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PERMUTATION GROUPS WITH RESTRICTED STABILIZERS

TIMOTHY C. BURNESS AND ANER SHALEV

Dedicated to the memory of our friend and colleague Jan Saxl

Abstract. Fix a positive integer d and let Γd be the class of finite groups without
sections isomorphic to the alternating group Ad. The groups in Γd were studied by
Babai, Cameron and Pálfy in the 1980s and they determined bounds on the order of
a primitive permutation group with this property, which have found a wide range of
applications. Subsequently, results on the base sizes of such groups were also obtained.
In this paper we replace the structural conditions on the group by restrictions on its point
stabilizers, and we obtain similar, and sometimes stronger conclusions. For example, we
prove that there is a linear function f such that the base size of any finite primitive
group with point stabilizers in Γd is at most f(d). This generalizes a recent result of the
first author on primitive groups with solvable point stabilizers. For non-affine primitive
groups we obtain stronger results, assuming only that stabilizers of c points lie in Γd.
We also show that if G is any permutation group of degree n whose c-point stabilizers
lie in Γd, then |G| 6 ((1 + oc(1))d/e)n−1. This asymptotically extends and improves a
dn−1 upper bound on |G| obtained by Babai, Cameron and Pálfy assuming G ∈ Γd.

1. Introduction

For d > 5, let Γd be the class of finite groups that have no section isomorphic to the
alternating group Ad. A celebrated result of Babai, Cameron and Pálfy [2] shows that there

exists a function f1 with the property that |G| 6 nf1(d) for every primitive permutation
group G ∈ Γd of degree n. This result has been useful in a wide range of applications.
For example, the relevant condition on sections arises naturally in the study of subgroup
growth and bounded generation of profinite groups (see [32, 34] for instance) and we refer
the reader to [1, 30] for applications in algebraic graph theory.

Recall that the base size b(G) of a permutation group G 6 Sym(Ω) is the minimal
cardinality of a subset of Ω whose pointwise stabilizer is trivial. Clearly, if G has degree
n, then |G| 6 nb(G). By combining this observation with the above bound of Babai et
al., it is natural to ask if there is a suitable function f2 such that b(G) 6 f2(d) for every
primitive group G ∈ Γd. The existence of such a function was conjectured by Babai and
proved by Gluck, Seress and Shalev [21], with f2 a quadratic function of d. This was
subsequently improved by Liebeck and Shalev [28] who showed that the result holds with
a linear function f2.

In this paper we seek analogous results for finite permutation groups, where we replace
the structural conditions on the whole group by similar restrictions on its point stabilizers,
thus investigating a larger class of groups. Our first result deals with the base size of
primitive groups G whose point stabilizers lie in Γd. In our second result we impose the
same restriction on smaller subgroups, namely on point stabilizers of c distinct points, and
we do not assume that G is primitive, or even transitive.

Theorem 1. Let d > 5 be an integer. Then there exists a linear function f(d) such that
b(G) 6 f(d) for every finite primitive permutation group G with point stabilizers in Γd.
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2 TIMOTHY C. BURNESS AND ANER SHALEV

Notice that a linear upper bound is best possible. For example, if we view G = PGLm(q)
as a primitive permutation group on the set of 1-dimensional subspaces of the natural
module, then b(G) = m+1 and each point stabilizer is contained in Γcm for some absolute
constant c.

Next, we bound the order of an arbitrary permutation group G on a set Ω of size n whose
point stabilizers lie in Γd. In fact we prove a more general result, fixing any nonnegative
integer c and assuming that all pointwise stabilizers of subsets of size c lie in Γd. Recall
that if ∆ is a subset of Ω, then G(∆) =

⋂
α∈∆Gα and G∆ denote the pointwise and setwise

stabilizer of ∆, respectively. Note that if ∆ is empty then we define G(∆) = G∆ = G.

Theorem 2. Let c > 0 be an integer and let δ > 0 be a real number. Then there exists
N(c, δ) ∈ N such that if d > N(c, δ) and G 6 Sym(Ω) has degree n with G(∆) ∈ Γd for

every subset ∆ ⊆ Ω of size c, then |G| 6 ((1 + δ)d/e)n−1.

It is easy to see that the number N(c, δ) in Theorem 2 must genuinely depend on both
c and δ. For example, let n = c = 2d and G = Sn. Then |∆| = c implies ∆ = Ω and
G(∆) = 1 ∈ Γd. But |G| = n! = (2d)! > ((1 + δ)d/e)n−1 for all δ < 1. In general,
N(c, δ)→∞ as c→∞ or as δ → 1. It is also worth noting that our proof of Theorem 2
is independent of the Classification of Finite Simple Groups (see Remark 2.12).

As an immediate corollary of Theorem 2, we get the following result. Indeed, parts (i)
and (ii) are Theorem 2 with c = 0 and c = 1, respectively. Part (iii) also follows from
Theorem 2 since G(∆) 6 G∆.

Corollary 3. Let δ > 0 be a real number.

(i) There exists N1(δ) ∈ N such that if d > N1(δ) and G ∈ Γd is a permutation group
of degree n, then |G| 6 ((1 + δ)d/e)n−1.

(ii) There exists N2(δ) ∈ N such that if d > N2(δ) and G 6 Sym(Ω) has degree n with
Gα ∈ Γd for all α ∈ Ω, then |G| 6 ((1 + δ)d/e)n−1.

(iii) For every integer c > 0, there exists N(c, δ) ∈ N such that if d > N(c, δ) and
G 6 Sym(Ω) has degree n with G∆ ∈ Γd for every subset ∆ ⊆ Ω of size c, then
|G| 6 ((1 + δ)d/e)n−1.

Theorem 2 and Corollary 3 asymptotically extend and improve a useful bound of Babai,
Cameron and Pálfy [2, Lemma 2.2], which states that if d > 6 then |G| 6 dn−1 for every
permutation groupG ∈ Γd of degree n (see also Lemma 2.2 below). Indeed, our assumption
on G in Theorem 2 is weaker, while the conclusion is asymptotically stronger. Note that
the upper bounds on |G| in Theorem 2 and Corollary 3 are essentially best possible, as
shown by the example n = d and G = Sd.

A well known theorem of Seress [33] states that b(G) 6 4 for every finite primitive
solvable group G and this bound is best possible. This has very recently been extended by
Burness [8], who has proved that b(G) 6 5 for every finite primitive group with solvable
point stabilizers (this bound is also optimal). Therefore, one can view Theorem 1 as a
natural generalization of the main result of [8].

Our next result can be viewed as a further extension of [8] by imposing a condition on
2-point stabilizers.

Theorem 4. Let G be a finite primitive non-affine permutation group with point stabilizer
H and assume every 2-point stabilizer in G is solvable. Then b(G) 6 6, and this bound is
best possible. Moreover, if G is almost simple, then b(G) = 6 if and only if G = Sp6(2)
and H = O+

6 (2).

We refer the reader to Remark 3.10 for comments on the affine groups excluded in
Theorem 4 (we are not aware of any exceptions to the bound b(G) 6 6).

Finally, we conclude by establishing the following extension of Theorem 1 to c-point
stabilizers in non-affine primitive groups.
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Theorem 5. Let c, d be positive integers with d > 5. Then there exists a function g(c, d),
linear in c and d, such that b(G) 6 g(c, d) for every finite primitive non-affine permutation
group G with G(∆) ∈ Γd for all subsets ∆ ⊆ Ω of size c.

We plan to study related problems, including the affine case of Theorems 4 and 5 in a
subsequent paper.

In Section 2 we present proofs of Theorems 1 and 2. The proofs of Theorems 4 and 5
are given in Sections 3 and 4, respectively. Our notation is standard. In particular, we
adopt the notation from [26] for simple groups and we note that all logarithms in this
paper are base two.

2. Proof of Theorems 1 and 2

In this section, we prove Theorems 1 and 2. We begin by recording some preliminary
results.

2.1. Preliminaries.

Lemma 2.1. Let d > 5 be an integer. The class Γd is closed under subgroups, quotients
and extensions.

Proof. The fact that Γd is closed under subgroups and quotients is immediate from the
definition. Now assume G is a finite group with a normal subgroup N such that both N
and G/N are in Γd. Seeking a contradiction, suppose L/K ∼= Ad is a section of G. Consider
the natural map ϕ : L/K → LN/KN and note that ϕ is either trivial or injective. If ϕ is
trivial, then L = K(L ∩N) and L/K ∼= (L ∩N)/(K ∩N), which is a contradiction since
N ∈ Γd. Similarly, if ϕ is injective then L/K ∼= LN/KN , which contradicts the fact that
G/N ∈ Γd. The result follows. �

Lemma 2.2. Let G be a permutation group of degree n such that G ∈ Γd with d > 2.
Then |G| < dn−1.

Proof. This is essentially [2, Lemma 2.2], except that we assume d > 2 instead of d > 6.
In addition, it is worth noting that our proof uses a result from [29], which relies on the
Classification of Finite Simple Groups, whereas the proof of [2, Lemma 2.2] is CFSG-free.

First note that Γ2 is empty, so there is nothing to prove for d = 2. Now assume d > 3.
If n < d then |G| 6 n! 6 nn−1 < dn−1, so we may assume n > d. This implies that
G 6= An, Sn.

We prove the upper bound on |G| by induction on n. If G has an orbit of length k < n
then the induction hypothesis gives |G| < dk−1 ·dn−k−1 < dn−1. Similarly, if G is transitive

with blocks of imprimitivity of size 1 < k < n, then |G| < (dk−1)n/k · dn/k−1 = dn−1. It
remains to deal with the case where G is primitive.

Suppose d = 3, so |G| is indivisible by 3. Since G 6= An, Sn, [29, Corollary 1.4] implies
that either |G| 6 2n−1, or n = 5 and G = AGL1(5). In both cases we have |G| < 3n−1, as
required. Finally, suppose d > 4, so n > 4. If n = 4 then |G| 6 |S4| < d3. For n > 4, [29,
Corollary 1.2] gives |G| < 3n 6 4n−1 6 dn−1 and the proof is complete. �

Lemma 2.3. Suppose G is a finite simple classical group with natural module V . If G ∈ Γd
with d > 5, then dimV < kd, where k = 1 if G is linear or unitary, otherwise k = 2.

Proof. First assume G = Lm(q) and let H be the stabilizer in G of a direct sum decom-
position of V into 1-spaces. Then Am is a section of H (see [26, Proposition 4.2.9], for
example) and thus m < d as required. A very similar argument applies if G = Um(q) or
Ωm(q) (with mq odd), working with an orthogonal decomposition of V into nondegener-
ate 1-spaces. Finally, if G = PSpm(q) or PΩ±m(q) then m is even and by considering the
stabilizer of an appropriate orthogonal decomposition of V into nondegenerate 2-spaces
we deduce that Am/2 is a section of G. This gives m/2 < d and the result follows. �
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Type Description
I Affine: G = V :H 6 AGL(V ), H 6 GL(V ) irreducible
II Almost simple: T 6 G 6 Aut(T )
III(a)(i) Diagonal type: T k 6 G 6 T k.(Out(T )× P ), P 6 Sk primitive
III(a)(ii) Diagonal type: T 2 6 G 6 T 2.Out(T )
III(b)(i) Product type: G 6 L o P , L primitive of type II, P 6 Sk transitive
III(b)(ii) Product type: G 6 L o P , L primitive of type III(a), P 6 Sk transitive
III(c) Twisted wreath product

Table 1. The finite primitive permutation groups

Let R 6 Sym(∆) be a permutation group on a finite set ∆ and recall that the distin-
guishing number of R, denoted d(R), is the minimal number of colours needed to colour
the points in ∆ in such a way that no nontrivial element of R preserves the colouring. We
will need the following theorem to handle product type groups.

Theorem 2.4. Let R 6 Sym(∆) be a permutation group on a finite set ∆.

(i) If R is solvable, then d(R) 6 5.

(ii) If R ∈ Γd for some positive integer d, then d(R) 6 d.

Proof. Part (i) is [33, Theorem 1.2] and part (ii) is [25, Theorem 2.3]. �

Theorem 2.5. There exists a linear function g(d) such that b(G) 6 g(d) for every finite
primitive permutation group G in Γd.

Proof. The existence of a quadratic function g(d) with this property is the main theorem
of [21]. In later work, the existence of a linear function was established in [28, Theorem
1.4]. �

2.2. Proof of Theorem 1. We are now ready to prove Theorem 1. Fix a positive integer
d > 5 and let G 6 Sym(Ω) be a finite primitive permutation group of degree n with
point stabilizer H ∈ Γd. We proceed by considering the possibilities for G given by the
Aschbacher-O’Nan-Scott Theorem (see Table 1).

Proposition 2.6. Suppose G is either an affine or diagonal type group. Then G ∈ Γd
and the conclusion to Theorem 1 holds.

Proof. In view of Theorem 2.5, it suffices to show that G ∈ Γd. Let N = T k denote the
socle of G, where T is a simple group. If G is affine then G is an extension of N by H and
the result follows from Lemma 2.1 since N is abelian. Now assume G is a diagonal type
group, so T is nonabelian and k > 2. Here N P G 6 N.(Out(T ) × Sk), n = |T |k−1 and
H ∼= T.(G/N). Since H ∈ Γd, it follows that T ∈ Γd and G/N ∈ Γd. Therefore, both N
and G/N are in Γd and we conclude that G ∈ Γd as required. �

Proposition 2.7. The conclusion to Theorem 1 holds if G is a twisted wreath product.

Proof. Let N = T k be the socle of G, where T is a nonabelian simple group. Then
G = NH is a split extension, N is regular and H 6 Sk is transitive. Therefore, n = |T |k
and as explained in [23, Section 4.4], we have

b(G) 6 2
log |G|
log n

+ 24 =
2 log |H|
k log |T |

+ 26.

Now Lemma 2.2 gives |H| 6 dk−1 and thus

b(G) 6
2(k − 1) log d

k log |T |
+ 26 < 2

log d

log |T |
+ 26 6 2

log d

log 60
+ 26.

The result follows. �
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Remark 2.8. In the proof of Proposition 2.7, we work with the bound

b(G) 6 2
log |G|
log n

+ 24

from [23, Section 4.4]. We thank Joanna Fawcett (personal communication) for pointing
out to us that the stronger bound

b(G) 6

⌈
log |G|
log n

⌉
+ 3 <

log |G|
log n

+ 4 (1)

holds, which will be important in the proof of Proposition 3.8. To see this, we simply
combine the bounds

b(G) 6

⌈
log d(H)

log |T |

⌉
+ 3

and d(H) 6 48 k
√
|H| from [18, Theorem 1.3] and [16, Theorem 1.2], with the observation

that |T | > 60.

Proposition 2.9. The conclusion to Theorem 1 holds if G is almost simple.

Proof. Let G0 denote the socle of G, so G0 P G 6 Aut(G0) and G0 is a nonabelian simple
group. Recall that G is standard if G0 = Am and Ω is a set of subsets or partitions of
{1, . . . ,m}, or G0 is a classical group acting on an orbit of subspaces (or pairs of subspaces
of complementary dimension) of the natural module V for G0. In all other cases, G is said
to be nonstandard. By the main theorem of [13] we have b(G) 6 7 for all nonstandard
groups, so for the remainder we may assume G is standard.

First assume G0 = Am is an alternating group with m > 7 and G is standard, so either

(a) H = (Sk × Sm−k) ∩G is intransitive, where 1 6 k < m/2; or

(b) H = (Sk o Sm/k) ∩G is imprimitive, where 1 < k 6 m/2 and k divides m.

In (a), a result of Halasi [22, Corollary 4.3] gives

b(G) 6
⌈
logdm/kem

⌉
(dm/ke − 1) 6 m− 1

and the result follows since the hypothesis H ∈ Γd implies that m 6 2d. Now consider
case (b). Here k and m/k are both at most d and [4, Theorem 4] gives

b(G) 6 max
{

6,
⌈
logm/k k

⌉
+ 3
}
6 log d+ 4

for k > 3. On the other hand, if k = 2 and m > 8 then b(G) 6 3 (see [12, Remark 1.6]).
In both cases, the desired result follows.

To complete the proof of the proposition, we may assume G0 is a finite simple classical
group over Fq with natural module V of dimensionm. Since we are assumingG is standard,
either

(a) H is the stabilizer in G of a subspace (or pair of subspaces) of V ; or

(b) G0 = Spm(q), q is even and H ∩G0 = O±m(q).

First consider the cases arising in (a). Here the structure of H is given in [26, Section
4.1] and by applying Lemma 2.3 we deduce that m < 4d. By combining Theorem 3.3 and
Proposition 3.5 in [23], and appealing to the proof of [23, Theorem 3.1], we deduce that
b(G) 6 m+ 14 < 4d+ 14 and the result follows. Similarly, in (b) we have b(G) 6 m+ 4 <
2d+ 4 (see [23, Section 3.3]). �

In order to complete the proof of Theorem 1, we may assume that G is a primitive
group of product type.

Proposition 2.10. The conclusion to Theorem 1 holds if G is a product type group.
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Proof. Let N = T k be the socle of G and write N 6 G 6 L o P , where L 6 Sym(∆) is a
primitive group with socle T (either almost simple or diagonal type), P is the transitive
subgroup of Sk induced by the conjugation action of G on the k factors of N and

Ω = ∆1 × · · · ×∆k = ∆k.

We will denote an arbitrary element x in G by writing x = (x1, . . . , xk)π with xi ∈ L and
π ∈ P .

Fix δ ∈ ∆ and let α = (δ, . . . , δ) ∈ Ω, so Gα = {(x1, . . . , xk)π ∈ G : xi ∈ Lδ for all i}.
Set

G1 = {(x1, . . . , xk)π ∈ G : 1π = 1}.
By [27, 2.2], we may assume that G1 induces L on ∆1. As a consequence, we claim that
(G1)α induces Lδ on ∆1. To see this, suppose z1 ∈ Lδ and write z = (z1, . . . , zk)π ∈ G
with 1π = 1. Since T = soc(L) and L is primitive, it follows that T acts transitively
on ∆ and so there exist ti ∈ T such that tizi ∈ Lδ for i = 2, . . . , k. Now G contains
t = (1, t2, . . . , tk) ∈ N , so tz = (z1, t2z2, . . . , tkzk)π ∈ (G1)α and this justifies the claim. It
follows that every point stabilizer Lδ is in Γd and thus b(L) 6 g(d) for some linear function
of d by Propositions 2.6 and 2.9.

Let {δ1, . . . , δb} ⊆ ∆ be a base for L with b = b(L) and set αi = (δi, . . . , δi) ∈ Ω for
i = 1, . . . , b. Then

Q :=
b⋂
i=1

Gαi = {(x1, . . . , xk)π ∈ G : xj = 1 for all j}

and we may view Q as a subgroup of P . By combining [15, Lemma 3.8] with [16, Lemma
2.1] we deduce that

b(G) 6
⌈
log|∆| d(Q)

⌉
+ b(L), (2)

where d(Q) is the distinguishing number of Q in its natural action on {1, . . . , k}. Since
N is transitive, we have G = NH and thus H induces P on the set of factors of T k. In
particular, P is contained in Γd, so Q ∈ Γd and thus Theorem 2.4(ii) gives d(Q) 6 d. The
result now follows from (2). �

This completes the proof of Theorem 1.

2.3. Proof of Theorem 2. We begin by establishing the following result, which improves
the bound on |G| in Lemma 2.2 for large d. Notice that the statement coincides with part
(i) of Corollary 3.

Proposition 2.11. Let ε > 0 be a real number. Then there exists M(ε) ∈ N such that if
d >M(ε), G 6 Sym(Ω) has degree n and G ∈ Γd, then |G| 6 ((1 + ε)d/e)n−1.

Proof. Given ε > 0, let M(ε) be the minimal integer M > 5e such that for all m >M we
have

m3/2 6 (1 + ε)m/e−1.

Let d >M(ε). We prove the result by induction on n, noting that the case n = 1 is trivial.
Let us assume n > 2.

We apply the known bound n! 6 e1/12n(2πn)1/2(n/e)n which holds for all n > 1 (see

for instance [19], Section 2.9). Since n > 2 and e1/24(2π)1/2 < e it follows that

n! < en1/2(n/e)n.

Suppose first that n 6 d− 1. If n 6 d/e then n! 6 nn−1 6 (d/e)n−1 < ((1 + ε)d/e)n−1,
as required. Otherwise we have d/e < n 6 d− 1. This yields

|G| 6 n! < en1/2(n/e)n < ed1/2(d/e)n 6 ((1 + ε)d/e)n−1,

where the last inequality follows from the fact that d >M(ε) so that d3/2 6 (1 + ε)d/e−1.
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It remains to prove the result for n > d. The argument is now similar to the proof of
Lemma 2.2. Set d1 := (1 + ε)d/e.

If G has an orbit of length k < n then induction yields |G| 6 dk−1
1 ·dn−k−1

1 < dn−1
1 . If G is

transitive with blocks of imprimitivity of size 1 < k < n, then by the induction hypothesis

we obtain |G| 6 (dk−1
1 )n/k · dn/k−1

1 = dn−1
1 . Finally, if G is primitive, then G ∈ Γd implies

that An 66 G and the main theorem of [31] gives |G| < 4n. Since n > d > 5e, it follows
that |G| < 5n−1 < dn−1

1 , completing the proof. �

Remark 2.12. It is worth noting that the proof of Proposition 2.11 is independent of
Lemma 2.2. In particular, in the final step we use [31] to bound the order of G, which
does not rely on the Classification of Finite Simple Groups. This is in contrast to the
proof of Lemma 2.2, where we applied a theorem of Maróti [29] that does require CFSG.
This small adjustment in the proof of Proposition 2.11 allows us to present a CFSG-free
proof of Theorem 2.

Proof of Theorem 2. Let δ > 0 be a real number and let c > 0 be an integer. We proceed
by induction on c, noting that the case c = 0 is Proposition 2.11, where we defineN(0, δ) :=
M(δ).

Now assume c > 1. Set
ε = (1 + δ)3/5 − 1,

so 0 < ε < δ, and define

N(c, δ) := max(N(c− 1, ε),M(ε), c),

where the integer M(ε) is defined as in the proof of Proposition 2.11.
Let d > N(c, δ) be an integer and set d1 = (1+δ)d/e. Let G 6 Sym(Ω) be a permutation

group of degree n such that G(∆) ∈ Γd for every subset ∆ ⊆ Ω of size c. Our goal is to

establish the bound |G| 6 dn−1
1 .

We will first handle the case n < d. If n 6 d/e then

|G| 6 n! 6 nn−1 6 (d/e)n−1 < ((1 + δ)d/e)n−1 = dn−1
1 ,

as required. Otherwise we have d/e < n < d. This yields

|G| 6 n! < en1/2(n/e)n < ed1/2(d/e)n < ((1 + δ)d/e)n−1,

where the last inequality follows from the fact that d >M(ε), which yields

d3/2 6 (1 + ε)d/e−1 < (1 + δ)d/e−1.

To complete the proof, we may assume that n > d. First suppose G is transitive and
fix α ∈ Ω. Set H = Gα, so |G : H| = n and we may regard H as a permutation group on
Ω \ {α} of degree n− 1. In addition, the pointwise stabilizers in H of subsets of size c− 1
are contained in Γd.

Set d2 = (1 + ε)d/e. Recall that d > N(c, δ) > N(c− 1, ε), so the inductive hypothesis
yields |H| 6 dn−2

2 and

|G| = n|H| 6 ndn−2
2 .

Since n > d > N(c, δ) >M(ε) we have n3/2 6 (1 + ε)n/e−1, hence

n 6 (1 + ε)
2
3

(n/e−1).

We conclude that

|G| 6 (1 + ε)
2
3

(n/e−1)dn−2
2 < (1 + ε)

2
3

(n/e−1)((1 + ε)d/e)n−1 < (1 + ε)an−5/3(d/e)n−1,

where a = 1 + 2/(3e) < 5/3. It follows that |G| < (1 + ε)5(n−1)/3(d/e)n−1, and since

(1 + ε)5/3 = 1 + δ we obtain

|G| < ((1 + δ)d/e)n−1 = dn−1
1 ,

as required.
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Finally, suppose G is intransitive. Let Ω1 ⊆ Ω be an orbit of G and let Ω2 = Ω\Ω1. For
i = 1, 2, let Ni P G be the kernel of the action of G on Ωi and set Gi = G/Ni 6 Sym(Ωi).
Note that if ∆ ⊆ Ωi is a subset of size c then G(∆) > Ni and (Gi)(∆) = G(∆)/Ni ∈ Γd. In
addition, observe that G 6 G1 ×G2.

Let k = |Ω1|, so n − k = |Ω2| and k, n − k < n. Recall that d > N(c, δ) > c. Thus if

c > k then k < d, so as in the case n < d discussed above we deduce that |G1| 6 k! < dk−1
1 .

Similarly, |G2| 6 (n − k)! < dn−k−1
1 if c > n − k. Now assume c 6 k. As noted above,

the pointwise stabilizer of every c-element subset of Ω1 is contained in Γd, so by applying
induction on n (with c and δ fixed), we deduce that |G1| < dk−1

1 . Similarly, if c 6 n − k
then |G2| < dn−k−1

1 . We conclude that

|G| 6 |G1||G2| < dk−1
1 dn−k−1

1 < dn−1
1

and the result follows. �

This completes the proof of Theorem 2. In addition, as noted in Section 1, Corollary 3
follows immediately.

3. Proof of Theorem 4

In this section we prove Theorem 4. Let G 6 Sym(Ω) be a finite primitive permutation
group with point stabilizer H and assume G is not an affine type group. In addition, let
us assume every 2-point stabilizer in G is solvable. Our goal is to show that b(G) 6 6,
with equality when G is almost simple if and only if G = Sp6(2) and H = O+

6 (2). If H
itself is solvable, then the main theorem of [8] implies that b(G) 6 5, so we may assume
for the remainder that H is nonsolvable.

3.1. Almost simple groups. Here we prove Theorem 4 in the case where G is almost
simple with socle G0. We begin by handling the groups with socle a sporadic simple group.

Proposition 3.1. If G0 is a sporadic simple group, then b(G) 6 5.

Proof. Suppose b(G) > 6. Then the main theorem of [14] implies that (G,H) is one of the
following:

(M24,M23), (M23,M22), (Co3,McL.2), (Co2,U6(2).2), (Fi22.2, 2.U6(2).2).

In the first three cases we note that G is 2-transitive and the 2-point stabilizers are M22,
L3(4) and U4(3).2, respectively. Similarly, in the latter two cases it is easy to check that
every 2-point is nonsolvable and the result follows. �

Proposition 3.2. If G0 = Am is an alternating group, then b(G) 6 5.

Proof. The cases with m 6 12 can be checked using Magma [5], so we will assume m > 13.
In particular, G = Am or Sm. If H acts primitively on {1, . . . ,m} then b(G) = 2 by the
main theorem of [12]. Therefore we may assume that either

(a) H = (Sk × Sm−k) ∩G for some 1 6 k < m/2; or

(b) H = (Sk o Sm/k) ∩G, where 1 < k 6 m/2 and k divides m.

In case (a), we identify Ω with the set of k-element subsets of {1, . . . ,m}. If we take
the k-sets α = {1, . . . , k} and β = {1, . . . , k− 1, k+ 1}, then Gα,β = (Sk−1 × Sm−k−1)∩G
is a 2-point stabilizer and thus k and m − k are at most 5 (since we are assuming that
Gα,β is solvable). But this is incompatible with the bound m > 13.

Finally, let us turn to case (b). Here we identify Ω with the set of partitions of {1, . . . ,m}
into m/k parts of size k. Consider the partitions α, β ∈ Ω, where

α = {{1, . . . , k}, {k + 1, . . . , 2k}, . . .}
β = {{1, . . . , k − 1, k + 1}, {k, k + 2, . . . , 2k}, . . .}
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only differ in the first two parts. Visibly, the 2-point stabilizer Gα,β contains Ak−ε, where
ε = 0 if m/k > 3, otherwise ε = 1. Therefore, since m > 13, we may assume k ∈ {2, 3, 4}
and m/k > 5 (note that H is solvable if m = 16 and k = 4). In particular, k < m/k and
thus [11, Theorem 2] (also see Remark 2.8 in [11] for G = Am) gives b(G) 6 4. �

Proposition 3.3. If G0 is an exceptional group of Lie type, then b(G) 6 5.

Proof. Suppose b(G) > 6. By the main theorem of [9], it follows that b(G) = 6 and either

(a) G0 = E7 and H = P7; or

(b) G0 = E6 and H = P1 or P6.

Here Pk is the standard notation for a maximal parabolic subgroup of G corresponding to
the k-th node in the Dynkin diagram of G0 (where we adopt the standard Bourbaki [6]
labelling of nodes).

Set H0 = H ∩G0 and let H0 = QL be a Levi decomposition. In each of the above cases,
it is easy to see that L∩Lx is nonsolvable for some x ∈ G0, which implies that the 2-point
stabilizer H ∩Hx is nonsolvable. For example, consider case (a) and let {α1, . . . , α7} be
a set of simple roots for the corresponding root system of G0. Let x ∈ G0 \H0 be a long
root element in the root subgroup Uα7 of G0. Then x centralizes the nonsolvable subgroup
〈U±αi : 1 6 i 6 5〉 < L of type D5 and thus L ∩ Lx is nonsolvable. Similar reasoning
applies in case (b). �

Proposition 3.4. If G0 is a classical group, then b(G) 6 6, with equality if and only if
G = Sp6(2) and H = O+

6 (2).

Proof. Let G0 be a finite simple classical group over Fq with natural module V of dimension

m. Write q = pf , where p is a prime, and set H0 = H ∩G0. As in the proof of Proposition
2.9, we say that G is standard if

(i) H is the stabilizer in G of a subspace (or pair of subspaces) of V ; or

(ii) G0 = Spm(q), q is even and H0 = O±m(q).

Otherwise, G is nonstandard. By the main theorem of [10] we have b(G) 6 5 if G is
nonstandard, so for the remainder of the proof we may assume G is standard. Let us also
recall that we may assume H is nonsolvable.

Case 1. Linear groups.

To begin with, let us assume G0 = Lm(q) and fix a basis {e1, . . . , em} for V . There are
three cases to consider:

(a) H is a parabolic subgroup of type Pk with 1 6 k 6 m/2;

(b) H is a parabolic subgroup of type Pk,m−k with 1 6 k < m/2;

(c) H is of type GLk(q)×GLm−k(q) with 1 6 k < m/2.

Suppose we are in case (a), which allows us to identify Ω with the set of k-dimensional
subspaces of V . Set α = 〈e1, . . . , ek〉 and β = 〈ek+1, . . . , e2k〉. If k > 3, or if k = 2 and
q > 4, then the 2-point stabilizer Gα,β has a nonabelian composition factor Lk(q) and
is therefore nonsolvable. Next assume k = 2 and q 6 3. Set β′ = 〈e2, e3〉 and observe
that Lm−3(q) is a composition factor of Gα,β′ if m > 6. If m = 5 then a straightforward
Magma computation gives b(G) = 4, whereas H is solvable if m = 4. Finally, let us
assume k = 1. If m > 5 then Gα,β has a composition factor Lm−2(q). Similarly, if m = 4
then we may assume q 6 3 and we calculate that b(G) = 4 + δ3,q. For m = 3 we have
G 6 PΓL3(q) and it is easy to check that {α, β, 〈e3〉, 〈e1 + e2 + e3〉, 〈e1 + e2 + µe3〉} is a
base for G, where F×q = 〈µ〉. Finally, we note that H is solvable if m = 2.

Next we turn to case (b). Here we identify Ω with the set of flags of V of the form
0 < U < W < V , where dimU = k and dimW = m− k. Let α, β ∈ Ω be the flags

0 < 〈e1, . . . , ek〉 < 〈e1, . . . , em−k〉 < V, 0 < 〈em−k+1, . . . , em〉 < 〈ek+1, . . . , em〉 < V
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respectively. Then Gα,β contains a Levi factor of the parabolic subgroup H = Gα and
thus every 2-point stabilizer is solvable if and only if H is solvable.

To complete the proof of the proposition for G0 = Lm(q), we may assume H is of type
GLk(q) × GLm−k(q) with 1 6 k < m/2. Here we identify Ω with the set of direct sum
decompositions V = U ⊕W with dimU = k. Define α, β ∈ Ω as follows

〈e1, . . . , ek〉 ⊕ 〈ek+1, . . . , em〉, 〈ek+1, . . . , e2k〉 ⊕ 〈e1, . . . , ek, e2k+1, . . . , em〉.

Clearly, if k > 3, or if k = 2 and q > 4, then Gα,β has a composition factor Lk(q). Next
assume k = 2 and q 6 3. If m = 5 then a Magma computation shows that b(G) = 3,
otherwise Gα,β′ has a composition factor Lm−3(q), where β′ ∈ Ω is the decomposition
〈e1, e3〉 ⊕ 〈e2, e4, . . . , em〉. Finally, suppose k = 1. If m > 5 then Gα,β has a composition
factor Lm−2(q). Similarly, if m = 4 then we may assume q 6 3 and we calculate that
b(G) 6 4. Finally, if m = 3 then one can check that {α, β, γ, δ} is a base for G, where
γ, δ ∈ Ω are the decompositions 〈e1 + e2 + e3〉 ⊕ 〈e2, e3〉 and 〈e1 + e2 +µe3〉 ⊕ 〈e1, e2〉 with
F×q = 〈µ〉. Indeed, it is easy to verify that the pointwise stabilizer of {α, β, γ, δ} in PΓL3(q)
is trivial and we observe that δ is not fixed by the inverse-transpose graph automorphism
of G0, which maps 〈e1 + e2 + µe3〉 to the 2-space 〈e1 − e2, µe1 − e3〉.
Case 2. Unitary groups.

Now assume G0 = Um(q). Following [26, Proposition 2.3.2], fix a standard basis{
{e1, . . . , e`, f1, . . . , f`} if m = 2`
{e1, . . . , e`, f1, . . . , f`, x} if m = 2`+ 1.

First assume H is a parabolic subgroup of type Pk with 1 6 k 6 m/2, so we may identify
Ω with the set of totally isotropic k-dimensional subspaces of V . Set α = 〈e1, . . . , ek〉 and
β = 〈f1, . . . , fk〉 with respect to the above basis. If k > 2 then Gα,β has a composition
factor Lk(q

2), so we may assume k = 1. If m = 3, or m = 4 and q 6 3, or (m, q) = (5, 2)
then H is solvable, whereas Um−2(q) is a composition factor of Gα,β in the remaining
cases.

Now let us turn to the case where H = Gα is the stabilizer of a nondegenerate k-space,
where 1 6 k < m/2. Fix β ∈ Ω such that α ⊥ β is a nondegenerate 2k-space. If k > 3
and (k, q) 6= (3, 2), or if k = 2 and q > 4, then Gα,β has a composition factor Uk(q).
Suppose (k, q) = (3, 2), so m > 7. If m > 10 then Gα,β has a composition factor Um−6(2).
Similarly, if m = 9 then U4(2) is a composition factor of Gα′,β′ , where α′ = 〈e1, f1, x〉 and
β′ = 〈e2, f2, x〉, and for m ∈ {7, 8} one checks that b(G) 6 3. Next assume k = 2 and
q 6 3. If m > 7 and (m, q) 6= (7, 2) then Um−4(q) is a composition factor of Gα,β and one
checks that b(G) 6 4 if m ∈ {5, 6} or if (m, q) = (7, 2).

Finally, suppose k = 1 and note that H is solvable if m = 3. For m > 4 we see that
Gα,β is solvable if and only if (m, q) = (5, 2) or m = 4 and q 6 3; in each of these cases,
one can use Magma to verify the bound b(G) 6 5.

Case 3. Symplectic groups.

Let G0 = PSpm(q)′ with m > 4 and fix a standard basis {e1, . . . , em/2, f1, . . . , fm/2}
for V (see [26, Proposition 2.4.1]). In view of the isomorphisms PSp4(2)′ ∼= A6 and
PSp4(3) ∼= U4(2), we may assume q > 4 if m = 4.

First assume H is a parabolic subgroup of type Pk, where 1 6 k 6 m/2. Set α =
〈e1, . . . , ek〉 and β = 〈f1, . . . , fk〉. If k = 1 then Gα,β has a composition factor PSpm−2(q)′.
Similarly, if k > 3, or if k = 2 and q > 4 then Lk(q) is a composition factor of Gα,β.
Finally, assume k = 2 and q 6 3. If m > 8 then PSpm−4(q)′ is a composition factor of
Gα,β, while for m = 6 it is easy to check that b(G) 6 4.

Now assume H is the stabilizer of a nondegenerate k-space, where 2 6 k < m/2 is
even. Set α = 〈e1, . . . , ek/2, f1, . . . , fk/2〉 and β = 〈ek/2+1, . . . , ek, fk/2+1, . . . , fk〉. If k > 4,
or if k = 2 and q > 4 then PSpk(q)

′ is a composition factor of Gα,β. Similarly, if k = 2
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and q 6 3 then we quickly reduce to the case m = 6, where a straightforward Magma
computation gives b(G) 6 4.

To complete the analysis of symplectic groups, we may assume q is even and H is of
type Oε

m(q). Note that if we regard G0 as the isomorphic orthogonal group Om+1(q), then
we may identify Ω with the set of nondegenerate m-dimensional subspaces of type ε of the
natural module W for Om+1(q) (recall that a nondegenerate 2`-dimensional subspace of
an orthogonal space is of plus-type if it contains a totally singular `-space, otherwise it is
a minus-type space). Here Om+1(q) is the isometry group of a nonsingular quadratic form
Q on W with a 1-dimensional radical 〈v〉 (note that v is nonsingular and we may assume
Q(v) = 1). An m-dimensional subspace of W is nondegenerate if and only if it does not
contain v.

Fix a basis

{e1, . . . , em/2−1, f1, . . . , fm/2−1, x, y, v}

for W , where 〈e1, . . . , em/2−1, f1, . . . , fm/2−1〉 and 〈x, y〉 are nondegenerate spaces of plus-
type and ε-type, respectively. Define α, β ∈ Ω by setting

α = 〈e1, . . . , em/2−1, f1, . . . , fm/2−1, x, y〉
β = 〈e1 + v, e2, . . . , em/2−1, f1, . . . , fm/2−1, x, y〉.

Then the pointwise stabilizer (G0)α,β visibly has a section isomorphic to Ωε
m−2(q) (acting

trivially on 〈e1, f1, v〉), so we may assume that either m = 4 or (m, q, ε) = (6, 2,+). In the
latter case, G is 2-transitive, Gα,β = 24.L2(2)2.2 is solvable and with the aid of Magma one
checks that b(G) = 6 (this is the special case recorded in the statement of the proposition).

Finally, let us assume m = 4, so q > 4. We claim that there exists α, β ∈ Ω such that
(G0)α,β has a section isomorphic to L2(q). To see this, first assume ε = +, in which case
〈x, y〉 is a plus-type 2-space and we may assume that Q(x) = Q(y) = 0 and Q(x+ y) = 1.
Choose ξ ∈ F×q such that the polynomial t2 + t+ ξ2 ∈ Fq[t] is reducible. Then the 4-spaces

α = 〈e1, f1, x, y〉, β = 〈e1, f1, x+ y, x+ ξv〉

are contained in Ω and by considering the common 3-space 〈e1, f1, x+ y〉 we deduce that
O3(q) 6 (G0)α,β. A similar argument applies when ε = −. Here 〈x, y〉 is a minus-type
2-space and we are free to assume that Q(x) = 1 and Q(y) = Q(x + y) = ξ, where
t2 + t + ξ ∈ Fq[t] is irreducible. Choose λ ∈ F×q so that t2 + t + ξ + λ2 ∈ Fq[t] is also
irreducible. Then

α = 〈e1, f1, x, y〉, β = 〈e1, f1, x, y + λv〉
are spaces in Ω and once again we have O3(q) 6 (G0)α,β. The result follows.

Case 4. Odd-dimensional orthogonal groups.

Next we assume G0 = Ωm(q), where mq is odd and m > 7. Write m = 2`+ 1 and fix a
standard basis {e1, . . . , e`, f1, . . . , f`, x} for V as in [26, Proposition 2.5.3(iii)].

First let H be a parabolic subgroup of type Pk with 1 6 k < m/2. With respect
to a standard basis for V , set α = 〈e1, . . . , ek〉 and β = 〈f1, . . . , fk〉. Then Gα,β has a
composition factor Lk(q) if k > 3, and Ωm−2k(q) if k 6 2 and (m, k, q) 6= (7, 2, 3). Finally,
we note that H is solvable when (m, k, q) = (7, 2, 3).

Now suppose H is the stabilizer of a nondegenerate k-space of type ε with 1 6 k < m/2.
Note that if k is odd then G has two orbits on the set of all nondegenerate k-spaces; the
spaces in the two orbits are distinguished by the discriminant of the restriction of the
defining quadratic form on V , which is either a square or nonsquare (see [26, p.32]).
The respective actions of G are permutation isomorphic, so without loss of generality we
may assume that if k is odd then Ω is the set of nondegenerate k-spaces with square
discriminant. On the other hand, if k is even then we identify Ω with the set of all
nondegenerate k-spaces of type ε = ±.
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Fix a nondegenerate k-space α ∈ Ω and choose β ∈ Ω such that α ⊥ β is a nondegenerate
2k-space. If k > 5, then PΩε

k(q) is a composition factor of Gα,β. Similarly, if k ∈ {3, 4}
then we may assume q = 3, with ε = + if k = 4. Suppose (k, q, ε) = (4, 3,+). If m > 13
then Gα,β has a composition factor Ωm−8(3), so we can assume m ∈ {9, 11}. If m = 11 then
Ω5(3) is a composition factor of Gα,β′ , where α = 〈e1, e2, f1, f2〉 and β′ = 〈e1, e3, f1, f3〉,
and for m = 9 we calculate that b(G) = 2.

To complete the analysis we may assume k ∈ {1, 2} or k = q = 3. Suppose k = q = 3
and set α = 〈e1, f1, x〉 and β′ = 〈e2, f2, x〉. If m > 11 then Gα,β′ has a composition factor

of type Ωε′
m−5(3), while a Magma computation gives b(G) 6 3 if m ∈ {7, 9}. Finally, if

k ∈ {1, 2} then Gα,β has a composition factor Ωm−2k(q) if (m, k, q) 6= (7, 2, 3), otherwise
ε = − (see [7, Table 8.39]) and b(G) = 3.

Case 5. Even-dimensional orthogonal groups.

To complete the proof of the proposition, we may assume G0 = PΩε
m(q) with m > 8

even. Write m = 2` and fix standard bases{
{e1, . . . , e`, f1, . . . , f`} if ε = +
{e1, . . . , e`−1, f1, . . . , f`−1, x, y} if ε = −

as in [26, Proposition 2.5.3].
To begin with, let us assume H is a parabolic subgroup of type Pk. If k < m/2 then we

may identify Ω with the set of all totally singular k-dimensional subspaces of V . However,
if k = m/2 then ε = + and G0 has two orbits on the set of totally singular k-dimensional
subspaces of V (see [26, Lemma 2.5.8]). Without loss of generality, in the latter case we
may assume that Ω is the set of totally singular k-spaces β such that k − dim(α ∩ β) is
even (see [26, Lemma 2.5.8]), where α = 〈e1, . . . , ek〉.

First assume k = m/2, so ε = +. If k is odd then Gα,β has a composition factor Lk−1(q),
where β = 〈e1, f2, . . . , fk〉. Similarly, if k is even and we set β = 〈f1, . . . , fk〉 then Lk(q)
is a composition factor of Gα,β. The same conclusion holds (with α and β defined in the
same way) if (ε, k) 6= (+,m/2) and either k > 3, or k = 2 and q > 4. If k = 1 then Gα,β
has a composition factor PΩε

m−2(q). Finally, suppose k = 2 and q 6 3. If m > 10 or
(m, ε) = (8,−) then PΩε

m−4(q) is a composition factor of Gα,β, whereas H is solvable if
(m, ε) = (8,+).

Next suppose H is the stabilizer of a nondegenerate k-space of type ε′, where 1 6 k 6
m/2. Note that if k is odd then q is odd and G has two orbits on the set of nondegenerate
k-dimensional subspaces of V ; as in Case 4, we may assume Ω comprises the spaces with
square discriminant. For k even, we identify Ω with the set of all nondegenerate k-spaces
of type ε′. In addition, observe that k = m/2 only if m ≡ 0 (mod 4) and ε = − (see [26,
Tables 3.5.E, 3.5.F], for example), in which case we are free to assume that ε′ = +.

Let us begin by handling the special case where k = m/2, so m ≡ 0 (mod 4), ε = −
and ε′ = +. Fix α = 〈e1, . . . , em/4, f1, . . . , fm/4〉 ∈ Ω. If we set

β = 〈e1, . . . , em/4−1, em/4+1, f1, . . . , fm/4−1, fm/4+1〉 ∈ Ω

then Gα,β has a composition factor PΩ−m/2−2(q) if m > 12. Now assume m = 8. If q 6 3

then a calculation with Magma shows that b(G) 6 3. On the other hand if q > 4 and
β′ = 〈e1, e2, f1 + x, f2 + x〉, then one checks that Gα,β′ has a section isomorphic to L2(q).

For the remainder, we may assume k < m/2 and Ω is the set of nondegenerate k-
dimensional subspaces of V of type ε′. Fix α, β ∈ Ω such that α ⊥ β is a nondegenerate
2k-space (note that this space has plus-type if k is even). If k > 5 then Gα,β has a

composition factor PΩε′
k (q), so we may assume k 6 4. Similarly, if k = 4 (with q > 4

if ε′ = +) then Gα,β is nonsolvable, so let us assume (k, ε′) = (4,+) and q 6 3. Set
α = 〈e1, e2, f1, f2〉 and β′ = 〈e1, e3, f1, f3〉. Then Gα,β′ has a composition factor PΩε

m−6(q)
unless (m, ε) = (10,+), in which case a Magma computation gives b(G) 6 3.
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Next suppose k = 3, so q is odd. If q > 5, then Gα,β has a composition factor Ω3(q), so

we may assume q = 3. If m > 12 then PΩε′′
m−6(q) is a composition factor of Gα,β (the sign

ε′′ depends on the type of the nondegenerate 6-space α ⊥ β). If m ∈ {8, 10} then with the
aid of Magma one checks that b(G) 6 3.

Finally, let us assume k ∈ {1, 2}. If k = 1, or if k = 2 and (m, ε) 6= (8,+), then Gα,β has

a composition factor PΩε′′
m−2k(q), where ε′′ = ε if k = 2. Similarly, if (m, k, ε) = (8, 2,+)

and q > 4 then Gα,β is nonsolvable (it has an L2(q) composition factor). Finally, if
(m, k, ε) = (8, 2,+) and q 6 3 then a Magma computation gives b(G) 6 4.

To complete the proof, we may assume q is even and H is the stabilizer of a nonsingular
1-space. By identifying Ω with the set of all such subspaces of V , we may choose α, β ∈ Ω
so that α⊕β is a nondegenerate 2-space of minus-type and thus Ω−εm−2(q) is a composition
factor of Gα,β. �

This completes the proof of Theorem 4 for almost simple groups.

3.2. Diagonal type groups.

Proposition 3.5. Let G 6 Sym(Ω) be a finite primitive group of diagonal type with point
stabilizer H. If every 2-point stabilizer in G is solvable, then b(G) 6 4.

Proof. Let N = T k be the socle of G and write N 6 G 6 N.(Out(T )× Sk), where T is a
nonabelian simple group. Let PG be the subgroup of Sk induced by the conjugation action
of G on the set of k factors of N . The primitivity of G implies that G = NH, so H also
induces PG on the factors of N . We may assume that

H = {(a, . . . , a)π ∈ G : a ∈ Aut(T ), π ∈ Sk}.
If PG 6= Ak, Sk then [17, Theorem 1.1] gives b(G) = 2, so we may assume PG contains

Ak. Here [17, Theorem 1.2] gives

b(G) 6 max

{
4,

⌈
log k

log |T |

⌉
+ 2

}
, (3)

which is at most 4 if k 6 |T |2. For the remainder, we may assume that k > |T |2 and
PG = Ak or Sk. Fix 1 6= s ∈ T and set g = (s, 1, . . . , 1) ∈ N , so

H ∩Hg = {(a, . . . , a)π ∈ G : a ∈ CAut(T )(s), π ∈ Sk, 1π = 1}

is a 2-point stabilizer. Let r be the largest prime less than |T |2. Since |Out(T )| < |T |,
it follows that (r, |Out(T )|) = 1 and thus [17, Lemma 3.11] implies that N :Ak 6 G.
Therefore, Ak−1 6 H ∩Hg and we conclude that H ∩Hg is nonsolvable. �

Remark 3.6. The bound in Proposition 3.5 is best possible. For example, b(G) = 4
for the diagonal type group G = A2

5.2
2 of degree 60 and we calculate that every 2-point

stabilizer in this group is solvable (indeed, the largest 2-point stabilizer has order 16).

3.3. Product type groups.

Proposition 3.7. Let G 6 Sym(Ω) be a finite primitive group of product type with point
stabilizer H. If every 2-point stabilizer in G is solvable, then b(G) 6 6.

Proof. Here we adopt the same notation as in the proof of Proposition 2.10. In particular,
N 6 G 6 L o P , where N = T k is the socle of G and L 6 Sym(∆) is a primitive group
with socle T , which is either almost simple or diagonal type. In addition, P 6 Sk is the
transitive group induced by the conjugation action of G on the k factors of N and we
write Ω = ∆1 × · · · ×∆k = ∆k.

Case 1. L is almost simple.

First assume L is almost simple and fix δ1, δ2 ∈ ∆ with δ1 6= δ2. Set αi = (δi, . . . , δi) ∈ Ω
for i = 1, 2. Then (Tδ1,δ2)k 6 Gα1,α2 , so Tδ1,δ2 is solvable and we deduce that Lδ1,δ2 is
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solvable (recall that L/T 6 Out(T ) is solvable). Therefore, every 2-point stabilizer in L
is solvable and thus b(L) 6 6 from our work in Section 3.1. By repeating the argument in
the proof of Proposition 2.10 we see that

Q = {(x1, . . . , xk)π ∈ G : xi = 1 for all i}
is the pointwise stabilizer in G of a specific set of b(L) elements in Ω. Since b(L) > 2
it follows that Q is solvable and thus Theorem 2.4(i) implies that d(Q) 6 5. Then by
applying the upper bound in (2) we deduce that b(G) 6 6 if b(L) 6 5 (since |∆| > 5).

Therefore, we may assume b(L) = 6, in which case Theorem 4 implies that L = Sp6(2),
K = Lδ = O+

6 (2) and |∆| = 36. Here L = T and thus G = L o P . In particular, P = Q
is solvable. In this case, the bound in (2) gives b(G) 6 7 and further work is needed to
show that b(G) 6 6. Let reg(L, 6) be the number of regular orbits of L with respect to the
natural coordinatewise action of L on ∆6. Since d(P ) 6 5, [3, Theorem 2.13] implies that
b(G) 6 6 if reg(L, 6) > 5. As in the proof of [8, Theorem 8.2], we have reg(L, 6) > 5t/|L|,
where

t = |{(δ, λ1, . . . , λ5) ∈ ∆6 :
⋂
i

Kλi = 1}|,

so reg(L, 6) > 5 if t > |L|. This is a straightforward Magma computation.

Case 2. L is diagonal type.

To complete the proof of the proposition, we may assume L is a diagonal type group
with socle T = S`, where ` > 2 and S is a nonabelian simple group. Recall that

S` P L 6 S`.(Out(S)×A),

where A 6 S` is the group induced by the conjugation action of L on the ` factors of
T = S` (note that A is either primitive, or ` = 2 and A = 1).

If ` = 2 then [17, Theorem 1.2] gives b(L) 6 4 and by repeating the argument in Case 1
we deduce that b(G) 6 6 via (2). Now assume ` > 3. As explained in [23, Section 4.3.2],
there exist three elements in Ω whose pointwise stabilizer in G is a permutation group
R 6 Sym(Λ) with |Λ| = k` such that

b(G) 6 2
log d(R)

log |S|
+ 4. (4)

Since R is solvable, Theorem 2.4(i) gives d(R) 6 5 and the result follows since |S| > 60. �

3.4. Twisted wreath products.

Proposition 3.8. Let G 6 Sym(Ω) be a finite primitive group of twisted wreath product
type with point stabilizer H. If every 2-point stabilizer in G is solvable, then b(G) 6 6.

Proof. Here G = T k:H, H 6 Sk is transitive and n = |Ω| = |T |k, where T is a nonabelian
simple group. Let L 6 H be a 2-point stabilizer and observe that |G : L| 6 n2. Since
L 6 Sk is solvable, Lemma 2.2 implies that |L| < 5k−1 and so by combining the upper
bound on b(G) in (1) with the obvious bound |T | > 60, we deduce that

b(G) <
log |G|
log n

+ 4 <
(k − 1) log 5

k log 60
+ 6 < 7

and the result follows. �

This completes the proof of Theorem 4. We close this section with some further com-
ments on twisted wreath products, as well as the affine groups excluded in Theorem 4.

Remark 3.9. Let G = T k:H be a twisted wreath product, where T is a nonabelian simple
group and H 6 Sk is transitive. Recall that H is nonsolvable. It is worth noting that there
are primitive groups of this form with the property that every 2-point stabilizer is solvable
(we thank Michael Giudici for drawing our attention to [20] and the following example).
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Following [20, Example 4.15], we can construct a primitive twisted wreath product with
T = A5, k = 6 and H = A6. By [20, Theorem 1.5], the minimal subdegree of G is 12 and
we conclude that every 2-point stabilizer in G is solvable (since every proper nonsolvable
subgroup of H has index 6). In this particular example, [18, Theorem 1.1] implies that
b(G) = 2. Indeed, this result states that b(G) = 2 whenever H is a quasiprimitive subgroup
of Sk (there are only partial base size results when H is imprimitive and it is worth noting
that b(G) can be arbitrarily large in general).

Remark 3.10. Let G = V H be an affine group. Here the condition on 2-point stabilizers
implies thatHv is solvable for all nonzero vectors v ∈ V and it is worth noting that there are
genuine examples with H nonsolvable and b(G) = 5. For example, if G = 24:Sp4(2) then
G is 2-transitive, every 2-point stabilizer is isomorphic to 24:(S4×S2) and one checks that
b(G) = 5. By inspecting the Magma database of primitive groups, it is straightforward
to check that b(G) 6 5 for all relevant affine groups of degree at most 4095. In the general
case, if there exists a nonzero vector v such that Hv acts completely reducibly on V , then
a theorem of Halasi and Maróti [24, Theorem 1.1] implies that b(G) 6 5. The case where
no 2-point stabilizer Hv is completely reducible remains open.

4. Proof of Theorem 5

In this final section we prove Theorem 5. Let G 6 Sym(Ω) be a finite primitive permu-
tation group with point stabilizer H and assume G is not of affine type. Set n = |Ω|. Fix
positive integers c, d with d > 5 and assume every c-point stabilizer in G is in Γd. Our
aim is to establish the existence of a function g(c, d), which is linear in c and d, such that
b(G) 6 g(c, d) for all primitive groups G of this form.

Notice that if L is a c-point stabilizer then |G : L| 6 nc. Since the main theorem of [23]
gives

b(G) 6 2
log |G|
log n

+ 24,

it suffices to show that |L| 6 nh(c,d) for some function h (linear in c and d).

Remark 4.1. Let c, d be positive integers as above. Then there exists an almost simple
primitive group G such that every c-point stabilizer is in Γd and b(G) = c + d − 2. For
example, take the natural action of G = Sn with n = c+ d− 1.

Proposition 4.2. The conclusion to Theorem 5 holds when G is almost simple.

Proof. Let G 6 Sym(Ω) be an almost simple group with socle G0. Recall that if G is
non-standard, then b(G) 6 7, so we may assume G is standard.

First assume G0 = Am and Ω is the set of k-element subsets of {1, . . . ,m}, where
1 6 k < m/2. Note that if L is a c-point stabilizer, then

|L| 6 |H| 6 |Sm−k||Sk| < (m− k)!2 6 (m− k)2(m−k) 6 n2(m−k).

If c > m − k then |L| 6 n2c and the result follows. On the other hand, if c < m − k
then the pointwise stabilizer of the k-sets αi = {1, . . . , k− 1, k+ i} with i = 0, 1, . . . , c− 1
clearly contains Am−k−c+1. This implies that m − k 6 c + d − 2 and we deduce that
|L| 6 n2(c+d−2), which gives the desired result.

Next suppose G0 = Am and Ω is the set of partitions of {1, . . . ,m} into m/k parts of
size k, where 1 < k 6 m/2 and k divides m. Recall that the main theorem of [4] gives

b(G) 6 max
{

6,
⌈
logm/k k

⌉
+ 3
}

and so we may assume that c 6 k. Visibly, the point stabilizer of the following partitions

αi = {{1, . . . , k − 1, k + i}, {k, k + 1, . . . , 2k} \ {k + i}, . . .} ∈ Ω

for i = 0, 1, . . . , c−1 contains Ak−1 (note that all of these partitions only differ in the first
two parts). Therefore, k 6 d and the argument in this case is complete.
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To complete the proof, we may assume G0 is a classical group in a subspace action. Let
V be the natural module for G0 and set m = dimV . There are three cases to consider:

(a) Ω is a set of k-dimensional subspaces of V ;

(b) G0 = Lm(q) and Ω is a set of pairs of subspaces {U,W} of V such that dimU = k,
dimW = m− k and either V = U ⊕W or U ⊆W ;

(c) G0 = Spm(q), q is even and H ∩G0 = Oε
m(q).

First consider (a). By combining [23, Theorem 3.3] and the proof of [23, Theorem 3.1],
we deduce that b(G) 6 m/k + 14 and so we may assume m is large and c 6 m/4k. Then
we can choose c spaces in Ω such that the pointwise stabilizer in G0 of these spaces has a
section isomorphic to a simple classical group with a natural module of dimension bm/4c.
For example, suppose G0 = PSpm(q) and Ω is the set of k-dimensional nondegenerate
subspaces of V , so k is even. Let {e1, . . . , em/2, f1, . . . , fm/2} be a standard basis for V
and consider the k-spaces

Ui = 〈e1+ik/2, . . . , e(i+1)k/2, f1+ik/2, . . . , f(i+1)k/2〉 ∈ Ω

with i = 0, 1, . . . , c − 1. Then the point stabilizer of these k-spaces contains a subgroup
PSpm−ck(q) acting trivially on the ck-space U0 ⊥ · · · ⊥ Uc−1 and the claim follows since
m − ck > m/4. A similar argument applies in the remaining cases. Finally, Lemma 2.3
now implies that bm/4c 6 2d and the result follows.

A very similar argument applies in case (b) and we omit the details. By identifying
Spm(q) with the orthogonal group Om+1(q), case (c) can also be handled in a similar
fashion, noting that b(G) 6 m+ 4 by the proof of [23, Theorem 3.1]. To explain how this
plays out, we proceed as in Case 3 in the proof of Proposition 3.4. Let W be the natural
module for Om+1(q) with corresponding quadratic form Q and let 〈v〉 be the radical of
the associated bilinear form. Note that v is nonsingular with respect to Q, so Q(v) 6= 0.
Identify Ω with the set of nondegenerate m-dimensional subspaces of W of type ε and
recall that an m-space is nondegenerate if and only if it does not contain v. Also recall
that we may assume c 6 m/4 and m is large. Fix a basis

{e1, . . . , em/2−1, f1, . . . , fm/2−1, x, y, v}

for W , where 〈e1, . . . , em/2−1, f1, . . . , fm/2−1〉 and 〈x, y〉 are nondegenerate spaces of plus-
type and ε-type, respectively. Set

U0 = 〈e1, . . . , em/2−1, f1, . . . , fm/2−1, x, y〉 ∈ Ω

and for i = 1, . . . , c− 1 define

Ui = 〈e1, . . . , ei−1, ei + v, ei+1, . . . , em/2−1, f1, . . . , fm/2−1, x, y〉 ∈ Ω.

Then the pointwise stabilizer in G0 of the spaces U0, . . . , Uc−1 visibly has a section iso-
morphic to Ωε

m−2c+2(q) (acting trivially on the plus-type space 〈e1, . . . , ec−1, f1, . . . , fc−1〉)
and we complete the proof by arguing as above. �

Proposition 4.3. The conclusion to Theorem 5 holds when G is a twisted wreath product.

Proof. It is easy to generalize the proof of Proposition 3.8. Write G = T k:H, where
H 6 Sk is transitive, n = |Ω| = |T |k and T is a nonabelian simple group. Let L 6 H be
a c-point stabilizer and observe that |G : L| 6 nc. Since L 6 Sk, Lemma 2.2 implies that
|L| < dk−1 and thus (1) yields

b(G) <
log |G|
log n

+ 4 <
(k − 1) log d

k log |T |
+ c+ 4 <

log d

log 60
+ c+ 4

and the result follows. �

Proposition 4.4. The conclusion to Theorem 5 holds when G is of diagonal type.
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Proof. We adopt the notation from the proof of Proposition 3.5, so G has socle N = T k

and we have N 6 G 6 N.(Out(T ) × Sk). By arguing as in the proof of Proposition
3.5 we may assume that k is large, c 6 k/4 and N :Ak 6 G. Fix 1 6= s ∈ T and define
gi = (1, . . . , 1, s, 1, . . . , 1) ∈ N for i = 1, . . . , c−1, where s is the i-th coordinate of gi. Then
Ak−c+1 is contained in the c-point stabilizer H ∩Hg1 ∩ · · · ∩Hgc−1 and thus k 6 c+ d− 2.
The result now follows by applying the upper bound on b(G) in (3). �

Proposition 4.5. The conclusion to Theorem 5 holds when G is of product type.

Proof. We proceed as in the proof of Proposition 3.7 and we freely adopt the notation
therein, which is consistent with the notation from the proof of Proposition 2.10. In
particular, we have N 6 G 6 L o P , where N = T k is the socle of G and L 6 Sym(∆) is a
primitive group with socle T .

Case 1. L is almost simple.

First assume L is almost simple and c > |∆|. Set e = c and fix a base {δ1, . . . , δb} for
L, where b = b(L). Choose c distinct points α1, . . . , αc in Ω such that αi = (δi, . . . , δi) for
i = 1, . . . , b. Then

R :=
c⋂
i=1

Gαi 6 {(x1, . . . , xk)π ∈ G : xj = 1 for all j}

is in Γd and thus d(R) 6 d by Theorem 2.4(ii). Finally, by applying [15, Lemma 3.8] and
[16, Lemma 2.1] we see that

b(G) 6
⌈
log|∆| d(R)

⌉
+ e (5)

and the result follows.
Next assume L is almost simple and c 6 |∆|. Choose any c distinct points δ1, . . . , δc in

∆ and set αi = (δi, . . . , δi) ∈ Ω. Since the pointwise stabilizer in G of these points is in Γd,
it follows that the pointwise stabilizer of the δi in T is also in Γd, which in turn implies
that

⋂
i Lδi ∈ Γd since L/T is solvable. Therefore, every c-point stabilizer in L is in Γd, so

Proposition 4.2 implies that b(L) 6 h(c, d) for some function h, which is linear in c and d.
Let e = max{c, b(L)} and choose e distinct points {δ1, . . . , δe} ⊆ ∆ containing a base

for L. Let R be the pointwise stabilizer in G of the elements αi = (δi, . . . , δi) ∈ Ω. Then
R ∈ Γd and by arguing as above we deduce that (5) holds. The desired result follows via
the bound on d(R) in Theorem 2.4(ii) and the fact that e 6 h(c, d) + c.

Case 2. L is diagonal type.

Now assume L is a diagonal type group with socle T = S`, where ` > 2 and S is a
nonabelian simple group, so

S` P L 6 S`.(Out(S)×A)

and A 6 S` is the group induced by the conjugation action of L on the ` factors of T .
If ` = 2 then b(L) 6 4 by [17, Theorem 1.2] and we can repeat the argument in Case
1. For the remainder, we will assume ` > 3. Set e = max{3, c}. By arguing as in [23,
Section 4.3.2], we may choose e distinct points in Ω with the property that their pointwise
stabilizer in G is a permutation group R 6 Sym(Λ) with |Λ| = k` such that

b(G) 6 2
log d(R)

log |S|
+ e+ 1

(see (4)). Since R ∈ Γd we have d(R) 6 d by Theorem 2.4(ii) and the result follows. �

This completes the proof of Theorem 5.
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[29] A. Maróti, On the orders of primitive groups, J. Algebra 258 (2002), 631–640.
[30] C.E. Praeger, L. Pyber, P. Spiga and E. Szabó, Graphs with automorphism groups admitting compo-
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