological
sample
(R.
norvegicus)

Primary
hippocampal
and cortical
neurons

University of
Bristol
Animal
Services Unit

Antibody ‘(mouse
monoclonal)’ b–
actin

Sigma-
Aldrich

A1978
RRID:AB_
476692

WB ‘(1:1000)’

Antibody ‘(mouse
monoclonal)’
EEA1

BD
Biosciences

610457
RRID:AB_
397830

IF ‘(1:250)’

Antibody ‘(mouse
monoclonal)’
FLAG

Sigma-
Aldrich

F1804
RRID:AB_
262044

WB ‘(1:1000)’

Antibody ‘(mouse
monoclonal)’
GFP

Roche 11814460001
RRID:AB_
390913

WB ‘(1:1000)’

Antibody ‘(rabbit
polyclonal)’
GluA1

Merck
Millipore

ab1504
RRID:AB_
2113602

WB ‘(1:1000)’

Antibody ‘(mouse
monoclonal)’
GluA1

Merck
Millipore

MAB2263
RRID:AB_
11212678

IF ‘(1:100)’

Antibody ‘(mouse
monoclonal)’
GluA2

Merck
Millipore

MAB397
RRID:AB_
2113875

WB ‘(1:1000)’
IF ‘(1:70)’

Antibody ‘(rabbit
polyclonal)’
mCherry

Abcam ab167453
RRID:AB_
2571870

WB ‘(1:1000)’
IF ‘(1:100)’

Antibody ‘(rabbit
polyclonal)’
LRFN2

Atlas HPA07660 WB ‘(1:500)’

Antibody ‘(mouse
monoclonal)’
SNX27

Abcam ab77799
RRID:AB_
10673818

WB for human SNX27 ‘(1:500)’

Antibody ‘(rabbit
polyclonal)’
SNX27

A kind gift
from
Dr Martin
Playford,
NIH, U.S.A

WB for rat SNX27
‘(1:500)’
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Appendix 1—key resources table continued

Reagent
type
(species)

or resource Designation
Source or
reference Identifiers Additional information

Antibody ‘(rabbit
polyclonal)’
LAMP1

Abcam ab24170
RRID:AB_
775978

IF ‘(1:200)’

Antibody ‘(mouse
monoclonal)’
LAMP2

Hybridoma
bank

H4B4
RRID:AB_
2134755

IF ‘(1:500)’

Antibody ‘(mouse
monoclonal)’
Transferrin

Santa Cruz Sc-65882
RRID:AB_
1120670

WB ‘(1:1000)’

Antibody ‘(rabbit
polyclonal)’
VPS35

Abcam ab97545
RRID:AB_
10696107

IF ‘(1:200)’

Antibody ‘(rabbit)’ Alexa
Fluor 405

Invitrogen A31556
RRID:AB_
221605

IF ‘(1:200–400)’

Antibody ‘(mouse)’ Alexa
Fluor 488

Invitrogen A21202
RRID:AB_
141607

IF ‘(1:400)’

Antibody ‘(rabbit)’ Alexa
Fluor 568

Invitrogen A10042
RRID:AB_
2534017

IF ‘(1:400)’

Antibody ‘(mouse)’ Alexa
Fluor 568

Invitrogen A10037
RRID:AB_
2534013

IF ‘(1:400)’

Antibody ‘(rabbit)’ Alexa
Fluor 647

Invitrogen A31573
RRID:AB_
2536183

IF ‘(1:400)’

Antibody ‘(mouse)’ Alexa
Fluor 647

Invitrogen A31571
RRID:AB_
162542

IF ‘(1:400)’

Antibody ‘(mouse)’ Alexa
Fluor 680

Invitrogen A21057
RRID:AB_
141436

WB ‘(1:10,000)’

Antibody ‘(rabbit)’ Alexa
Fluor 800

Invitrogen SA535571
RRID:AB_
2556775

WB ‘(1:10,000)’

Peptide,
recombinant
protein

LRFN2 peptides Genscript

Chemical
compound,
drug

Sulpho NHS-SS-
Biotin

Thermo
Fisher

21331

Chemical
compound,
drug

Streptavidin
beads

GE
Healthcare

17-5113-01

Chemical
compound,
drug

GFP/RFP-Trap
beads

ChromoTek gta-20, rta-
20

Recombinant
DNA reagent

pEGFP-C3-
GLUA1(CT)

This paper available on request from Kevin Wilkinson

Recombinant
DNA reagent

pEGFP-C3-
GLUA2(CT)

This paper available on request from Kevin Wilkinson
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Appendix 1—key resources table continued

Reagent
type
(species)

or resource Designation
Source or
reference Identifiers Additional information

Recombinant
DNA reagent

pEGFP-C3-
GLUA3(CT)

This paper available on request from Kevin Wilkinson

Recombinant
DNA reagent

pEGFP-C3-
GLUA4(CT)

This paper available on request from Kevin Wilkinson

Recombinant
DNA reagent

pEGFP-C1-
LRFN1(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
LRFN2(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
LRFN3(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
LRFN4(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
LRFN5(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
SLC1A3(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
SLC4A7(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
LRFN1DPDZbm
(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
LRFN2DPDZbm
(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
LRFN4DPDZbm
(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
SLC1A3DPDZbm
(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
SLC4A7DPDZbm
(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
LRFN2(pE786A)
(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pEGFP-C1-
LRFN2(pV789A)
(CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pcDNA3.1-
FLAG-SNX27

This paper available on request from Kevin Wilkinson

Recombinant
DNA reagent

pCMV2-SEP-
GluA1

Addgene 64942
RRID:
Addgene_
64942

Blanco-Suarez and Hanley, 2014

Recombinant
DNA reagent

pcDNA3-SEP-
GluA2

Addgene 64941
RRID:
Addgene_
64941

Ashby et al., 2004

Recombinant
DNA reagent

pCMV2-myc-
GluA2

Leuschner and Hoch, 1999
available on request from Kevin Wilkinson

Continued on next page
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Appendix 1—key resources table continued

Reagent
type
(species)

or resource Designation
Source or
reference Identifiers Additional information

Recombinant
DNA reagent

pmCherryC1-
LRFN2(FL)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pmCherryC1-
LRFN2(FN/TM/
CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pmCherryC1-
LRFN2(TM/CT)

This paper available on request from Peter Cullen

Recombinant
DNA reagent

pXLG3-GFP-H1-
SNX27 shRNA
(Rat)
(+/- WPRE)

Binda et al.,
2019

Rat target sequence 5’-aagaacagcaccacagaccaa-3’
available on request from Kevin Wilkinson

Recombinant
DNA reagent

pXLG3-GFP-H1-
SNX27 shRNA
(Human)
(+/- WPRE)

This paper Human target sequence 5’-
aagaacagtactacagaccaa-3’ available on request
from Kevin Wilkinson

Recombinant
DNA reagent

pXLG3-GFP-H1-
LRFN2 shRNA
(+/- WPRE)

This paper target sequence 5’-acgacgaggtactgattta-3’
available on request from Peter Cullen

Recombinant
DNA reagent

pXLG3-GFP-H1-
control shRNA
(+/-WPRE)

Binda et al.,
2019

non-targeting sequence 5’-aattctccgaacgtgtcac-3’
available on request from Kevin Wilkinson

Recombinant
DNA reagent

pSinRep5-GFP/
pSinRep5-GFP-
SNX27

This paper available on request from Kevin Wilkinson

Recombinant
DNA reagent

pSinrep-
mcherry/
pSinRep5-
mCherry-LRFN2

This paper available on request from Peter Cullen
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