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STRUCTURE MONOIDS OF SET-THEORETIC

SOLUTIONS OF THE YANG–BAXTER EQUATION

Ferran Cedó, Eric Jespers, and Charlotte Verwimp

Abstract: Given a set-theoretic solution (X, r) of the Yang–Baxter equation, we

denote by M = M(X, r) the structure monoid and by A = A(X, r), respectively

A′ = A′(X, r), the left, respectively right, derived structure monoid of (X, r). It is
shown that there exist a left action of M on A and a right action of M on A′ and

1-cocycles π and π′ of M with coefficients in A and in A′ with respect to these

actions, respectively. We investigate when the 1-cocycles are injective, surjective, or
bijective. In case X is finite, it turns out that π is bijective if and only if (X, r) is left

non-degenerate, and π′ is bijective if and only if (X, r) is right non-degenerate. In

case (X, r) is left non-degenerate, in particular π is bijective, we define a semi-truss
structure on M(X, r) and then we show that this naturally induces a set-theoretic

solution (M, r) on the least cancellative image M = M(X, r)/η of M(X, r). In case X
is naturally embedded in M(X, r)/η, for example when (X, r) is irretractable, then

r is an extension of r. It is also shown that non-degenerate irretractable solutions
necessarily are bijective.
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1. Introduction

Let V be a vector space over a field K. Solutions R : V ⊗V → V ⊗V
of the linear braid or Yang–Baxter equation (abbreviated YBE)

(R⊗ idV ) ◦ (idV ⊗R) ◦ (R⊗ idV ) = (idV ⊗R) ◦ (R⊗ idV ) ◦ (idV ⊗R)

on the vector space V ⊗ V ⊗ V have led to several algebraic structures,
including some classes of bialgebras, quantum groups, and Hopf algebras.
Because the variety of solutions remains elusive, Drinfeld ([11]) in 1992
proposed to consider solutions that are linearizations of solutions on a
basis of V . These are the so called set-theoretic solutions of the YBE.
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Thus a pair (X, r), where X is a non-empty set and r : X ×X → X ×X
is a map, is called a set-theoretic solution of the YBE if

(r × idX) ◦ (idX ×r) ◦ (r × idX) = (idX ×r) ◦ (r × idX) ◦ (idX ×r).

For x, y ∈ X, write r(x, y) = (σx(y), γy(x)). The solution (X, r) is
said to be left (resp. right) non-degenerate if each map σx (resp. γy)
is bijective. A left and right non-degenerate solution is simply called a
non-degenerate solution. The solution (X, r) is said to be involutive if
r2 = idX×X , and in particular such a solution is bijective.

This study started in the seminal papers of Etingof, Schedler, and
Soloviev [12] and Gateva-Ivanova and Van den Bergh [17]. Since then,
different aspects of this combinatorial problem have been developed [14,
17, 25, 26, 31] and several interesting connections have been found,
such as braid and Garside groups [7, 10], (semi)groups of I-type [17, 21],
matched pairs of groups [25, 32], Artin–Schelter regular algebras [13],
Jacobson radical rings and generalizations [5, 27], regular subgroups and
Hopf–Galois extensions [30], affine manifolds [28], orderability [3, 8],
and factorizable groups [33].

It is now well-known that all non-degenerate involutive set-theoretic
solutions (X, r) are restrictions of a set-theoretic solution on the struc-
ture monoid

M(X, r) = 〈x ∈ X | xy = σx(y)γy(x) for all x, y ∈ X〉.

Furthermore, in this case, the structure group

G(X, r) = gr(x ∈ X | xy = σx(y)γy(x) for all x, y ∈ X)

and the permutation group G(X, r)=gr(σx | x∈X) have a brace struc-
ture, an algebraic structure introduced by Rump in [27]. Moreover, in [2],
it is shown that all finite non-degenerate involutive set-theoretic solu-
tions with a given permutation group, as a brace, can be explicitly
constructed. For this case of finite solutions (X, r), Etingof, Schedler,
and Soloviev ([12]) proved that G(X, r) is a finitely generated, solv-
able abelian-by-finite group and independently Gateva-Ivanova and Van
den Bergh ([17]) have shown that G(X, r) is a Bieberbach group, i.e.
G(X, r) is an abelian-by-finite group, torsion-free, and finitely gener-
ated. To deal with arbitrary finite bijective non-degenerate solutions
Guarnieri and Vendramin ([18]) introduced the algebraic structure called
a skew brace. Bachiller ([1]) then also showed that all such solutions
can be described from finite skew braces. Lu, Yan, and Zhu ([25]) and
Soloviev ([31]) showed that for such solutions the structure groupG(X, r)
is abelian-by-finite (see also Lebed and Vendramin – [24] – for another
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proof), and Jespers, Kubat, and Van Antwerpen ([19]) showed that the
structure monoid M(X, r) is also abelian-by-finite. Note that, if (X, r) is
not involutive, then the canonical map i : X → G(X, r) is not necessar-
ily injective and thus one cannot recover r from the associated solution
on G(X, r). However, it can be recovered from the solution associated
to M(X, r).

The associated structure algebras, i.e. the monoid algebra KM(X, r)
and the group algebra KG(X, r), where K is any field, have also been
studied by Jespers and Okniński [21], Gateva-Ivanova and Van den
Bergh [17], and Jespers, Kubat, and Van Antwerpen [19]. In the lat-
ter it is shown that if (X, r) is a left non-degenerate bijective finite
set-theoretic solution, then the algebra KM(X, r) (and KG(X, r)) is
a module-finite normal extension of a commutative affine subalgebra. In
particular, these algebras are Noetherian PI-algebras of finite Gelfand–
Kirillov dimension. Furthermore, it was shown that many properties,
such as being a domain or prime, of the algebra KM(X, r) are equiva-
lent with the solution (X, r) being involutive.

A crucial fact to prove the above results is (see [12, 19, 25]) that if
(X,r) is a left non-degenerate solution, then the structure monoidM(X,r)
is a regular submonoid of the semidirect product

A(X, r) o G(X, r),

where

A(X, r) = 〈x ∈ X | xσx(y) = σx(y)σσx(y)(γy(x)) for all x, y ∈ X〉,

i.e. for any element a ∈ A(X, r) there is a unique φ(a) ∈ G(X, r) such
that (a, φ(a)) ∈ M(X, r). In particular, one has a bijective 1-cocycle
M(X, r) → A(X, r), determined by the natural action of G(X, r) on
A(X, r). Here, the derived monoid A(X, r) “encodes” the relations deter-
mined by the map r2 : X2 → X2. If, furthermore, the left non-degenerate
solution (X, r) is bijective, then the monoid A = A(X, r) is such that
aA = Aa for all a ∈ A. So A(X, r) consists of normal elements and
thus A has a much richer structure than M(X, r). For example, if (X, r)
is involutive, then A is a free abelian monoid of rank |X|. It is this
“richer structure” that has been exploited in several papers to obtain
information on the structure monoid M(X, r) and the structure alge-
bra KM(X, r).

In this paper we continue these investigations for arbitrary set-the-
oretic solutions (X, r). So, r is not necessarily bijective and X is any
set. In the first section we recall the important result of Gateva-Ivanova
and Majid [16]: there exists a unique set-theoretic solution (M, rM )
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associated to the structure monoid M = M(X, r) such that the re-
striction of rM to X2 equals r. In the second section we introduce
two derived monoids A(X, r) and A′(X, r) and we prove that there is
a unique 1-cocycle π : M(X, r) → A(X, r), with respect to the nat-
ural left action λ′ : M(X, r) → End(A(X, r)), such that π(x) = x,
and a unique 1-cocycle π′ : M(X, r) → A′(X, r), with respect to the
natural right action ρ′ : M(X, r) → End(A′(X, r)) such that π′(x) =
x. Hence one gets a monoid homomorphism f : M(X, r) → A(X, r) o
Im(λ′) : a 7→(π(a), λ′a) and a monoid anti-homomorphism f ′ : M(X, r)→
A′(X, r)op o Im(ρ′) : a 7→ (π′(a), ρ′a), where λ′x(y) = σx(y) and ρ′x(y) =
γx(y) for all x, y ∈ X. In general these 1-cocycles are not bijective. But
we investigate when they are injective, respectively surjective. In case
(X, r) is finite, the bijectiveness of π (respectively π′) is equivalent to
the solution being left (respectively right) non-degenerate. In Section 4
we prove the surprising result that any non-degenerate irretractable so-
lution is necessarily bijective. In Section 5 we link the algebraic struc-
ture of M(X, r) to that of semi-trusses as introduced by Brzeziński [4].
We determine the left cancellative (additive) congruence η on M(X, r)
for (X, r) a left non-degenerate solution, and we show that we obtain a
solution (M/η, r) determined by a semi-truss structure on M/η.

2. Solution associated with the structure monoid

In this section we recall a result of Gateva-Ivanova and Majid in [16,
Section 3.2], stating that any set-theoretic solution (X, r) of the YBE can
be extended to a set-theoretic solution on its structure monoid M(X, r).
The result in [16] is stated for bijective solutions but the proof remains
valid without this assumption.

We recall this construction. Let (X, r) be a set-theoretic solution of the
YBE which is not necessarily bijective. We write r(x, y) = (σx(y), γy(x))
for all x, y ∈ X. It is known that (X, r) is a set-theoretic solution of the
YBE if and only if the following conditions hold:

σxσy = σσx(y)σγy(x),(1)

σγσx(y)(z)(γy(x)) = γσγx(z)(y)(σz(x)),(2)

γxγy = γγx(y)γσy(x),(3)

for all x, y, z ∈ X.
Let M = M(X, r) be the structure monoid of (X, r), that is, the

multiplicative monoid with operation ◦ and with presentation

M(X, r) = 〈X | x ◦ y = σx(y) ◦ γy(x) for all x, y ∈ X〉.
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One defines the following “left action” on M :

λ : M −→ Map(M,M) : a 7−→ λa,

with λ1 = idM , and for x1, . . . , xm, y1, . . . , yn ∈ X and n > 1, λx1
(1) = 1,

(4) λx1
(y1)=σx1

(y1), λx1
(y1◦· · ·◦yn)=σx1

(y1)◦λγy1 (x1)(y2◦· · ·◦yn),

and for m > 1,

(5) λx1◦···◦xm = λx1
◦ · · · ◦ λxm .

One also defines a “right action” on M :

ρ : M −→ Map(M,M) : a 7−→ ρa,

with ρ1 = idM , and for x1, . . . , xm, y1, . . . , yn ∈ X and n > 1,

(6) ρx1
(y1)=γx1

(y1), ρx1
(y1◦· · ·◦yn)=ρσyn (x1)(y1◦· · ·◦yn−1)◦γx1

(yn),

and for m > 1,

(7) ρx1◦···◦xm = ρxm ◦ · · · ◦ ρx1
.

In [16] it is proved that λ and ρ are well defined. Furthermore,
it is then shown that every set-theoretic solution (X, r) of the YBE
is the restriction of a set-theoretic solution defined on the structure
monoid M(X, r).

Theorem 2.1 (Gateva-Ivanova and Majid [16, Theorem 3.6]). Let (X, r)
be a set-theoretic solution of the YBE. Then the mapping λ is a monoid
homomorphism and the mapping ρ is monoid anti-homomorphism such
that

ρb(c ◦ a) = ρλa(b)(c) ◦ ρb(a),(8)

λb(a ◦ c) = λb(a) ◦ λρa(b)(c),(9)

for all a, b, c ∈M . Furthermore, for a, b ∈M = M(X, r),

(10) a ◦ b = λa(b) ◦ ρb(a).

Let rM : M ×M → M ×M be defined by rM (a, b) = (λa(b), ρb(a)) for
all a, b ∈M . Then, (M, rM ) is a set-theoretic solution of the YBE. Ob-
viously, rM extends the solution r.

Note that if the solution (X, r) is bijective and left and right non-
degenerate, i.e. all σx and γx are bijective maps, then as in the proof
of the above result one can show that the mappings σx and γx induce
actually left and right actions on G = G(X, r), say λe : G → Sym(G)
and ρe : G→ Sym(G); this is Theorem 4 in [25]. Furthermore, the map-
ping rG(a, b) = (λea(b), ρeb(a)), for a, b ∈ G, defines a set-theoretic so-
lution on G. Note that, in general, the natural map i : X → G is not



504 F. Cedó, E. Jespers, C. Verwimp

injective. One obtains that rG is an extension of the induced set-theoretic
solution (i(X), ri(X)2) = (i(X), (rG)i(X)2).

A natural question is whether one can extend a solution (X, r), via the
actions induced from σx and γy, to a solution on the structure group.
This however is not possible in general as shown by the following ex-
ample. Consider the set-theoretic solution (X, idX2) on a set X with
more than one element. Obviously, each σx and γx is constant with im-
age {x}. Hence, M = M(X, idX2) is the free monoid on the set X and
G = G(X, idX2) is the free group on X. However, because the maps σx
are not injective one cannot extend the maps σx to a monoid homomor-
phism λ : G→ Map(G,G) with λx(y) = σx(y) for y ∈ G.

A remarkable fact shown by Lu, Yan, and Zhu in [25] is that if one can
extend the mappings σx and γx to left and right actions on the structure
group, then the induced set-theoretic solution is bijective.

3. Derived monoids

Let (X, r) be a set-theoretic solution of the YBE. Write r(x, y) =
(σx(y), γy(x)) for all x, y ∈ X. If (X, r) is left non-degenerate, then
Soloviev defined in [31] its derived solution (X, r′) by

r′(x, y) = (y, σyγσ−1
x (y)(x))

for all x, y ∈ X. For general solutions one cannot define such a derived
solution. But in [19] one defines the derived monoids of (X, r) as

A(X, r) = 〈X | x+ σx(y) = σx(y) + σσx(y)γy(x) for all x, y ∈ X〉

and

A′(X, r) = 〈X | γy(x)⊕ y = γγy(x)σx(y)⊕ γy(x) for all x, y ∈ X〉.

The zero element of A(X, r) is denoted 0 and the zero element of A′(X, r)
is denoted 0′. We will say that A(X, r) is the left derived structure
monoid of (X, r) and A′(X, r) is the right derived structure monoid
of (X, r).

Note that X ⊆M(X, r), X ⊆ A(X, r), and X ⊆ A′(X, r), because the
defining relations of these three monoids are homogeneous of degree 2.

Proposition 3.1. Let (X, r) be a set-theoretic solution of the YBE,
where r(x, y) = (σx(y), γy(x)) for all x, y ∈ X. Then there exists a
unique monoid homomorphism λ′ : M(X, r) → End(A(X, r)) such that
λ′(x)(y) = σx(y) for all x, y ∈ X and there exists a unique anti-homo-
morphism ρ′ : M(X, r) → End(A′(X, r)) such that ρ′(x)(y) = γx(y) for
all x, y ∈ X. Furthermore, if (X, r) is left (right) non-degenerate, then
Im(λ′) ⊆ Aut(A(X, r)) (Im(ρ′) ⊆ Aut(A′(X, r))).
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Proof: We will write λ′(a) = λ′a and ρ′(a) = ρ′a for all a ∈M(X, r).

Let x1, . . . , xm, y1, . . . , yn ∈ X. We denote by 1, 0, 0′ the identity
elements of the monoids M(X, r), A(X, r), A′(X, r), respectively. We
define λ′1 = idA(X,r), ρ

′
1 = idA′(X,r), λ

′
a(0) = 0, ρ′a(0′) = 0′, for all

a ∈M(X, r), and

λ′x1◦···◦xm(y1 + · · ·+ yn) = σx1 . . . σxm(y1) + · · ·+ σx1 . . . σxm(yn),

and

ρ′x1◦···◦xm(y1 ⊕ · · · ⊕ yn) = γxm . . . γx1(y1)⊕ · · · ⊕ γxm . . . γx1(yn).

First we shall prove that λ′ and ρ′ are well-defined. To do so it is
enough to prove that the following equalities hold:

λ′x1◦x2
(y1 + · · ·+ yn) = λ′σx1 (x2)◦γx2 (x1)

(y1 + · · ·+ yn),(11)

λ′x1◦···◦xm(y1 + σy1(y2)) = λ′x1◦···◦xm(σy1(y2) + σσy1 (y2)(γy2(y1))),(12)

ρ′x1◦x2
(y1 ⊕ · · · ⊕ yn) = ρ′σx1 (x2)◦γx2 (x1)

(y1 ⊕ · · · ⊕ yn),(13)

ρ′x1◦···◦xm(γy2(y1)⊕ y2) = ρ′x1◦···◦xm(γγy2 (y1)(σy1(y2))⊕ γy2(y1)).(14)

Using relations (1) and (3), equations (11) and (13) are easily checked:

λ′x1◦x2
(y1 + · · ·+ yn) = σx1

σx2
(y1) + · · ·+ σx1

σx2
(yn)

= σσx1 (x2)σγx2 (x1)(y1) + · · ·+ σσx1 (x2)σγx2 (x1)(yn)

= λ′σx1 (x2)◦γx2 (x1)
(y1 + · · ·+ yn),

ρ′x1◦x2
(y1 ⊕ · · · ⊕ yn) = γx2

γx1
(y1)⊕ · · · ⊕ γx2

γx1
(yn)

= γγx2 (x1)γσx1 (x2)(y1)⊕ · · · ⊕ γγx2 (x1)γσx1 (x2)(yn)

= ρ′σx1 (x2)◦γx2 (x1)
(y1 ⊕ · · · ⊕ yn).

Using relations (1), (2), and (3) we shall prove equations (12) and (14)
by induction on m. For m = 0, (12) and (14) follows by the defin-
ing relations of A(X, r) and A′(X, r). Suppose that m > 0. Assume
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that λ′x1◦···◦xk(y1 +σy1(y2)) = λ′x1◦···◦xk(σy1(y2) +σσy1 (y2)(γy2(y1))) and

ρ′x1◦···◦xk(γy2(y1) ⊕ y2) = ρ′x1◦···◦xk(γγy2 (y1)(σy1(y2)) ⊕ γy2(y1)), for k <
m, then

λ′x1◦···◦xm(y1 + σy1(y2))

= σx1
· · ·σxm(y1) + σx1

· · ·σxm(σy1(y2))

= λ′x1◦···◦xm−1
(σxm(y1) + σxm(σy1(y2)))

= λ′x1◦···◦xm−1
(σxm(y1) + σσxm (y1)(σγy1 (xm)(y2)))

= λ′x1◦···◦xm−1
(σσxm (y1)(σγy1 (xm)(y2))

+ σσσxm (y1)(σγy1 (xm)(y2))(γσγy1 (xm)(y2)(σxm(y1))))

= λ′x1◦···◦xm−1
(σxm(σy1(y2)) + σσxm (σy1 (y2))

(γσγy1 (xm)(y2)(σxm(y1))))

= λ′x1◦···◦xm−1
(σxm(σy1(y2)) + σσxm (σy1 (y2))

(σγσy1 (y2)(xm)(γy2(y1))))

= λ′x1◦···◦xm−1
(σxm(σy1(y2)) + σxm(σσy1 (y2)(γy2(y1))))

= σx1
· · ·σxm(σy1(y2)) + σx1

· · ·σxm(σσy1 (y2)(γy2(y1)))

= λ′x1◦···◦xm(σy1(y2) + σσy1 (y2)(γy2(y1))),

and

ρ′x1◦···◦xm(γy2(y1)⊕ y2)

= ρ′x2◦···◦xm(γx1(γy2(y1))⊕ γx1(y2))

= ρ′x2◦···◦xm(γγx1 (y2)(γσy2 (x1)(y1))⊕ γx1
(y2))

= ρ′x2◦···◦xm(γγγx1 (y2)(γσy2 (x1)(y1))(σγσy2 (x1)(y1)(γx1
(y2)))

⊕ γγx1 (y2)(γσy2 (x1)(y1)))

= ρ′x2◦···◦xm(γγx1 (γy2 (y1))(σγσy2 (x1)(y1)(γx1(y2)))⊕ γx1(γy2(y1)))

= ρ′x2◦···◦xm(γγx1 (γy2 (y1))(γσγy2 (y1)(x1)(σy1(y2)))⊕ γx1
(γy2(y1)))

= ρ′x2◦···◦xm(γx1
(γγy2 (y1)(σy1(y2)))⊕ γx1

(γy2(y1)))

= γxm · · · γx1
(γγy2 (y1)(σy1(y2)))⊕ γxm · · · γx1

(γy2(y1))

= ρ′x1◦···◦xm(γγy2 (y1)(σy1(y2))⊕ γy2(y1)).

This proves that λ′a and ρ′a are well-defined and clearly λ′a∈End(A(X, r))
and ρ′a ∈ End(A′(X, r)) for all a ∈ M(X, r). Thus λ′ and ρ′ are well-
defined. It is clear that λ′ is a monoid homomorphism and that it is
unique with respect to the condition λ′x(y) = σx(y) for all x, y ∈ X. It is
also clear that ρ′ is a monoid anti-homomorphism and that it is unique
for the condition ρ′x(y) = γx(y) for all x, y ∈ X.
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Assume now that (X, r) is left non-degenerate. Let x, y1, . . . , yn ∈ X.
We define fx ∈ End(A(X, r)) by

fx(y1 + · · ·+ yn) = σ−1x (y1) + · · ·+ σ−1x (yn).

To see that fx is well-defined it is enough to prove that

fx(y1 + σy1(y2)) = fx(σy1(y2) + σσy1 (y2)(γy2(y1))).

Note that, from (1),

(15) σ−1x σy1(y2) = σσ−1
x (y1)

σ−1γ
σ
−1
x (y1)

(x)(y2)

and thus, also using (2), we get that

σγ
σ
−1
x σy1 (y2)

(x)γσ−1
γ
σ
−1
x (y1)

(x)
(y2)

(σ−1x (y1))

= σγ
σ
σ
−1
x (y1)

σ
−1
γ
σ
−1
x (y1)

(x)
(y2)

(x)γσ−1
γ
σ
−1
x (y1)

(x)
(y2)

(σ−1x (y1))

= γσγ
σ
−1
x (y1)

(x)(σ
−1
γ
σ
−1
x (y1)

(x)
(y2))

σx(σ−1x (y1))

= γy2(y1).

(16)

We have that

fx(y1+σy1(y2)) = σ−1x (y1) + σ−1x (σy1(y2))

(15)
= σ−1x (y1) + σσ−1

x (y1)
(σ−1γ

σ
−1
x (y1)

(x)(y2))

= σσ−1
x (y1)

(σ−1γ
σ
−1
x (y1)

(x)(y2))

+ σσ
σ
−1
x (y1)

(σ−1
γ
σ
−1
x (y1)

(x)
(y2))

(γσ−1
γ
σ
−1
x (y1)

(x)
(y2)

(σ−1x (y1)))

(15)
= σ−1x (σy1(y2))+σσ−1

x (σy1 (y2))
(γσ−1

γ
σ
−1
x (y1)

(x)
(y2)

(σ−1x (y1)))

(16)
= σ−1x (σy1(y2))+σσ−1

x (σy1 (y2))
(σ−1γ

σ
−1
x σy1

(y2)
(x)(γy2(y1)))

(15)
= σ−1x (σy1(y2)) + σ−1x (σσy1 (y2)(γy2(y1)))

= fx(σy1(y2) + σσy1 (y2)(γy2(y1))),

where the third equality follows from the defining relations in A(X, r).
Hence fx is well-defined. Note that fxλ

′
x = λ′xfx = id. Thus λ′x ∈

Aut(A(X, r)) for all x ∈ X. Therefore Im(λ′) ⊆ Aut(A(X, r)).
Similarly one can prove that if (X, r) is right non-degenerate, then

Im(ρ′) ⊆ Aut(A′(X, r)).
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Proposition 3.2. Let (X, r) be a set-theoretic solution of the YBE.
Then

(i) There is a unique 1-cocycle π : M(X, r)→ A(X, r) with respect to
the left action λ′ such that π(x) = x for all x ∈ X.

(ii) There is a unique 1-cocycle π′ : M(X, r) → A′(X, r) with respect
to the right action ρ′ such that π′(x) = x for all x ∈ X.

Furthermore, the mapping

f : M(X, r) −→ A(X, r) o Im(λ′) : a 7−→ (π(a), λ′a)

is a monoid homomorphism and the mapping

f ′ : M(X, r) −→ A′(X, r)op o Im(ρ′) : a 7−→ (π′(a), ρ′a)

is a monoid anti-homomorphism.

Proof: We define for x1, . . . , xm ∈ X,

π(1) = 0,

π(x1) = x1, and for m > 1,

π(x1 ◦ · · · ◦ xm) = x1 + λ′x1
(π(x2 ◦ · · · ◦ xm)),

π′(1) = 0′,

π′(x1) = x1, and for m > 1,

π′(x1 ◦ · · · ◦ xm) = ρ′xm(π′(x1 ◦ · · · ◦ xm−1))⊕ xm.

We prove that π(x1 ◦ · · · ◦ xm) and π′(x1 ◦ · · · ◦ xm) are well-defined by
induction on m. For m = 1 it is clear. Suppose that m > 1 and that
π(x1 ◦ · · · ◦ xm−1) and π′(x1 ◦ · · · ◦ xm−1) are well-defined.

By the induction hypothesis, it is enough to show that

(17) x1+λ′x1
(π(x2◦· · ·◦xm))=σx1(x2)+λ′σx1 (x2)

(π(γx2(x1)◦x3◦· · ·◦xm))

and

(18) ρ′xm(π′(x1 ◦ · · · ◦ xm−1))⊕ xm
= ρ′γxm (xm−1)

(π′(x1 ◦ · · · ◦ xm−2 ◦ σxm−1(xm)))⊕ γxm(xm−1).
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By (11) and (13) we get that

σx1(x2) + λ′σx1 (x2)
(π(γx2(x1) ◦ x3 ◦ · · · ◦ xm))

= σx1
(x2) + λ′σx1 (x2)

(γx2
(x1) + λ′γx2 (x1)

(π(x3 ◦ · · · ◦ xm)))

= σx1
(x2) + σσx1 (x2)(γx2

(x1)) + λ′σx1 (x2)
(λ′γx2 (x1)

(π(x3 ◦ · · · ◦ xm)))

= x1 + σx1
(x2) + λ′σx1 (x2)◦γx2 (x1)

(π(x3 ◦ · · · ◦ xm))

= x1 + σx1
(x2) + λ′x1◦x2

(π(x3 ◦ · · · ◦ xm))

= x1 + σx1
(x2) + λ′x1

(λ′x2
(π(x3 ◦ · · · ◦ xm)))

= x1 + λ′x1
(x2 + λ′x2

(π(x3 ◦ · · · ◦ xm)))

= x1 + λ′x1
(π(x2 ◦ · · · ◦ xm))

and

ρ′γxm (xm−1)
(π′(x1 ◦ · · · ◦ xm−2 ◦ σxm−1(xm)))⊕ γxm(xm−1)

=ρ′γxm (xm−1)
(ρ′σxm−1

(xm)(π
′(x1◦ · · · ◦xm−2))⊕σxm−1

(xm))⊕γxm(xm−1)

=ρ′γxm (xm−1)
(ρ′σxm−1

(xm)(π
′(x1◦ · · · ◦xm−2)))

⊕ γγxm (xm−1)(σxm−1
(xm))⊕ γxm(xm−1)

=ρ′σxm−1
(xm)◦γxm (xm−1)

(π′(x1 ◦ · · · ◦ xm−2))⊕ γxm(xm−1)⊕ xm
=ρ′xm−1◦xm(π′(x1 ◦ · · · ◦ xm−2))⊕ γxm(xm−1)⊕ xm
=ρ′xm(ρ′xm−1

(π′(x1 ◦ · · · ◦ xm−2)))⊕ γxm(xm−1)⊕ xm
=ρ′xm(ρ′xm−1

(π′(x1 ◦ · · · ◦ xm−2))⊕ xm−1)⊕ xm
=ρ′xm(π′(x1 ◦ · · · ◦ xm−1))⊕ xm.

Thus, indeed, π and π′ are well-defined.
For all a, b ∈M(X, r), we shall prove by induction on deg(a) + deg(b)

that

(19) π(a ◦ b) = π(a) + λ′a(π(b))

and

(20) π′(a ◦ b) = ρ′b(π
′(a))⊕ π′(b).

If deg(a) = deg(b) = 1, then (19) and (20) follow by definition. Hence,
we may suppose that deg(a) + deg(b) > 2 and that π(a′ ◦ b′) = π(a′) +
λ′a′(π(b′)) and π′(a′ ◦ b′) = ρ′b′(π

′(a′)) ⊕ π′(b′) for all a′, b′ ∈ M(X, r)
such that deg(a′) + deg(b′) < deg(a) + deg(b).
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Write a = x ◦ a′ and b = b′ ◦ y for some x, y ∈ X and a′, b′ ∈M(X, r).
By the induction hypothesis we have

π(a ◦ b) = π(x ◦ a′ ◦ b)
= x+ λ′x(π(a′ ◦ b))
= x+ λ′x(π(a′) + λ′a′(π(b)))

= x+ λ′x(π(a′)) + λ′x(λ′a′(π(b)))

= π(x ◦ a′) + λ′x◦a′(π(b))

= π(a) + λ′a(π(b))

and

π′(a ◦ b) = π′(a ◦ b′ ◦ y)

= ρ′y(π′(a ◦ b′))⊕ y
= ρ′y(ρ′b′(π

′(a))⊕ π′(b′))⊕ y
= ρ′y(ρ′b′(π

′(a)))⊕ ρ′y(π′(b′))⊕ y
= ρ′b′◦y(π′(a))⊕ π′(b′ ◦ y)

= ρ′b(π
′(a))⊕ π′(b).

Thus (19) and (20) follow by induction. It is clear that π and π′ are the
unique 1-cocycles satisfying the hypothesis. Therefore the result follows.

A natural question is the following.

Question 3.3. When are the 1-cocycles π and π′ bijective?

In general, these 1-cocycles are not bijective. We provide two exam-
ples. The first one is an example where π is injective but not surjective,
and the second one where π and π′ are neither injective nor surjective.

Example 3.4. Let (X, r) be a set-theoretic solution of the YBE, where
X is set of cardinality greater than 1 and r : X ×X → X ×X is a map
defined by r(x, y) = (x, x) for all x, y ∈ X. The associated monoids are

M(X, r) = 〈X | x ◦ y = x ◦ x for all x, y ∈ X〉,
A(X, r) = 〈X | x+ x = x+ x for all x, y ∈ X〉,
A′(X, r) = 〈X | x⊕ y = x⊕ x for all x, y ∈ X〉.

The 1-cocycle π′ is bijective, but it is clear that the 1-cocycle π is not.
The latter is not surjective. For example, the element x + y, where
x 6= y ∈ X is not in the image of π. Note that π is still injective.
Similarly, (X, r) with r : X ×X → X ×X defined by r(x, y) = (y, y) is
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an example of a set-theoretic solution of the YBE where π′ is injective
but not surjective.

Example 3.5. Let S = {0, 1, 2} and define the skew lattice (S,∧,∨) by

∧ 0 1 2
0 0 0 0
1 0 1 2
2 0 1 2

∨ 0 1 2
0 0 1 2
1 1 1 1
2 2 2 2

The skew lattice (S,∧,∨) is an example of a distributive and cancellative
skew lattice that is not a co-strongly distributive skew lattice; see ([9, Ex-
ample 4.4]). By [9, Theorem 5.7], (S,∧,∨) is a left distributive solution,
i.e. (S, r) is a set-theoretic solution of the YBE, where r : S×S → S×S
is defined by r(x, y) = (x ∧ y, y ∨ x) for all x, y ∈ S. The associated
monoids are

M(X, r)=〈0, 1, 2 | 1 ◦ 0 = 0 ◦ 1, 2 ◦ 0 = 0 ◦ 2, 1 ◦ 2 = 2 ◦ 2, 2 ◦ 1 = 1 ◦ 1〉,
A(X, r)=〈0, 1, 2 | 1 + 0=0 + 0, 2 + 0=0 + 0, 1+2=2+2, 2 + 1=1+1〉,
A′(X, r)=〈0, 1, 2 | 1⊕ 0 = 1⊕ 1, 2⊕ 0 = 2⊕ 2〉.

Both π and π′ are not injective, as π(1 ◦ 0) = 1 + 0 = 0 + 0 = π(0 ◦ 0)
and π′(1◦0) = 1⊕0 = 1⊕1 = π′(1◦1), but 1◦0 6= 0◦0 and 1◦0 6= 1◦1
in M(X, r). Both π and π′ are not surjective as 0 + 1 (resp. 0⊕ 1) is not
in the image of π (resp. π′).

Proposition 3.6. Let (X, r) be a set-theoretic solution of the YBE. Write
r(x, y) = (σx(y), γy(x)). Let π : M(X, r)→ A(X, r) and π′ : M(X, r)→
A′(X, r) be the 1-cocycles of Proposition 3.2. Then

(i) π is surjective if and only if σx is surjective for all x ∈ X.
(ii) π′ is surjective if and only if γx is surjective for all x ∈ X.

Proof: Suppose that σx is surjective for all x ∈ X. First, we claim that
σx being surjective implies that λ′x is surjective. Take n an arbitrary
positive integer. Let x1, . . . , xn ∈ X such that x1 + · · · + xn ∈ A(X, r).
As σx is surjective, there exist y1, . . . , yn ∈ X such that σx(yi) = xi for
all i ∈ {1, . . . , n}. Then, λ′x(y1 + · · · + yn) = σx(y1) + · · · + σx(yn) =
x1 + · · ·+ xn, which proves that λ′x is surjective.

Next, we prove that π is surjective by induction on the length of
the elements in A(X, r). As π(x) = x for all x ∈ X, π is surjective on
elements of length 1. Assume now that for a fixed positive integer n and
for any x1, . . . , xn ∈ X, there exist y1, . . . , yn ∈ X such that π(y1 ◦ · · · ◦
yn) = x1+· · ·+xn. Take x1, . . . , xn+1 ∈ X. Since λ′x1

is surjective, there
exist z2, . . . , zn+1 ∈ X such that λ′x1

(z2 + · · ·+ zn+1) = x2 + · · ·+ xn+1.
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Using the induction hypothesis, there exist y2, . . . , yn+1 ∈ X such that
π(y2 ◦ · · · ◦ yn+1) = z2 + · · ·+ zn+1. Thus, we obtain

x1 + · · ·+ xn+1 = x1 + λ′x1
(z2 + · · ·+ zn+1)

= x1 + λ′x1
(π(y2 ◦ · · · ◦ yn+1))

= π(x1 ◦ y2 ◦ · · · ◦ yn+1),

and π is surjective.
Suppose now that π is surjective. Let x, y ∈ X and consider x+ y ∈

A(X, r). Since π is surjective (and it preserves the degree), there exist
z, t ∈ X such that π(z◦t) = x+y. Thus z+σz(t) = x+y in A(X, r). By
the defining relations of A(X, r), this equality implies that there exists
y′ ∈ X such that σx(y′) = y. Therefore σx is surjective for all x ∈ X.

The proof for π′ is similar.

Proposition 3.7. Let (X, r) be a set-theoretic solution of the YBE. Write
r(x, y) = (σx(y), γy(x)). Let π : M(X, r)→ A(X, r) and π′ : M(X, r)→
A′(X, r) be the 1-cocycles of Proposition 3.2.

(i) If σx is injective for all x ∈ X, then π is injective.
(ii) If γx is injective for all x ∈ X, then π′ is injective.

Proof: We shall prove (i). The proof of (ii) is similar. Let FM(X) be
the (multiplicative) free monoid on X. Suppose that σx is injective for
all x ∈ X. Since π(x) = x for all x ∈ X, the restriction of π to elements
of degree one in M(X, r) is injective. Let n be an integer greater than 1.
Let x1, . . . , xn, y1, . . . , yn ∈ X be elements such that π(x1 ◦ · · · ◦ xn) =
π(y1 ◦ · · · ◦ yn). Thus, in A(X, r), we have that

x1+σx1
(x2)+· · ·+σx1

· · ·σxn−1
(xn)=y1+σy1(y2)+· · ·+σy1 · · ·σyn−1

(yn).

Let w1, w2 ∈ FM(X) be two elements of degree n. Suppose that w1 =
z1 · · · zn and w2 = t1 · · · tn, for some zi, ti ∈ X. We say that w1 ∼ w2

if there exist 1 ≤ i ≤ n − 1 and z ∈ X such that zj = tj for all j ∈
{1, 2, . . . , n}\{i, i+1} and, either zi+1 = σzi(z) = ti and ti+1 = σtiγz(zi),
or ti+1 = σti(z) = zi and zi+1 = σziγz(ti). Note that z1 + · · · + zn =
t1 + · · · + tn in A(X, r) if and only if there exist w′1, . . . , w

′
m ∈ FM(X)

of degree n such that

w1 = w′1 ∼ w′2 ∼ · · · ∼ w′m = w2.

Hence, to prove that x1◦· · ·◦xn=y1◦· · ·◦yn, we may assume that there ex-
ist 1≤ i≤n−1 and z∈X such that σx1 · · ·σxj−1(xj)=σy1 · · ·σyj−1(yj) for
all j∈{1, 2, . . . , n}\{i,i+1}, and also σx1· · ·σxi(xi+1)=σσx1···σxi−1

(xi)(z)=

σy1· · ·σyi−1(yi), as well as σy1· · ·σyi(yi+1)=σσy1···σyi−1
(yi)γz(σx1· · ·σxi−1(xi)).
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Since σx1
· · ·σxj−1

(xj) = σy1 · · ·σyj−1
(yj) for all j ∈ {1, 2, . . . , n} \

{i, i+ 1}, and σx is injective for all x ∈ X, we have that xj = yj for all
j ∈ {1, . . . , i− 1}. Hence, since σx1

· · ·σxi(xi+1) = σy1 · · ·σyi−1
(yi), and

σx is injective for all x ∈ X, we have that yi = σxi(xi+1). Now we have
that

σσx1 ···σxi−1
(xi)(z) = σx1 · · ·σxi(xi+1)

= λx1◦···◦xi−1
λxi(xi+1)

= λλx1◦···◦xi−1
(xi)λρxi (x1◦···◦xi−1)(xi+1)

= σσx1 ···σxi−1
(xi)λρxi (x1◦···◦xi−1)(xi+1),

where the third equality follows Theorem 2.1.
Hence, since σx is injective for all x ∈ X, we have that

z = λρxi (x1◦···◦xi−1)(xi+1).

By Theorem 2.1,

σy1 · · ·σyi(yi+1)=σσy1 ···σyi−1
(yi)γz(σx1 · · ·σxi−1(xi))

=σσx1 ···σxi−1
(σxi (xi+1))γz(σx1

· · ·σxi−1
(xi))

=λλx1◦···◦xi−1
(λxi(xi+1))ρλρxi(x1◦···◦xi−1)(xi+1)(λx1◦···◦xi−1

(xi))

=λλx1◦···◦xi−1
(λxi (xi+1))λρλxi (xi+1)(x1◦···◦xi−1)(ρxi+1

(xi))

=λx1◦···◦xi−1
λλxi (xi+1)(ρxi+1

(xi))

=λy1◦···◦yi−1
λyi(ρxi+1

(xi))

=σy1 · · ·σyi−1σyi(γxi+1(xi)).

Since σx is injective for all x ∈ X, we have that yi+1 = γxi+1
(xi). Thus,

yi ◦ yi+1 = σxi(xi+1) ◦ γxi+1
(xi) = xi ◦ xi+1.

Since σx1
· · ·σxj−1

(xj) = σy1 · · ·σyj−1
(yj) for all j ∈ {1, 2, . . . , n}\{i, i+

1} and σx is injective for all x ∈ X, we have that xj = yj for all
j ∈ {i+ 2, . . . , n}. Hence x1 ◦ · · · ◦ xn = y1 ◦ · · · ◦ yn, and therefore π is
injective.

Remark 3.8. Note that in the set-theoretic solution of the YBE of Exam-
ple 3.4, σx(y) = x for all x, y ∈ X, so σx is not injective. But π is injec-
tive. Similarly, (X, r) with r : X×X → X×X defined by r(x, y) = (y, y)
is a set-theoretic solution of the YBE where π′ is injective (see Exam-
ple 3.4) but γy(x) = y for all x, y ∈ X. So γy is not injective.
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If π (resp. π′) is injective, then it is clear that the map f (resp. f ′)
defined in Proposition 3.2 is an embedding. The latter was proved in [19]
under the assumption that (X, r) is a left non-degenerate solution. In this
case π is bijective and M(X, r) is a regular submonoid of the semidirect
product A(X, r) o gr(σx | x ∈ X).

The following result answers Question 3.3 for finite solutions.

Corollary 3.9 (Jespers, Kubat, and Van Antwerpen [19]). Let (X, r) be
a set-theoretic solution of the YBE, λ′ (resp. ρ′) the left (resp. right) ac-
tion as defined before, π (resp. π′) the unique 1-cocycle with respect to λ′

(resp. ρ′). Then, π (resp. π′) is bijective if (X, r) is left non-degenerate
(resp. right non-degenerate). The converse holds if X is finite.

Proof: Assume first that (X, r) is a left non-degenerate set-theoretic so-
lution of the YBE. Then, by Propositions 3.6 and 3.7, π is bijective.
Similarly, one can prove that (X, r) being a right non-degenerate solu-
tion implies that π′ is bijective.

Assume now that π : M(X, r) → A(X, r) is bijective and X is finite.
By Proposition 3.6, σx is surjective for all x ∈ X. Since X is finite, σx is
bijective for all x ∈ X, that is, (X, r) is left non-degenerate.

The next example shows the difficulty of Question 3.3 for infinite
solutions.

Example 3.10. Consider the set N of the non-negative integers. Let
r : N × N → N × N be the map defined by r(x, y) = (ξ(y), ξ(x)) for all
x, y ∈ N, where ξ(x) = max{0, x − 1} for all x ∈ N. Then (N, r) is a
set-theoretic solution of the YBE, such that the associated 1-cocycles π
and π′ are bijective but, for every x ∈ N, σx = γx = ξ is not injective
because ξ(0) = ξ(1).

Proof: It is easy to check that (N, r) is a set-theoretic solution of the
YBE. Note that, for every x ∈ N, ξx(x) = 0. Hence

M(N, r) = 〈N | x ◦ y = 0 ◦ 0〉,

A(N, r) = 〈N | x+ y = 0 + 0〉,

and

A′(N, r) = 〈N | x⊕ y = 0⊕ 0〉.
Therefore, for every integer n > 1, the monoids M(N, r), A(N, r), and
A′(N, r) have only one element of degree n. Since π and π′ preserve the
degree and π(x) = x and π′(x) = x, for all x ∈ N, we have that π and π′

are bijective. Thus the result follows.
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4. Non-degenerate irretractable solutions

In [26, Theorem 2] (and independently in [20, Corollary 2.3]) it is
proven that any finite involutive left non-degenerate set-theoretic solu-
tion of the YBE also is right non-degenerate. In the infinite case, the
latter is no longer true. The following example from [26] shows this.

Example 4.1. Let X be the set of the integers, and define r : X2 → X2

by

r(x, y) = (λx(y), λ−1λx(y)(x)),

where λx(y) = y + min(x, 0) for all x, y ∈ X. Note that λx is bijective
and λ−1x (y) = y−min(x, 0). It is easy to check that (X, r) is an involutive
solution. Note that it is not right non-degenerate. In fact, if a < 0, we
have that

ρa(b) = λ−1λb(a)(b) = b−min(a+ min(b, 0), 0) = b− (a+ b) = −a

for all b < 0. Hence ρa is not bijective if a < 0.

It is unclear whether the above holds for arbitrary bijective solutions.
Hence the following question is pertinent.

Question 4.2. Is any finite bijective left non-degenerate set-theoretic
solution of the YBE right non-degenerate?

A natural question is the converse:

Question 4.3. Are non-degenerate solutions of the YBE always bijec-
tive?

We will give a positive answer to this question in case the solu-
tion (X, r) is irretractable, i.e. σx = σy implies x = y for all x, y ∈ X.
Note that Example 4.1 is a retractable involutive solution. To our knowl-
edge it is unknown whether there exist infinite involutive irretractable so-
lutions that are left but not right non-degenerate. Note that irretractabil-
ity has been defined with respect to the maps σx. One could equally well
define retractability with respect to the maps γx. However, this makes no
difference since any solution r(x, y) = (σx(y), γy(x)) has a dual solution
r′(y, x) = (γy(x), σx(y)). Clearly r is (bijective) non-degenerate if and
only if r′ is (bijective) non-degenerate.

To prove the result we will make use of the following result of
Rump [29, Proposition 1]: Let X be a non-empty set and let r : X×X →
X ×X be a map, with r(x, y) = (σx(y), γy(x)), such that γy : X → X is
bijective for all y ∈ X. Then (X, r) is a solution of the YBE if and only
if the following conditions hold for all x, y, z ∈ X:
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(R1) (x · y) · (x · z) = (y : x) · (y · z),
(R2) (x : y) : (x : z) = (y · x) : (y : z),
(R3) (x · y) : (x · z) = (y : x) · (y : z),

where x · y = γ−1x (y), x : y = σγ−1
y (x)(y). Furthermore, r is a bijective

solution if the map X → X defined by z 7→ x : z is bijective. The use
of this result has been proposed by the referee to avoid the arboresque
sub- and superscripts in the original proof.

We also will make use of a lemma that was proved by Lebed and
Vendramin in [24] for finite non-degenerate bijective solutions.

Lemma 4.4. Let (X, r) be a non-degenerate set-theoretic solution of the
YBE. Let h : X → X be the map defined by h(x) = σ−1x (x) for all x ∈ X.
If (X, r) is irretractable, then h is bijective and h−1(x) = γ−1x (x) for
all x ∈ X.

Proof: As commented above, we may assume that (X, r) is a non-degen-
erate set-theoretic solution of the YBE such that γx = γy implies that
x = y. Thus conditions (R1), (R2), (R3) hold. Then, by (R1),

γ−1x·x(x · z) = γ−1x:x(x · z)
for all x, z ∈ X. Hence,

x · x = x : x.

Now x : x = σx·x(x) and thus σ−1x·x(x · x) = x. This shows that the
map x 7→ x · x = γ−1x (x) is injective. For x, y ∈ X, put

σ−1x (y) = x ∗ y.
For y = x ∗ x, we have x = σx(y) = σγ−1

y (γy(x))
(y) = γy(x) : y. Hence,

by (R1),

x · (γy(x) · z) = (γy(x) : y) · (γy(x) · z) = (y · γy(x)) · (y · z) = x · (y · z).
Therefore γy(x) · z = y · z, which yields γy(x) = y. Hence

(21) x = y · y = (x ∗ x) · (x ∗ x),

which shows that the map x 7→ x · x = γ−1x (x) is bijective. Furthermore
the inverse of this map is the map x 7→ x ∗ x = σ−1x (x) = h(x).

Theorem 4.5. Let (X, r) be an irretractable non-degenerate set-theoretic
solution of the YBE. Then r is bijective.

Proof: Again we may assume that (X, r) is a non-degenerate set-theo-
retic solution of the YBE such that γx = γy implies that x = y. From
(R3) we get that

x : (z · z) = (z · γz(x)) : (z · z) = (γz(x) : z) · (γz(x) : z) = σx(z) · σx(z).
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From Lemma 4.4 we then get that (see equation (21))

x : z = σx(z ∗ z) · σx(z ∗ z).
Since x ∗ x = σ−1x (x) = h(x), we get from Lemma 4.4 that the map z 7→
x : z = σγ−1

z (x)(z) is bijective. Hence, by Rump’s earlier mentioned

result, r is bijective.

Note that if (X, r) is an irretractable non-degenerate solution, then
for every x ∈ X there is a unique y ∈ X such that r(x, y) = (x, y)
and there is a unique z ∈ X such that r(z, x) = (z, x). Because (X, r)
is left non-degenerate, to prove the former, it is sufficient to show that
σx(y) = x implies γy(x) = y. Now, because (X, r) is a solution we obtain
from (1) that σxσy = σσx(y)σγy(x) = σxσγy(x) and thus σy = σγy(x). The
irretractable assumption yields that y = γy(x), as claimed. Similarly one

proves the other claim. Hence there are at least
(|X|

2

)
defining relations

for the structure monoid. Furthermore, there are precisely
(|X|

2

)
defining

relations if r also is involutive and thus, in this case, M(X, r) is a monoid
with a presentation of the type 〈x1, . . . , xn | R〉, where R is a set consist-
ing of

(
n
2

)
relations of the type xixj = xkxl with (xi, xj) 6= (xk, xl) and

every word xixj appears in at most one relation. Note that such a presen-
tation has associated a map r : X×X → X×X, where X = {x1, . . . xn},
r2 = idX2 , and r(xi, xj) = (xk, xl) if and only if either xixj = xkxl is
one of the relations in R or xixj does not appear in any relation in R
and (xk, xl) = (xi, xj) in this case. Monoids with this type of presen-
tation and their algebras have a rich algebraic structure when r is non-
degenerate, even if (X, r) is not a solution of the YBE. Such monoids are
said to be of quadratic type, and if xixi does not appear in any defin-
ing relation, then they are said to be of skew type. We refer the reader
to [6, 15, 23, 22]. In [23] it has been shown that for such a monoid r is
a non-degenerate solution of the YBE if and only if the monoid is can-
cellative and r is non-degenerate and satisfies the cyclic condition, i.e. if
for every x1, y ∈ X there exist x2, y1, y2, z1, z2 ∈ X such that x1y = y1z1
and x2y1 = y2z2 with r(x2, x1) = (x2, x1) and r(z2, z1) = (z2, z1). The
latter monoids were first investigated by Gateva-Ivanova and Van den
Bergh in [17].

5. The structure left semi-truss

Braces and skew braces were introduced to deal with bijective non-
degenerate solutions (X, r) of the YBE. In order to translate such so-
lutions to associative structures the structure group G(X, r) and the
structure monoid M(X, r) were introduced. The group G(X, r) turns
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out to be a skew brace, however a structure monoid does not fit in this
context. Recently, Brzeziński introduced the algebraic notion of a semi-
truss which is built on two semigroup structures on a given set. We show
that structure monoids of left non-degenerate solutions of the YBE fit
in this context: they turn out to be left semi-trusses with additive struc-
ture that is close to being a normal monoid. We then show that also the
least left cancellative epimorphic image of M(X, r) inherits a left non-
degenerate solution of the YBE that restricts to the original solution r
for some interesting classes, in particular if (X, r) is irretractable.

We first recall the definition of a left semi-truss.

Definition 5.1 ([4]). A left semi-truss is a quadruple (A,+, ◦, φ) such
that (A,+) and (A, ◦) are non-empty semigroups and φ : A× A→ A is
a function such that

a ◦ (b+ c) = (a ◦ b) + φ(a, c)

for all a, b, c ∈ A.

Example 5.2. Let (X, r) be a left non-degenerate set-theoretic solution
of the YBE (not necessarily bijective). As stated in Section 3, and with
the same notation, the map r′(x, y) = (y, σyγσ−1

x (y)(x)) defines the left

derived solution on X. Let M = M(X, r) and M ′ = A(X, r) = M(X, r′)
be the structure monoids of the solutions (X, r) and (X, r′) respec-
tively. From Corollary 3.9 and Proposition 3.1 we obtain a left ac-
tion λ′ : (M, ◦)→ Aut(M ′,+) and a bijective 1-cocycle π : M →M ′ with
respect to λ′ satisfying λ′(x)(y) = σx(y) and π(x) = x for all x, y ∈ X.
We identify M and M ′ via π, that is, a = π(a) for all a ∈M . With this
identification, we obtain the operation + on M , and a ◦ b = a + λ′a(b)
for all a, b ∈M . Put φ(a, b) = λ′a(b) for all a, b ∈M . Then

a ◦ (b+ c) = a+ λ′a(b+ c) = a+ λ′a(b) + λ′a(c) = (a ◦ b) + φ(a, c).

Furthermore M + a ⊆ a+M for all a ∈ M . Hence (M,+, ◦, φ) is a left
semi-truss. Note that, if r is furthermore bijective, then it can easily be
verified that (X, r′) is a right non-degenerate solution and thus M +a =
a + M for all a ∈ M ; that is, (M,+) consists of normal elements. As
shown in [19], this property is fundamental in the study of the associated
structure algebra KM(X, r).

In the remainder of this section we show that if (M,+, ◦, φ) is a left
semi-truss such that for every a, b ∈M there exists a unique c(a, b) ∈M
such that a+ b = b+ c(a, b), then there exists a set-theoretical solution
of the YBE on M , say (M, r′). In the case that M = M(X, r)/η, the
least cancellative epimorphic image of M(X, r), it follows that r′ is the
(unique) extension of r to M .
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Lemma 5.3. Let (A,+) be a non-empty semigroup such that, for each
(a, b) ∈ A×A there exists a unique c(a, b) ∈ A such that

a+ b = b+ c(a, b).

Then (A, r′), where
r′(a, b) = (b, c(a, b)),

for all a, b ∈ A, is a set-theoretic solution of the YBE.

Proof: Let (a, b, d) ∈ A3. We have

a+ b+ d = b+ c(a, b) + d

= b+ d+ c(c(a, b), d)

and also

a+ b+ d = a+ d+ c(b, d)

= d+ c(a, d) + c(b, d)

= d+ c(b, d) + c(c(a, d), c(b, d))

= b+ d+ c(c(a, d), c(b, d)).

Hence, by the uniqueness assumption,

(22) c(a, b+ d) = c(c(a, b), d) = c(c(a, d), c(b, d)).

Now we have

r′1r
′
2r
′
1(a, b, d) = r′1r

′
2(b, c(a, b), d) = r′1(b, d, c(c(a, b), d))

= (d, c(b, d), c(c(a, b), d))

and

r′2r
′
1r
′
2(a, b, d) = r′2r

′
1(a, d, c(b, d)) = r′2(d, c(a, d), c(b, d))

= (d, c(b, d), c(c(a, d), c(b, d))).

Therefore, by (22), r′1r
′
2r
′
1 = r′2r

′
1r
′
2, and the result follows.

Proposition 5.4. Let (A,+) and (A, ◦) be non-empty semigroups. Let
λ : (A, ◦) → Aut(A,+) be a homomorphism such that a ◦ b = a + λa(b)
for all a, b ∈ A, where λ(a) = λa. In particular, (A,+, ◦, φ) is a left
semi-truss with φ(a, b) = λa(b) for all a, b ∈ A. Suppose that for each
(a, b) ∈ A×A there exists a unique c(a, b) ∈ A such that

a+ b = b+ c(a, b).

Then (A, r), where

r(a, b) = (λa(b), λ−1λa(b)(c(a, λa(b)))),

for all a, b ∈ A, is a left non-degenerate set-theoretic solution of the
YBE.



520 F. Cedó, E. Jespers, C. Verwimp

Proof: Let J:A3→A3 be the map defined by J(a, b, d)=(a,λa(b),λaλb(d)).
Clearly J is bijective and J−1(a, b, d) = (a, λ−1a (b), λ−1

λ−1
a (b)

λ−1a (d)) for all

a, b, d ∈ A. We have

J−1r′1J(a, b, d)=J−1r′1(a, λa(b), λaλb(d))

=J−1(λa(b), c(a, λa(b)), λaλb(d))

=(λa(b), λ−1λa(b)(c(a, λa(b))), λ−1
λ−1
λa(b)

(c(a,λa(b)))
λ−1λa(b)

λaλb(d)),

where r′ is defined as in Lemma 5.3. Since a ◦ b = a + λa(b) = λa(b) +
c(a, λa(b)) = λa(b) ◦ λ−1λa(b)(c(a, λa(b))), it follows that J−1r′1J = r1.

Similarly

J−1r′2J(a, b, d) = J−1r′2(a, λa(b), λaλb(d))

= J−1(a, λaλb(d), c(λa(b), λaλb(d)))

= (a, λb(d), λ−1λb(d)λ
−1
a (c(λa(b), λaλb(d)))).

Note that

λ−1a (d) + λ−1a (c(b, d)) = λ−1a (d+ c(b, d)) = λ−1a (b+ d) = λ−1a (b) + λ−1a (d)

for all a, b, d ∈ A. Hence, by the uniqueness assumption, λ−1a (c(b, d)) =
c(λ−1a (b), λ−1a (d)). Since each λa is bijective it follows that

J−1r′2J(a, b, d) = (a, λb(d), λ−1λb(d)λ
−1
a (c(λa(b), λaλb(d))))

= (a, λb(d), λ−1λb(d)(c(b, λb(d)))).

Thus J−1r′2J = r2. By Lemma 5.3, (A, r′) is a set-theoretic solution of
the YBE. Therefore also (A, r) is a set-theoretic solution of the YBE,
and the result follows.

Let (X, r) be a left non-degenerate set-theoretic solution of the YBE.
We will write r(x, y) = (σx(y), γy(x)) for all x, y ∈ X. Thus the σx are
bijective maps. The derived solution of (X, r) is (X, r′), where

r′(x, y) = (y, σy(γσ−1
x (y)(x)))

for all x, y ∈ X. We will use the notation of Example 5.2. Thus we have
M = M(X, r) and the left semi-truss (M,+, ◦, φ), where φ(a, b) = λ′a(b)
for all a, b ∈ M . Recall that λ′ : (M, ◦) → Aut(M,+) is an homomor-
phism, that is, an action of (M, ◦) on (M,+), and id: M → M is a
bijective 1-cocycle with respect to λ′ (because a ◦ b = a+ λ′a(b)).
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Let η be the left cancellative congruence on (M,+), that is, η is
the smallest congruence such that M = (M,+)/η is a left cancellative
monoid.

We shall see a description of the elements in η. Let

η0 = {(a, b) ∈M2 | ∃c ∈M such that c+ a = c+ b}.

Note that η0 is a reflexive and symmetric binary relation on M . Let η1
be its transitive closure, that is,

η1 = {(a, b) ∈M2 | ∃a1, . . . , an ∈M
such that (a, a1), (a1, a2), . . . , (an, b) ∈ η0}.

Thus η1 is an equivalence relation on M . Let

η2 = {(c+ a, c+ b) ∈M2 | c ∈M such that (a, b) ∈ η1}
∪ {(a, b) ∈M2 | ∃c ∈M such that (c+ a, c+ b) ∈ η1},

and for every m ≥ 1 we define

η2m+1 = {(a, b) ∈M2 | ∃a1, . . . , an ∈M
such that (a, a1), (a1, a2), . . . , (an, b) ∈ η2m}

and

η2m+2 = {(c+ a, c+ b) ∈M2 | c ∈M such that (a, b) ∈ η2m+1}
∪ {(a, b) ∈M2 | ∃c ∈M such that (c+ a, c+ b) ∈ η2m+1}.

Note that ηn ⊆ ηn+1 ⊆ η for all n ≥ 0. Let η′ = ∪∞n=0ηn.

Lemma 5.5. With the above notation we have η′ = η and λ′a = λ′b for
all (a, b) ∈ η. Furthermore, for all z ∈M ,

η = {(λ′z(a), λ′z(b)) | (a, b) ∈ η} = {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ η},

and η also is a congruence on (M, ◦).

Proof: First we shall prove that η′ is a congruence on (M,+). Clearly
η′ is reflexive and symmetric because so is each ηn. Let a, b, c ∈ M
such that (a, b), (b, c) ∈ η′. There exists a positive integer m such that
(a, b), (b, c) ∈ η2m+1. Since η2m+1 is the transitive closure of η2m, we have
(a, c) ∈ η2m+1 ⊆ η′. Hence η′ is an equivalence relation. Note that every
ηn satisfies (x+ z, y + z) ∈ ηn for all (x, y) ∈ ηn. Hence (a+ c, b+ c) ∈
η2m+1 ⊆ η′. Since (a, b) ∈ η2m+1, we have (c + a, c + b) ∈ η2m+2 ⊆ η′.
Therefore η′ is a congruence.
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Let a, b, c ∈M be elements such that (c+a, c+b) ∈ η′. There exists a
positive integer t such that (c+a, c+b) ∈ η2t+1. Thus (a, b) ∈ η2t+2 ⊆ η′.
Hence (M,+)/η′ is a left cancellative monoid. Since η′ ⊆ η, we have
η′ = η by the definition of η.

Let (a, b) ∈ η0. Then there exists c ∈M such that c+ a = c+ b. Let
z ∈M . We have

(λ′z)
ε(c) + (λ′z)

ε(a) = (λ′z)
ε(c+ a) = (λ′z)

ε(c+ b) = (λ′z)
ε(c) + (λ′z)

ε(b),

for ε = ±1. Therefore η0 = {(λ′z(a), λ′z(b)) | (a, b) ∈ η0} = {((λ′z)−1(a),
(λ′z)

−1(b)) | (a, b) ∈ η0}. Thus, clearly

η1 ={(λ′z(a), λ′z(b)) | (a, b) ∈ η1}={((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ η1}.

Let (a, b) ∈ η2. Then, either there exist c, a′, b′ ∈ M such that (a′, b′) ∈
η1 and (a, b) = (c+a′, c+ b′), or there exists d ∈M such that (d+a, d+
b) ∈ η1. In the first case, we have

((λ′z)
ε(a), (λ′z)

ε(b)) = ((λ′z)
ε(c) + (λ′z)

ε(a′), (λ′z)
ε(c) + (λ′z)

ε(b′))

for ε=±1. Since ((λ′z)
ε(a′),(λ′z)

ε(b′))∈η1, we get that ((λ′z)
ε(a),(λ′z)

ε(b))∈
η2, in this case. In the second case, since (d + a, d + b) ∈ η1, we have
((λ′z)

ε(d) + (λ′z)
ε(a), (λ′z)

ε(d) + (λ′z)
ε(b)) ∈ η1. Thus also in this case we

have ((λ′z)
ε(a), (λ′z)

ε(b)) ∈ η2. Therefore

η2 = {(λ′z(a), λ′z(b)) | (a, b) ∈ η2}={((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ η2}.

Now it is easy to show by induction on n that

ηn={(λ′z(a), λ′z(b)) | (a, b) ∈ ηn}={((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ ηn},

for all non-negative integer n. Hence

η = {(λ′z(a), λ′z(b)) | (a, b) ∈ η} = {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ η}.

Let (a, b) ∈ η0. Then there exists c ∈M such that c+ a = c+ b. Hence
c ◦ (λ′c)

−1(a) = c+ a = c+ b = c ◦ (λ′c)
−1(b). Hence,

λ′cλ
′
(λ′c)

−1(a) = λ′c◦(λ′c)−1(a) = λ′c◦(λ′c)−1(b) = λ′cλ
′
(λ′c)

−1(b)

and thus

λ′(λ′c)−1(a) = λ′(λ′c)−1(b).

Since η0 = {(λ′c(a), λ′c(b)) | (a, b) ∈ η0}, we have λ′a = λ′b for all (a, b) ∈
η0. Because

ηn = {(λ′z(a), λ′z(b)) | (a, b) ∈ ηn},
for all non-negative integers n, it is easy to prove, by induction on n,
that λ′a = λ′b for all (a, b) ∈ ηn. Hence λ′a = λ′b for all (a, b) ∈ η.
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Let (a, b) ∈ η. Then (λ′c(a), λ′c(b)) ∈ η. Thus (c◦a, c◦b)=(c+λ′c(a), c+
λ′c(b)) ∈ η. Since λ′a = λ′b, we have

(a ◦ c, b ◦ c) = (a+ λ′a(c), b+ λ′b(c)) = (a+ λ′a(c), b+ λ′a(c)) ∈ η.
Hence η is a congruence on (M, ◦), and the result follows.

With the assumptions and notations as in Example 5.2, M = M/η.
Let M → M : a 7→ a be the natural projection. Let λ : (M, ◦) →
Aut(M,+) be the map defined by λ(a) = λa and λa(b) = λ′a(b) for
all a, b ∈M .

Note that λ is well-defined, because if c = a and d = b, then, by
Lemma 5.5, λ′a(b) = λ′a(d) and λ′a = λ′c, and

λ′a(b) = λ′a(d) = λ′c(d).

Now it is easy to check that λa ∈ Aut(M,+) and that λ is a homomor-
phism such that a ◦ b = a+ λa(b) for all a, b ∈M .

Remark 5.6. If, furthermore, the left non-degenerate set-theoretic so-
lution (X, r) is finite and bijective then one can say more. To do so,
it is convenient to keep the notation M = M(X, r) and A = A(X, r).
So M ⊆ Ao Imλ′. Jespers, Kubat, and Van Antwerpen ([19, Proposi-
tion 2.9]) proved that there exists t ≥ 1 and a central element (z, 1) ∈M ,
with z ∈ Z(A) and g(z) = z for all g ∈ Im(λ′), such that the least can-
cellative congruence on (A,+) is

η = {(a, b) ∈ A×A | a+ z + · · ·+ z︸ ︷︷ ︸
i times

= b+ z + · · ·+ z︸ ︷︷ ︸
i times

, for all i ≥ t}

= {(a, b) ∈ A×A | c+ a = c+ b for some c ∈ A}
= η0.

Note that (a, b) ∈ η implies that λ′a = λ′b. Hence, it follows from Propo-
sition 4.2 in [19] that the (least) cancellative congruence on (M, ◦) is

ηM = {((a, λ′a), (b, λ′b)) | (a, b) ∈ η}.
It follows that the natural map

M/ηM −→ (A/η) o Im(λ′),

i.e. (a, λ′a) 7→ (a, λ′a), is an injective monoid homomorphism andM/ηM is
a regular submonoid of (A/η) o Im(λ′). So we obtain a bijective 1-co-
cycle (M/ηM , ◦) → (A/η,+), with respect to λ, that extends the map-

ping (a, λ′a) 7→ a. Because r is bijective we know (see explanation in
Example 5.2) that (A,+) consists of normal elements and thus (A/η,+)
is a left and right Ore monoid and also (M/ηM , ◦) is a left and right Ore
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monoid. Hence they both have a group of fractions, denoted gr(A/η) and
gr(M/ηM ) respectively. It is easily verified that gr(M/ηM ) = G(X, r),
the structure group of (X, r), gr(A/η) = G(X, r′), the structure group of
the derived solution (X, r′), and gr(M/ηM ) ⊆ gr(A/η) o Im(λ′) where,
by abuse of notation, λ′ : gr(M/ηM ) → Aut(A/η) is the natural ex-
tension of the mapping λ and also gr(M/ηM ) is a regular subgroup of
gr(A/η)oIm(λ′). The latter was proven by Lebed and Vendramin in [24,
Theorem 3.4.] in case (X, r) is bijective, (left and right) non-degenerate,
and finite.

Question 5.7. If (X, r) is a left non-degenerate solution of the YBE,
does there exist a bijective 1-cocycle (M/ηM , ◦)→ (A/η,+), with respect

to λ, that extends the mapping (a, λ′a) 7→ a? In other words, can one
avoid the bijective assumption in Remark 5.6?

Let φ : M ×M → M be the map defined by φ(a, b) = λa(b) for all
a, b ∈M . Then (M,+, ◦, φ) is a left semi-truss.

Lemma 5.8. Let a, b ∈ M = M(X, r). Then there exists c ∈ M such
that a+ b = b+ c.

Proof: There exist non-negative integers n, m, and x1, . . . , xn, y1, . . . ,
ym ∈ X such that a = x1 + · · ·+ xn and b = y1 + · · ·+ ym. Clearly we
may assume that n, m are positive integers. We shall prove the result by
induction on n+m. If n = m = 1, then x1 +y1 = y1 +σy1(γσ−1

x1
(y1)

(x1)),

by the defining relations of (M,+). Suppose that m + n > 2, and that
the result is true for m+n−1. If n > 1, then by the induction hypothesis
there exists c′ ∈ M such that a + b = x1 + b + c′, and by the induction
hypothesis again there exists c′′ ∈ M such that x1 + b = b + c′′. Hence
a+ b = b+ c′′ + c′, in this case. Suppose that n = 1. In this case m > 1
and

a+ b = x1 + b = y1 + σy1(γσ−1
x1

(y1)
(x1)) + y2 + · · ·+ ym.

Hence, by the induction hypothesis, there exists c ∈M such that

σy1(γσ−1
x1

(y1)
(x1)) + y2 + · · ·+ ym = y2 + · · ·+ ym + c.

Thus a+b = b+c in this case. Therefore the result follows by induction.

By Lemma 5.8, the left cancellative monoid (M,+) satisfies that, for
all a, b ∈ M , there exists a unique c ∈ M such that a + b = b + c. So,
the multiplicative monoid (M, ◦) is left cancellative. Hence, we have the
following corollary.
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Corollary 5.9. Let (X, r) be a left non-degenerate set-theoretic solution
of the YBE. Let η be the left cancellative congruence on (M(X, r′),+).
Then (M,+, ◦, φ) is a left semi-truss with M +a ⊆ a+M for all a ∈M
and it satisfies the conditions of Proposition 5.4, with φ(a, b) = λa(b),
for all a, b ∈M . In particular, (M, r), where

r(a, b) = (λa(b), λ
−1
λa(b)

(c(a, λa(b)))),

for all a, b ∈ M , is a left non-degenerate set-theoretic solution of the
YBE. In particular, (X, r|X) is a left non-degenerate solution on the

image X of X in M .

We say that a left non-degenerate solution (X, r) of the YBE is injec-
tive if the natural map X → M/η is injective. Obvious such examples
are irretractable solutions, and in this case r = r|

X
2 . Note that if r

is also bijective and non-degenerate, then this notion corresponds with
the one introduced by Lebed and Vendramin in [24]. In [24] it is also
shown that, in this case, several properties of involutive solutions can be
generalized to injective ones.

Corollary 5.10. Any left non-degenerate injective set-theoretic solu-
tion (X, r) of the YBE is the restriction of the induced left-non-de-
generate solution of the YBE determined by a left cancellative semi-
truss (M,+, ◦, φ) with M + a ⊆ a+M for all a ∈M .

However, note that (M, ◦) is not necessarily the structure monoid of
the solution of (X, r). Indeed, let X = Sym3 be the symmetric group
of degree 3. Let (X, r) be the bijective non-degenerate solution defined
by r(a, b) = (aba−1, a) for all a, b ∈ X. Note that the solution (X, r) is
non-involutive and irretractable (because the center of Sym3 is trivial).
So, X is naturally embedded in (M, ◦) = (M(X, r)/η, ◦) and r|X2 = r.

Let us denote the multiplication in the structure monoid M(X, r) by ·.
In (M(X, r), ·) we have

(1, 2) · (1, 2, 3) · (1, 2, 3) · (1, 2, 3) = (1, 3, 2) · (1, 3, 2) · (1, 3, 2) · (1, 2)

= (1, 3, 2) · (1, 3, 2) · (1, 3) · (1, 3, 2)

= (1, 3, 2) · (2, 3) · (1, 3, 2) · (1, 3, 2)

= (1, 2) · (1, 3, 2) · (1, 3, 2) · (1, 3, 2)

while (1, 2, 3)·(1, 2, 3)·(1, 2, 3) 6= (1, 3, 2)·(1, 3, 2)·(1, 3, 2). Hence, M(X, r)
is not left cancellative, while M is left cancellative. Thus M is not the
structure monoid of (X, r).

The following problem remains a challenge.
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Question 5.11. Determine when a left non-degenerate solution (X, r)
of the YBE is cancellative injective. If (X, r) is a left non-degenerate
solution that is injective, then does there exists a finite left cancellative
semi-truss in which X can be embedded naturally? In case r also is
finite, bijective, and non-degenerate this has been proven by Lebed and
Vendramin in [24].

Acknowledgement. The authors would like to thank the referee for
providing a sub- and superscript avoiding more elegant and simple proof
of Theorem 4.5 by using the notation and a result of Rump proved
in [29].
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