UrnB

Universitat Autonoma
de Barcelona

Diposit digital
de documents
de la UAB

This is the published version of the bachelor thesis:

Piera Fernandez de Simon, Roger; Oropesa Fisica, Ana, dir. Improving Amazon
Pipelines efficiency for Web Applications. 2021. (958 Enginyeria Informatica)

This version is available at https://ddd.uab.cat/record/248520
under the terms of the license

https://ddd.uab.cat/record/248520

TFG IN COMPUTER ENGINYERING, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Improving Amazon Pipelines Efficiency for
Web Applications

Roger Piera Fernandez de Simon

Resum- Las aplicaciones web que usamos en nuestro dia a dia funcionan gracias a toda una
infraestructura que permite que las podamos usar. En este proyecto analizaremos y mejoraremos
la infraestructura que usamos en algunas de las aplicaciones web que usamos en Idneo. Estas
aplicaciones usan Amazon Web Services para mantenerse. Explicaremos los varios servicios de
AWS usados para dar soporte a las aplicaciones web y encontraremos formas de mejorarlos para
reducir costes y mejorar la calidad de esta infraestructura.

Paraules clau- ECS, EC2, Amazon AWS, ECR, CDK, Code Build, Pipeline, S3 buckets,
Jmeter, Jenkins

Abstract— The web applications we use in our day to day are supported by an infrastucture to make
them avaliable for our use. In this project we will analyse and improve upon the infrastucture that
supports some of the web applications used in Idneo. In this project the applications are hosted
using Amazon Web Services. AWS will be the main source of infrastucture used to support our
applications. We will explain and compare the various services from AWS used to support our
applications and find out ways to improve the currently used systems to reduce costs and improve

the quality of the infrastucure.

Keywords—
Jenkins

ECS, EC2, Amazon AWS, ECR, CDK, Code Build, Pipeline, S3 buckets, Jmeter,

1 INTRODUCTION

ing the full value chain to create innovative and tech-

nological products and services to support customers
to differentiate and step-up their products line-up. It is
a company with more than 200 workers and multiple of-
fices accross the world. Having offices in USA California,
Barcelona and Malaga.

The Devops [30] team of Idneo [29] is tasked with main-
taining and improving the infrastructure that supports all the
applications and providing tools to developers to automate
their tasks and improve productivity. This project comes as
a task assigned to the Devops team which the author of this
paper is part off.

In Idneo [29] we have some of our applications running
on a pipeline that scales vertically [1] and takes a long time

IDNEO [29] is a global engineering company provid-

o Contact e-mail: roger.piera@e-campus.uab.cat

e Mencio realitzada: Tecnologies de la Informacié

o Tutored work by: Ana Oropesa Fisica (departament)
e Course Year: 2020/21

to compile. Furthermore, every change to an application
requires that all the other applications be compiled again.
This causes a lot of lost time during development and bug
fixing of the applications.

Every new application added will compound this prob-
lem and it will also have the added negative of requiring a
bigger machine to run all the applications which can be very
expensive [2].

The motivation of this project is to resolve these issues
and make the pipeline scale horizontally [1] and be more
efficient to make development of new applications easier.

2 OBJECTIVES

The overarching objective of this project is to migrate some
of the currently used applications in Idneo to a new pipeline
to reduce build times, costs, and improve scalability.

To be able to accomplish this objective, some more espe-
cific objectives must be achived. This objectives are:

¢ Data Gathering: Data will be gathered to find build
and deployment times, costs and scalability of the cur-
rently used pipeline. In order to accomplish this an

“Mes” de 20xx, Escola d’Enginyeria (UAB)

2 EE/UAB TEG INFORMATICA: Improving Amazon Pipelines Efficiency for Web Applications

analysis will be done of the current system using tools
provided by Amazon and other third party tools like
Jmeter. This analysis will be performed during the pre-
liminary phase of the project.

* Technology Selection: The next goal will be to find
out the best technology to solve the bottlenecks shown
by the previously mentioned analysis. The main tech-
nologies that will be studied for this project are S3
buckets [3], ECS [4] and Kubernetes [5]. In order to
select the best technology pricing, difficulty to imple-
ment and efficiency will be analysed. This will happen
during the preliminary phase.

* Pipeline Adoption: The next goal will be for Idneo to
adopt the new pipeline and migrate all its applications
there using the previously selected technology. This
will happen during the development phase.

* Result Analysis: The last goal will be for the pipeline
to pass the requirements of being faster and more scal-
able than the previous pipeline. To find out, a stress
test will be done to it. This phase will happen during
the pipeline analysis phase.

3 METHODOLOGY

The methodology used for this project will be represented
using a Gantt [7] chart. The chronology for this project has
been divided into weeks, each week consisting of 5 work
days. The tasks have been divided in groups and each task
has a start and end date. For each task there are a few days
of leeway in case it’s not finished on time.

The task groups, as can be seen in the Gantt chart in Ap-
pendix 1, are the following:

* Preliminary Phase: In the preliminary phase all the
relevant information of the currently used pipeline will
be gathered. A diagram will be drawn for ease of un-
derstanding. In this phase research will be done about
potential technologies to improve the pipeline with a
focus on ECS [4]. of the current system. This analysis
will be performed during the preliminary phase of the
project.

* Development Phase: In the Development phase the
new pipeline will be built and the currently used appli-
cations will be migrated there.

* Pipeline Analysis Phase: In the Pipeline analysis
phase the new pipeline will be compared with the old
one.

* Optional Improvements Phase: In the optional im-
provements phase any spare time will be used to
make additional adjustments to further improve on the
pipeline. A potential one being using CDK [6] code.

* Documentation and Presentation Phase: In the doc-
umentation and presentation phase all the documenta-
tion for this project will be finalized. The presentation
will be prepared and the poster created.

4 AmAzZON WEB SERVICES CONCEPTS

In this section we will introduce Amazon Web Services
(AWS) [35] explaining what they offer and giving an
overview of some of the services we will talk about through
this project.

4.1 Whatis AWS

Amazon Web Services [35] is a subsidiary of Amazon pro-
viding on-demand cloud computing platforms and APIs to
individuals, companies, and governments, on a metered
pay-as-you-go basis.

AWS has a lot of different services, and a lot of features
within those services From infrastructure technologies like
compute, storage, and databases—to emerging technologies,
such as machine learning and artificial intelligence, data
lakes and analytics, and Internet of Things.

4.2 What are some of the services that AWS
offers

Amazon Web Services has many services, in this project we
will only contemplate a small part of them and end up using
a smaller part.

Some of the services we will mention during this project
are:

¢ Code Pipeline [11]: A pipeline, also known as a data
pipeline, is a set of data processing elements connected
in series, where the output of one element is the input
of the next one. AWS CodePipeline is a fully man-
aged continuous delivery service that helps us auto-
mate our release pipelines for fast and reliable appli-
cation and infrastructure updates. CodePipeline auto-
mates the build, test, and deploy phases. It has integra-
tion with third party services like Github or Jenkins.

* Code Build [13]: AWS CodeBuild is a fully managed
continuous integration service that compiles source
code, runs tests, and produces software packages that
are ready to deploy.

* ECR [14]: Amazon Elastic Container Registry (ECR)
is a fully managed container registry that makes it easy
to store, manage, share, and deploy our container im-
ages and artifacts anywhere. Amazon ECR eliminates
the need to operate our own container repositories or
worry about scaling the underlying infrastructure.

* EC2 [2]: Amazon Elastic Compute Cloud (Amazon
EC2) is a web service that provides secure, resizable
compute capacity in the cloud.

* Load Balancers [17]: Elastic Load Balancing au-
tomatically distributes incoming application traffic
across multiple targets, such as Amazon EC2 in-
stances, containers, and IP addresses.

* Route 53 [16]: Amazon Route 53 is a highly avail-
able and scalable cloud Domain Name System (DNS)
web service. It is designed to give developers and busi-
nesses an extremely reliable and cost effective way to
route end users to Internet applications by translating

Roger Piera: Improving Amazon Pipelines Efficiency for Web Applications

names like www.example.com into the numeric IP ad-
dresses like 192.0.2.1 that computers use to connect to
each other.

» Target Groups[18]: Target Groups are used in con-
junction with Load Balancers. Each target group is
used to route requests to one or more registered tar-
gets. When you create each listener rule, you specify
a target group and conditions. When a rule condition
is met, traffic is forwarded to the corresponding target
group. You can create different target groups for dif-
ferent types of requests.

Security Groups[33]: A security group acts as a vir-
tual firewall for our instance to control inbound and
outbound traffic.

VPC[34]: Amazon Virtual Private Cloud (Amazon
VPC) is a service that lets us launch AWS resources
in a logically isolated virtual network that we define.
We have complete control over your virtual network-
ing environment, including selection of our own IP ad-
dress range, creation of subnets, and configuration of
route tables and network gateways.

We will also talk about ECS [4] and S3 buckets [3], but
those services will be explained later in this project.

5 CURRENT STATE OF THE PIPELINE

In this section the pipelines being currently used will be ex-
plained. The current pipeline has been in use since 2019,
three years. This pipeline is used because it allows an au-
tomated deployment of applications, which increases the
speed of development. The pipelines use EC2 [9] machines
to host the websites in this model.

5.1 Pipeline Explained

The currently used pipelines can be seen in detail in Ap-
pendix 2. Its functionality will be explained in this section
using a simplified diagram.

The pipeline can be divided in two sections. The Prepro-
duction stage and the Production Stage. These two sections
mirror each other having the same architecture, but allow
for the deployment of applications first in the Prepoduction
stage, to test the changes made, and once the testing is done
the Production deployment can be done, making the appli-
cations available to the general users.

The pipeline functions in the following way:

* Once a new version of the code is ready to be deployed
a Jenkins [10] trigger will be activated and the pipeline
will start. This Jenkins [10] trigger will download the
code from the version control system into a zip file.
This zip file is then saved into an S3 bucket [3]. This
can be seen as the Step 1 on Fig. 1.

» Afterwards, aws CodePipeline [11] is activated, start-
ing with the CodeSource [12] module that unzips the
content of the zip file and sends it to the CodeBuild
[13] module. This can be seen as the Step 2 and Step
3 on Fig. 1.

STEP 1 STEP 2
Jenkins Trigger » Code Pipeline
STEP 3 STEP 4
.;/"-..-..-. ",
Code Buld | g £ /
STEP 8 STEP 7
; Target Group = Load Balancer
STEP 6

STEP 5

Fig. 1: Simplified EC2 pipelines

e CodeBuild [13] builds the dockerfiles of the applica-
tions and pushes the images into aws ECR [14]. Code-
Build also pushes the dockercompose [15] files into
the EC2 [9] machine of the applications. This can be
seen as the Step 3 on Fig. 1.

 This dockercompose [15] file is activated which down-
loads the ECR [14] images into the EC2 [9] instance,
building the application into it. This can be seen as the
Step 4 on Fig. 1.

¢ On the other end, once the client enters the URL of the
application, which is created using aws Route 53 [16],
the IP connects to a Load Balancer [17] of the specific
application. This can be seen as the Step 5, Step 6 and
Step 7 on Fig. 1.

» This Load Balancer [17] connects to a specific port of
the EC2 [9] machine using a aws Target Group [18]
assigned to it. This port will be open and will have one
of the applications assigned to it. This can be seen as
the Step 7, Step 8 and Step 4 on Fig. 1.

5.2 Cost and Deployment time of the Pipeline

Considering five applications being supported by this
pipeline the cost of the components is the following:

* Code Pipeline [11]: 1€/month per pipeline =
2€/month (pre prod and prod pipelines).

e Code Build [13]: Negligible.

* ECR [14]: Negligible.

4 EE/UAB TEG INFORMATICA: Improving Amazon Pipelines Efficiency for Web Applications

* EC2 [2]: 20€/month per EC2 instance = 40€/month
(pre prod and prod EC2 instance).

* Load Balancer [17]: 20€/month per Load Balancer
=200€/month (1 Load Balancer per application, 5 ap-
plications in pre prod and 5 in prod = 10 Load Bal-
ancers).

Total Cost: 242€/month.
Time required to deploy a new version of an application: 17
minutes.

5.3 Weak Points of the Pipeline

The current pipelines presents a series of problems that this
work aims to address.

First of all is the method of scaling of the current
pipelines. Currently if more applications are to be added
two new Load Balancers [17] have to be added as well.
These Load Balancers are expensive [19], each costing 20€
/ month. Furthermore, a bigger EC2 [2] machine would
need to be created to support more applications, bringing
up the cost of it as well.

Another issue is the time to build the applications. Each
time a change is made to one of the applications all of them
need to be rebuilt since they share the same EC2 [9] in-
stance. This implies currently 17 minutes of build time ev-
ery time a new change is launched.

EC2 [9] instances have a fixed costs while they are func-
tioning, this means that if the traffic ever slowed down the
cost of maintaining the instance would still be the same.
This presents a problem since traffic won’t always be the
same and the pipeline needs to adapt to keep the costs down.

6 POTENTIAL SOLUTIONS

In this section potential alternatives to the current pipelines
that aim to solve the issued presented previously will be
analyzed.

6.1 Amazon Elastic Container Service

Amazon Elastic Container Service (Amazon ECS) [4] is
a highly scalable, fast container management service that
makes it easy to run, stop, and manage containers on a clus-
ter.

The use of ECS presents a number of potential benefits
to our pipeline:

* Containers are defined in a task definition that we use
to run individual tasks or tasks within a service. In
this context, a service is a configuration that enables
you to run and maintain a specified number of tasks
simultaneously in a cluster. We can run your tasks and
services on a server-less infrastructure that is managed
by AWS Fargate [20].

* We can schedule the placement of our containers
across our cluster based on our resource needs, iso-
lation policies, and availability requirements. With
Amazon ECS [4], we don’t have to operate our own
cluster management and configuration management
systems or worry about scaling our management in-
frastructure.

* ECS [4] allows for automatic scaling using the ama-
zon Fargate feature associated with it. This means
that, automatically, during peak traffic times new con-
tainers will be created, scaling horizontally and during
low traffic times containers will be stopped to keep the
costs low.

* Since all the applications are already dockerized [21],
and ECS [4] works by using docker images [21], this
would lower the work load if an ECS [4] pipeline is
chosen.

* ECS [4] also allows new applications to be deployed
and built much faster than on the EC2 [9] pipeline used
until now. The reason for this is that each application
is independent of one another, so if an application is
changed it wont be necessary to build all the other ap-
plications again.

6.2 Amazon Simple Storage Service

Amazon Simple Storage Service (Amazon S3) [3] is storage
for the Internet. It is designed to make web-scale computing
easier for developers.

Amazon S3 [3] has a simple web services interface that
you can use to store and retrieve any amount of data, at any
time, from anywhere on the web. It gives any developer ac-
cess to the same highly scalable, reliable, fast, inexpensive
data storage infrastructure that Amazon uses to run its own
global network of web sites. The service aims to maximize
benefits of scale and to pass those benefits on to developers.

You can use Amazon S3 [3] to host a static website [22].
On a static website, individual webpages include static con-
tent. They might also contain client-side scripts. By con-
trast, a dynamic website relies on server-side processing,
including server-side scripts such as PHP, JSP, or ASP.NET.
Amazon S3 [3] does not support server-side scripting.

6.3 Kubernetes

Kubernetes [5] (also known as k8s or “kube”) is an
open source container orchestration platform that automates
many of the manual processes involved in deploying, man-
aging, and scaling containerized applications.

In other words, you can cluster together groups of hosts
running Linux containers, and Kubernetes [5] helps you
easily and efficiently manage those clusters.

Kubernetes [5] clusters can span hosts across on-premise,
public, private, or hybrid clouds. For this reason, Kuber-
netes [5] is an ideal platform for hosting cloud-native appli-
cations that require rapid scaling.

6.4 Comparison

In this section the proposed solutions will be compared.

ECS [4] and S3 buckets [3] are both part of Amazon Web
Services [35] which make the integration with the rest of the
already designed pipelines easier.

Kubernetes is an independent solution not included in
AWS. There is a service that makes use of Kubernetes
called Amazon Elastic Kubernetes Service (EKS) [36], but
its very expensive for the usage our pipelines have. Kuber-
netes [5] rapid scaling is faster than ECS [4] or S3 [3], but

Roger Piera: Improving Amazon Pipelines Efficiency for Web Applications

that speed is not required for our applications since they will
not see high traffic levels (in the milions of requests, which
would make Kubernetes [5] more relevant).

For this reasons, Kubernetes [5] will be discarded as an
option going forward. In the following sections ECS [4]
and S3 buckets [3] will be analysed in more detail to make
the final decision.

7 CRITERIA TO CHOSE THE PIPELINE

In this section we will explain what criteria we are going to
use to select the best pipeline for our situation.

First of all, we will be making a model pipeline of ECS
[4] and S3 buckets [3] to have an idea of what the end result
would look like.

Afterwards we will make an analysis of how ECS [4] and
S3 buckets [3] work, to be able to know the complexity in-
volved in using each technology.

Finally, we will be comparing the pricing of each technol-
ogy, since one of the objectives of this project is to reduce
the costs.

We wont be able to compare the deployment time with-
out building the pipeplines, but since we can deploy each
application independently of each other it’s assumed that
both ECS [4] and S3 buckets [3] are faster than the original
EC2 [9] pipeline.

We wont be able to compare scaling either, but since both
ECS [4] and S3 buckets [3] can scale automatically they
already accomplish the objective.

8 ECS BASED PIPELINE

In this section it will be explained how ECS [4] works and
a pipeline will be modeled using it.

8.1 How does ECS Work

Amazon ECS [4] has multiple components:

* Task Definitions [8]: This is the blueprint describing
which Docker containers to run and represents an ap-
plication. It details the images to use, the CPU and
memory to allocate, environment variables, ports to
expose, and how the containers interact.

* Task [8]: An instance of a Task Definition [8], running
the containers detailed within it. Multiple Tasks can be
created by one Task Definition [8], as demand requires.
An example of a Task can be seen in Fig. 2.

e Service [8]: Defines the minimum and maximum
Tasks [8] from one Task Definition [8] run at any given
time, autoscaling, and load balancing.

* Cluster [8]: A Cluster [8] is a group of ECS Con-
tainer Instances. Amazon ECS handles the logic of
scheduling, maintaining, and handling scaling requests
to these instances. It also takes away the work of find-
ing the optimal placement of each Task [8] based on
CPU and memory needs. A Cluster [8] can run many
Services [8]. An example of an ECS Cluster can be
seen in Fig. 3.

Task

Docker Containers

/.l

—-ﬁ

\ Task

Docker Containers

Task

Docker Containers

Fig. 2: ECS Tasks to the right. Code to create the task to
the left.

ECS Cluster

ECS Container Instance \ r ECS Container Instance

Service

Task Task

Docker Containers Dacker Containers

Task Task

Docker Containers Docker Containers

Fig. 3: ECS Cluster with two Services (ECS Container In-
stance).

8.2 ECS Pipeline Model

The proposed pipeline model can be seen in Appendix 3.
Its functionality will be explained in this section.

This new pipeline swaps the EC2 [9] machine for an ECS
cluster [8] where all the applications are placed as Services.

Each service scales automatically by using ECS Fargate
[20] instances.

An Nginx [23] reverse proxy server [24] will route the
traffic to service according to the IP. This server is used to
centralize the traffic in order to only need to maintain one
SSL certificate [25], otherwise each application would re-
quire the SSL [25] certificate in order to use Https [26]. The
Nginx [23] server will be another service inside the cluster
and the only one open to public requests.

8.3 Cost of ECS

ECS [4] is priced per vCPU and memory used. 0.25vCPU
and 0.5GB machine costs 9.010€/month. 0.5 vCPU and
0.5GB machine costs 16.398€/month. 0.25 vCPU and 1GB
machine costs 10.632€/month.

This shows that CPU is priced higher than RAM memory.

9 S3 BASED PIPELINE

In this section it will be explained how S3 buckets [3] work
and a pipeline will be modeled using it.

9.1 How does S3 work

Amazon S3 [3] has multiple components:

6 EE/UAB TEG INFORMATICA: Improving Amazon Pipelines Efficiency for Web Applications

* Bucket [27]: A bucket is a container for objects stored
in Amazon S3. Every object is contained in a bucket.
For example, if the object named photos/puppy.jpg
is stored in the awsexamplebucketl bucket in the
US West (Oregon) Region, then it is addressable
using the URL https://awsexamplebucketl.s3.us-west-
2.amazonaws.com/photos/puppy.jpg.

Buckets serve several purposes:

They organize the Amazon S3 [3] namespace at
the highest level.

They identify the account responsible for storage
and data transfer charges.

They play a role in access control.

They serve as the unit of aggregation for usage
reporting.

* Objects [27]: Objects are the fundamental entities
stored in Amazon S3. Objects [27] consist of object
data and metadata. The data portion is opaque to Ama-
zon S3 [3]. The metadata is a set of name-value pairs
that describe the object. These include some default
metadata, such as the date last modified, and stan-
dard HTTP metadata, such as Content-Type. You can
also specify custom metadata at the time the object is
stored.

9.2 S3 Pipeline Model

The proposed pipeline model can be seen in Appendix 4.
Its functionality will be explained in this section.

This new pipeline swaps the EC2 [9] machine for S3 [3]
buckets and an ECS [4] cluster.

The S3 [3] buckets host the frontend of the web applica-
tions since they are static. Since S3 [3] buckets do not use
images to work, the files will be transfered on the Code-
Build phase instead of taking an ECR [14] image.

The ECS [4] cluster hosts the backends of each applica-
tion since S3 buckets can only host static frontends. They
will use ECR [14] images for each backend service.

CloudFront [28] will be used to cache the web applica-
tions across different amazon servers in the world to help
reduce the traffic time.

9.3 Cost of S3 Buckets

The pricing of S3 [3] buckets is very low. Storage and re-
quests are what incur costs. Storage is priced at 0.021€/GB.
PUT, COPY, POST, LIST requests 0.005€ per 1000 re-
quests GET, SELECT, and all other requests are priced at
0.0004€ per 1000 requests.

10 PIPELINE CHOICE

We will proceed to compare the different Pipeline possi-
bilities. The comparison points will be the cost of each
pipeline, the deployment types, the scaling type and the
complexity to implement each pipeline.

As we can see on Table 1, S3 [3] and ECS [4] can deploy
each application individually, making the deployment time
much faster than in the current EC2 pipeline.

TABLE 1: PIPELINE DEPLOYMENT TYPES

Pipeline Deployment Type

Current EC2 Pipeline | All applications at the same time

ECS Pipeline Each application individually

S3 Buckets Pipeline | Each application individually

Kubernetes DISCARDED
TABLE 2: PIPELINE COSTS

Pipeline Monetary Cost

Current EC2 Pipeline | 242€/month

ECS Pipeline Medium Price (lower than EC2)

S3 Buckets Pipeline Low Price (lower than ECS)

Kubernetes DISCARDED

The cost is compared in Table 2. We can only make an
estimate of the cost of each pipeline, since to know exactly
how much it would cost we would need to build the pipeline
first. From the pricing of ECS [4] and S3 buckets [3] that
we discussed previously we can estimate that the cheapest
option would be S3 buckets. But ECS will still be cheaper
than the current EC2 pipeline.

TABLE 3: PIPELINE SCALING TYPE

Pipeline

Current EC2 Pipeline
ECS Pipeline

S3 Buckets Pipeline
Kubernetes

Scaling Type
Manual Scaling
Automatic Scaling
Automatic Scaling
DISCARDED

As we can see from Table 3, both S3 buckets [3] and
ECS [4] have options to automatically scale the applica-
tions, which EC2 [9] did not have.

TABLE 4: PIPELINES COMPLEXITY

Pipeline Complexity to implement
Current EC2 Pipeline | Already in use pipeline
ECS Pipeline Easy to implement

S3 Buckets Pipeline | Hard to implement
Kubernetes DISCARDED

As we can see from Table 4, the complexity of imple-
menting S3 buckets is higher than using ECS [4]. The rea-
son is that S3 buckets would require the usage of ECS for
the backend and S3 buckets [3] for the frontends. We would
need to combine both systems which increases the complex-
ity of the implementation. If we only use ECS the complex-
ity is much lower.

To chose the final pipeline we can base our decision on
Cost and Complexity, since the other parameters are the
same for both options.

Roger Piera: Improving Amazon Pipelines Efficiency for Web Applications

After analysing the proposed alternatives, the decision
has been to use the ECS [4] based pipeline. The main mo-
tive is that it would allow to have a compact design having
the front end and backend of the applications deployed us-
ing the same system, ECS, instead of having to spread it
among S3 [3] buckets and ECS. Another reason is due to
time constrains, since the implementation is easier using
ECS it will make it easier to finish this project before the
due date.

11 FINAL PIPELINE DESIGN

In this section it will be explained how the final design of
the pipeline works, its strengths and weakness, its cost and
how it scales.

11.1 Pipeline Model

The final pipeline design can be seen in detail in Appendix
25. Its functionality will be explained in this section using
a simplified diagram.

STEP 1 STEP 2
Jenkins Trigger —M WM Code Pipeline
STEP 3 { STEP 4 ECS Cluster
ECS Service 1 ECS Service ...
Code Build .
ECS Service 2
STEP 8 STEP 7
Target Group ' Load Balancer

Web App
Link

Route 53

Fig. 4: Simplified final ECS pipeline design

The final pipeline will be based on the ECS [4] model
shown previously on Appendix 3. The main difference is
that, instead of using an Nginx reverse proxy, an Applica-
tion Load Balancer [17] will be used.

The reason for that is that Amazon provides the Load
Balancer, and even if it costs 20€/month its a good invest-
ment since it provides reliability that an Nginx [23] not
managed my amazon wont have. The Application Load
Balancer [17] will receive all the requests and it will dis-
tribute the traffic among the ECS tasks to balance the load.

We can observe this behaviour on Steps 7, 8 and 4. The
Application Load Balancer will redirect the petition to the
corresponding Target Group, and the Target Group will link
it to the ECS Service associated.

The ECS Services are created from the images stored in
the ECR repository. This happens during Step 3.

11.2 Pipeline Strengths and Weaknesses

The main advantage of this pipeline is that each application
is isolated now, which means that if a change to a specific
application is released, only that specific application will
need to be deployed again. In the previous pipeline all ap-
plications where in the same EC2 [9] machine, which meant
that a change to one application required the deployment of
all applications.

Another advantage of this pipeline design is that all the
maintenance of the ECS [4] machines where the images are
running is automated by Amazon. That means that, in case
of a sudden spike in traffic ECS will create new tasks and
load balance among them.

With the health checks it’s also possible to know at all
times if a machine is working or not. Another advantage
is that deploying new versions of the image requires only
a single command, which makes maintaining the pipeline
very time efficient.

This pipeline has some weakness as well. The autoscal-
ing requires times to activate, if there is a very sudden spike
in traffic it will take a bit of time for new tasks to be created
which may cause the application to lag. This is not a big
problem because situations with that big of a traffic spike
are not likely to occur with the use case its going to get in
Idneo.

11.3 Pipeline Cost and Deployment Time

Application 1 Application 2 Application 3 Application 4 Application 5

Frontend
Backend

Fig. 5: Five applications with their backend and frontend

As we can observe on Fig. 5 we will consider 5 appli-
cations. Each of these applications has a Frontend and a
Backend. The Front end is unique for each of these appli-
cations, but the backends are shared by Applications 2, 3,
4 and 5. We can observe this by the color code on Fig. 5,
each color representing a different component.

We can count a total of: 2 backends and 5 frontends. Or
7 different components. The cost of the components is the
following:

* Code Pipeline [11]: 1€/month per pipeline =
10€/month (1 per application, each application being
in pre prod and prod).

Code Build [13]: Negligible.

ECR [14]: Negligible.

* Load Balancer [17]: 20€/month per Load Balancer
= 20€/month (1 Load Balancer).

ECS [4]: The backend of application 1 and the fron-
tends cost 9.010€/month per task = 36.04€/month.
The backend of application 2 costs 18.020€/month.
This is due to the backend of application2 requiring
more resources than the other tasks.

Total Cost: 84.06€/month.
Time required to deploy a new version of an application: 5
minutes.

8 EE/UAB TEG INFORMATICA: Improving Amazon Pipelines Efficiency for Web Applications

11.4 Scaling

In order to check if the auto scaling is working as intended
Amazon Cloudwatch [31] will be used to get a graphic rep-
resentation of the CPU usage. The test is performed using
Apache Jmeter [32], a load testing tool for analyzing and
measuring the performance of a variety of services. Us-
ing Jmeter, 1000 requests where generated in the span of 1
minute on the application. The results are the following:

Percent

- I
115

05124 05241945 14 0525 05125 05126

& cPuLization PO

Fig. 6: CPU Usage of an Application before and after per-
forming a Load Test.

This graphic shows how after reaching a 99% CPU us-
age ECS [4] scaled generating a new instance and reducing
the CPU usage to 40% by distributing the load. Under nor-
mal circumstances ECS would have scaled before reaching
99% usage of a resource, but due to the fact that the re-
quests where generated in such a low span of time ECS got
overwhelmed fast. This situation is not representative of a
realistic case in Idneo where such a sudden spike is very
unlikely.

12 RESULT ANALYSIS

This section will compare the new ECS [4] based pipeline
with the previous EC2 [9] using pipeline. To do this, the
Pipeline Costs, Deployment Time and Scalability Type will
be used.

In the following tables we can see the cost, deployment
time and scaling type of the original EC2 pipeline and the
new ECS one.

TABLE 5: DEPLOYMENT TIMES OF THE PIPELINES

Pipeline Deployment Time
Old EC2 Pipeline | 17 minutes
New ECS Pipeline | 5 minutes

TABLE 6: COST OF THE PIPELINES

Pipeline Monetary Cost
Old EC2 Pipeline | 242€/month
New ECS Pipeline | 84.06€/month

From Table 5 we can observe how, changing to the new
pipeline designed in this project we can deploy applications
12 minutes faster. Each application taking only 5 minutes
to deploy and being independent of the other applications.
This means that, in case of the failure of one application all

TABLE 7: SCALING OF THE PIPELINES

Pipeline Scaling Type
Old EC2 Pipeline | Manual
New ECS Pipeline | Automatic

the other applications will keep working and the only the
application with the failure will be affected.

From Table 6 we can observe how, changing to the new
pipeline designed in this project we saved 157.94€/month.
The total cost of the pipelines being 84.06€/month. This
implies a yearly saving of 1895.28€, which accomplishes
the goal of reducing the costs associated with deploying our
web applications.

Finally, on Table 7 we can observe how this new pipeline
designed in this project is able to automatically scale. We
demonstrated this on section 11.4 and it will reduce the
amount of maintenance required, the pipelines will be able
to react to an increase in traffic without the Devops team
having to manually increase the amount of resources avail-
able to the applications.

To conclude, the total money saved is: 157.94€/month.

The total time saved is: 12 minutes.

The new pipelines scale automatically.

13 CONCLUSIONS

As seen from the result analysis, the objective of reduc-
ing the cost of the pipeline has been accomplished, saving
157.94€/month and 12 minutes per deployment.

The time saved from deploying new versions of an ap-
plication will reduce the amount of time developers and the
Devops team will have to invest into solving issues with ap-
plications, further reducing costs.

Furthermore, previously when a new change to an appli-
cation was deployed, all the applications became unavail-
able for 20 minutes. With the new version of the pipeline
only the changed application will have downtime, making
the whole design more available, stable and requiring less
maintenance.

The goal to automatically scale pipelines if required
has also been accomplished, which will further reduce the
maintenance required for the pipeline, since the Devops
team won’t have to manually scale the resources associated
with the pipelines.

The decision to use ECS was a good one since, with it,
the risk of failure of applications is very low due to Amazon
itself maintaining the ECS instances.

During the development of this project, the main issues
I faced where related to choosing ECS over S3 buckets.
The decision came to ease of use in the end, since the time
needed to implement an S3 bucket pipeline might have been
to high.

14 POTENTIAL IMPROVEMENTS

This section will discuss further improvements that can be
made in the future on the design of the pipeline.

Roger Piera: Improving Amazon Pipelines Efficiency for Web Applications

* One improvement would be the use of CDK [6] to
automate the creation of the pipeline itself to make
deploying new applications as easy as executing an
script.

* Another improvement would be to centralize the logs
of all the applications somewhere to make keeping
track of the state of the apps easier. This would make
maintenance of the applications easier, and would also
allow developers an easy way to check if their applica-
tions are working as intended.

* To further reduce costs another potential improvement
would be to bring some of the applications that allow
it to S3 [3] buckets since they are cheaper to maintain
than ECS [4].

ACKNOWLEDGMENTS

I would like to thank Milu, PauS and PauB from Idneo for
their help during the development of this project. Without
their help I would not have been able to finish it. I would
also like to thank Ana, my tutor from UAB for her help and
guidance. Without her corrections this project would not be
what it is.

REFERENCES

[1] Vertical Scaling
https://www.section.io/blog/
scaling-horizontally-vs-vertically/

[2] Price of stronger EC2 machines

https://aws.amazon.com/ec2/pricing/
reserved-instances/pricing/

[3] S3 Buckets

https://docs.aws.amazon.com/AmazonS3/latest/
dev-retired/UsingBucket.html

[4] ECS

https://aws.amazon.com/ecs/?whats-new-cards.
sort-by=item.additionalFields.postDateTime&
whats-new-cards.sort-order=desc&ecs-blogs.
sort-by=item.additionalFields.createdDate&
ecs-blogs.sort-order=desc

[5] Kubernetes
https://kubernetes.io/

[6] CDK
https://aws.amazon.com/cdk/

[7] Gantt Graph

https://www.gantt.com/

[8] ECS Task and Cluster

https://www.freecodecamp.org/news/
amazon-ecs-terms-and-architecture-807d8c4960fd/

[9] EC2
https://aws.amazon.com/ec2/7ec2-whats-new.
sort-by=item.additionalFields.postDateTime&
ec2-whats-new.sort-order=desc

Jenkins

https://www.jenkins.io/

AWS Codepipeline

https://aws.amazon.com/codepipeline/

AWS Codesource
https://docs.aws.amazon.com/codestar/latest/
APIReference/API_CodeSource.html

AWS Codebuild

https://aws.amazon.com/codebuild/

[14] AWS ECR

https://aws.amazon.com/ecr/

[15] Docker Compose
https://docs.docker.com/compose/

AWS Route 53

https://aws.amazon.com/route53/

AWS Load Balancer
https://aws.amazon.com/elasticloadbalancing/
?whats-new-cards-elb.sort-by=item.additionalFields.
postDateTime&whats-new-cards-elb.sort-order=desc
AWS Target Groups
https://docs.aws.amazon.com/elasticloadbalancing/
latest/application/load-balancer-target- groups.html
Pricing Load Balancers

https://aws.amazon.com/elasticloadbalancing/pricing/

AWS Fargate

https://aws.amazon.com/fargate/?whats-new-cards.
sort-by=item.additionalFields.postDateTime&
whats-new-cards.sort-order=desc&fargate-blogs.
sort-by=item.additionalFields.createdDate&
fargate-blogs.sort-order=desc

Docker

https://www.docker.com/

AWS S3 Static Web Hosting
https://docs.aws.amazon.com/AmazonS3/latest/
userguide/WebsiteHosting.html

Nginx

https://www.nginx.com/

Reverse Proxy Server

https://www.nginx.com/resources/glossary/
reverse-proxy-server/

SSL Certificates

https://www.verisign.com/en_US/website-presence/
online/ssl-certificates/index.xhtml

10 EE/UAB TEG INFORMATICA: Improving Amazon Pipelines Efficiency for Web Applications

[26] HTTPS

https://www.cloudflare.com/learning/ssl/
what-is-https/

[27] AWS S3 Components

https://docs.aws.amazon.com/AmazonS3/latest/
userguide/Welcome.html

[28] AWS Cloudfront

https://aws.amazon.com/cloudfront/

[29] Idneo
https://www.idneo.com/about-idneo/

[30] Devops
https://aws.amazon.com/devops/what-is-devops/

[31] AWS Cloudwatch

https://aws.amazon.com/cloudwatch/

[32] Jmeter
https://jmeter.apache.org/

[33] AWS Security Groups
https://docs.aws.amazon.com/vpc/latest/userguide/
VPC_SecurityGroups.html

[34] AWS VPC

https://aws.amazon.com/vpc/?vpc-blogs.sort-by=
item.additionalFields.createdDate&vpc-blogs.
sort-order=desc

[35] Amazon Web Services

https://aws.amazon.com/

[36] AWS EKS

https://aws.amazon.com/eks/?whats-new-cards.
sort-by=item.additionalFields.postDateTime&
whats-new-cards.sort-order=descé&eks-blogs.
sort-by=item.additionalFields.createdDate&
eks-blogs.sort-order=desc

Roger Piera: Improving Amazon Pipelines Efficiency for Web Applications 11

APENDIX

A.1 Gantt Chart

Gantt start end
Preliminary Phase 03/08/21 03/29/21 [freliminary Phase
Gather information about the current... 03/08 03/10 Gather informatipn about the current pipeline.
Leeway 0311 03111 E Leeway
Research ECS. 03111 03/16 Research ECS.
Leeway 03117 03/18 B Leeway
Research 53 buckets. 03118 03/22 Research 53 buckets.
Leeway 0323 03/23 [Leaway
Research Kubernetes. 03724 03126 Research Kubernetes.
Leeway 03/29 03/29 E leeway
Development Phase 03/30/21 05/28/21 T | Pevelopment Phase
Plan the new pipeline 03/30 04/02 [Mant plan the new pipeling
Leeway 04/05 04/06 [[E Leeway
Monitoring Report 1 04/07 04/09 [Mari Monitoring Repert 1
Leeway 04/12 04/12 B Leeway
Create an ECS based pipeline. 04/13 05/10 Create an ECS based pipeline.
Leeway 0511 05/13 Leoway [E8]
Migrate applications to the new pipel... 05/14 05/20 Migrate applications to the new pipeline.
Leeway 05/21 05/24 Leeway [
Gather information about the new pi... 05/25 05/27 Gather information abgut the new pipeline.
Leeway 05/28 05/28 Leaway [§
Pipeline analysis Phase 05/31/21 06/07/21 Pipeline analysis Phase F
Compare the new pipeline with the o... 05/31 06/01 Compare the new gipeline with the old one. [T
Leaway 06/02 06/02 Leswa
Monitoring Report 2 06/03 06/04 Monitoring Report
Leeway 06/07 06/07 Leaway [§
Optional Improvements phase 06/08/21 06/15/21 Optional Improvements phase [
Final Report. 06/08 06/10 Final Report. [Fina
Leeway 06/11 06/11 Leaway [§
Create the pipeline using CDK code. 06/14 06/15 Create the pipeline using|CDK code. [€F
Further improvements to increase sp... 06/14 06/15 Further improvements to increase sgeed and reduce costs of the pipeline. [Fd
Documentation and Presentation ... 06/16/21 07/02/21 Documentation and Presentation phase: [EES——
Presentation. 06/16 06/18 Presentation. [Pres
Leeway 06/21 06/21 Leeway [B
Dossier. 06/22 06/23 Dossier.
Leeway 06/24 06/24 Leeway [0
Poster 06/25 06/30 Poster [Poste
Leeway 07/01 07/02 Leaway r

Fig. 7: Gantt Chart of the project

12 EE/UAB TFG INFORMATICA: Improving Amazon Pipelines Efficiency for Web Applications

A.2 EC2 Based Pipelines. Currently used in
Idneo.

AWS CI/CD ARCHITECTURE e
APP2:4200 anly be up whenits
1st approach APPLoaz01 | | mesdec The costwillbe
. less that the Prod
‘ ‘~ APPxooon mstance. For estimation,
tP!EPrOd /" s —> 0 B - 6 - o i it's up 40 himonth =
rigger v 0.05%h *aoh =
e 2simenth
Code Code ECR Pre-Prod instance
ipeline build container regist
PP glstry backend:8081
\\
-> 1 eurlmonth | -» Docker image for -» < 1%month "\

app. .

-2 Duration tolal “ -

docker images build * -

(3 images)= 20 min .

s
> ac2 small type for bl Amazon Route 53
buiid = 0,005 eurimin 80
- 443 — == < application1.com
<= all build price = APP2:4200 :

«anti -
%;ml‘:z“am;fn‘:mh APP1-4201 App Load Balancer

APPx 00 —

o :80 [[P—

. - | - application2.com

Prod 443 @../ pp

trigger Prod instance App Load Balancer

backend:8081
-> 0.5 $imonth
-+ Pre and ¢ Notes:
rod : . —» 18%/month *
i mtances: : m;:f:;ﬁ;"j"" {Ninhernfapp:)z
Total pricing: somun-an || b o | RS
~80.5 $/month sontn [o ie :
i tzmedium i © Thisisdone wavaid
© writing the portnext o ©
E the URL. -
Fig. 8: Pipeline originally used in Idneo using EC2
A.3 ECS Based Pipelines, Proposed Model.
Amazon ECS

Amazon Route 53
Amazon CodeSource ‘Amazon CodeBuild

Amazon ECR E

& a7 5.
N e

Jenkins Trigger

i

—————— applicationi.com

Task Definitons <«——— application2.com

<« applicafien3.com

\ o— O— «——— application4.com
o— o— ‘ﬂ‘
o

\D/ g SSL Certiicate

Fig. 9: Proposed Pipeline Model using ECS

Roger Piera: Improving Amazon Pipelines Efficiency for Web Applications 13

A.4 S3 Based Pipelines, Proposed Model.

Amazon ECS 3 Bucket Amazon Route 53
uckets CloudFront

I‘ -« bss.tools.idneo.com

4———— ravelapp.iools.idneo.com
<+ dreammaker.iools.idneo.com

Amazon CodeSource ‘Amazon CodeBuild Amazon ECR

Nginx

Task Definton Task Definiton ~ Reverse
Backend_pro Backend_pre Proxy

el
T HE ®

Jenkins Trigger -l

<+——————expenses.tools.idneo.com

SSL Certificate

Fig. 10: Proposed Pipeline Model using S3 buckets

A.5 Final Pipeline Design, ECS based.
afds

Amazon EC3 u

Amazon CodeSource ‘Amazon GodeBuild Amazon Route 53

Amazon ECR E
- ol g -~ —
. o o
Jenkins Trigger -l [] -—) _— | Application Load

[=— O— |e—]
T Balancer
' (I o— o—

\/ « application.com
Task Definitons «——— application2.com
\ -« application3.com
o— o— -« applicationd.com
o— O |e— -
o— o— -
T SSL Certificate

Fig. 11: Pipeline designed in this project using ECS

