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Abstract: We construct the first example of a 5-dimensional simply connected com-
pact manifold that admits a K-contact structure but does not admit any semi-regular

Sasakian structure. For this, we need two ingredients: (a) to construct a suitable sim-

ply connected symplectic 4-manifold with disjoint symplectic surfaces spanning the
homology, all of them of genus 1 except for one of genus g > 1; (b) to prove a bound

on the second Betti number b2 of an algebraic surface with b1 = 0 and having dis-

joint complex curves spanning the homology, all of them of genus 1 except for one of
genus g > 1.
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1. Introduction

In geometry, it is a central question to determine when a given mani-
fold admits an specific geometric structure. Complex geometry provides
numerous examples of compact manifolds with rich topology, and there
is a number of topological properties that have to be satisfied by com-
plex manifolds. For instance, compact Kähler manifolds satisfy strong
topological properties like the hard Lefschetz property, the formality
of its rational homotopy type [10], or restrictions on the fundamental
group [1]. A natural approach is to weaken the given structure and to
ask to what extent a manifold having the weaker structure may admit
the stronger one. In the case of Kähler manifolds, if we forget about the
integrability of the complex structure, then we are dealing with sym-
plectic manifolds. There has been enormous interest in the construction
of (compact) symplectic manifolds that do not admit Kähler structures
and in determining its topological properties [29]. In dimension 4, when
we deal with complex surfaces, we have the Enriques–Kodaira classifica-
tion [4] that helps in the understanding of this question.
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In odd dimension, Sasakian and K-contact manifolds are analogues of
Kähler and symplectic manifolds, respectively. Sasakian geometry has
become an important and active subject, especially after the appearance
of the fundamental treatise of Boyer and Galicki [6]. Chapter 7 of this
book contains an extended discussion of topological problems of Sasakian
and K-contact manifolds.

The precise definition of the structures that we are dealing with in this
paper is as follows. Let M be a smooth manifold. A K-contact structure
on M consists of tensors (η, J) such that η is a contact form η ∈ Ω1(M),
i.e. η ∧ (dη)n > 0 everywhere, and J is an endomorphism of TM such
that:

• J2 = − Id +ξ ⊗ η, where ξ is the Reeb vector field of η, iξη = 1,
iξ(dη) = 0,
• dη(JX, JY )=dη(X,Y ) for all vector fields X, Y and dη(JX,X) >

0 for all nonzero X ∈ ker η, and
• the Reeb field ξ is Killing with respect to the Riemannian met-

ric g(X,Y ) = dη(JX, Y ) + η(X)η(Y ).

We may denote (η, J) or (η, J, g, ξ) a K-contact structure on M , since g
and ξ are in fact determined by η and J . Note that the endomorphism J
defines a complex structure on D = ker η compatible with dη, hence J is
orthogonal with respect to the metric g|D. By definition, the Reeb vector
field ξ is orthogonal to D. Finally, a K-contact manifold is (M,η, J, g, ξ),
a manifold M endowed with a K-contact structure. For a K-contact
manifold M , the condition that the Reeb vector field be Killing with
respect to the metric g is very rigid and it imposes strong constraints on
the topology. In particular, it is not difficult to find manifolds that admit
contact but do not admit K-contact structures in any odd dimension, for
instance the odd dimensional tori; see [6, Corollary 7.4.2]. For simply-
connected 5-manifolds (i.e. Smale–Barden manifolds), one can also find
infinitely many of them admitting contact but not K-contact structures;
see [6, Theorem 10.2.9 and Corollary 10.2.11].

Just as for almost complex structures, there is the notion of inte-
grability of a K-contact structure. More precisely, a K-contact struc-
ture (η, J, g, ξ) is called normal if the Nijenhuis tensor NJ associated to
the tensor field J , defined by

NJ(X,Y ) = J2[X,Y ] + [JX, JY ]− J [JX, Y ]− J [X, JY ],

satisfies the equation NJ = −dη⊗ξ. A Sasakian structure on M is a nor-
mal K-contact structure (η, J, g, ξ) and we call (M,η, J, g, ξ) a Sasakian
manifold.
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Let (M,η, J, g, ξ) be a K-contact manifold. Consider the cone as the
Riemannian manifold C(M) = (M×R+, t

2g+dt2). One defines an almost
complex structure I on C(M) by:

• I(X) = J(X) on ker η, and
• I(ξ) = t ∂∂t , I

(
t ∂∂t
)

= −ξ, for the Reeb vector field ξ of η.

Then (M,η, J, g, ξ) is Sasakian if and only if I is integrable, that is, if
(C(M), I, t2g + dt2) is a Kähler manifold; see [6, Definition 6.5.15].

Slightly abusing notation, if we are given a smooth manifold M with
no specified contact structure, we will say thatM is K-contact (Sasakian)
if it admits some K-contact (Sasakian) structure. In this paper we will
mainly be concerned with geography questions, i.e. which smooth man-
ifolds admit K-contact or Sasakian structures.

In dimension 3, every K-contact manifold admits a Sasakian struc-
ture [17]. For dimension greater than 3, there is much interest on con-
structing K-contact manifolds which do not admit Sasakian structures.
The odd Betti numbers up to degree n of Sasakian (2n + 1)-manifolds
must be even. The parity of b1 was used to produce the first examples
of K-contact manifolds with no Sasakian structure [6, Example 7.4.16].
In the case of even Betti numbers, more refined tools are needed to dis-
tinguish K-contact from Sasakian manifolds. The cohomology algebra
of a Sasakian manifold satisfies a hard Lefschetz property [9]. Using it
examples of K-contact non-Sasakian manifolds are produced in [8] in
dimensions 5 and 7. These examples are nilmanifolds with even Betti
numbers, so in particular they are not simply connected.

When one moves to simply connected manifolds, K-contact non-
Sasakian examples of any dimension ≥ 9 were constructed in [16] us-
ing the evenness of b3 of a compact Sasakian manifold. Alternatively,
using the hard Lefschetz property for Sasakian manifolds there are ex-
amples [20] of simply connected K-contact non-Sasakian manifolds of
any dimension ≥ 9. In [5, 28] the rational homotopy type of Sasakian
manifolds is studied. All higher order Massey products for simply con-
nected Sasakian manifolds vanish, although there are Sasakian manifolds
with non-vanishing triple Massey products [5]. This yields examples of
simply connected K-contact non-Sasakian manifolds in dimensions ≥ 17.
However, Massey products are not suitable for the analysis of lower di-
mensional manifolds.

The problem of the existence of simply connected K-contact non-
Sasakian compact manifolds (Open Problem 7.4.1 in [6]) is still open
in dimension 5. It was solved for dimensions ≥ 9 in [9, 8, 16] and
for dimension 7 in [22] by a combination of various techniques based
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on the homotopy theory and symplectic geometry. In the least possible
dimension the problem appears to be much more difficult. A simply
connected compact oriented 5-manifold is called a Smale–Barden man-
ifold. These manifolds are classified topologically by H2(M,Z) and the
second Stiefel–Whitney class; see [3, 26] for the classification by Smale
and Barden. Chapter 10 of the book [6] by Boyer and Galicki is devoted
to a description of some Smale–Barden manifolds which carry Sasakian
structures. The following problem is still open [6, Open Problem 10.2.1].

Do there exist Smale–Barden manifolds which carry K-contact but do
not carry Sasakian structures?

In the pioneering work [21] a first step towards a positive answer to
the question is taken. A homology Smale–Barden manifold is a compact
5-dimensional manifold with H1(M,Z) = 0. A Sasakian structure is
regular if the leaves of the Reeb flow are a foliation by circles with
the structure of a circle bundle over a smooth manifold. The Sasakian
structure is quasi-regular if the foliation is a Seifert circle bundle over
a (cyclic) orbifold, and it is semi-regular if the base orbifold has only
locus of non-trivial isotropy of codimension 2, i.e. its underlying space
is a topological manifold. Recall that the isotropy locus of an orbifold is
the subset of points with non-trivial isotropy group. It is a remarkable
result, although not difficult to prove, that any manifold admitting a
Sasakian structure has also a quasi-regular Sasakian structure (in any
odd dimension). Therefore, a Sasakian manifold is a Seifert bundle over
a cyclic Kähler orbifold [21].

Correspondingly, for K-contact manifolds we also define regular, quasi-
regular, and semi-regular K-contact structures with the same condi-
tions. Any K-contact manifold admits a quasi-regular K-contact struc-
ture by [6, Theorem 7.1.10] and [25]. Hence, a K-contact manifold is
a Seifert bundle over a cyclic symplectic orbifold. Such orbifold has
a isotropy locus which is a (stratified) collection of symplectic sub-
orbifolds. The K-contact structure is semi-regular if the symplectic orb-
ifold has isotropy locus of codimension 2. The main result of [21] is:

Theorem 1 ([21]). There exists a homology Smale–Barden manifold
which admits a semi-regular K-contact structure but which does not carry
any semi-regular Sasakian structure.

The construction of [21] relies upon subtle obstructions to admit
Sasakian structures in dimension 5 found by Kollár [18]. If a 5-dimen-
sional manifold M has a Sasakian structure, then it is a Seifert bundle
over a Kähler orbifold X with isotropy locus a collection of complex
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curves Di with isotropy (multiplicity) mi. We have the following topo-
logical characterization of the homology of M in terms of that of X.

Theorem 2 ([21, Theorem 16]). Suppose that π : M → X is a semi-
regular Seifert bundle with isotropy surfaces Di with multiplicities mi.
Then H1(M,Z) = 0 if and only if

(1) H1(X,Z) = 0,
(2) the map H2(X,Z) → ⊕iH2(Di,Z/mi) induced by the inclusions

Di ⊂ X, is surjective, and
(3) the Chern class c1(M/e

2πi/µ)∈H2(X,Z) of the circle bundle M/e2πi/µ

is a primitive element, where µ is the lcm of all mi.

Moreover, H2(M,Z)=Zk⊕
⊕

(Z/mi)
2gi , gi =genus of Di, k+1 = b2(X).

Recall that an element x of a Z-module is called primitive if it is not
of the form x = ny for some integer n > 1.

Corollary 3 ([21, Corollary 18]). Suppose that M is a 5-manifold with

H1(M,Z) = 0 and H2(M,Z) = Zk ⊕
⊕k+1

i=1 (Z/pi)2gi , k ≥ 0, p a prime,
and gi ≥ 1. If M→X is a semi-regular Seifert bundle, then H1(X,Z)=0,
H2(X,Z)=Zk+1, and the ramification locus has k+1 disjoint surfaces Di

linearly independent in rational homology, and of genus g(Di)=gi.

In [21, Theorem 23] the authors construct a symplectic 4-dimensional
orbifold with disjoint symplectic surfaces spanning the second homology.
This is the first example of such phenomenon and has b2 = 36. The gen-
era of the isotropy surfaces satisfy 1 ≤ gi ≤ 3, with several of them
having genus 3. Using this symplectic orbifold X, we obtain a semi-reg-
ular K-contact 5-manifold M with

(1) H1(M,Z) = 0, H2(M,Z) = Z35 ⊕
36⊕
i=1

(Z/pi)2gi .

For understanding the Sasakian side, the following result is proved
in [21]:

Theorem 4 ([21, Theorem 32]). Let S be a smooth Kähler surface with
H1(S,Q) = 0 and containing D1, . . . , Db, b = b2(S), smooth disjoint
complex curves with g(Di) = gi > 0, and spanning H2(S,Q). Assume
that:

(1) at least two gi are > 1, and
(2) 1 ≤ gi ≤ 3.

Then b ≤ 2 max{gi}+ 3.
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As a corollary [21, Proposition 31], there is no Sasakian semi-regular
5-dimensional manifold with homology given by (1). So M is K-contact,
but does not admit any semi-regular Sasakian structure, proving Theo-
rem 1.

Theorem 4 is a result in accordance with the following conjecture
from [21]:

Conjecture 5. There does not exist a Kähler manifold or a Kähler
orbifold X with b1 = 0 and with b2 ≥ 2 having disjoint complex curves
spanning H2(X,Q), all of genus g ≥ 1.

The present work enhances the main result from [21] given in Theo-
rem 1, to achieve a 5-manifold that it is furthermore simply connected.
Our main result is the following:

Theorem 6. There exists a (simply connected) Smale–Barden manifold
which admits a semi-regular K-contact structure but which does not carry
any semi-regular Sasakian structure.

On the one hand, we provide a new construction of a symplectic 4-
manifold X with b1 = 0 and b2 = b > 1, having a collection of dis-
joint symplectic surfaces C1, . . . , Cb spanning H2(X,Q), and all with
genus gi ≥ 1. This is based on the following phenomenon which can
be performed in the symplectic setting but not in the algebro-geometric
situation.

Start with the complex projective plane CP 2 and two generic (smooth)
complex cubic curves C1, C2. Note C1 and C2 have genus 1 by the genus-
degree formula, and they intersect in nine points P1, . . . , P9. A third
complex cubic curve passing through P1, . . . , P8 has to go necessarily
through P9. This is a purely algebraic phenomenon. However, it is pos-
sible to construct a third symplectic cubic C3 going through P1, . . . , P8,
but intersecting C1 at another point P10, and C2 at a different point P11.
Note that each Ci misses exactly one of the eleven points P1, . . . , P11.
Looking at this more symmetrically, we aim to have a collection of eleven
points ∆ = {P1, . . . , P11} and eleven cubic complex curves C1, . . . , C11

such that Ci passes through the points of ∆ − {Pi}, i = 1, . . . , 11. In
this way, the intersections are Ci ∩ Cj = ∆ − {Pi, Pj} and no more
points. Blowing up at all points of ∆, we get the (symplectic) 4-mani-
fold X = CP 2#11CP 2, with eleven disjoint complex curves of genus 1.
An extra (complex) curve can be obtained by taking a singular complex
curve G of degree 10 with ordinary triple points at the points of ∆. Note
that G has genus 3 by the Plücker formulas. Moreover, as G · Ci = 30
equals the geometric intersection, that is, three times for each of the ten
triple points in G∩Ci = ∆−{Pi}, we would not have more intersections.
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This curve is of genus gG = 3 and it becomes a smooth genus 3 curve
in the blow-up, that is disjoint from the others. This heuristic argument
has to be carried out in a slightly different guise, by making a symplectic
construction in a tubular neighbourhood of a cubic curve and a complex
line and gluing it in symplectically (see Section 2).

Theorem 7. Let P1, . . . , P11 be eleven points in CP 2. Then there exist
symplectic surfaces

C1, C2, . . . , C11, G ⊂ CP 2

such that:

(1) Ci is a genus 1 smooth surface and Pj ∈ Ci for j 6= i, Pi /∈ Ci.
(2) The surfaces Ci, Cj, i 6= j, intersect exactly at {P1, . . . , P11} −
{Pi, Pj}, positively and transversely.

(3) G is a genus 3 singular symplectic surface whose only singularities
are eleven triple points at Pi (with different branches intersecting
positively). Moreover G intersects each Ci only at the points Pj,
j 6= i, and all the intersections of Ci with the branches of G are
positive and transverse.

Using this, we construct our K-contact 5-manifold. First we blow
up CP 2 at the eleven points P1, . . . , P11, to obtain a symplectic mani-
fold, which topologically is X = CP 2#11CP 2. The proper transforms
of C1, . . . , C11, G are symplectic surfaces in X, via the method in [21,
Section 5.2]. The proper transform of G becomes a smooth genus 3
symplectic surface. Therefore b2(X) = 12 and it has twelve disjoint sym-
plectic surfaces, eleven of them of genus gi = 1 and one of genus g12 = 3.
Take numbers mi. Using [21, Proposition 7], we make X into an orb-
ifold X ′ whose isotropy locus is Ci with multiplicity mi and G with
multiplicity m12. Then we can take a Seifert bundle M → X ′ with prim-
itive Chern class c1(M/e2πi/µ) = [ω] after a small perturbation of the
symplectic form, as in [21, Lemma 20]. The manifold M is K-contact
and has

(2) H1(M,Z) = 0, H2(M,Z) = Z11 ⊕
12⊕
i=1

(Z/mi)
2gi .

We choose a prime p and mi = pi, so that all mi are distinct and pairwise
non-coprime.

Given a Seifert bundle M → X ′, the fundamental group of M is
directly related to the orbifold fundamental group of X ′ by the long
exact sequence

· · · −→ π1(S1) = Z −→ π1(M) −→ πorb
1 (X ′) −→ 1.
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When πorb
1 (X ′) = 1, we have that π1(M) is abelian, and hence if

H1(M,Z) = 0, then M is simply connected. We prove the following
in Section 4.

Theorem 8. For the orbifold X ′ constructed above, πorb
1 (X ′) = 1.

Hence M is a Smale–Barden manifold.

On the other hand, we have to prove that M cannot admit a semi-
regular Sasakian structure. If this were the case, then there would be a
Seifert bundle M → Y , where Y is a Kähler orbifold. By [21, Propo-
sition 10], this orbifold Y is a complex manifold, and as the Sasakian
structure is semi-regular, Y is smooth. As the homology of M is given
by (2), then Corollary 3 guarantees that Y has b1 = 0, b2 = 12, and
contains twelve disjoint smooth complex curves C ′1, . . . , C

′
11, G

′, where
g(C ′i) = 1 and g(G′) = 3. We prove the corresponding instance of Con-
jecture 5. Note that this is not covered by Theorem 4.

Theorem 9. Let S be a smooth complex surface with H1(S,Q) = 0 and
containing D1, . . . , Db, b = b2(S), smooth disjoint complex curves with
genus g(Di) = gi > 0, and spanning H2(S,Q). Assume that gi = 1, for
1 ≤ i ≤ b− 1. Then b ≤ 2g2b − 4gb + 3.

In particular, the case b2 = 12, gi = 1, for 1 ≤ i ≤ 11 and g12 = 3,
cannot happen.

Corollary 10. Let M be a 5-dimensional manifold with H1(M,Z) = 0
and

H2(M,Z) = Z11 ⊕
12⊕
i=1

(Z/pi)2gi ,

where gi = 1 for 1 ≤ i ≤ 11, g12 = 3, and p is a prime number. Then
M does not admit a semi-regular Sasakian structure.

This proves Theorem 6. It remains to see Theorems 7, 8, and 9. We
prove Theorem 7 in Section 3, Theorem 8 in Section 4, and Theorem 9
in Section 5.

The manifold M in Corollary 10 is spin if p = 2, and can be chosen
to be spin or non-spin if p > 2.

Both here and in [21] we have provided the first examples of sym-
plectic 4-manifolds containing symplectic surfaces of positive genus and
spanning the homology. Whereas the example of [21] is a symplectic
4-manifold that does not admit a complex structure (see Remark 32),
the manifold constructed here, X = CP 2#11CP 2 does admit a Kähler
structure. So X is symplectic deformation equivalent to a Kähler mani-
fold, but the twelve symplectic surfaces inside it cannot be deformed to
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2. Symplectic plumbing

The specific aim of this section is to give suitable local models for a
small neighborhood of a union of two positively intersecting symplectic
surfaces inside a 4-manifold. See references [12, 13] for related content.

2.1. Definition of symplectic plumbing. Let (S, ω) be a compact
symplectic surface and π : E → S be a complex line bundle. Topologi-
cally, E is determined by the Chern class d = c1(E) which is the self-
intersection of S inside E, d = [S]2. We put a hermitian structure in E,
so we can define a neighbourhood via a disc bundle of some fixed ra-
dius c > 0, denoted by Bc(S) ⊂ E. We construct a symplectic form
on Bc(S) next. First, we write V ′ b V if V ′ is an open subset such that
its closure V ′ ⊂ V .

Lemma 11. For small enough c > 0, Bc(S) admits a symplectic form ωE
which is compatible with the complex structure of the fibers of the complex
line bundle, and such that the inclusion (S, ω) ↪→ (Bc(S), ωE) is sym-
plectic. If V ⊂ S is a trivializing open set, E|V ∼= V × C, and V ′ b V ,
we can arrange that ωE |Bc(S)∩E|V ′ is the symplectic product structure on
Bc(S) ∩ E|V ′ ∼= V ′ ×Bc(0), with Bc(0) ⊂ C a ball centered at 0.

Proof: Take S =
⋃
α Uα a cover of S, with each Uα symplectomorphic

to a ball, and trivializations E|Uα ∼= Uα × C. In the fiber C we put
coordinates u + iv and consider the standard symplectic form ω0 =
du ∧ dv = d(udv) = dη. Denote $α : Uα × C → C the projection over
the second factor, and take ρα a smooth partition of unity subordinated
to the cover Uα of S. Define

ωE = π∗ωS +
∑
α

d((π∗ρα) · ($∗αη)).

For x ∈ S, we have ωE |Ex =
∑
α ρα(x)ω0 = ω0, using that the changes of

trivializations preserve ω0. Then using the decomposition TxE = TxS ⊕
Ex, we have that (ωE)2(x) = ωS(x)∧ω0 > 0. Therefore ωE is symplectic



624 A. Cañas, V. Muñoz, J. Rojo, A. Viruel

on the zero section S ⊂ E. Since this is an open condition, it holds in
some neighborhood Bc(S) of the zero section.

For the last part, just take an open cover Uα of S−V ′ together with V
in the construction above.

The submanifold S ⊂ E and any fiber Ex ⊂ E are symplectic, and
they are symplectically orthogonal.

Now we move to the definition of plumbing as a symplectic neighbour-
hood of the union of two intersecting symplectic surfaces S1, S2. Take
points P1, . . . , Pm ∈ S1 and Q1, . . . , Qm ∈ S2. We define

S = S1 t S2/Pi ∼ Qi, i = 1, . . . ,m,

and we can write S = S1 ∪ S2. Let now E1 → S1 and E2 → S2 be
two complex line bundles, where di = c1(Ei) is the self-intersection of Si
inside Ei, di = S2

i . Take hermitian metrics on the line bundles, so that
Bc(S1) ⊂ E1 and Bc(S2) ⊂ E2 are symplectic manifolds for c > 0 by
using Lemma 11.

For each i = 1, . . . ,m, take small neighbourhoods B(Pi) ⊂ S1, sym-
plectomorphic to the ball Bc(0) via f1i : B(Pi)→ Bc(0). Take a trivial-

ization ϕ1i : E1|B(Pi)

∼=−→ B(Pi)× C. Therefore we have

(3) (f1i × Id) ◦ ϕ1i : Bc(S1) ∩ E1|B(Pi)

∼=−→ Bc(0)×Bc(0).

Using Lemma 11, we endow E1 with a 2-form ωE1 such that (Bc(S1), ωE1)
is symplectic and the symplectic form is a product on Bc(S1)∩E1|B(Pi).
This means that (3) is a symplectomorphism. We do the same for Qi ∈
S2, obtaining a symplectomorphism f2i : B(Qi)→ Bc(0), a trivialization

ϕ2i : E2|B(Qi)

∼=−→ B(Qi) × C, a symplectic form ωE2
on Bc(S2), and a

symplectomorphism

(f2i × Id) ◦ ϕ2i : Bc(S2) ∩ E2|B(Qi)

∼=−→ Bc(0)×Bc(0).

Let R : Bc(0) × Bc(0) → Bc(0) × Bc(0), R(z1, z2) = (z2, z1), be the
map reversal of coordinates, which is a symplectomorphism swapping
horizontal and vertical directions. Then we take the gluing map

Φi = ((f2i × Id) ◦ ϕ2i)
−1 ◦R ◦ ((f1i × Id) ◦ ϕ1i) :

Bc(S1) ∩ E1|B(Pi) → Bc(S2) ∩ E2|B(Qi).

Definition 12. We define the symplectic plumbing Pc(S1 ∪ S2) of S =
S1 ∪ S2 as the symplectic manifold

X=(Bc(S1)tBc(S2))/x ∼ Φi(x), x ∈ Bc(S1)∩E1|B(Pi), i=1, . . . ,m.

Note that S1∪S2 ⊂ Pc(S1∪S2) are symplectic submanifolds and they
intersect transversely.
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2.2. Symplectic tubular neighbourhood. We need a symplectic
tubular neighbourhood theorem for two intersecting surfaces S1 ∪ S2.
We start with the case of a single submanifold. We include the proof
since our result is a minor modification of the one appearing in the lit-
erature.

Proposition 13 (Symplectic tubular neighborhood). Suppose that (X,ω)
and (X ′, ω′) are two symplectic 4-manifolds (maybe open) with compact
symplectic surfaces S ⊂ X and S′ ⊂ X ′. Suppose that S and S′ are
symplectomorphic as symplectic manifolds via f : S → S′, and assume
also that their normal bundles are smoothly isomorphic.

Let V , V ′ be tubular neigbourhoods of S and S′ with projections
π : V → S, π′ : V ′ → S′, and let g : V → V ′ be a diffeomorphism of tubu-
lar neighbourhoods of S and S′ with g|S = f . Let W ⊂ S, W ′ ⊂ S′ be
such that g|π−1(W ) : π−1(W )→ π′−1(W ′) is a symplectomorphism. Sup-

pose that H1(W ) = 0, and let Ŵ b W . Then there are tubular neigh-
borhoods S ⊂ U ⊂ X and S′ ⊂ U ′ ⊂ X ′ which are symplectomorphic
via ϕ : U → U ′, where ϕ|S = f and ϕ|U∩π−1(Ŵ ) = g.

Proof: This is an extension of the symplectic tubular neighbourhood
theorem [7], which is the case where W is empty. Let g : V → V ′ be
the diffeomorphism of tubular neighbourhoods where g|S = f . We start
by isotopying g so that dxg : TxX → Tg(x)X

′ is a linear symplectic map

for all x ∈ S. We do this without modifying g on π−1(Ŵ ), since g is
symplectic there. Then the symplectic orthogonal to TxS ⊂ TxV is sent
to the symplectic orthogonal to Tf(x)S

′ ⊂ Tf(x)V ′.
We take ω0 = ω and ω1 = g∗ω′ and note that i∗(ω1 − ω0) = 0,

where i : S → V is the inclusion map. As i∗ : H2(V ) → H2(S) is an
isomorphism, we have that [ω1−ω0] = 0, hence there exists a 1-form µ ∈
Ω1(V ) such that dµ = ω1 − ω0. We can suppose that i∗µ = 0, since
otherwise we would consider the form µ− π∗i∗µ.

Take an open set W̃ such that Ŵ b W̃ b W . We can also suppose
that µ|π−1(W̃ ) = 0. As ω1−ω0 = 0 on π−1(W ), dµ = 0 on π−1(W ), and

hence µ = df for some function f ∈ C∞(π−1(W )), since we are assuming
that H1(W ) = 0. As i∗µ = 0 we can change f by f − π∗i∗f , so that
df = µ and i∗f = 0. Let ρ be a step function on S such that ρ|W̃ ≡ 1
and ρ ≡ 0 outside W . Then we can substitute µ by µ− d((π∗ρ)f).

We can also suppose that the restriction µ|S = 0. In local coordinates
(x1, x2, y1, y2) where S = {(x1, x2, 0, 0)}, we have µ =

∑
aj(x1, x2) dyj+

O(y). We cover S with balls Bα and then (µ|S)|Bα =
∑
aαj dy

α
j . The

balls are chosen so that they are inside S − Ŵ or inside W̃ . Take a
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partition of unity {ρα} subordinated to it. We define kα =
∑
aαj y

α
j and

k =
∑
ραkα. For those Bα ⊂ W̃ , we can take kα = 0. Then dk|S = µ|S ,

and we can substitute µ by µ− dk. Note that k = 0 on π−1(Ŵ ), so we
keep µ|π−1(Ŵ ) = 0.

Now consider the form ωt = tω1 + (1− t)ω0 = ω0 + t dµ for 0 ≤ t ≤ 1.
Since dxg is a symplectomorphism for all x ∈ S, we have ω1|S = ω0|S
and hence ωt|S = ω0|S is symplectic over all points of S. So, reducing
V if necessary, ωt is symplectic on some neighborhood V of S. The
equation ιXtωt = −µ admits a unique solution Xt which is a vector field
on V . By the above, Xt|S = 0 and Xt|Ŵ = 0. Take the flow ϕt of the
family of vector fields Xt. There is some U ⊂ V such that ϕt(U) ⊂ V
for all t ∈ [0, 1]. Moreover ϕ0 = IdU , ϕt|S = IdS , and ϕt|Ŵ = IdŴ . We
compute

d

dt

∣∣∣
t=s

ϕ∗tωt = ϕ∗s(LXsωs) + ϕ∗s(dµ) = ϕ∗s(d(ιXsωs) + ιXsdωs) + ϕ∗s dµ

= −ϕ∗s(dµ) + ϕ∗s(dµ) = 0.

This implies that ω0 = ϕ∗0ω0 = ϕ∗1ω1. So ϕ1 : (U, ω) → (V, g∗ω′) is a
symplectomorphism. The composition ϕ = g ◦ϕ1 : (U, ω)→ (V ′, ω′) is a
symplectomorphism of U onto U ′ = ϕ(U) ⊂ V ′.

2.3. Symplectic tubular neighbourhood of two intersecting sub-
manifolds. Now we move to the case of the union of two intersecting
symplectic submanifolds.

Definition 14. Let (X,ω) be a symplectic 4-manifold. We say that two
symplectic surfaces S1, S2 ⊂ X intersect ω-orthogonally if for every φ ∈
S1∩S2 there are (complex) Darboux coordinates (z1, z2) such that S1 =
{z2 = 0} and S2 = {z1 = 0} around p.

By definition, S1 and S2 intersect ω-orthogonally in the symplectic
plumbing Pc(S1 ∪ S2).

Lemma 15 ([21, Lemma 6]). Let (X,ω) be a symplectic 4-manifold and
suppose that S1, S2 ⊂ X are symplectic surfaces intersecting transversely
and positively. Then we can perturb S1 to get another surface S′1 in such
a way that:

(1) The perturbed surface S′1 is symplectic.
(2) The perturbation is small in the C0-sense and only changes S1

near the intersection points with S2, leaving these points fixed, i.e.
S1 ∩ S2 = S′1 ∩ S2.

(3) S′1 and S2 intersect ω-orthogonally.
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Let S = S1 ∪ S2 ⊂ X be a union of two intersecting symplectic
submanifolds of a symplectic manifold X. We use the expression tubular
neighborhood of S to refer to a small neighborhood U of S in X such
that S is a deformation retract of U .

Theorem 16 (Symplectic tubular neighborhood). Suppose that (X,ω)
and (X ′, ω′) are two symplectic 4-manifolds (maybe open) with compact
symplectic surfaces S1, S2 ⊂ X and S′1, S

′
2 ⊂ X ′. Assume that S1 and

S2 intersect symplectically orthogonally, and similarly for S′1 and S′2.
Suppose that there is a map f : S = S1 ∪ S2 → S′ = S′1 ∪ S′2 which is
a symplectomorphism f : S1 → S′1 and a symplectomorphism f : S2 →
S′2. Assume also that the normal bundles satisfy νS1

∼= νS′1 and νS2
∼=

νS′2 . Then, there are tubular neighborhoods S ⊂ U ⊂ X and S′ ⊂ U ′ ⊂
X ′ which are symplectomorphic via ϕ : U → U ′, with ϕ|S = f .

Proof: Take a point Pi ∈ S1∩S2. Let ϕi : Bi → Bε(0) ⊂ C2 be Darboux
coordinates so that S1 = {z2 = 0} and S2 = {z1 = 0}, ϕi(Pi) = 0. For
f(Pi) ∈ S′1 ∩S′2 we also take ϕ′i : B

′
i → Bε(0) ⊂ C2 Darboux coordinates

so that S′1 = {z′2 = 0} and S′2 = {z′1 = 0}, ϕ′i(f(Pi)) = 0. The composite
(ϕ′i)

−1 ◦ ϕi : Bi → B′i may not coincide with f on Bi ∩ (S1 ∪ S2). To
arrange this, take

h1 = ϕ′i ◦ (f |Bi∩S1
) ◦ ϕ−1i : Bε′(0)× {0} −→ Bε(0)× {0},

h2 = ϕ′i ◦ (f |Bi∩S2) ◦ ϕ−1i : {0} ×Bε′(0) −→ {0} ×Bε(0),

which are symplectomorphisms onto their image. Then h = h1 × h2 is a
symplectomorphism of C2 on a neighbourhood of the origin. So consider
the symplectomorphism

ψi = (ϕ′i)
−1 ◦ h ◦ ϕi : Wi −→W ′i

defined on a neighbourhood Wi ⊂ Bi. It satisfies

ψi|Bi∩(S1∪S2) = f |Bi∩(S1∪S2).

Fix also Ŵi b Wi, and denote W =
⋃
Wi, Ŵ =

⋃
Ŵi, W

′
i = ψi(Wi),

W ′ =
⋃
W ′i , Ŵ

′
i = ψi(Ŵi), Ŵ

′ =
⋃
Ŵ ′i , and ψ : W → W ′ the map

which is ψi on each Wi.
Now take small tubular neighbourhoods U1, U2 of S1, S2 respectively.

Then U1 ∩ U2 is a neighbourhood of the intersection S1 ∩ S2 and can
be made as small as we want. We require that U1 ∩ U2 ⊂ Ŵ . We also
take neighbourhoods U ′1, U ′2 of S′1, S′2 respectively such that U ′1 ∩ U ′2 ⊂
Ŵ ′. We can define diffeomorphisms gj : Uj → U ′j with gj |Sj = f |Sj
and gj |W̃∩Uj = ψ|W̃∩Uj for some Ŵ b W̃ b W , for j = 1, 2. Apply

Proposition 13 to gj , to obtain symplectomorphisms ϕj : Vj → V ′j , where
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Sj ⊂ Vj ⊂ Uj and S′j ⊂ V ′j ⊂ U ′j , such that ϕj |Sj = f |Sj and ϕj |Ŵ∩Vj =

ψ|Ŵ∩Vj . As V1 ∩V2 ⊂ U1 ∩U2 ⊂ Ŵ , we have that ϕ1, ϕ2 coincide in the

overlap region, defining thus a symplectomorphism

ϕ : V1 ∪ V2 −→ V ′1 ∪ V ′2
with ϕ|S = f |S .

Corollary 17. Let (X,ω) be a symplectic 4-manifold and S1, S2 ⊂ X
two compact symplectic surfaces intersecting symplectically orthogonally.
Then there is a neighbourhood U of S = S1 ∪S2 which is symplectomor-
phic to a symplectic plumbing Pc(S).

Proof: Let ij : Sj ↪→ S be the inclusion map, and denote {P1, . . . , Pm} =

i−11 (S1∩S2) ⊂ S1 and {Q1, . . . , Qm} = i−12 (S1∩S2) ⊂ S2. Take complex
line bundles Ej → Sj with c1(Ej) = dj = [Sj ]

2, and define a symplectic
plumbing Pc(S1∪S2) with these data. Now apply Theorem 16 to S ⊂ X
and S ⊂ Pc(S).

Corollary 18. Let (S1, ω1), (S2, ω2) and (S′1, ω
′
1), (S′2, ω

′
2) be compact

symplectic surfaces. Consider a symplectic plumbing Pc(S1 ∪ S2) with
#S1∩S2 = m and dj = [Sj ]

2, j = 1, 2, and another symplectic plumbing
Pc(S

′
1 ∪ S′2) with #S′1 ∩ S′2 = m′ and d′j = [S′j ]

2, j = 1, 2. If m = m′,
〈[ωj ], [Sj ]〉 = 〈[ω′j ], [S′j ]〉, and dj = d′j, j = 1, 2, then there are neighbour-
hoods S1 ∪ S2 ⊂ U ⊂ Pc(S1 ∪ S2) and S′1 ∪ S′2 ⊂ U ′ ⊂ Pc(S′1 ∪ S′2) which
are symplectomorphic.

Proof: Note that two compact surfaces Σ, Σ′ are symplectomorphic if
and only if they have the same area 〈[ω], [Σ]〉 = 〈[ω′], [Σ′]〉. Moreover the
symplectomorphism can be chosen so that it sends some finite collection
of m points of Σ to another collection of m points of Σ′. Applying this
to Sj , S

′
j , we get a symplectomorphism fj : Sj → S′j with fj |S1∩S2

: S1 ∩
S2 → S′1 ∩ S′2 sending the intersection points in the required order,
j = 1, 2. Therefore f1|S1∩S2

= f2|S1∩S2
, thus defining a map f : S1∪S2 →

S′1∪S′2. As the intersections are symplectically orthogonal, we can apply
Theorem 16 to get the stated result.

This gives uniqueness of symplectic plumbings. In particular, they do
not depend on the choices of symplectomorphisms of the surfaces, or the
choice of Darboux coordinates at the intersection points.

Remark 19. Theorem 16 holds for a symplectic manifold X of any di-
mension and symplectic submanifolds S1, S2 ⊂ X of complementary
dimension intersecting symplectically orthogonally.

The plumbing can be defined for symplectic manifolds S1, S2 of any
dimension 2n, and Pc(S1 ∪ S2) will have dimension 4n.
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3. A configuration of symplectic surfaces in CP 2#11CP 2

3.1. Homology of CP 2#11CP 2
. Let X = CP 2#11CP 2

be the sym-
plectic manifold obtained by blowing up the projective plane CP 2 at
eleven points ∆ = {P1, . . . , P11}. We call h ∈ H2(X) the homology class
of the line, and ei, 1 ≤ i ≤ 11, the homology classes of the exceptional
divisors, so that H2(X) = 〈h, e1, . . . , e11〉. Moreover, the intersection
form of X is diagonal with respect to the basis {h, e1, . . . , e11}. Now
consider the collection of homology classes in H2(X) given by:

ck = 3h−
11∑
i 6=k

ei, 1 ≤ k ≤ 11,

d = 10h−
11∑
i=1

3ei.

Proposition 20. The homology classes {c1, . . . , c11, d} form a basis
of H2(X). The intersection form is diagonal with respect to this basis,
and the self-intersections are c2k = −1, for 1 ≤ k ≤ 11, and d2 = 1.

Proof: The second sentence follows from ei · h = 0, e2i = −1, for all i,
and h2 = 1. This implies that the determinant of the intersection form
with respect to this basis is −1, hence it is a basis over Z.

Our focus is to prove that the basis {c1, . . . , c11, d} of H2(X) can be
realized by symplectic surfaces. For this, we need the following configu-
ration of symplectic surfaces in CP 2:

• Eleven symplectic surfaces C1, . . . , C11 such that their homology
classes are [Ci] = 3h in CP 2. These surfaces Ci, being cubics, must
have g = 1 by the symplectic adjunction formula. The surface Ci is
required to pass through the ten points in ∆−{Pi}, but not through

Pi. Therefore, the proper transform C̃i of Ci in the blow-up X =
CP 2#11CP 2 of CP 2 at S has homology class [C̃i] = ci.

• The intersection Ci ∩ Cj contains the nine points ∆ − {Pi, Pj},
for i 6= j. Note that the algebraic intersection is Ci · Cj = 9. If
these intersections are transverse and positive (e.g. if the Ci are
holomorphic around the intersection points) and if there are no

more intersections, then the proper transforms C̃i, C̃j are disjoint.
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• One singular symplectic surface G such that [G] = 10h and G has
eleven ordinary triple points at the points of ∆. By the adjunction
formula the genus of G is

g =
1

2
(10− 1)(10− 2)− 11

3 · 2
2

= 36− 33 = 3.

If G is holomorphic at a neighbourhood of the triple points and the
branches intersect transversely (and hence also positively), then

the proper transform G̃ of G in the blow-up X = CP 2#11CP 2

of CP 2 at S has homology class [G̃] = 10h− 3(e1 + · · ·+ e11) = d.

Moreover, if there are no more singularities, then G̃ is a smooth
symplectic surface in X.

• The intersections Ci∩G contain the ten points ∆−{Pi}. Note that
the algebraic intersection is Ci · G = 30. If the intersections with
each of the three branches at each intersection point are transverse
and positive (e.g. if the Ci and G are holomorphic around the
intersection points), and if there are no more intersections, then
these account for all intersections. In the blow-up X, the proper
transforms C̃i, G̃ are disjoint.

Our aim now is to construct these surfaces in CP 2. For this, we will
make the construction in a local model and then we will transplant it
to CP 2.

3.2. Construction of a local model. Now we are going to construct
the required eleven surfaces of genus 1 and the singular surface of genus 3
in a local model. The local model is as follows: take a genus 1 complex
curve C and a rational complex curve L ∼= CP 1. Take three points
Q1, Q2, Q3 ∈ C and another three Q′1, Q

′
2, Q

′
3 ∈ L. Take a line bun-

dle E → C of degree 9 and a line bundle E′ → L of degree 1, and
perform the plumbing as given in Subsection 2.1. This produces a sym-
plectic manifold Pc(C ∪ L), which contains C ∪ L.

Proposition 21. Let C ′ ⊂ CP 2 and L′ ⊂ CP 2 be a smooth cubic and
a line in the complex plane, intersecting transversely. Then Pc(C ∪ L)
can be symplectically embedded in a neighbourhood of C ′ ∪ L′, where C
is sent to C ′ and L is sent to a C0-small perturbation of L′, preserving
the intersection points.

Proof: We start by modifying L′ to L′′ using Lemma 15, so that C ′

and L′′ intersect symplectically orthogonally. By Corollary 17, a small
neighbourhood of C ′∪L′′ is symplectomorphic to a small neighbourhood
of the plumbing of C ∪ L, that is, some Pc(C ∪ L), for c > 0 small, and
the symplectomorphism sends C to C ′ and L to L′′.
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Therefore, to prove Theorem 7, it is enough to prove the following:

Theorem 22. There are eleven points P1, . . . , P11 in Pc(C ∪ L) and
symplectic surfaces C1, C2, . . . , C11, G ⊂ Pc(C ∪ L) such that:

(1) Ci is a section of a complex line bundle E → C of degree 3, and
Pj ∈ Ci for j 6= i, Pi /∈ Ci. In particular, they have genus 1.

(2) The surfaces Ci, Cj, i 6= j, intersect exactly at {P1, . . . , P11} −
{Pi, Pj}, positively and transversely.

(3) G is a genus 3 singular symplectic surface whose only singularities
are eleven triple points at Pi (with different branches intersecting
positively). Moreover, G intersects each Ci only at the points Pj,
j 6= i, and all the intersections of Ci with the branches of G are
positive and transverse.

To be more concrete, we proceed as follows. We fix a complex structure
on C and a degree 9 complex line bundle E → C. This is going to be
as follows: take a complex disc D ⊂ C, which we assume as the radius 1
disc D = D(0, 1) ⊂ C. Let V = C − D̄(0, 1/2), and consider the change
of trivialization given by the function g(z) = z9 with D(0, 1)−D̄(0, 1/2).
This means that E is formed by gluing E|D = D×C with E|V = V ×C
via (z, y) ∼ (z, z9y). We endow E with an auxiliary hermitian metric
which is of the form h(z) = 1 on the trivialization E|D. We will choose the
points Q1, Q2, Q3 ∈ D ⊂ C. We also take a complex line bundle E′ → L
of degree 1, for which we fix a hermitian structure. Fixing three points
Q′1, Q

′
2, Q

′
3 ∈ L, we perform the plumbing Pc(C ∪ L).

3.3. Construction of the genus 1 surfaces. The genus 1 symplectic
surfaces will be constructed as sections of the line bundle E → C. Con-
sider the previous cover C = V ∪D and trivializations E|V ∼= V ×C and
E|D ∼= D×C. Fix distinct numbers z1, . . . , z10, z11 ∈ D with z11 = 0 the
origin. Take λ > 0 a small positive real number to be fixed later. Take
the points

(4) Pj = (λzj , 0), j = 1, . . . , 10, and P11 = (0, 1)

in E, in the given trivialization E|D = D × C. We define eleven holo-
morphic local sections in the chart D ⊂ C as

σj(z) =

10∏
i 6=j

(
1− z

λzi

)
, j = 1, . . . , 10,

and σ11(z) = 0.
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Clearly σj(z) = σ11(z) = 0 at the nine points λz1, . . . , λ̂zj , . . . , λz10.
Also, for 1 ≤ j < k ≤ 10, we have that σj(z) = σk(z) at the nine points
given by

(5) λz1, . . . , λ̂zj , . . . , λ̂zk, . . . , λz10, z11 = 0.

All the intersections of the graphs are transverse and positive since the
points λzi are simple roots and σj are holomorphic sections. By con-
struction, the graph Γ(σj) of the local section σj in the trivialization
E|D ∼= D×C contains the set of points {P1, . . . , P11}−{Pj}, as desired.

Now we move to the trivialization E|V . Let us see that we can extend
the sections σj to all of V without introducing any new intersection
points between their graphs. For z ∈ D∩V , the sections σj become, for
|z| ≥ 1/2, in the trivialization of E|V ∼= V × C,

σ̃j = z−9
10∏
i6=j

(
1− z

λzi

)
=λ−9Azj

10∏
i6=j

(
1− λzi

z

)
, A = −(z1 · · · z10)−1,

and σ̃11 = 0. Then σ̃j has the form

σ̃j = Aλ−9zj(1 + λfj(z, λ)),

where

fj(z, λ) =
1

λ

(
10∏
i 6=j

(
1− λzi

z

)
− 1

)
is a holomorphic function of z depending on the parameter λ such that

|fj(z, λ)| ≤M0, for λ ≤ 1
4 , |z| ≥

1
2 ,

being M0 a constant depending only on z1, . . . , z11.
Let ρ be the smooth non-increasing function with ρ(r) = 0 for r ≥ 3/4

and ρ(r) = 1 for r ≤ 2/3. Here r = |z| is the radius in the disc D. Now
we modify the local sections σ̃j to sections σ̂j that can be extended to
global sections in E → C. We define for z ∈ U , |z| ≥ 1/2,

(6) σ̂j(z)=ρ(|z|)σ̃j(z)+(1−ρ(|z|))λ−9Azj=λ−9Azj(1+λρ(|z|)fj(z, λ)).

We also put σ̂11 = 0.
We have that σ̂j = σ̃j in {1/2 ≤ |z| ≤ 2/3}, so σ̂j extends to the

trivialization E|D as σj in {|z| ≤ 1/2} ⊂ D. Moreover, σ̂j(z) = λ−9Azj
is constant for |z| ≥ 3/4, so σ̂j extends to all of V , hence they give global
sections in the line bundle E → C. We call σ̂j these global sections and
Γ(σ̂j) their graphs.
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Now let us check that no undesired intersection points are introduced
between any pair of surfaces Cj , 1 ≤ j ≤ 11. On |z| ≤ 1/2, σ̂j = σ̃j , so
σ̃j , σ̃k, j 6= k, have nine intersection points given by (5), which are the
set {P1, . . . , P11} − {Pj , Pk}. As σ̃j and σ̃k are holomorphic there, and
the roots are simple, the intersections are positive and transverse.

For |z| ≥ 3/4, σ̂j = λ−9Azj , j = 1, . . . , 10, and σ̂11 = 0. Therefore the
sections do not intersect since the {zj} are distinct points. Now assume
that 1/2 ≤ |z| ≤ 3/4. If σ̂j(z) = σ̂k(z) with k 6= j ≤ 10, then

zj + zjλρ(|z|)fj(z, λ) = zk + zkλρ(|z|)fk(z, λ).

Taking λ > 0 small enough, the discs B(zj ,M0|zj |λ) and B(zk,M0|zk|λ)
are all pairwise disjoint, so the above equality does not happen. Analo-
gously, if σ̂j(z) = σ̂11(z) = 0 for 1/2 ≤ |z| ≤ 3/4, we have a contradiction
as long as λ is small enough so that the discs B(zj , λ|zj |M0) do not con-
tain the origin.

Finally, considering σ̂εj = εσ̂j , being ε > 0 small enough, the inter-
sections of the graphs remain the same except that P11 is changed to
the point (0, ε). This ensures that the graphs are all contained in the
given neighbourhood Bc(C), for any c > 0 given beforehand. Moreover
the graphs become C1-close to the zero section C ⊂ E, in particular the
graphs are symplectic surfaces of Bc(E).

3.4. Construction of the genus 3 surface. The genus 3 surface will
be constructed inside the neighbourhood Pc(C ∪L) of C ∪L, where C is
the genus 1 surface and L the genus 0 surface, both intersecting at three
points. We will take three sections of the bundle E → C, all of them
passing through the eleven points P1, . . . , P11. In this way we get the
eleven triple points. Then we add the line L, and glue the three sections
with L around the intersection points of L and C. Let us give the details.

As before, take the previous cover C = V ∪ D, D = D(0, 1), V =
C − D̄(0, 1/2), and trivializations E|D ∼= D×C and L|V ∼= V ×C, with
change of trivialization g(z) = z9. We have fixed z1, . . . , z10, z11 = 0 ∈ D
and the points

Pj = (λzj , 0), j = 1, . . . , 10, and P11 = (0, 1)

in E|D = D × C, where 0 < λ ≤ 1/4 is some small number as arranged
in Subsection 3.3.

We choose another three distinct values w1, w2, w3 ∈ D, different
to z1, . . . , z11. We take the points

(7) Q1 = (λw1, 0), Q2 = (λw2, 0), Q3 = (λw3, 0),
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in the trivialization E|D = D×C. Consider (meromorphic) sections τk,
defined in D − {Qk} by the formula

τk(z) =

∏10
i=1

(
1− z

λzi

)
1− z

λwk

,

for k = 1, 2, 3. The graph of τk passes through all eleven points (4).
Let us see that we can extend the sections τk to the trivialization E|V ,

giving thus sections over C − {Qk}. For z ∈ D ∩ V , i.e. |z| ≥ 1/2, we
express τk in the trivialization L|V , which is given by τ̃k(z) = z−9τk(z).

τ̃k(z) = z−9
∏10
i=1

(
1− z

λzi

)
1− z

λwk

= λ−9Awk

∏10
i=1

(
1− λzi

z

)
1− λwk

z

= λ−9Awk(1 + λgk(z, λ)),

where A = −(z1 · · · z10)−1 as before, and

gk(z, λ) =
1

λ

(∏10
i=1

(
1− λzi

z

)
1− λwk

z

− 1

)
are bounded functions for |z| ≥ 1/2 and 0 < λ ≤ 1/4, say |gk(λ, z)| ≤M ,
for M > 0 a constant.

Let ρ : [0,∞) → R be a non-increasing smooth function such that
ρ(r) = 1 for r ≤ 1/2 and ρ(r) = 0 for r ≥ 3/4. Now we modify τ̃k(z)
for z ∈ D ∩ V , i.e. |z| ≥ 1/2. Consider

τ̂k(z) = λ−9Awk(1 + ρ(|z|)λgk(λ, z)).

Clearly, τ̂k(z) = τ̃k(z) for |z| ≤ 1/2, so τ̂k extends to the trivializa-
tion E|D. Also, for |z| ≥ 3/4 we have τ̂k(z) = λ−9Awk is constant so
τ̂k extends to all the trivialization L|V . This yields a global section de-
fined in C − {Qk}, given by τk in {|z| ≤ 1/2} ⊂ D, and by τ̂k in V . We
call from now on τ̂k this global section. Let us denote

Θk = Γ(τ̂k) = {(z, τ̂k(z)) | z ∈ C − {Qk}}

the graph of τ̂k.
Let us see that the graphs Θ1, Θ2, Θ3 only intersect at the points

P1, . . . , P10, P11, i.e. that the sections only coincide for the values λz1, . . . ,
λz10, z11 = 0. Let j 6= k. On |z| ≤ 1/2, z 6= λwj , λwk, if τ̂j(z) = τ̂k(z),
then ∏10

i=1

(
1− z

λzi

)
1− z

λwj

=

∏10
i=1

(
1− z

λzi

)
1− z

λwk

.
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Hence either z = λzi for some 1 ≤ i ≤ 10 or z
λwj

= z
λwk

. The latter

implies z = 0 = z11.
For |z| ≥ 3/4, if τ̂j(z) = τ̂k(z), then λ−9Awj = λ−9Awk, which is

false since wj 6= wk. Finally, for 1/2 ≤ |z| ≤ 3/4, if τ̂j(z) = τ̂k(z), then

wj + wjρ(|z|)λgj(λ, z)) = wk + wkρ(|z|)λgk(λ, z)).

Choosing λ small enough, we have that the discs D(wj , λ|wj |M) and
D(wk, λ|wk|M) do not intersect. So the above equality does not happen.

Finally, let us check the intersections of Θk with Γ(σ̂j). Take |z| ≤ 1/2.
Suppose that τk(z) = σj(z). This implies that

σj(z)
1− z

λzj

1− z
λwk

= σj(z),

hence either σj(z) = 0 or z
λzj

= z
λwk

. In the first case we have that z =

λzi for some i 6= j. In the second case we have that either z = 0 = z11,
or λzj = λwk which is not possible because the points wk are different
from the points zj .

Suppose now that 1/2 ≤ |z| ≤ 3/4 and σj(z) = τk(z). Then

zj + zjρ(|z|)λfj(z, λ) = wk + wkρ(|z|)λgk(λ, z).

If we take λ small, the discs D(zj ,M0|zj |λ) and D(wk,M |wk|λ) are
disjoint, so the above equality is impossible. Finally, if |z| ≥ 3/4 and
τk(z) = σj(z), then λ−9Azj = λ−9Awk, and this is false.

3.5. Gluing the transversal in the plumbing. The plumbing Pc(C∪
L) is defined only for c > 0 small enough. Let us arrange that our sections
lie inside it suitably. For this, let N > 0 be an upper bound of all |σ̂j |, j=
1, . . . , 11, such that (|τ̂k|)−1([N,∞))⊂B(Qk), where B(Qk)⊂D(0, 1/2)
are small balls around Qk, k=1, 2, 3. Recall that τ̂k=τk is holomorphic
on B(Qk)−{Qk}. As τk has a simple pole at Qk, we have that

z′ = z′k = hk(z) =
1

τk(z)

is a biholomorphism from a neighbourhood of Qk (that we keep call-
ing B(Qk)) to a ball Bc(0). We take the coordinate z′k on B(Qk). We
need to modify the symplectic form so that z′k is also a Darboux coordi-
nate.

Lemma 23. Consider the disc D = D(0, 1). We can perturb the stan-
dard symplectic form ωD to a nearby symplectic form ω′D such that,
maybe after reducing the balls B(Qk), the coordinates z′k are Darboux.
The perturbation is made only on a (slightly larger) ball around Qk, and
keeping the total area.



636 A. Cañas, V. Muñoz, J. Rojo, A. Viruel

Proof: We write z′ = z′k = x′ + iy′. The standard symplectic form ωD
on the coordinates z is clearly Kähler, therefore it is also Kähler for
the holomorphic coordinate z′. In particular, it has a Kähler poten-
tial φ(x′, y′), with ωD = ∂∂̄φ(x′, y′). We can assume that φ has no
linear part, so φ(x′, y′) = φ2(x′, y′) + φ3(x′, y′), where φ2(x′, y′) is qua-
dratic and |φ3| = O(|(x′, y′)|3). Then take some bump function ρ that
vanishes on a neighbourhood Bη(Qk) of Qk (the size measured with
respect to the radial coordinate r′ = |z′|), and ρ ≡ 1 on a slightly
larger neighbourhood B2η(Qk), |dρ| = O(η−1), and |∇dρ| = O(η−2).
Set ω′D = ∂∂̄(φ2 + ρφ3). Then |ω′D − ωD| = O(η) and ω′D is stan-
dard on (Bη(Qk), z′). As the difference ω′D − ωD = ∂∂̄((ρ − 1)φ3) =
d(∂̄(ρ− 1)φ3) is exact and compactly supported, the total area remains
the same.

Remark 24. Lemma 23 also holds in higher dimension. More concretely,
let (Z, ω, J) be a Kähler manifold of real dimension 2n, p ∈ Z, and
ϕ : U → B ⊂ Cn holomorphic coordinates around p. Then there exists a
symplectic form ω′ on Z so that (Z, ω′, J) is Kähler, ω′ = ω in Z−U , and
ω′ is a linear symplectic form near p on the coordinates ϕ, in some smaller
neighborhood V ⊂ U . Moreover, the cohomology classes [ω] = [ω′].

Over E|B(Qk)
∼= Bc(0)×C, the section τk is given by v = 1/z′ (making

c > 0 smaller if needed), writing z′ = z′k for brevity. For Q′1, Q
′
2, Q

′
3 ∈

L, take holomorphic balls B(Q′j)
∼= Bc(0), and arrange the symplec-

tic structure on L to be standard over them. Finally, take symplectic
structures on the total spaces of the complex line bundles π : E → C
and π′ : E′ → L so that they are product symplectic structures on
Bc(C)∩E|B(Qk)

∼= B(Qk)×Bc(0) and Bc(L)∩E′|B(Q′k)
∼= B(Q′k)×Bc(0),

respectively. The plumbing Pc(C∪L) is done by gluing Bc(C) and Bc(L)
along R : B(Qk)× Bc(0)→ B(Q′k)× Bc(0), the map reversal of coordi-
nates. Note that the uniqueness result of Corollary 18 allows to do the
plumbing with these choices. We only have to take care of keeping the
total areas 〈[C], [ωE ]〉 and 〈[L], [ωE′ ]〉 fixed.

Now take ε > 0 small enough so that:

• The graphs of the sections σεj = εσj are inside Bc(C). For this
εN < c is enough.
• The graphs of the sections σεj are C1-close to the zero section. This

implies that these graphs are symplectic (a submanifold C1-close
to a symplectic one is symplectic).
• All sections τ εk = ετk satisfy |τ εk| < c on C−B(Qk), so the graph Θε

k

of τ εk satisfies that Θε
k ∩ π−1(C − B(Qk)) ⊂ Bc(C). For this it is

enough that εN < c again.
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• The graphs of the sections τ εk are C1-close to the zero section on C−
B(Qk), so they are symplectic.

Now we look at the graph Θε
k ∩ (E|B(Qk)). We have

Θε
k ∩ (E|B(Qk))

∼=
{

(z′, v) ∈ Bc(0)× C
∣∣∣ v =

ε

z′

}
=

{
(z′, v) ∈ Bc(0)× C

∣∣∣ |v| ≥ εc−1, z′ =
ε

v

}
.

Make ε > 0 smaller if necessary, so that εc−1 ≤ c/2. Take ρ(r) a smooth
non-increasing function so that ρ(r)=1 for r ≤ 1/2 and ρ(r)=0 for r ≥
3/4. Define

Θ̂ε
k =

{
(z′, v) ∈ Bc(0)× C

∣∣∣ εc−1 ≤ |v| ≤ c, z′ = ερ(|v|/c)1

v

}
.

This can be smoothly glued to Θ̄ε
k = Θε

k∩π−1(C−B(Qk)). On the part of
the plumbing corresponding to E′ → L, this has the form z′ = ερ(|v|/c) 1

v
on B(Q′k) × Bc(0), where v is the coordinate for B(Q′k) and z′ is the
vertical coordinate. Note that this can be extended as z′ = 0 in the
bundle E′ → L, over L−(B(Q′1)∪B(Q′2)∪B(Q′3)). The resulting smooth
manifold is

(8) G =
⋃

k=1,2,3

(Θ̄ε
k ∪ Θ̂ε

k) ∪ (L− (B(Q′1) ∪B(Q′2) ∪B(Q′3))).

Clearly, as |v| ≥ εc−1 for the points of Θ̂ε
k, there are no new intersec-

tions with the graphs Γ(σεj) or Θε
l , l 6= k, since they are bounded by εN ,

and we can take c < N−1 to start with.
The graphs Θ̂ε

k are symplectic, since the graphs of z′ = ερ(|v|/c) 1
v

are symplectic over |v| ≥ c/2, by taking ε > 0 small enough so that
it is C1-close to the zero section z′ = 0 of the bundle E′ → L. On
εc−1 ≤ |v| ≤ c/2, the graph coincides with z′ = ε 1v , which is holomorphic
hence symplectic.

Remark 25. The homology class of the graph Γ(σ̂j) in Pc(C∪L) is equal
to [C], since they are sections of E → C. The manifold G of (8) can be
retracted to 3[C] + [L] in Pc(C ∪ L) by making ε→ 0.

When we embed Pc(C ∪L) ↪→ CP 2, the class [C] 7→ 3h, and [L] 7→ h,
where h is the class of the line in CP 2. Hence [G] 7→ 10h, so G has
degree 10.

The genus of G is 3 since topologically it is the gluing (connected
sum) of three punctured surfaces of genus 1 (given by the graphs of
the sections Θk, k = 1, 2, 3), with a sphere with three holes given by
L− (B(Q′1) ∪B(Q′2) ∪B(Q′3)).
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4. Fundamental group of the K-contact 5-manifold

Let X be the symplectic manifold constructed as the symplectic blow-
up of CP 2 at the eleven points P1, . . . , P11. The underlying smooth man-
ifold is X = CP 2#11CP 2 with b2 = 12. It has eleven surfaces of genus 1,
named C̃1, . . . , C̃11, and a genus 3 surface G̃ all of them disjoint. We set
the isotropy of C̃i to be Z/(pi), i = 1, . . . , 11, and that of G̃ to be Z/(p12),
for a fixed prime p. This determines a symplectic orbifold X ′ uniquely
by [21, Proposition 7].

We start by computing the orbifold fundamental group πorb
1 (X ′) of X ′.

The reader can find alternative definitions in [27, Chapter 13] and in [6,
Definition 4.3.6]. We only need a presentation of πorb

1 (X ′), which follows
from [15, Théorème A.1.4]. For this, fix a base point p0 ∈ X ′. Take loops

from p0 to a point near C̃i, followed by a loop δi around C̃i, and going
back to p0, i = 1, . . . , 11. In the same vein, we add another loop δ12
around G̃. Then

πorb
1 (X ′) =

π1(X − (C̃1 ∪ · · · ∪ C̃11 ∪ G̃))

〈δp1 , . . . , δ
p11

11 , δ
p12

12 〉
.

Let us see that πorb
1 (X ′) is trivial. It suffices to see that π1(X − (C̃1 ∪

· · · ∪ C̃11 ∪ G̃)) is trivial. We start with a lemma.

Lemma 26. We can arrange a complex cubic curve and a complex
line C ′, L′ ⊂ CP 2 intersecting transversally, such that a small neighbor-
hood Bε(C

′ ∪ L′) of C ′ ∪ L′ satisfies the following: there are generators
of π1(C ′) represented by loops α, β away from Bε(L

′), that can be ho-

motoped (outside Bε(L
′)) to loops α̂, β̂ in ∂Bε(C

′). The loops α̂, β̂ are
contractible in CP 2 −Bε(C ′ ∪ L′).

Proof: We consider a particular family of complex cubics in CP 2 given by
the affine equations Cr = {y2 = x3 − r2x}, with r > 0 small. As r → 0,
the cubic Cr collapses to a cuspidal rational curve C0 = {y2 = x3}, which
has trivial first homology group. It is known [19] that the vanishing cycles
generate the homology H1(Cr). Here we give an explicit description, as
the loops

αr = {(x, y) | x ∈ [−r, 0], y ∈ R, y2 = x3 − r2x},
βr = {(x, y) | x = −x′ ∈ [0, r], y = iy′ ∈ iR, (y′)2 = (x′)3 − r2x′}.

Note that αr, βr intersect transversally at one point, hence they generate
π1(Cr) ∼= Z2. The homotopies given by αt, t ∈ [0, r], and βt, t ∈ [0, r]
(with base-point at (0, 0)), produce discs that contract αr, βr. These
discs do not intersect Cr. Now fix some C ′ = Cr and take a tubular
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neighbourhood Bε(C
′) by considering all Cs with |s − r| < ε. Then we

can homotop the loops α = αr, β = βr to α̂ = αr−ε, β̂ = βr−ε which lie
at the boundary, and can be contracted outside Bε(C

′).
Finally, take a complex line L′ ⊂ CP 2 intersecting transversally C ′,

but well away from the loops αr, βr, and the homotopies above (e.g. a
small perturbation of the line at infinity). Therefore all previous state-
ment happen outside Bε(L

′).

Proposition 27. We have that the fundamental group π1(X − (C̃1 ∪
· · · ∪ C̃11 ∪ G̃)) = 1. In particular, πorb

1 (X ′) = 1.

Proof: We constructed C1, . . . , C11, G inside a plumbing P = Pc(C ∪L),
and then we have transferred it to a neighbourhood P′ = Pc(C

′ ∪ L′′)
of a cubic C ′ and a perturbation L′′ of a line L′ in CP 2. Note that
C ′ ∪ L′′ is smoothly isotopic to C ′ ∪ L′. Then we blew-up at the eleven
points P1, . . . , P11 which lie inside P′, and took the proper transforms
C̃1, . . . , C̃11, G̃ ⊂ P̃′, where P̃′ is the blow-up of P′. Let Bε(C̃i), Bε(G̃) ⊂
P̃′ be small and disjoint tubular neighbourhoods of C̃i, G̃, i = 1, . . . , 11,
respectively.

Put X = W ∪W ′, with

W =
⋃
i

B2ε(C̃i) ∪B2ε(G̃) ∪ T0, W ′ = X −
(⋃

i

Bε(C̃i) ∪Bε(G̃)

)
,

where T0 denotes an open contractible set constructed by fattening paths
joining the base point with the tubular neighbourhoods B2ε(C̃i), B2ε(G̃).
As π1(X) is trivial, the Seifert Van-Kampen Theorem shows that the
map

π1(W ∩W ′) −→ π1(W ′) ∼= π1(X − (C̃1 ∪ · · · ∪ C̃11 ∪ G̃))

is surjective. Note that W ∩W ′ is homotopy equivalent to the wedge
sum Y1 ∨ · · · ∨ Y11 ∨ Y12, where Yi = ∂Bε(C̃i) is the boundary of a small

tubular neighbourhood of Ci, and Y12 = ∂Bε(G̃). Hence it is enough
to see that every loop in Yi for 1 ≤ i ≤ 11 and every loop in Y12 are
contractible in π1(X − (C̃1 ∪ · · · ∪ C̃11 ∪ G̃)).

Take the plumbing P = Pc(C ∪L) and the curves C1, . . . , C11, G. We
have decomposed C = D ∪ V , where D is a disc, so we may take α, β
inside C−D. For each of the cubics Ci, π1(Ci) is generated by loops αi, βi
which can be taken by lifting α, β via the sections σ̂i, i = 1, . . . , 11, of
the complex line bundle E → C. For the curve G ⊂ P of genus 3,
we have generators α(1), β(1), α(2), β(2), α(3), β(3) of the fundamental
group π1(G) with

∏3
j=1[α(j), β(j)] = 1. These can be taken by lifting the

loops α, β via the sections τ̂j , j = 1, 2, 3. The base point is also chosen
outside the disc D. In P− (C1 ∪ · · · ∪ C11 ∪G), we can move vertically
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(along the fiberwise directions of the bundle E → C) all the loops αi, βi,
α(j), β(j) without touching the other curves. Once we reach the boundary
of P ∼= P′, these can be contracted in the complement CP 2 − P′ by
Lemma 26 above.

Now we blow-up inside P the eleven points P1, . . . , P11 to obtain P̃
and the proper transforms C̃1, . . . , C̃11, G̃. Consider Yi = ∂Bε(C̃i) as

before. This is a circle bundle S1 → Yi = ∂Bε(C̃i) → C̃i with Chern

class c1(Yi) = [C̃i]
2 = −1. We have a short exact sequence

0 −→ π1(S1) −→ π1(Yi) −→ π1(C̃i) −→ 0.

Since we are away from the blow-up locus we call the generators of π1(C̃i)

again αi, βi. The loop [αi, βi] can be homotoped in Bε(C̃i) to the base

point through a homotopy transversal to C̃i. This homotopy intersects C̃i
in C̃2

i =−1 points counted with signs. Via the retraction Be(C̃i)− C̃i →
Yi, this gives a homotopy in Yi between the lifting of [αi, βi] and γ−1i ,
where γi is the loop going along the fiber S1. We conclude that

π1(Yi) = 〈αi, βi, γi | [αi, βi] = γ−1i , γi central〉.

Note that αi, βi can be moved to Yi without touching the other cubics C̃j
and then contracted in CP 2 − P via the blow-up map. The conclusion
is that αi and βi can be contracted to a point through a homotopy in
X − (C̃1 ∪ · · · ∪ C̃11 ∪ G̃). Therefore the same happens to γi.

Analogously, Y12 = ∂Bε(G̃) is a circle bundle S1 → Y12 = ∂Bε(G̃)→
G̃ with Chern class c1(Y12) = [G̃]2 = 1. Denoting by γ12 the loop along
the fiber S1, we have that

π1(Y12) =

〈
α(1), β(1), α(2), β(2), α(3), β(3), γ12

∣∣∣
3∏
j=1

[α(j), β(j)] = γ12, γ12 central

〉
.

The loops α(j), β(j) can be moved to the boundary Y12 and then con-
tracted in CP 2−P via the blow-up map. Thus the same happens to γ12.
So all generators of π1(∂Bε(C̃i)), i = 1, . . . , 11, and of π1(∂Bε(G̃)) be-

come trivial in π1(X−(C̃1∪· · ·∪C̃11∪G̃)). This concludes the proof.

Once we have the symplectic orbifold X ′, we construct a Seifert bun-
dle M → X ′ with primitive Chern class c1(M/e2πi/µ) = [ω]. This is a
K-contact manifold, which is simply-connected.

Theorem 28. The 5-manifold M is simply-connected, hence it is a
Smale–Barden manifold.
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Proof: By [6, Theorem 4.3.18], we have an exact sequence π1(S1) =
Z→ π1(M)→ πorb

1 (X ′) = 1. In particular, π1(M) is abelian. Therefore
π1(M) = H1(M,Z) = 0, by Theorem 2.

5. Non-existence of an algebraic surface with the given
pattern of curves

In this section we show that it is not possible to construct an alge-
braic surface with the same configuration of complex curves as the man-
ifold we constructed in Section 3, that is, twelve disjoint complex curves
spanning H2(S,Q), one of genus 3 and all the others of genus 1. More
concretely, we prove Theorem 9.

Theorem 29. Suppose S is a complex surface with b1 = 0 and disjoint
smooth complex curves spanning H2(S,Q), one of them of genus g ≥ 1
and all the others elliptic (and thus of genus 1). Then b2 ≤ 2g2−4g+ 3.

Proof: Let S be a complex surface with b1 = 0, containing disjoint com-
plex curves spanning H2(S,Q), one of them, say D1, of genus g and the
other curves D2, . . . , Db2 all of genus 1.

The Poincaré duals [D1], . . . , [Db2 ] are a basis of H2(S,Q), since
{D1, . . . , Db2} is a basis of H2(S,Q). Furthermore, these classes are all
of type (1, 1), so we have that h1,1 = b2 and the geometric genus is
pg = h2,0 = 0. The irregularity is q = h1,0 = 0 since b1 = 0. In particu-
lar, S is an algebraic surface [4]. The holomorphic Euler characteristic is

(9) χ(OS) = 1− q + pg = 1.

By the Riemann–Hodge relations, the signature of H1,1(S) is (1, b2− 1).
Therefore, the self-intersection of one of the Di’s is positive and it is
negative for the others.

Case 1. Assume for the moment that g = g(D1) ≥ 2. We show first that
D2

1 > 0. Suppose otherwise that D2
i > 0 for one of the genus 1 curves.

After reordering, we can suppose this is true for D2. By the adjunction
formula, KS ·D2 + D2

2 = 2g(D2) − 2 = 0, so KS ·D2 = −D2
2. And, by

Riemann–Roch’s theorem, we have,

χ(D2) = χ(OS) +
D2

2 −KS ·D2

2
= 1 +D2

2.

Hence using Serre duality,

h0(D2) + h0(KS −D2) = h0(D2) + h2(D2) ≥ χ(D2) = 1 +D2
2 ≥ 2.

Also, from the exact short sequence 0 → OS(KS − D2) → OS(KS) →
OD2

(KS |D2
) → 0 we deduce that h0(KS − D2) = 0, since h0(KS) =

h2,0(S) = 0. Thus h0(D2) ≥ 2 and we can consider a pencil P1 ≤ |D2|.
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This gives a rational map S 99K CP 1 and, after blowing-up the base
points of the pencil, an elliptic fibration S̃ → CP 1, with the proper
transform of D2 as a smooth fiber. However, since they are pairwise
disjoint, all the proper transforms of Di, i 6= 2, have to lie in fibers.
To see this, consider the projections of the proper transforms of Di

by the elliptic fibration S̃ → CP 1. These projections must be Zariski-
closed, connected subsets of CP 1. As they are not all CP 1 since they
do not intersect the proper transform of D2, they should be points. In
particular, since all the fibers are connected, the arithmetic genus of each
irreducible component of a fiber has to be at most 1, which gives rise to a
contradiction as g(D1) = g > 1. Therefore, D2

1 > 0 and D2
2, . . . , D

2
b2
< 0.

Denote m1 = D2
1 and mi = −D2

i , i = 2, . . . , b2. All of the mi’s are pos-

itive integers. Write KS ≡
∑b2
i=1 λiDi for its homology class in H2(S,Q),

with λi ∈ Q. Notice that KS ·Di = λiD
2
i , from where λi = KS ·Di

D2
i

. By

the adjunction formula,

KS ·D1 = 2g(D1)− 2−D2
1 = 2g − 2−m1,

KS ·Di = 2g(Di)− 2−D2
i = mi, i ≥ 2.(10)

Therefore

KS ≡
2g − 2−m1

m1
D1 −

b2∑
i=2

Di,

and we get

(11) K2
S =

(2g − 2−m1)2

m1
−

b2∑
i=2

mi.

Consider the following short exact sequence of sheaves,

0 −→ O(KS) −→ O(KS +D1) −→ OD1(KD1) −→ 0,

where KD1 = (KS + D1)|D1 , by adjunction. This gives a long exact
sequence in cohomology,

0 −→ H0(KS) −→ H0(KS +D1) −→ H0(KD1) −→ H1(KS) −→ · · · ,
where H0(KS) = H2,0(S) = 0 and H1(KS) = H1(OS) = H0,1(S) = 0.
So we have an isomorphism H0(KS + D1) ∼= H0(KD1

) and we deduce
that h0(KS+D1) = h0(KD1

) = g. In particular, the linear system |KS+
D1| is not empty and it has dimension g− 1 ≥ 1. Let Z = Z(|KS +D1|)
be the fixed part of |KS +D1| (that is, the largest effective divisor such
that D ≥ Z for all D ∈ |KS + D1|). Notice that Z · D1 = 0, since the
restriction of the linear system to D1, |(KS + D1)|D1 | = |KD1 |, has no
fixed points as g ≥ 2.
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Write now Z as an effective divisor Z =
∑b2
i=1 αiDi +T , where αi are

non-negative integers and T is an effective divisor not containing any
of the Di’s. Notice that the latter implies T · Di ≥ 0 for all i. Since
0 = Z ·D1 = α1m1 + T ·D1, we have α1 = 0 and T ·D1 = 0. So we can

write Z =
∑b2
i=2 αiDi + T and T does not intersect D1.

Let us see that T = 0. Write T ≡
∑b2
i=1 µiDi for its homology class

in H2(S,Q), with µi ∈ Q. First note that, since T ·D1 = 0, we have µ1 =

0, so T ≡
∑b2
i=2 µiDi. For i ≥ 2, 0 ≤ T ·Di = −µimi, hence µi ≤ 0. Let

n ≥ 1 be an integer such that nµi ∈ Z for all i. Hence nT is effective
and −nT =

∑
(−nµi)Di is also effective. This implies that nT = 0 and

thus T = 0. This means that the fixed part is Z =
∑b2
i=2 αiDi.

Write |KS + D1| = Z + |F |, where F is the free part, which is a
fully movable divisor. We look now at the self-intersection F 2 = (KS +
D1−Z)2 ≥ 0. Recall that the self-intersection of a fully movable divisor
is F 2 ≥ 0, since if we take a different F ′ ≡ F such that F and F ′ do not
share components, then F 2 = F · F ′ ≥ 0.

Let j ≥ 2 and suppose both that mj = 1 and Dj � Z. In this case,
the restriction of an effective divisor C ∈ |KS +D1| to Dj is an effective
degree 1 divisor, since (KS +D1) ·Dj = KS ·Dj = mj = 1, by (10). So
C ∩Dj is a point Pj . Furthermore, since Dj is not a rational curve, any
pair of linearly equivalent points are actually equal. Therefore Pj ∈ Dj

is a fixed point of |KS + D1| and, since Z ∩ Dj = ∅, Pj ∈ F . So Pj is
counted in the self-intersection (KS +D1 − Z)2.

There are at most
∑b2
i=2mi− (b2− 1) curves among D2, . . . , Db2 with

mi > 1. So there are at least 2(b2 − 1) −
∑b2
i=2mi curves with self-in-

tersection −1. Hence there are at least 2(b2 − 1) −
∑b2
i=2mi − r fixed

points Pj ∈ Dj of some |(KS +D1 − Z)|Dj |, where r = #{αi > 0}, and
thus

(12) (KS +D1 − Z)2 ≥ 2(b2 − 1)−
b2∑
i=2

mi − r.

Note that in case we have 2(b2 − 1) −
∑b2

1=2mi − r ≤ 0 we cannot
assure the existence of any fixed point but the inequality still holds since
(KS +D1 − Z)2 ≥ 0.

We now compute (KS +D1 − Z)2,

(KS +D1)2 = K2
S + 2KS ·D1 +D2

1 = K2
S + 2(2g − 2−m1) +m1

= K2
S + 4g − 4−m1,

(KS +D1 − Z)2 = (KS +D1)2 − 2(KS +D1) · Z + Z2

= K2
S + 4g − 4−m1 − 2

b2∑
i=2

αimi −
b2∑
i=2

α2
imi.
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Thus (12) gives

K2
S + 4g − 4−m1 − 2

b2∑
i=2

αimi −
b2∑
i=2

α2
imi ≥ 2(b2 − 1)−

b2∑
i=2

mi − r,

from which

2b2 ≤ 4g − 2−m1 +K2
S +

b2∑
i=2

mi + r − 2

b2∑
i=2

αimi −
b2∑
i=2

α2
imi

≤ 4g − 2−m1 +K2
S+

b2∑
i=2

mi + r − 3r ≤ 4g − 2−m1+K2
S +

b2∑
i=2

mi.

Using (11), we have

2b2 ≤ 4g − 2−m1 +
(2g − 2−m1)2

m1
.

The expression on the right is a decreasing function on m1. Therefore,
we can bound it by its value in m1 = 1, that is

2b2 ≤ 4g − 3 + (2g − 3)2 = 4g2 − 8g + 6.

Hence b2 ≤ 2g2 − 4g + 3, as required.

Case 2. Suppose now g = 1. Using the adjunction formula, we get

KS ≡ −
∑b2
i=1Di. And using the same argument as above, we have that

h0(KS+D1) = h0(KD1) = g = 1. Thus, there is an effective divisor in S

linearly equivalent to KS +D1 = −
b2∑
i=2

Di which is clearly anti-effective

if b2 ≥ 2. Therefore, b2 ≤ 1.

Let us end up by giving a different proof of the non-existence of a
Kähler surface S with b1 = 0 and b2 = 12, containing disjoint smooth
complex curves spanning H2(S,Q), one of them of genus g = 3, all the
others of genus gi = 1. It makes very specific use of the numbers at hand.

We follow the notations in the proof of Theorem 29. We have the
curves D1, D2, . . . , Db, b = 12, with D2

1 = m1, D2
i = −mi, 2 ≤ i ≤ b,

and all the mi’s are positive integers. The curve D1 has genus g = 3 and
Di have genus 1, 2 ≤ i ≤ b. By (9) and Noether’s formula [4] we have
that

1

12
(K2

S + c2(S)) = χ(OS) = 1− q + pg = 1.
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Note that c2(S) = χ(S) = 2 + b, where b = b2 = 12 and b1 = b3 = 0.
Therefore K2

S = 10− b = −2. Now (11) says that

−2 = K2
S =

(4−m1)2

m1
−m2 − · · · −mb ≤

(4−m1)2

m1
− 11,

using that g = 3. Therefore (4 − m1)2 ≥ 9m1, which is rewritten as
(m1 − 16)(m1 − 1) ≥ 0.

Ifm1 ≥ 16, then the curveD1 of genus g = 3 has self-intersectionD2
1 ≥

2g + 1. The argument of [21, Theorem 32] concludes that b ≤ 2g + 3.
This is a contradiction since g = 3 and b = 12.

Therefore we have that m1 = 1. So

KS = 3D1 −D2 − · · · −Db

and K2
S = −2 = 9 − m2 − · · · − mb ≤ 9 − 11 = −2. Therefore there

must be equality and m2 = · · · = mb = 1. The basis {D1, D2, . . . , Db} is
a diagonal basis of H2(S,Z). Now we try to reconstruct S in “reverse”.
Let H,E2, . . . , Eb ∈ H2(S,Z) be defined by the equalities:

D1 = 10H − 3E2 − · · · − 3Eb,

Dj = (3H − E2 − · · · − Eb) + Ej , j = 2, . . . , b.

This is solved as:

H = 10D1 − 3D2 − · · · − 3Db,

Ej = 3D1 +Dj −
b∑

k=2

Dk, j = 2, . . . , b,

KS = −3H +

b∑
k=2

Ek.

The following self-intersections are easily computed:

H2 = 1, H · Ej = 0, j = 2, . . . , b,

E2
j = −1, Ej · Ek = 0, j 6= k,

KS ·H = −3, KS · Ej = −1, j = 2, . . . , b,

Dj · Ej = 0, Dj · Ek = 1, j 6= k.

Now let us prove that the classes E2, . . . , Eb are defined by effective
divisors. Note that χ(Ej) = 1+ 1

2 (E2
j−KS ·Ej) = 1. Also h0(KS−Ej) =

0 since (KS −Ej) = −Dj < 0. Therefore h0(Ej) ≥ 1 and Ej is effective.
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Next note that KS + Dj = Ej . Consider the long exact sequence in
cohomology associated to the exact sequence

0 −→ O(KS) −→ O(KS +Dj) −→ ODj (KDj ) −→ 0.

As H0(KS) = H1(KS) = 0, we have that h0(Ej) = h0(KS + Dj) =
h0(ODj (KDj )) = 1, since Dj is an elliptic curve. Also h2(Ej) = h0(KS−
Ej) = 0, and hence h1(Ej) = 0 since χ(Ej) = 1.

Consider now the exact sequence

(13) 0 −→ O −→ O(D2 + · · ·+Db) −→
b⊕
j=2

ODj (Dj) −→ 0,

which holds since the Dj are disjoint. As D2
j =−mj =−1 and Dj is an

elliptic curve, we have h0(ODj (Dj))=0 and h1(ODj (Dj))=1. Therefore

(13) and the fact that h1(O) = h2(O) = 0 imply that h0(D2+· · ·+Db) =
1 and h1(D2 + · · · + Db) = b − 1 = 11. Using that 3D1 ≡ D2 + · · · +
Db−1 + Eb, we have an exact sequence

0 −→ O(Eb) −→ O(3D1) −→
b−1⊕
j=2

ODj (Eb) −→ 0.

As Dj · Eb = 1 and Dj is elliptic, we have h0(ODj (Eb)) = 1. Then

h0(3D1) = b−1 = 11, using h0(Eb) = 1 and h1(Eb) = 0 computed before.
Now we compute h0(3D1) in a different way. We have exact sequences:

0 −→ O −→ O(D1) −→ OD1
(D1) −→ 0,

0 −→ O(D1) −→ O(2D1) −→ OD1
(2D1) −→ 0, and

0 −→ O(2D1) −→ O(3D1) −→ OD1(3D1) −→ 0

so

h0(3D1) ≤ h0(2D1) + h0(OD1(3D1))

≤ h0(D1) + h0(OD1
(2D1)) + h0(OD1

(3D1))

≤ 1 + h0(OD1(D1)) + h0(OD1(2D1)) + h0(OD1(3D1)).

(14)

We use Clifford’s theorem [2, p. 107] that says that for a curve of
genus g ≥ 1 and a divisor D of degree 0 ≤ d ≤ 2g − 2, we have h0(D) ≤[
d
2

]
+ 1. Applying this to the curve D1, we have h0(OD1(D1)) ≤ 1,

h0(OD1(2D1)) ≤ 2, and h0(OD1(3D1)) ≤ 2, recalling that D2
1 = 1.

Therefore (14) implies h0(3D1) ≤ 1 + 1 + 2 + 2 = 6. This is a contradic-
tion with the previous computation of h0(3D1).
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6. The second Stiefel–Whitney class of the
Smale–Barden manifold

We close with a proof of the last comments in the introduction.
We start by computing the Stiefel–Whitney class w2(M) of the 5-man-

ifold M constructed in Corollary 10. This manifold is a Seifert circle
bundle π : M → X ′ over the cyclic 4-orbifold constructed with the mani-
fold X = CP 2#11CP 2 of Section 3, ramified over the curves C̃1, . . . , C̃11,
C̃12 = G̃, with multiplicities mi = pi, i = 1, . . . , 12, and p a fixed prime.

Remark 30. We could use other powers of p for the mi’s, as long as they
are distinct. Also we can use mi = pim̃i, with gcd(m̃i, p) = 1. However,
for the computations below we stick to our choice mi = pi.

The Seifert bundle π : M → X ′ is determined by the Chern class

c1(M/X ′) = c1(B) +
∑ bi

mi
[C̃i],

where bi are called the orbit invariants (they should satisfy gcd(bi,mi) =
1), and B is a suitable line bundle over X. By Theorem 2, we have to
impose the condition that the cohomology class

c1(M/e2πiµ) = µ c1(B) +
∑

bi
µ

mi
[C̃i] = p12c1(B) +

∑
bip

12−i[C̃i]

is primitive and represented by some orbifold symplectic form [ω̂], being
µ = lcm(mi) = p12. The proof of [21, Lemma 20] shows that in order
to ensure this we can take bi = 1 and a class a = c1(B) ∈ H2(X,Z)

with a =
∑
ai[C̃i] and gcd(pa1 + 1, p2a2 + 1) = 1. Certainly, with this

condition on the class a and the numbers bi, the Chern class is

c1(M/e2πiµ) =
∑

p12−i(piai + 1)[C̃i],

so it is primitive.
Let us see that we can ensure that gcd(pa1 + 1, p2a2 + 1) = 1. Take

any a2 ∈ Z and write

p2a2 + 1 =

l∏
j=1

q
mj
j

with qj different primes. The condition gcd(pa1 + 1, p2a2 + 1) = 1 is
equivalent to the condition that qj does not divide pa1 + 1 for all j.
Since qj and p are coprime, by Bezout’s identity we have 1 + αp = βqj
for some α, β ∈ Z. In fact, all the numbers α, β satisfying that condition
are of the form (α, β) = (αj + tq, βj + tp), t ∈ Z. Applying this to
q1, . . . , ql we get that the condition is that a1 does not belong to the set

(15) A = {α1 + tq1 | t ∈ Z} ∪ · · · ∪ {αl + tql | t ∈ Z}.
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The set A above is a union of arithmetic progressions of ratios q1, . . . , ql
which are different primes. By the Chinese remainder theorem there is
α (mod

∏
qi) so that α ≡ αi (mod qi) for all i. Therefore the set Z−A

modulo
∏
qi contains φ

(∏
qi
)

=
∏

(qi − 1) elements. In particular it is
infinite and of positive density.

The conclusion is that possible choices of a1, . . . , a12 consist of choos-
ing freely a2, . . . , a12 ∈ Z, and then choose a1 ∈ Z−A.

Proposition 31. If p = 2, then M is spin. If p > 2, then we can
arrange c1(B) and bi so that M is spin or non-spin.

Proof: If p = 2, then [23, Proposition 13] says that the map π∗ :

H2(X,Z2)→H2(M,Z2) is zero, since the [C̃i] are in kerπ∗ and they span
the cohomology. By formula (3) in [23], we have w2(M) = π∗(w2(X) +∑
bi[C̃i] + c1(B)) = 0.
If p > 2, then [23, Proposition 13] says that the map π∗ : H2(X,Z2)→

H2(M,Z2) has one-dimensional kernel spanned by c1(B)+
∑
bi[C̃i]. For-

mula (2) in [23] says that w2(M) = π∗(w2(X)). As X = CP 2#11CP 2,

w2(X) = H+E1 + · · ·+E11 = C̃1 + · · ·+ C̃12 (mod 2). The manifold M

is spin or non-spin according to whether c1(B)+
∑
bi[C̃i] is proportional

to
∑

[C̃i] or not (mod 2). We can arrange that M is non-spin by taking,
say, a2 odd. To get M spin we need to take all a2, . . . , a12 even, and then
choose a1 ∈ Z−A′, where A′ is defined as (15) but including also q0 = 2,
α0 = 1 (note that all qj are odd in this case). So a1 is also even.

Remark 32. We end with the proof that the symplectic manifold
produced in [21] does not admit a complex structure. That manifold Z
is constructed as follows: take the 4-torus T4 with coordinates
(x1, x2, x3, x4) and take 2-tori T12, T13, T14 along the directions (x1, x2),
(x1, x3), (x1, x4), respectively. We arrange these 2-tori to be disjoint and
make them symplectic. Now perform Gompf connected sums [14] with
3-copies of the rational elliptic surface E(1) along a fiber F . This pro-
duces

Z ′ = T4#T12=FE(1)#T13=FE(1)#T14=FE(1).

Now we blow-up twice to get Z = Z ′#2CP 2. Then Z is simply connected
and it has b2(Z) = 36 and contains thirty-six disjoint surfaces, of which
thirty-one of genus 1 and negative self-intersection, two of genus 2, and
three of genus 3, all of positive self-intersection (see Theorem 23 in [21]).
Then b+2 (Z) = 5 and b−2 (Z) = 31.

Suppose that Z admits a complex structure. First, for a complex
manifold b+2 = 1+pg and b−2 = h1,1+pg−1, thus b−2 ≥ b

+
2 −1, as h1,1 ≥ 1.
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This implies that the orientation of Z has to be the same as a complex
manifold. Also pg = 4 and h1,1 = 28. Using Noether’s formula,

K2
Z + c2
12

= χ(OZ) = 1− q + pg = 5.

As c2 = χ(Z) = 38, we get K2
Z = 22. As K2

Z > 9, the Enriques classifi-
cation ([4, p. 188]) implies that Z is of general type.

Next we use the Seiberg–Witten invariants of Z. For a minimal sur-
face X of general type, the only Seiberg–Witten basic classes are ±KX

(see Proposition 2.2 in [11]). If Z is the blow-up of X at s points, then
the basic classes of Z are κZ = ±KX ±E1 ± · · · ±Es, where E1, . . . , Es
are the exceptional divisors. Note that κ2Z = K2

X − s = K2
Z = 22.

Now we compute the Seiberg–Witten basic classes of Z. The only
Seiberg–Witten basic class of T4 is κ = 0. The Seiberg–Witten basic
classes of a Gompf connected sum along a torus can be found in [24,
Corollary 15]. Using the relative Seiberg–Witten invariant of E(1) in [24,
Theorem 18], we have that the Seiberg–Witten invariants satisfy

SWX#FE(1) = SWX · (eF + e−F ),

for a 4-manifold X. Therefore the basic classes of Z ′ are only κ′ =
±T12 ± T13 ± T14. When blowing-up, the basic classes of Z are κZ =
±T12 ± T13 ± T14 ± E1 ± E2. Then κ2Z = −2, which is a contradiction.
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tegancedo, 28660, Madrid, Spain

E-mail address: juan.rojo.carulli@upm.es
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