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Abstract. In this paper, the heat transfer optimization (HTO) algorithm and simulated coronary circulation system 

(SCCS) optimization algorithm has been designed for Real power loss reduction. In the projected HTO algorithm, every 

agent is measured as a cooling entity and surrounded by another agent, like where heat transfer will occur. Newton’s 

law of cooling temperature will be updated in the proposed HTO algorithm. Each value of the object is computed 

through the objective function. Then the objects are arranged in increasing order concerning the objective function 

value. This projected algorithm time “t” is linked with iteration number, and the value of “t” for every agent is 

computed. Then SCCS optimization algorithm is projected to solve the optimal reactive power dispatch problem. 

Actions of human heart veins or coronary artery development have been imitated to design the algorithm. In the 

projected algorithm candidate solution is made by considering the capillaries. Then the coronary development factor 

(CDF) will appraise the solution, and population space has been initiated arbitrarily. Then in the whole population, the 

most excellent solution will be taken as stem, and it will be the minimum value of the Coronary development factor. 

Then the stem crown production is called the divergence phase, and the other capillaries’ growth is known as the clip 

phase. Based on the arteries leader’s coronary development factor (CDF), the most excellent capillary leader’s (BCL) 

growth will be there. With and without L-index (voltage stability), HTO and SCCS algorithm’s validity are verified in 

IEEE 30 bus system. Power loss minimized, voltage deviation also reduced, and voltage stability index augmented. 

Keywords: optimal reactive power, transmission loss, heat transfer, simulated coronary circulation system.

1 Introduction 

Power loss minimization and voltage stability 

enhancement with voltage deviation minimization is the 

key objectives of this work. Newton’s method, interior 

point method; successive quadratic programming 

method [1–6]. Nevertheless, there are enormous 

difficulties found in handling the in-equality constraints. 

These ten years, there is a massive growth in the swarm 

and evolutionary algorithms [7–39] for solving the 

problem. Algorithms like genetic, ant colony, wolf 

search, cuckoo search, birds swarm, fish swarm, 

gravitational search, particle swarm optimization, 

symbiotic organism search algorithm [41–52] are 

already solved the problem. The central aspect is to 

maintain the exploration and exploitation in the flow of 

the process. Many algorithms failed to tradeoff between 

exploration and exploitation. This paper projects the 

Heat Transfer Optimization (HTO) algorithm and the 

Simulated Coronary Circulation System (SCCS) 

optimization algorithm to solve the optimal reactive 

power problem. In the proposed HTO algorithm, every 

agent is measured as a cooling entity, and it is 

surrounded by another agent, like where heat transfer 

will occur. Newton’s law of cooling temperature will be 

updated in the proposed HTO algorithm. Object’s 

temperature is considered the position’s position, and 

the heat energy will be transferred to objects 

surrounding it. Then new-fangled positions are 

modernized through new temperature conditions. Each 

value of the object is computed through the objective 

function. Then the objects are arranged in increasing 

order concerning the objective function value. In 

algorithm Control variable1 direct the random step size 

and Control variable2 organize (1 − t). In the 

conclusion of the procedure, the value of “t” will be 

augmented, leading to a linear decrease in arbitrariness 

and escalating the exploitation. Objects are grouped into 

two modes concerning temperature as 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒1 
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which is in cooling condition. This paper proposes 

Simulated Coronary Circulation System (SCCS) 

optimization algorithm to solve the optimal reactive 

power problem. SCCS algorithm has been modeled by 

imitating the actions of human heart veins or coronary 

artery development. In the projected algorithm, few 

capillaries which form the preliminary group is 

designated as the population. Then the main arteries are 

taken as the variables of the problem. The divergence 

phase and clip phase are considered as the global search 

of the procedure. Then the gofer and clip phase is taken 

as local search in the procedure. The most excellent 

capillary leader (BCL) is taken as a key leader of the 

arteries, which will be transformed to a stem through 

which that coronary tree will expand. A new-fangled 

solution is obtained from the coronary tree branch, and 

the objective function cost is obtained from the end of 

the coronary tree’s total cost. Through these for the 

obtained solution, the Coronary development factor 

(CDF) will be computed, and it will act as the fitness 

value of the problem. This work Heart memory 

parameter (HMP) is taken as a 5.0 and Heart memory 

parameter considering rate (HMPCR) taken as 0.955, 

respectively. HMP will save the most excellent 

solutions, and it will be sequentially modernized 

iteration by iteration. Proposed HTO, SCCS algorithms 

evaluated in IEEE 30 bus system with and without L- 

index. Real power loss and voltage deviation minimized 

with voltage stability index enhancement. 

2 Research Methodology 

2.1 Problem formulation 

Power loss minimization is defined by 

𝑀𝑖𝑛 𝑂𝐵𝐹̃(𝑟̅, 𝑢̅)  (1) 

subject to 

 

𝐿(𝑟̅, 𝑢̅) = 0;   (2) 

𝑀(𝑟̅, 𝑢̅) = 0;   (3) 

𝑟 = [𝑉𝐿𝐺1, . . , 𝑉𝐿𝐺𝑁𝑔; 𝑄𝐶1, . . , 𝑄𝐶𝑁𝑐; 𝑇1, . . , 𝑇𝑁𝑇
];   (4) 

𝑢 = [𝑃𝐺𝑠𝑙𝑎𝑐𝑘; 𝑉𝐿1, . . , 𝑉𝐿𝑁𝐿𝑜𝑎𝑑
; 𝑄𝐺1, . . , 𝑄𝐺𝑁𝑔; 𝑆𝐿1, . . , 𝑆𝐿𝑁𝑇

].(5) 

The fitness function (𝐹1, 𝐹2, 𝐹3) is designed for power 

loss (MW) reduction, Voltage deviation, voltage 

stability index (L-index) is defined by 

𝐹1 = 𝑃𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [∑ 𝐺𝑚
𝑁𝑇𝐿
𝑚 [𝑉𝐿𝑖

2 + 𝑉𝐿𝑗
2 − 2 ∗ 𝑉𝐿𝑖𝑉𝐿𝑗𝑐𝑜𝑠Ø𝑖𝑗]] ;(6) 

𝐹2 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒[∑ |𝑉𝐿𝐿𝑘 − 𝑉𝐿𝐿𝑘
𝑑𝑒𝑠𝑖𝑟𝑒𝑑|2 + ∑ |𝑄𝐺𝐾 − 𝑄𝐾𝐺

𝐿𝑖𝑚|2𝑁𝑔
𝑖=1

𝑁𝐿𝐵
𝑖=1 ];(7) 

𝐹3 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝑀𝑎𝑥𝐼𝑚𝑢𝑚 ;  (8) 

𝐿𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚[𝐿𝑗]; 𝑗 = 1, … , 𝑁𝐿𝐵; (9) 

{
𝐿𝑗 = 1 − ∑ 𝐹𝑗𝑖

𝑉𝐿𝑖

𝑉𝐿𝑗

𝑁𝑃𝑉
𝑖=1 ;

𝐹𝑗𝑖 = −[𝑌1]1[𝑌2];
  (10) 

𝐿𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 [1 − [𝑌1]−1[𝑌2] ×
𝑉𝐿𝑖

𝑉𝐿𝑗
].   (11) 

Equality constraints: 

0 = 𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝐿𝑖 ∑ 𝑉𝐿𝑗𝑗∈𝑁𝐵
[𝐺𝑖𝑗𝑐𝑜𝑠[Ø𝑖 − Ø𝑗] + 𝐵𝑖𝑗𝑠𝑖𝑛[Ø𝑖 − Ø𝑗]] ; (12) 

0 = 𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝐿𝑖 ∑ 𝑉𝐿𝑗𝑗∈𝑁𝐵
[𝐺𝑖𝑗𝑠𝑖𝑛[Ø𝑖 − Ø𝑗] + 𝐵𝑖𝑗𝑐𝑜𝑠[Ø𝑖 − Ø𝑗]]. (13) 

Inequality constraints: 

𝑃𝑔𝑠𝑙𝑎𝑐𝑘
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘 ≤ 𝑃𝑔𝑠𝑙𝑎𝑐𝑘

𝑚𝑎𝑥𝑖𝑚𝑢𝑚;  (14) 

𝑄𝑔𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  , 𝑖 ∈ 𝑁𝑔; (15) 

𝑉𝐿𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  , 𝑖 ∈ 𝑁𝐿; (16) 

𝑇𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑇𝑖 ≤ 𝑇𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  , 𝑖 ∈ 𝑁𝑇; (17) 

𝑄𝑐
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑄𝑐 ≤ 𝑄𝐶

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  , 𝑖 ∈ 𝑁𝐶 ; (18) 

|𝑆𝐿𝑖| ≤ 𝑆𝐿𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 , 𝑖 ∈ 𝑁𝑇𝐿;  (19) 

𝑉𝐺𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  , 𝑖 ∈ 𝑁𝑔. (20) 

Multi-objective fitness (MOF) function has been 

defined by 

𝑀𝑂𝐹 = 𝐹1 + 𝑟𝑖𝐹2 + 𝑢𝐹3 = 𝐹1 + 

+ [∑ 𝑥𝑣[𝑉𝐿𝑖 − 𝑉𝐿𝑖
𝑚𝑖𝑛]

2𝑁𝐿
𝑖=1 + ∑ 𝑟𝑔[𝑄𝐺𝑖 − 𝑄𝐺𝑖

𝑚𝑖𝑛]
2𝑁𝐺

𝑖=1 ] + 𝑟𝑓𝐹3; (21) 

𝑉𝐿𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = {

𝑉𝐿𝑖
𝑚𝑎𝑥  , 𝑉𝐿𝑖 > 𝑉𝐿𝑖

𝑚𝑎𝑥;

𝑉𝐿𝑖
𝑚𝑖𝑛 , 𝑉𝐿𝑖 < 𝑉𝐿𝑖

𝑚𝑖𝑛;
 (22) 

𝑄𝐺𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = {

𝑄𝐺𝑖
𝑚𝑎𝑥  , 𝑄𝐺𝑖 > 𝑄𝐺𝑖

𝑚𝑎𝑥 ;

𝑄𝐺𝑖
𝑚𝑖𝑛 , 𝑄𝐺𝑖 < 𝑄𝐺𝑖

𝑚𝑖𝑛;
 (23) 

2.2 Heat transfer optimization (HTO) algorithm 

Heat transfer characteristics between the objects have 

been imitated to model the Heat Transfer Optimization 

(HTO) algorithm. In the proposed algorithm, every 

agent is measured as a cooling entity, and it is 

surrounded by another agent, like where heat transfer 

will occur. Newton’s law of cooling temperature will be 

updated in the proposed HTO algorithm. 

Generally, heat exchange coefficient symbolized as 

“h”, and at time t = 0 particular objects in highly 

elevated temperature 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒0 has been 

positioned or surrounded by cooling objects. Then there 

will be a transfer of heat between the 

objects  𝑇𝑒𝑚𝑝𝑎𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑏. Concerning volume and 

surface, the heat loss rate is determined by 

𝑑𝑞

𝑑𝑡
= ℎ(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑎 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑏) 𝑠𝑢𝑟𝑓𝑎𝑣𝑒 𝑎𝑟𝑒𝑎(𝑆𝐴).(24) 

In the time 𝑑𝑡 ℎ(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑎 −
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑏) 𝑠𝑢𝑟𝑓𝑎𝑣𝑒 𝑎𝑟𝑒𝑎(𝑆𝐴)𝑑𝑡  is the heat loss 

which indicates the decrease in temperature 𝑑𝑇 as 

follows: 

𝑣𝑜𝑙𝑢𝑚𝑒(𝑣) ∗ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜌) ∗ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡(𝑐) ∗ 𝐷𝑡 = 
=  −ℎ ∗ 𝑆𝐴(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑏)𝑑𝑡.(25) 

Then 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑏

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒0 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑏

= 

= 𝑒𝑥𝑝 (−
ℎ∗𝑆𝐴

𝑣𝑜𝑙𝑢𝑚𝑒(𝑣)∗𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜌)∗𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡(𝑐)
 𝑡) ;   (26) 

𝛽 =
ℎ∗𝑆𝐴

𝑣𝑜𝑙𝑢𝑚𝑒(𝑣)∗𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝜌)∗𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡(𝑐)
; (27) 



 

Journal of Engineering Sciences, Volume 8, Issue 1 (2021), pp. E1–E8 E3 

 

Then equation (12) can be written as 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒−𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑏

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒0−𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑏
= 𝑒𝑥𝑝(−𝛽 𝑡). (28) 

Then temperature mathematically defined as follows: 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑏 + 
+(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒0 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑏) 𝑒𝑥𝑝(−𝛽𝑡). (29) 

In the exploration of space objects, initial temperature 

is defined by: 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙
0 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑚𝑖𝑛𝑖𝑚𝑢𝑚 + 

+𝑟𝑎𝑛𝑑𝑜𝑚 ∙ (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑇𝑒𝑚𝑝𝑒𝑡𝑎𝑢𝑟𝑒𝑚𝑖𝑛𝑖𝑚𝑢𝑚). (30) 

Objects are grouped into two modes concerning 

temperature as 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒1 is ecological one for 

another object 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑛

2
+1

 which is in cooling 

condition. 

Then the value of β (higher or lower) determines the 

transfer of heat (variation of temperature between 

objects), and by the status of β, that position will be 

altered. The β value for each object is computed by 

𝛽 =
𝑐𝑜𝑠𝑡 (𝑜𝑏𝑗𝑒𝑐𝑡)

𝑐𝑜𝑠𝑡( 𝑝𝑜𝑜𝑟_𝑜𝑏𝑗𝑒𝑐𝑡)
.  (31) 

In this projected algorithm, time “t” is linked with 

iteration number, and the value of “t” for every agent is 

computed by 

𝑡 =
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
.  (32) 

To avoid the solution getting trapped in the local 

solution ecological temperature of the object has been 

adjusted as follows: 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖
𝑒𝑐𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙

= 

=(1 − (𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒1 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒2 × (1 − 𝑡)) ×

𝑟𝑎𝑛𝑑𝑜𝑚) × 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖
𝑒𝑐𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙

. (33) 

In equation (33) Control variable1 direct the random 

step size and Control variable2 organize (1 − t). In the 

conclusion of the procedure, the value of “t” will be 

augmented, leading to a linear decrease in arbitrariness 

and escalating the exploitation. 

Then the new-fangled temperature object is updated 

by 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖
𝑛𝑒𝑤 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖

𝑒𝑐𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙
+ 

+(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖
𝑜𝑙𝑑 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖

𝑛𝑒𝑤) 𝑒𝑥𝑝(−𝛽𝑡);  (34) 

Then j-th variable agent upper and lower bound 

defined by 
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖,𝑗 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗,𝑚𝑖𝑛𝑖𝑚𝑢𝑚 +  𝑟𝑎𝑛𝑑𝑜𝑚 × 

× (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗,𝑚𝑖𝑛𝑖𝑚𝑢𝑚).  (35) 

 

a. Start. 

b. Agents are initiated by, 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙
0 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑚𝑖𝑛𝑖𝑚𝑢𝑚 + 

+𝑟𝑎𝑛𝑑𝑜𝑚 ∙ (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −

−𝑇𝑒𝑚𝑝𝑒𝑡𝑎𝑢𝑟𝑒𝑚𝑖𝑛𝑖𝑚𝑢𝑚). 

c. The objective functional value will be 

computed. 

d. Modernization of population and memory. 

e. Grouping of the object is engendered. 

f. Value of 𝛽 , 𝑡 is computed by, 

𝛽 =
𝑐𝑜𝑠𝑡 (𝑜𝑏𝑗𝑒𝑐𝑡)

𝑐𝑜𝑠𝑡( 𝑝𝑜𝑜𝑟_𝑜𝑏𝑗𝑒𝑐𝑡)
; 

𝑡 =
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
. 

g. Ecological values altered by, 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖
𝑒𝑐𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙

= (1 − (𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒1 +

+𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒2 × (1 − 𝑡)) × 𝑟𝑎𝑛𝑑𝑜𝑚) ×

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖
𝑒𝑐𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙

  

h. Temperature values are modernized by, 

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖
𝑛𝑒𝑤 = 

= 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖
𝑒𝑐𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙

+ 

+(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖
𝑜𝑙𝑑 −

−𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖
𝑛𝑒𝑤) 𝑒𝑥𝑝(−𝛽𝑡)  

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑖,𝑗 = 

= 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗,𝑚𝑖𝑛𝑖𝑚𝑢𝑚 +  𝑟𝑎𝑛𝑑𝑜𝑚 ∙

(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗,𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −

−𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑗,𝑚𝑖𝑛𝑖𝑚𝑢𝑚)   

i. Is the end condition satisfied? If “yes”, stop the 

process or else go to step “c”. 

2.3 Simulated coronary circulation system 

optimization algorithm 

In this work Simulated Coronary Circulation System 

(SCCS) optimization algorithm has been modeled by 

imitating the actions of human heart veins or coronary 

artery development. In the projected algorithm 

candidate solution is made by considering the 

capillaries. Then the Coronary development factor 

(CDF) will appraise the solution, and population space 

has been initiated arbitrarily. Then the stem crown 

production is called the divergence phase, and the other 

capillaries’ growth is known as the clip phase. In the 

projected algorithm, few capillaries which form the 

preliminary group is designated as the population. Then 

the main arteries are taken as the variables of the 

problem. A new-fangled solution is obtained from the 

coronary tree branch, and the objective function cost is 

obtained from the end of the coronary tree’s total cost. 

Through these for the obtained solution, the Coronary 

development factor (CDF) will be computed, and it will 

act as the fitness value of the problem. Then in the whole 

population, the most excellent solution will be taken as 

stem, and it will be the minimum value of the Coronary 

development factor. 

The divergence phase and clip phase are considered 

as the global search of the procedure. In the period at the 

ending of the stem, the capillary leader will expand, and 

for iteration “t”, there will be 𝑁𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 , 
(𝑗 = 1, 2, . . . , 𝑁𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ). Capillaries are the 

population 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 , (𝑖 = 1,2,3. . , 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛). Then 

the j-th capillaries in the present population is indicated 

by 𝑌𝑐
𝑖,𝑗

. Through the stem, the most excellent capillary 

leader (BCL) will be identified. Then for BCL, the 

Coronary development factor (CDF) is computed by 
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𝐶𝐷𝐹𝑖
𝑡 =

1 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖⁄

∑1 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖⁄
,   𝑖 = 1, 2, . . . , 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛;   (36) 

𝐶𝐷𝐹𝑐
𝑡 =

1 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐⁄

∑1 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖⁄
 ;  (37) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐 = 𝑚𝑒𝑎𝑛(𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖). (38) 

In the divergence phase, the present solution is 

modernized by 

𝑌𝑖,𝑗
𝑡+1 = 𝑌𝑖,𝑗

𝑡 + 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∙ 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟(𝐷𝑓) × 

× (𝑌𝑐,𝑗
𝑡 − 𝑅𝑎𝑛𝑑𝑜𝑚 ∙ 𝑌𝑖,𝑗

𝑡 ) , 𝑖 == 1 𝑎𝑛𝑑 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 , 𝑗 = 1 𝑎𝑛𝑑 𝑁𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒; (39) 

{
𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = −1 ;   𝑖𝑓 𝐶𝐷𝐹𝑐

𝑡 < 𝐶𝐷𝐹𝑖
𝑡;

𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛        𝑒𝑙𝑠𝑒
(40) 

𝑌𝑐,𝑗 = 𝑚𝑒𝑎𝑛(𝑌𝑗
𝑡)  ; 𝑗 = 1, 2, . . . , 𝑁𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 . (41) 

Then the gofer and clip phase is taken as local search 

in the procedure. The most excellent capillary leader 

(BCL) is taken as a key leader of the arteries, which will 

be transformed to stem through the coronary tree will 

expand. Based on the coronary development factor 

(CDF) of the arteries leader, the most excellent capillary 

leader’s (BCL) growth will be there, and for this 

development, the exemplar factor is computed by 

𝑌𝑗
𝑡+1 = 𝑌𝑖,𝑗

𝑡  + 𝛼 ∙ 𝑟𝑎𝑛𝑑𝑜𝑚 ∙ (𝑌𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝑌𝑤𝑜𝑟𝑠𝑡,𝑗

𝑡 ). (42) 

Each capillary leader will explore the newfangled 

growth as capillaries. Sequentially best (most excellent) 

and worst are found, and preceding values will be 

modernized continuously. Then through the Heart 

memory parameter (HMP) solution which violates the 

boundary will be identified. HMP possesses the BCL 

and its CDF values. Heart memory parameter 

considering rate (HMPCR) varies between 0and 1 and 

will select the new-fangled value from the stored values. 

In this work, HMP is taken as 5.0, and HMPCR is taken 

as 0.955, respectively. Heart memory parameter (HMP) 

will save the most excellent solutions, and it will be 

sequentially modernized iteration by iteration. HMP 

exploration has been balanced in the projected 

algorithm. 
 

a. Start. 

b. In the exploration space, the preliminary 

position of the capillary leader is arbitrarily 

initialized by,  

𝑌𝑖,𝑗
0 = 𝑌𝑚𝑖𝑛𝑖𝑚𝑢𝑚 + 𝑟𝑎𝑛𝑑𝑜𝑚 ∙ (𝑌𝑚𝑎𝑥𝑖𝑚𝑢𝑚 −

𝑌𝑚𝑖𝑛𝑖𝑚𝑢𝑚). 

c. For every capillary leader, the Coronary 

development factor (CDF) value is computed 

by, 

𝐶𝐷𝐹𝑖
𝑡 =

1 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖⁄

∑1 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖⁄
, 𝑖 = 1,2, . . , 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛; 

𝐶𝐷𝐹𝑐
𝑡 =

1 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐⁄

∑1 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖⁄
. 

d. Heart memory parameter (HMP) will be 

utilized for storing the most excellent capillary 

leader and its Coronary development factor 

(CDF) value. The stored capillary leader will 

be added to the population, and equivalent to 

that poor (worst) capillary leader will be 

removed. 

e. Then the capability of the exploration has been 
augmented by adding a particular parameter 
“SP” inside the value of (0, 1), and it also 
evades the early convergence (during 
exploration, the beginning value is 0.1, and it 
increased to 0.3 to induce the superior 
exploitation), mainly it will specify about the 
changing the mechanism of the capillary 
leader, and is defined as follows: 

𝑆𝑃 = 𝜔𝑚𝑖𝑛𝑖𝑚𝑢𝑚 +

+ (
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥𝑖𝑚𝑢𝑚
(𝜔𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝜔𝑚𝑖𝑛𝑖𝑚𝑢𝑚)). 

f. Apply the equations below when  

𝑅𝑎𝑛𝑑𝑜𝑚𝑖 < 𝑆𝑃; 
𝑌𝑖,𝑗

𝑡+1 = 𝑌𝑖,𝑗
𝑡 + 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∙

𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑓𝑎𝑐𝑡𝑜𝑟(𝐷𝑓) ∙ (𝑌𝑐,𝑗
𝑡 − 𝑅𝑎𝑛𝑑𝑜𝑚 ∙

𝑌𝑖,𝑗
𝑡 ) , 𝑖 = 1 𝑎𝑛𝑑 𝑁𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 , 𝑗 =

1 𝑎𝑛𝑑 𝑁𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠; 

{
𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = −1 ;   𝑖𝑓 𝐶𝐷𝐹𝑐

𝑡 < 𝐶𝐷𝐹𝑖
𝑡  

𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛        𝑒𝑙𝑠𝑒
  

𝑌𝑐,𝑗 =
∑

𝑌𝑗

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

𝑁 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑖=1

∑
1

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

𝑁 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑖=1

  , 

𝑗 = 1, 2, . . . , 𝑁𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 . 
or else 

𝑌𝑖,𝑗 = 𝑌𝑚𝑖𝑛𝑖𝑚𝑢𝑚,𝑗 + 𝑟𝑎𝑛𝑑𝑜𝑚 ∙ (𝑌𝑚𝑎𝑥𝑖𝑚𝑢𝑚,𝑗 −

−𝑌𝑚𝑖𝑛𝑖𝑚𝑢𝑚,𝑗). 

g. Concerning the objective function values, the 
capillary leader will be modernized and 
classified. 

h. Then the modernization and classification of 
the capillary leader is done by  

𝑌𝑗
𝑡+1 = 𝑌𝑖,𝑗

𝑡  + 𝛼 ∙ 𝑟𝑎𝑛𝑑𝑜𝑚 ∙ (𝑌𝑏𝑒𝑠𝑡,𝑗
𝑡 −

−𝑌𝑤𝑜𝑟𝑠𝑡,𝑗
𝑡 ). 

i. Concerning the objective function values, the 
capillary leader will be modernized and 
classified. 

j. Through the heart memory parameter (HMP), 
the most excellent capillary leader (BCL) will 
be preserved. 

k. The procedure will be stopped once the 
predefined value is reached or else go to step 
“c”  

l. End. 

3 Results and Discussion 

Projected HTO, SCCS algorithms have been tested in 

the standard IEEE 30 bus system [60]. Tables 1–4 

compare values between proposed and reported 

algorithms for the IEEE 30 bus system. Figures 1–3 give 

a graphical comparison between the methodologies 

regarding power loss, voltage stability improvement, 

voltage deviation, and multi-objective problem 

formulation. Real power loss reduction has been 

achieved with voltage stability enhancement with 

minimization of voltage deviation. 
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Table 1 – Comparison of total power loss 

Method Power loss (MW) 

Hybrid PSO-TS [53] 4.5213 

TS [53] 4.6862 

Basic PSO [53] 4.6862 

ALO [54] 4.5900 

QO-TLBO [55] 4.5594 

TLBO [55] 4.5629 

Standard GA [56] 4.9408 

S.PSO [56] 4.9239 

HAS [56] 4.9059 

S-FS [57] 4.5777 

IS-FS [57] 4.5142 

SFS [59] 4.5275 

HTO 4.5080 

SCCS 4.5089 

Table 2 – Comparison of voltage deviation 

Method Voltage deviation (PU) 

BPSO-TVIW [58] 0.1038 

BPSO-TVAC [58] 0.2064 

SPSO-TVAC [58] 0.1354 

BPSO-CF [58] 0.1287 

PG-PSO [58] 0.1202 

SWT-PSO [58] 0.1614 

PGSWT-PSO [58] 0.1539 

MPG-PSO [58] 0.0892 

QO-TLBO [55] 0.0856 

TLBO [55] 0.0913 

S-FS [57] 0.1220 

ISFS [57] 0.0890 

SFS [59] 0.0877 

HTO 0.0869 
SCCS 0.0867 

Table 3 – Comparison of L-Index 

Method L-index (PU) 

BPSO-TVIW [58] 0.1258 

BPSO-TVAC [58] 0.1499 

SPSO-TVAC [58] 0.1271 

BPSO-CF [58] 0.1261 

PG-PSO [58] 0.1264 

SWT-PSO [58] 0.1488 

PGSWT-PSO [58] 0.1394 

MPG-PSO [58] 0.1241 

QO-TLBO [55] 0.1191 

TLBO [55] 0.1180 

ALO [54] 0.1161 

ABC [54] 0.1161 

GWO [54] 0.1242 

BA [54] 0.1252 

S-FS [57] 0.1252 

IS-FS [57] 0.1245 

SFS [59] 0.1007 

HTO 0.1004 
SCCS 0.1003 

 

 

Figure 1 – Comparison of real power loss 

 

Figure 2 – Comparison of voltage deviation 

 

Figure 3 – Comparison of L-index 

 

HTO, SCCS algorithms have been evaluated in 

IEEE 30 bus system without considering L-index [40]. 

In Table 4, comparisons of results are presented. 

Figure 4 gives a graphical comparison between the 

methodologies concerning power loss. Power loss 

reduction has been achieved. Percentage of power loss 

reduction improved concerning the base case. 

Table 4 – Power loss comparison 

Parameters 

Value of  

base case  

[47] 

Modified  

particle  

swarm  

optimization  

[47] 

Basic 

particle  

swarm  

optimization  

[46] 

Standard  

evolutionary  

programming  

[45] 

Self-adaptive  

real coded  

genetic  

algorithm 

[45] 

HTO SCCS 

Percentage of power loss reduction 0.000 8.400 7.400 6.600 8.300 17.94 17.77 

Real power loss, MW 17.550 16.070 16.250 16.380 16.090 14.40 14.43 
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Figure 4 – Comparison of real power loss 

From the above results and comparison, it is evident 

that real power loss has been reduced comparatively. 

Voltage stability enhancement and voltage deviation 

minimization are attained. The percentage of power loss 

reduction has been improved substantially. Overall 

comparison has been made with standard algorithms – 

Differential evolution, Gravitational search algorithm, 

Hybrid Artificial Physics–Particle Swarm Optimization, 

Modified particle swarm optimization, Basic particle 

swarm optimization Hybrid PSO-Tabu search (PSO-

TS), Ant lion (ALO), quasi-oppositional teaching 

learning-based (QOTBO), improved stochastic fractal 

search optimization algorithm (ISFS), harmony search 

(HS) and improved pseudo-gradient search particle 

swarm optimization. The projected Heat Transfer 

Optimization (HTO) algorithm and the Simulated 

Coronary Circulation System (SCCS) optimization 

algorithm reduced the power loss effectively. 

4 Conclusions 

In this paper, the heat transfer optimization (HTO) 

algorithm and simulated coronary circulation system 

(SCCS) optimization algorithm successfully solved the 

problem. In HTO object’s temperature is considered as 

the position is its position, and the heat energy will be 

transferred to objects surrounding it. Then new-fangled 

positions are modernized through new temperature 

conditions. Newton’s law of cooling temperature will be 

updated in the proposed HTO algorithm. Then the 

objects are arranged in increasing order concerning the 

objective function value. Objects are grouped into two 

modes concerning temperature as 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒1 is 

ecological one for another object 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑛

2
+1

 

which is in cooling condition. In the SCCS optimization 

algorithm, few capillaries which form a preliminary 

group is designated as the population. Then the main 

arteries are taken as the variables of the problem. 

Through the Heart memory parameter (HMP) solution 

which violates the boundary will be identified. HMP 

possesses the most excellent capillary leader (BCL) and 

Coronary development (CDF) values. Heart memory 

parameter considering rate (HMPCR) varies between 

0and 1 and will select the new-fangled value from the 

stored values. The capability of the exploration has been 

augmented by adding a particular parameter “SP” inside 

the value of (0, 1), and it also evades the early 

convergence (during exploration, the beginning value is 

0.1, and it increased to 0.3 to induce the superior 

exploitation), mainly it will specify about the changing 

the mechanism of the capillary leader. Proposed HTO, 

SCCS algorithms verified in standard IEEE 30- bus test 

system with L-index. Then algorithms are evaluated in 

the IEEE 30 bus test system devoid of L-index. Power 

loss minimization, voltage deviation minimization, and 

voltage stability enhancement have been attained. 

Nomenclature 

OBF – minimization of the objective function; 

L, M – control and dependent variables of the optimal 

reactive power problem; 

r – consist of control variables; 
(𝑄𝑐)  – reactive power compensators; 

T – dynamic tap setting of transformers; 

(𝑉𝑔) – level of the voltage in the generation units; 

u – consist of dependent variables; 

𝑃𝐺𝑠𝑙𝑎𝑐𝑘  – slack generator; 

𝑉𝐿 – voltage on transmission lines; 

𝑄𝐺  – generation unit’s reactive power; 

𝑆𝐿 – apparent power; 

NTL – number of transmission line indicated by the 

conductance of the transmission line between the 

𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ buses; 

Ø𝑖𝑗  – phase angle between buses i and j; 

𝑉𝐿𝑘 – load voltage in 𝑘𝑡ℎ load bus; 

𝑉𝐿𝑘
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 – voltage desired at the 𝑘𝑡ℎ load bus; 

𝑄𝐺𝐾  – reactive power generated at 𝑘𝑡ℎ load bus 

generators; 

𝑄𝐾𝐺
𝐿𝑖𝑚 – reactive power limitation; 

𝑁𝐿𝐵, 𝑁𝑔 – number load and generating units; 

Tt – transformer tap; 

Gen volt – generator voltage; 

DE – differential evolution; 

GSA – gravitational search algorithm; 

APOPSO – Adapted Particle Swarm Optimization; 

MPSO – Modified Particle Swarm Optimization; 

PSO – Particle Swarm Optimization; 

EP – evolutionary programming; 

SARGA – self-adaptive real coded genetic algorithm. 
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