
This is the published version of the bachelor thesis:

Montoto González, Manuel; Moure Lopez, Juan Carlos, dir. Hands-on study
on Vulkan and the hardware ray-tracing extensions. 2021. (958 Enginyeria
Informàtica)

This version is available at https://ddd.uab.cat/record/248457

under the terms of the license

https://ddd.uab.cat/record/248457

Final year project of Computer Engineering, Engineering School, Autonomous University of Barcelona (UAB)

Hands-on study on Vulkan and the
hardware ray-tracing extensions

Manuel Montoto González

Abstract– The new GPUs from Nvidia and AMD include hardware ray-tracing acceleration units that
enable regular consumer computers to be capable of drawing 3D scenes in a more realistic way than
by simple rasterization. Rasterization is limited among other things by the fact that drawing is always
made in the local context of every object in the scene, while ray-tracing is performed on the whole
scene. The access to these hardware ray-tracing units by the programmer is by means of the new
”RTX” extensions that have been released by the Khronos Group for their Vulkan API, the lower level
successor to the industry-standard OpenGL. So it may be time to bite the bullet, leave the comfort of
OpenGL behind, and start learning the API of it’s successor and how it engages with the new RTX
extensions. This text attempts to give you some general guidance to aid in learning the Vulkan API,
a small introduction in how ray-tracing works, how this new hardware handles it, and the new type of
shaders required to be supplied to the GPU for the calculations and drawing. Then, finally, a small
ray-tracer is put together in order to create some 3D scenes showing some of the interesting new
capabilities that are difficult or impossible to achieve by means of rasterization: Shadows, reflections,
and refraction of the light rays, along with measuring and providing the frames per second achieved
with the employed hardware configuration while drawing each of them.

Keywords– Vulkan, OpenGL, RTX, Ray-tracing, Rasterization, GLSL, Shaders, Nvidia, AMD, Intel,
Khronos Group.

F

1 INTRODUCTION AND CONTEXT

HARDWARE acceleration of tasks has been going on
for decades, with the CPU acting as an orchestra
director for all of the coprocessors. The 1985

Commodore Amiga is a prime example on this, where
it took the IBM PC ten years to start getting close to it.
From basic math functions to complex video decoding,
in the end it’s usually better to free the CPU from tasks
not well suited for generic processing. In the 90s the PC
architecture took the world by storm by being cheaper by
doing nearly everything in software thanks to riding the, at
the moment, ever increasing CPU speed wave, but when
CPUs started hitting the wall of the 4.0 ghz frontier focus
on hardware acceleration got back. Nowadays we have
really interesting examples of coprocessors for many tasks
and even a new computer architecture by Apple trouncing
the speed of their last year Intel computers with an ARM
CPU with integrated AI and video processing capabilities
integrated in the silicon.

Among the many examples on hardware acceleration
of the past two decades undoubtely the stars of the show
have been the GPUs. Cheap computers of today exercise
the power of past super computers and generation after
generation the architectures have been streamlined, opti-
mized and super charged with new abilities.

Now, the rage is all on the hardware acceleration of
ray-tracing. Nvidia is leading the way but AMD is getting
closer. The first hardware with modern ray-tracing capabil-
ities was released by Nvidia in 2019, but it’s been in 2020
with the Nvidia Ampere RTX 30 series and AMD Radeon
RX 6000 series generation and the release of the Sony
PlayStation 5 and Microsoft Series X video game consoles
that ray-tracing has been kickstarted to the mainstream
adoption.

1.1 Rasterization vs ray-tracing, in hardware

The traditional process of drawing on screen is called “ras-
terization”, while the object of this work is “ray-tracing”.
Drawing, in both techniques, builds on top of the concept
of “shaders”, small routines delegated to be processed by
the GPU instead of the CPU, usually written in GLSL and
HLSL languages that are similar to C and C++, that get
some standard input in variables with standarized names
and then output a result in some other variable or variables
with standard names too. Vertex shaders get a vertex as
input and expect a (usually processed) vertex as an output.
Pixel shaders get the values of the three vertices from the
current triangle being drawn interpolated to the current
position inside the triangle and it’s expected to output a
RGBA value to be stored in the image buffer.

June 2021, UAB Engineering School

2 EE/UAB Final year project of Computer Engineering: Hands-on study on Vulkan and the hardware ray-tracing extensions

1.1.1 Rasterization

In rasterization the objects from a 3D scene are processed
one by one, vertices projected onto the camera’s 2D plane
by using vertex shaders, code written by the programmer
to be executed on the GPU, pixels drawn into a buffer
by using fragment shaders (in OpenGL / Vulkan, pixel
shaders in Direct 3D terminology). The order of drawing
into the buffer is pretty random, so the same pixel may
be overwritten many times until the final image is done.
To avoid sorting problems with objects projected onto the
same pixels, and get a speed boost by culling the draw call
if it’s not going to affect the final image, a distance from
camera buffer is used, the “z-buffer”.

Nowadays thanks to the powerful GPUs and a variety
of ever improving techniques, rasterization can give very
convincing and quality results, but still falls short due to the
implicit limitations with lightning and how light interacts
between objects on the scene.

An important detail in rasterization is that objects are
drawn in isolation from the other objects. Scene data is
on the CPU memory / side, and while you could techni-
cally send this information to the GPU for the shaders
consumption, in practice this is not feasible due to, among
other factors, the small memory available (a few kilobytes,
usually).

1.1.2 Brief introduction to ray-tracing

On the other side, ray-tracing is, interestingly, a simpler
concept. Instead of iterating through the objects drawing
them, the GPU goes directly to iterate all over the final
display surface pixels by creating “rays” that enter the
scene, simulating the path back from the sources to the
camera. The scene is uploaded in full to the GPU memory
and each of these rays check intersections with all the
scene objects and execute new types of shaders in case of
no collision (so as to draw a background, for example), in
the case of any surface intersection, and in the case of the
intersection point that lies the nearest to the camera.

The programmer can leverage this information when
writing the intersection shaders to direct the GPU to col-
orize the buffer pixels as required, even by instancing new
rays to get more information from the scene by knowing
where the light hitting the current point was bouncing from.

To try to make this concept clearer let’s check the draw-
ing at figure (1) . Here we can see rays being generated at
the left going to the right.

Some of the rays intersect an object. The surface normal
is taken in consideration to calculate a new exiting ray that
is symmetrical to the arriving ray with the normal axis.
Some of these rays go to the infinity now. One ray is hitting
a different object. Then, again, a new ray is calculated then
reaches, finally, the infinity.

Rays return backwards reporting a color. Then the inter-
section shader uses this information and the surface prop-
erties to calculate a color value. This doesn’t have to be

Fig. 1: Rays bounce on objects, or miss and reach the infi-
nite

photorealistic at all. The programmer is free to do whatever
is necessary with this information. It’s worth noticing here
that this is only possible by means of having the full scene
information available and allows for truly mind blowing ca-
pabilities that are near to impossible to achieve by raster-
ization, such as semi transparent objects, true reflections,
“free” realistic shadows and much more. Each technique
may be implemented in simple ways for basic results:

• Rays that intersect a light source can return a bright
color to the exit point of a surface. Rays not intersect-
ing a light source can return a dark color, black or a
base level color acting as the diffuse light level. In this
way the renderer is already achieving “free” realistic
shadows.

• Materials are simulated by altering how the rays
bounce and what is done with the returned values.
Metallic surfaces or mirrors get to carry a lot of the
returning color values. Non reflective surfaces will
mainly ignore the arriving color and returning theirs.

• Rays that reach a non-opaque object can get through
it but it’s path and color values be altered to simulate
semi transparency and light refraction.

• Rays reaching the infinitum may return a background
image, create a design pattern by means of the coordi-
nate values, a simple fill color, etc.

One could say the only disadvantadge is the stagering
amount of computing power required, but that is now
starting to be addressed in the new consumer hardware, and
no doubt with each new generation the number of rays per
seconds will only get higher.

2 GOALS OF THIS WORK

The main goals are understanding how Vulkan works and
getting a Vulkan code base up and working; initializing the
RTX hardware to be able to load and launch ray-tracing
shaders, then proceed to build a ray-tracer to experiment
with 3D models and the GLSL shader language in order to
learn more about what ray-tracing can do.

Manuel Montoto: Hands-on study on Vulkan and the hardware ray-tracing extensions 3

Once this is all in working order, try to get a glance of
the speed of the hardware by measuring the frames per sec-
ond obtained in the test scenes, to finally proceed to work in
optimizing the software as much as possible during the re-
maining days of the semester, until the moment of releasing
this document.

3 METHODOLOGY

A lot of reading and some planning preceded the start of
the programming work. In this way some basic errors were
avoided in the management of time and fewer tries were
required to understand and put the Vulkan code base to
work. In this phase, the Vulkan SDK was installed, and
code examples were downloaded and tested. Windows
and Vulkan boilerplate code was added for the detection
of the environment, window and event management and
draw calls initialization, but ray-tracing tests were still not
possible, as there’s currently no software fallback provided
by Vulkan, and writing an equivalent software ray-tracer,
as fun as it can be, was out of the planned scope for this
project.

The compiler installed in the development machine was
Microsoft Visual Studio 2019, and the code has been tested
in 64 bits from the start. Development was helped by the
use of a Subversion code repository. That allowed for many
easy error catches, as comparing changes in the source
code with last known working versions was made trivial
in this way. The operating system was the latest revision
of Windows 10, being it the current standard for PC video
games until Linux gaming catches up.

A proper GPU was finally acquired and connected to
the computer, a more difficult step than it should have
been as the market conditions during the start of 2021
were incredibly tough (three months of active search were
required until I got my hands on a Nvidia RTX 3060ti).

Now, with a capable system, ray-tracing examples
were studied and work on the ray-tracer started. Many
of the examples didn’t compile or work properly due to
the experimental nature of the RTX extensions before the
specifications were closed in December of 2020. Some
examples were able to work after renaming some of the
definitions and function calls, but in the end examples
were not that useful, and this became even worse after the
Nvidia software autoinstalled an update without warning
first, rendering my first month of work obsolete by making
the executables compiled with the old SDK incompatible,
forcing me to upgrade to the newer Vulkan SDK and
spending a few days fixing the functionality.

Annoying as it can be, this wasn’t all that unexpected as
we are still in what I call the “Wild Western” stage of this
technology. I have had to fight with equivalent problems
with many pioneering technologies before, and anyone who
has had contact with pre-release game system devkits, the
first years of 3D graphics acceleration or the first modern
virtual reality wave, can surely relate and can remember
similar experiences.

As it will be explained later, testing of a handful of
ray-tracing techniques were then put into test. Sometimes
the same image has been drawn by rasterization and
ray-tracing and compared for differences. The frames
per second achieved have also been noted as a way to
hypothesize how more complex scenes could be.

4 THE VULKAN GRAPHICS API

4.1 The state of the art in graphics APIs
Vulkan is the successor of OpenGL as the industry standard
for 3D graphics, and brings more control to the programmer
allowing for the use of multiple screens, multiple hardware
devices and so on.

While the concept of ray-tracing is in theory not tied
up to any API or library at all, the reality is that nowadays
standarized ray-tracing hardware acceleration is limited
to only two choices: The Microsoft Direct 3D 12 API,
itself limited to target the Windows operating system and
the Xbox Series X and S game consoles, and Vulkan, that
besides Windows can also target Linux, the PlayStation
5 console and (very) modern mobile phones and tablets.
Vulkan is also interesting as it’s the API of choice for the
Nintendo Switch games console, but unfortunately the
Switch does not have any hardware ray-tracing capabilities.

It’s worth noting the abscence of Apple’s Mac OS
X in the list, but it can still be targeted by means of
an API wrapper. Apple has traditionally been hos-
tile to video games in general and when DirectX 12
and Vulkan were developed Apple released their own
proprietary API “Metal” as a lock-in for iOS develop-
ers. Metal is not a bad API but it’s usefulness from
a market share perspective is truly limited. Thank-
fully there’s an official wrapper developed, MoltenVK
(github.com/KhronosGroup/MoltenVK), allow-
ing for Vulkan code to run unmodified in OSX and iOS and
already supports even the latest Apple ARM M1 devices.

The Khronos Group has not developed any ray-tracing
extensions for OpenGL, so if one doesn’t want to get
tangled to the Microsoft proprietary ecosystem and wants
realistic cross platform possibilities Vulkan is the natural
choice here.

4.2 Fast introduction to Vulkan

4.2.1 Before starting

The official Vulkan SDK can be downloaded from
www.lunarg.com/vulkan-sdk/

Just like OpenGL, Vulkan works around the concept
of handles, where the programmer asks for access to
resources and the drivers return an ID associated to them.
With Vulkan residing in a lower-level layer than OpenGL
pointers to the hardware memory buffers aren’t out of the
question and it’s possible to access VRAM from the CPU

github.com/KhronosGroup/MoltenVK
www.lunarg.com/vulkan-sdk/

4 EE/UAB Final year project of Computer Engineering: Hands-on study on Vulkan and the hardware ray-tracing extensions

side, but using handles allow for the drivers extra freedom
to rearrange things when necessary, like when a surface
gets invalidated, without requiring handles to be reacquired
again.

Of course a high degree of control requires dealing with
an equally high amount of details. Vulkan calls require a
lot of information to be supplied by the programmer and
the way this is done is by passing structures of data instead
of having functions with many parameters.

Tastefully Vulkan is still a C API; C++ can be used
to target the C API but it’s not a requirement. By doing
it this way, creating bindings for higher-level languages
for people who use them, like the scripting parts of
video games, becomes easier. But this time, there’s
also a C++ version of the API, supplied as a one file
C++ include, taking over the tasks of some petty ini-
tialization and adding some extra conventions resulting
in smaller code that is a bit more robust. This header
can be downloaded from it’s official Github repository at
github.com/KhronosGroup/Vulkan-Hpp

My tests have revolved mainly around the plain C API
although some tests have also been conducted with the C++
header as to gain insight on it.

4.2.2 Vulkan initialization

Compared with OpenGL, initializing Vulkan is a long
process with a steep learning slope, no matter if the C or
the C++ version of the API is being used. But the general
steps are logical, indeed.

You start by creating a VkInstance to search for
available GPUs with Vulkan support. Usually a personal
computer is going to have just one, but this allows for the
creation of heterogeneous multi GPU systems and gives the
programmer control over what to do with each one. You
then loop through them, read the device properties through
VkPhysicalDevice and when you are ready to select one
of the available hardware devices a VkDevice is created to
work with it.

Next steps involve allocating the VRAM required for
work. Creating a VkBuffer on the VkDeviceMemory
with vkAllocateMemory. The ability of deciding how and
where to store objects in this way is what I consider some
of the star differences of Vulkan over OpenGL.

Resources get binded to the VkDevice, a VkCommand-
Buffer gets created from the VkCommandPool so we
later can use it to schedule work VkQueue queues from
the device. There are different types of queues meant for
drawing, GPGPU work and more. A fun fact is that no
Vulkan device has a hard requirement for implementing
drawing, something surprising from a video games devel-
oper but probably obvious for people used to HPC (High
Performance Computing).

Now a VkPipeline gets created from vkCreateGraphic-
sPipelines and it’s up to the programmer to configure how

drawing will be performed by it. The layout may include
rasterization, calls to shaders and much more. The pipeline
is one of the most complex objects in Vulkan.

4.2.3 Shaders

Shaders are handled within VkShaderModule where
SPIR-V compiled files are loaded.

One big historic limitation of OpenGL version Direct3D
has always been the fact that shaders had to be loaded
in source code form and compiled by the drivers. There
were some synthax differences among GPU vendors
or even driver versions. Process was slow, and shader
code was there for anyone to look into, something that
many companies just don’t like. It was possible to store
the compiled binary representation of the driver to disk
to cache the compilation results, but this was standard
nor good practice as it could make the application crash
when the user updated the drivers or upgraded the hardware.

Shaders in Vulkan are not fundamentally tied to any
language. One can use GLSL, HLSL or even create own
languages if such a need arises. The programmer then uses
a SPIR-V compiler to store a binary containing SPIR-V
bytecode ready for the GPU drivers to be loaded and
executed.

Storing the shaders in SPIR-V representation allows for
simpler drivers and much faster loading speed.

The Vulkan SDK contains the glslangValidator.exe
compiler whose invocation could for example be done in
this way:

glslangValidator.exe –target-env vulkan1.2 -V -S rgen
INPUT FILE -o OUTPUT FILE

This small example shows how a minimum Vulkan
version can be specified, and the type of shader being
requested, a ray generation shader in this case (more on
this type of shader later).

To tell Vulkan what shaders to use and their user data
there’s a buffer of the shader handles and the user values
specified by the programmer.

4.2.4 Draw loop

vkAcquireNextImageKHR gets an image handle where
drawing can take place. This doubles also as the synchro-
nization mechanism as it will wait until the time is correct
for a new frame, with a maximum of one second.

Vulkan is parallel by nature so to ensure the GPU has
finished all the required tasks before trying to render a
scene semaphores and fences primitives are supplied by the
API (VkSemaphore and VkFence) and created by using
the functions vkCreateSemaphore and vkCreateFence
respectively. Then vkWaitForFences pauses execution
and vkResetFences resets it after being allowed to pass so

github.com/KhronosGroup/Vulkan-Hpp

Manuel Montoto: Hands-on study on Vulkan and the hardware ray-tracing extensions 5

to be able to use it on next frame.

At this point the VkCommandBuffer we initialized
before can be used to start issuing new work for the
GPU to execute. First by resetting it with vkBeginCom-
mandBuffer, then adding commands to the queue with
vkCmdBeginRenderPass / vkCmdEndRenderPass and
closing it with vkEndCommandBuffer and submitting
everything for GPU processing with vkQueueSubmit

Finally vkQueuePresentKHR is called to display the
frame we generated.

5 THE VULKAN RTX EXTENSIONS

5.1 Getting ray-tracing to work with Vulkan
The flexibility of Vulkan starts to pay off now, as adding a
ray-tracing step in the draw process is like rasterizing but by
calling the function vkCreateRayTracingPipelinesKHR.

In the information creation structure the number of ray
bounces is stated by the recursion level. One means no
bounces after reaching a surface for the rasterizing-like
aesthetic. The real magic here lies on upping that limit,
sending the scene data to the GPU and the new shaders that
are going to be required by the GPU during the ray-tracing
process.

The command vkCmdTraceRaysNVX is issued to ini-
tiate the process of launching a 2D grid of rays from the
camera plane, one per each pixel that will get on the image
buffer.

5.2 The acceleration structure
The acceleration structure purpose is to store the scene
information needed to render the image seen from the
camera location, spatially sorted, and in a way that is
efficient to traverse so as to calculate the ray intersections.

One can talk about acceleration structures, in fact, as
there are two types: The bottom level and top level.

• Bottom level acceleration structures

For practical purposes, the bottom level acceleration
structure is the representation of the geometry of our
objects. In a tree-like fashion other bottom level accel-
eration structures can hang from it as children nodes.
These are the objects that will be evaluated for inter-
section detection with the rays. There’s also informa-
tion about how the object is transformed and the mate-
rials to use.

• Top level acceleration structure

The top level acceleration structure acts as the root for
the scene tree comprised of the bottom level structures
and allows the GPU to traverse the data required dur-
ing the ray-tracing process.

The node contents are basically AABB bounding boxes
for fast broad tests and triangle sets for detailed intersection

calculation, but the internal organization and data of an
acceleration structure is opaque to the programmer because
this enables the drivers to customize it in the most efficient
way for each GPU type.

In order to feed the required data to the GPU, geome-
try is summited in a standarized way by using the VkAc-
celerationStructureGeometryKHR structure. This struc-
ture contains fields for specifying triangles, AABB bound-
ing boxes or children acceleration structures.

5.3 Ray-tracing shaders
There are five types of ray-tracing shaders:

• Ray Generation

These represent the starting point for the ray-tracing
calculation. A ray is instanced and it’s output gets
written to the output buffer. There’s an example at the
appendix A.5.1

• Intersection

These are used for non-triangle shapes hit detection
and are completely determined by the programmer
who can use these to implement sphere collision de-
tection, for example.

• Hit (Any)

Any hit shaders are called on each instance of the ray
hitting enter and exit points for all meshes inside the
scene. Useful for some effects but not the fastest way
to draw.

• Hit (Closest)

This is the “true” hit shader that is usually required for
ray-tracing. It’s called when the ray intersects a mesh
for the closest position from the ray starting point. The
closest point to the camera plane in the case of the ini-
tial ray instance, then the closest point after hitting the
last surface on the ongoing process of recursing the ray
bounces. An example is at the appendix A.5.2

• Miss

If the ray does not intersect anything this shader gets
called and the programmer can decide what to display
in that case. A solid background color, a gradient, an
image, etc. This can be a really simple shader as can
be observed in appendix A.5.3

6 GETTING ONE’S HANDS DIRTY

Up to this point there has been basically a lot of theory.
Now, in order to put these concepts to work, and learn
about how all of this really fits together in practice, let’s
talk about the the very simple ray-tracer that has been
developed by using the Vulkan API. The test scenes have
been purposely designed for testing features that are not
easy to simulate in rasterization: Shadows, transparencies
and reflections have been generated.

6 EE/UAB Final year project of Computer Engineering: Hands-on study on Vulkan and the hardware ray-tracing extensions

6.1 Getting prettier scenes: Loading 3D
models

With not much time or abilities to model 3D objects at first
I have been using simple models created by hand by some
trial and error. I later used simple loops to create improved
and more complex objects, but nothing beats real models
crafted by real artists. Thankfully the Khronos Group
aknowledges this may be important for people starting with
the API and there’s a small repository of sample 3D models
that allow for nicer tests. This repository can be found in
this URL:

github.com/KhronosGroup/glTF-Sample-
Models

The models are stored in the glTF format, and for the
purposes and scope of this project, it’s basically a list of
vertex positions plus a list of triangles created by listing the
number of primitives and listing the indices in the vertex
list, plus texture information. Just as with the hand created
models the vertices are stored inside acceleration structures
then feed to the GPU.

The tiny glTF library has been used to help with the task
of loading the required vertex and transform data.

6.2 Shadows
Shadows can be described as light attenuation by means of
a barrier in the path between a surface and a light source.
There isn’t a unique way to simulate shadows in rasteriza-
tion. A variety of techniques have been designed over the
years but in the end shadows are usually reserved to some
objects interacting with some light sources projecting an
approximation of the shadow on some specific surfaces.
All in all a very poor approximation which is a lot of work
and not appropiate in many situations. Making things even
worse, self shadowing of objects, where the own surface
features project shadows in the own object require even
more intensive work with many drawing passes.

Meanwhile, in raytracing perfectly formed and complete
shadows come ”for free” as the color calculated simply is
not the same if there’s a clear path to a light source or there
isn’t. Shadows also can be colorized by transparent objects.

Figure (2) shows an object with not only shadow and self
shadowing but also self reflections. More on reflections on
the next subsection.

Shadows are difficult to calculate when not using ray-
tracing as to be accurate and complete they require inter-
acting with the whole scene geometry to render properly,
but this data is not present in the usual rasterizing pipeline.
Objects drawn by rasterization can’t read the world around
them: remember objects are drawn in isolation.

In ray tracing shadows get calculated by means of
intersecting objects from the current location to all of the
light positions. If an object gets in the way the point will
get darker, if not, light will add to the overall brightness.

Fig. 2: Self reflections and shadowing

6.3 Reflections
The same set of problems happen when trying to render
reflections: This makes impossible to draw correct repre-
sentation of the reflections of nearby objects.

In ray tracing reflection comes as a natural feature:
Similarly to shadows a new ray is calculated from the
nearest intersection point surface, but this time it’s aligned
to the barycentric coordinates normal of the vertices to
check intersections with other objects or other parts of
the current one. The returned value is then used to form
the final pixel value. This is an iterative process, new
intersections found can also launch new rays. A depth limit
is usually set so as to not get stuck in a loop and limit the
processing and time required to form the final scene. In my
tests looks like this limit is 31 extra bounces besides the
initial ray from the camera plane into the scene.

This allows for some interesting effects. Not allowing for
the original rays to bounce gives a very raster-like image
look. In videogames a few bounces, for example 4, give
good enough results. In practice, even high quality images
get good enough from 10 or more bounces, although this is
very dependent on every image and their specific details.

As an example, in figure (3) a bunch of spheres are
reflected on the curved surface of another sphere. This
image had a bounce limit of 31 times, and as such features
very detailed reflections of other reflections with all the
scene spheres visible.

Fig. 3: Reflection of nearby objects

6.4 Transparencies and light refraction
Transparencies have always been possible to simulate in
rasterization by means of having two draw queues, one

github.com/KhronosGroup/glTF-Sample-Models
github.com/KhronosGroup/glTF-Sample-Models

Manuel Montoto: Hands-on study on Vulkan and the hardware ray-tracing extensions 7

for regular opaque objects, unsorted relying on z-buffer,
and other for ordering the draw calls from far to near and
reading the z-buffer but not writing to it. Still, this has
always been only an approximation as the objects local
information limits the precision of the calculated color
if multiple transparent surfaces intersect. HDR drawing
pipeline where values could extend beyond the regular
values helped but in the end the color mix was always
off because interactions among intersecting surfaces. Self
transparency was problematic because of that, too. Objects
with no clear sorting order, like two objects interlaced, had
even more problems because different methods of assessing
the object distance from the camera gave different results.
And besides being impossible to calculate a really accurate
color value for the transparency itself, the biggest defi-
ciency was in simulating transparency on curved surfaces
where light would experience refraction. Shaders tailored
for these special surfaces were used to simulate a fake
approximation of what could be expected instead. Some
programmers opt for not featuring transparencies in their
game engines because they are too much trouble for far
from perfect and even unpredictable results.

Due to all of these problems, a scene comprised of
crystal balls is better reimagined as opaque spheres when
using rasterization in figure (4), but looks gorgeous in
ray-tracing in figure (5) .

Fig. 4: Dull raster spheres

Fig. 5: Same scene with realistic looking light refraction on
crystal spheres

6.5 Performance of generating simple scenes
Showing images is visually interesting, but what about the
performance? A still image is going to look pretty no mat-
ter if it’s requiring a few milliseconds to be drawn or a few
minutes. So the following table gives information on how

many frames per second these scenes got in the test ma-
chine in order to help the reader to get a more complete
understanding. The original image resolution is the current
gaming standard,1920x1080 pixels (Full HD), at 32 bits per
pixel (R, G, B, A). At first these scenes were working in the
order of 200 - 300 frames per second, but once the bulk of
the work was done a few extra days were spent in simpli-
fying the CPU side of the code and, more importantly, the
closest-hit shader.

Scene Frames per second
Self reflections and shadows on a
complex 3D object (raytracing)

Figure 2 3221
Reflecting objects (raytracing)

Figure 3 2840
100 spheres (raytracing) - Figure 5 3162

As it can be seen in the table, thanks to this last effort,
and very much to my surprise and amusement, speeds in
the order of the thousands of frames per second have been
achieved with these scenes.

The exact hardware specifications giving these results
can be checked at appendix A.1

7 CONCLUSIONS

7.1 Thoughts about Vulkan
After one manages to get through the initial learning curve
Vulkan gets more predictable than OpenGL, gets parallel
processing capabilities, multi-GPU and multi-screen man-
agement, a much leaner layer interfacing to the hardware
(that I would not really call “low level”, but it’s better than
OpenGL) and acces to the fascinating world of hardware
ray-tracing.

The learning curve is high. Vulkan is not meant for
direct usage, but for the programmer to build a wrapper
around it or use an existing 3D engine. Both the C and
the C++ APIs feel tedious to use, with lots of repetitive
initialization of structures, very long function names and
namespaces, and a lot of intermediate steps until one is
able to start drawing. Those who elect to use it directly
will need to remember at times that in the end it’s been
designed for engine creators, and not to be used directly by
application and game programmers.

This situation remembers me of comparing assembler
code of the CPUs of the 1970s and 1980s with the CPUs
from the 1990s and beyond that targeted compiler writers
instead of assembler programmers. The increased control
over the memory allocation on the GPU, being able to
manage multiple devices with multiple capabilities and
address multiple screens or even not drawing anything to
any screen makes the code verbose, long and tedious even
for the smallest of tasks.

Summing it up, I would say that this is a solid case
for using some lean third party wrapper to ease the work,
something I’ve always argued against in OpenGL, but it’s a

8 EE/UAB Final year project of Computer Engineering: Hands-on study on Vulkan and the hardware ray-tracing extensions

worthwile and welcome step forward from OpenGL and a
solid contender for Microsoft’s Direct3D 12.

I’m not very satisfied with the existing documentation.
I have liked just one book on Vulkan (none on the RTX
extensions),

7.2 My thoughts on the hardware ray-tracing
and the RTX extensions

The ray-tracing hardware is amazing. It’s fast, it’s fun.
This hardware feels like once in a decade step forward
kickstarting a new generation of 3D graphics, and I can’t
wait to see what new GPUs are going to bring in the
future. About the RTX extensions, taking into account the
lenghthy Vulkan initialization process, in the end using the
RTX extensions and shaders feel like an easy endeavour in
comparison. In this regard it’s a pity the RTX pipeline has
not been backported to OpenGL for simpler programs that
don’t require the extra control in Vulkan.

Ray-tracing is slower than traditional rasterizing but in
the end it’s the programmer who decides how to draw and
both techniques can be mixed. This allows for increased
realism when possible but without sacrificing that much
speed. This is especially true for visualizations that do
not require as much speed as video games. Ray-traced
scenes look beautiful and the impact realistic light and the
combined effect of refractions, shadows and reflections is
big and transforms otherwise dull images into satisfying
to watch scenes that many years ago would have required
many hours each to be rendered.

I’d say documentation is still a problem. While there are
a lot of websites with tutorials and tons of code all over
Github that presumably should make the programmer’s
life easier, I personally haven’t found these very useful,
especially true with ray-tracing examples with many
requiring old Vulkan SDK versions. There aren’t that many
books for Vulkan, but I haven’t managed to find a book on
the RTX extensions that is worth buying, which is a shame
because it would have made my life much easier during the
course of the semester I worked on this project.

The super-high frames per second counts achieved make
me hopeful that fully ray-traced games are already at the
corner. In the meanwhile, a mix of rasterization with im-
proved shadows, reflections and light refraction effects will
become the norm.

7.3 Continuing the work
The time alloted for the final year project on a engineering
degree is limited and I’m pretty satisfied with the results I
have achieved. That said, it’s not my intention to stop after
finishing this essay.

My original intent was to compare Nvidia vs AMD
performance and compare the same images rendered on
the cards trying to find differences. Hardware availability
during this work has been unfortunately crippled due to
the ongoing semiconductor crisis that started in 2020, the

cryptocurrency miner craze and the wild speculation by
organized groups using bot farms to automate buying GPUs
and other high demand items for later higher price resale.
So while I should probably be thankful that I was lucky
enough to even manage to get one card, I have been unable
to obtain any other GPU for comparison. I’ll eagerly get to
this when the stock problems get away.

Once I have an AMD card I’m also willing to measure
the power draw of both cards while rendering the scenes.

Feature-wise, following up this small research work
I expect next to add support for textures. I deliberately
ommited it from my tests as I didn’t want to get visually
distracted from pure color values obtained by the ray-
tracing process to better assess reflections, but in real world
applications textures are a must have.

I would also like to put more effort on trying to optimize
the shaders and see how far I can push my graphics card.
While I have spent a good deal of time trying to improve
the code done these months in the end now with the newly
acquired insight I should be able to more readily get to
the point and make smaller and faster implementations of
everything.

On a more general level I also want to continue this
line of work by including support for ray-tracing in my
personal library of base code and using the RTX extensions
at work. Surely starting the code from scratch as now I
have a much deeper understanding of Vulkan and how the
RTX extensions work so I’ll be able to make a smaller and
more to the point implementation. A down side on Vulkan
has been that my expectations of being able to simplify
the current code have gotten crushed by the extra effort
required with Vulkan, versus the simpler and much easier
OpenGL wrapper I managed to fit in less than 2500 lines
of C code, but the added capabilities of the RTX extensions
make this effort worthwhile.

ACKNOWLEDGMENTS

I would like to give thanks to my wife Montse Estadella
for her support and help over these years that I’ve become
a student again. She has helped me to endure through the
most difficult times until I’ve finally been able to get to the
end, and my daughter Ada who may one day be able to
write her own ray-tracer too ;-)

Juan Carlos Moure for his ongoing patience with whom I
suspect may be a somewhat difficult student.

And all the teachers from the Computer Architecture
and Operating Systems (CAOS) department, for hoarding
nearly all of the fun subjects in Computer Engineering in
the UAB :-)

Finally, this work is also dedicated to the memory of
Byuu, a giant on the video game emulation and preserva-
tion scene, who tragically passed away during the course of
this work. Godspeed Dave.

Manuel Montoto: Hands-on study on Vulkan and the hardware ray-tracing extensions 9

REFERENCES

1. “Vulkan Programming Guide” Graham Sellers,
John Kessenich, Addison Wesley, 2017. ISBN
9780134464541

2. “Object-Oriented Ray Tracing in C++” Wilt, Nicholas,
Wiley Editorial, 1994. ISBN 0-471-30414-X

3. Official website of the book series“Ray tracing in one
weekend” [Online]. raytracing.github.io.

4. “Vulkan official website” [Online]. www.khronos.
org/vulkan.

5. “Khronos Vulkan Resources Archive” [On-
line]. github.com/KhronosGroup/
Khronosdotorg/blob/main/api/vulkan/
resources.md.

6. “Vulkan - Nvidia Developer” [Online].
developer.nvidia.com/vulkan.

7. “NVIDIA Vulkan Ray Tracing Tutorial” [Online].
developer.nvidia.com/rtx/raytracing/
vkray.

8. “Introduction to Real-Time Ray Tracing with
Vulkan”, NVIDIA Developer blog [Online].
developer.nvidia.com/blog/vulkan-
raytracing/.

9. “GLTF Sample Models” [Online]. github.com/
KhronosGroup/glTF-Sample-Models.

APPENDIX

A.1 The hardware employed for this work
On the CPU side, there’s a 3.3 GHz water cooled Intel i7
5820K that has been overclocked to 4.2 GHz, with 32 GB
of DDR4 RAM.

On the GPU side, the computer mounts an Nvidia
RTX 3060ti graphics card. This card was only released on
December 2021, and it’s basic specifications are:

• Base clock speed of up to 1.665 GHz, overclocked to
2.1 Ghz

• 8 GB of GDDR6 VRAM

• 4864 CUDA Cores

• 38 Ray-tracing cores

• Memory bandwith: 448 GB/s

A.2 Open source code and libraries used
• Vulkan SDK

The SDK is required for Vulkan usage. Some exam-
ples have been used as a guide on how to correctly
set-up a Vulkan program to work.

• tiny glTF

Required for 3D model data loading. Check appendix
XX for some more information.

• stb image

This library is required by tinygltf, but not really used,
as the ray-tracer developed did not support textures at
the time of this writing.

• ktx

Required by the Vulkan base code, simplifies usage of
Vulkan images.

• glm gl math

Math library for vectors.

Some open source example code from Sascha Willems
(Khronos Group) was also of help in getting started.

A.3 3D Model store format: glTF and the
tiny glTF library

Although I used a custom format for 3D model data loading
in the 3D engine I wrote a few courses ago in the graphics
topic, this time and out of curiosity for the endorsement of
the Khronos Group, I wanted to try glTF (GL Transmission
Format). The glTF specification is royalty-free, and the 2.0
version can be found at www.khronos.org/gltf/.
Many objects are available for free by searching the
Internet, allowing for more beautiful tests. The Blender
3D modeler also supports this format, so it was ideal for
my tests. glTF can be used in text and binary formats, and
when using the text one it’s internally organized in JSON
format.

To aid with the loading of the glTF models the free
tinygltf library has been used. This library can be found at
github.com/syoyo/tinygltf and I appreciate the
fact it’s composed by a very few header files and compiles
at the very first try, something that sadly in my personal
experience is not that usual.

A.4 Small survey of current RTX hardware
At the date of this writing, June 2021, RTX hardware
is available in the form of the Sony PlayStation 5 and
Microsoft Series consoles, sadly not fully open to the
public for tinkering, the Turing and Ampere graphics cards
from nVidia, and the Radeon RX 6000 series from AMD.

Nvidia is currently offering a chaotic line of cards
ranging from some RTX 2070 and RTX 2080 models from
the past generation to an unending supply of new Ampere
chips that are instantly sold out when available at online

raytracing.github.io
www.khronos.org/vulkan
www.khronos.org/vulkan
github.com/KhronosGroup/Khronosdotorg/blob/main/api/vulkan/resources.md
github.com/KhronosGroup/Khronosdotorg/blob/main/api/vulkan/resources.md
github.com/KhronosGroup/Khronosdotorg/blob/main/api/vulkan/resources.md
developer.nvidia.com/vulkan
developer.nvidia.com/rtx/raytracing/vkray
developer.nvidia.com/rtx/raytracing/vkray
developer.nvidia.com/blog/vulkan-raytracing/
developer.nvidia.com/blog/vulkan-raytracing/
github.com/KhronosGroup/glTF-Sample-Models
github.com/KhronosGroup/glTF-Sample-Models
www.khronos.org/gltf/
github.com/syoyo/tinygltf

10 EE/UAB Final year project of Computer Engineering: Hands-on study on Vulkan and the hardware ray-tracing extensions

stores. Models supposedly available are the RTX 3060,
RTX 3060Ti (the one used in this work), RTX 3070, RTX
3070Ti, RTX 3080, 3080Ti and the RTX 3090, and five
more models for laptops. These share the same basic
architecture and vary on the amount and type of VRAM
employed and the number of the processing units.

Similarly, AMD offers a more streamlined range with
the RX 6800 and 6800 XT, the high end RX 6900 XT and
the cheaper RX 6700 XT. The RX 6000M series for laptops
have been introduced less than a month ago.

AMD is putting a tough battle to Nvidia with the RX
6000 series, but in this generation these cards are not nearly
as fast in hardware ray-tracing as the ones from Nvidia. If
this is really that troublesome for gamers, taking into ac-
count that not many video games support ray-tracing and
rely on the rasterizing speed, very good with both manufac-
turers, then the answer is probably not, but for development
purposes the situation may be different.

A.5 Shader source code examples

A.5.1 A ray generation shader

1 # v e r s i o n 460
2 # e x t e n s i o n G L E X T r ay t r ac i n g : r e q u i r e
3

4 l a y o u t (b i n d i n g = 0 , s e t = 0) un i fo rm
a c c e l e r a t i o n S t r u c t u r e E X T topLevelAS ;

5 l a y o u t (b i n d i n g = 1 , s e t = 0 , rgba8) un i fo rm image2D
image ;

6 l a y o u t (b i n d i n g = 2 , s e t = 0) un i fo rm C a m e r a P r o p e r t i e s
7 {
8 mat4 v i e w I n v e r s e ;
9 mat4 p r o j I n v e r s e ;

10 vec4 l i g h t P o s ;
11 } cam ;
12

13

14 s t r u c t RayPayload {
15 vec3 c o l o r ;
16 f l o a t d i s t a n c e ;
17 vec3 normal ;
18 f l o a t r e f l e c t o r ;
19 } ;
20

21 l a y o u t (l o c a t i o n = 0) rayPayloadEXT RayPayload r a y P a y l o a d
;

22

23 l a y o u t (c o n s t a n t i d = 0) c o n s t i n t MAX RECURSION = 0 ;
24

25 vo id main ()
26 {
27 c o n s t vec2 p i x e l C e n t e r = vec2 (gl LaunchIDEXT . xy) +

vec2 (0 . 5) ;
28 c o n s t vec2 inUV = p i x e l C e n t e r / vec2 (gl LaunchSizeEXT . xy

) ;
29 vec2 d = inUV * 2 . 0 − 1 . 0 ;
30

31 vec4 o r i g i n = cam . v i e w I n v e r s e * vec4 (0 , 0 , 0 , 1) ;
32 vec4 t a r g e t = cam . p r o j I n v e r s e * vec4 (d . x , d . y , 1 , 1) ;
33 vec4 d i r e c t i o n = cam . v i e w I n v e r s e * vec4 (n o r m a l i z e (t a r g e t

. xyz / t a r g e t .w) , 0) ;
34

35 u i n t r a y F l a g s = gl RayFlagsOpaqueEXT ;
36 u i n t cu l lMask = 0 x f f ;
37 f l o a t tmin = 0 . 0 0 1 ;
38 f l o a t tmax = 1 0 0 0 0 . 0 ;
39

40 vec3 c o l o r = vec3 (0 . 0) ;
41

42 f o r (i n t i = 0 ; i < MAX RECURSION; i ++) {
43

44 / / Lanza r e l r ayo
45 t raceRayEXT (topLevelAS , r a y F l a g s , cul lMask , 0 , 0 , 0 ,

o r i g i n . xyz , tmin , d i r e c t i o n . xyz , tmax , 0) ;
46

47 / / Recoger e l c o l o r
48 vec3 h i t C o l o r = r a y P a y l o a d . c o l o r ;

49

50 i f (r a y P a y l o a d . d i s t a n c e < 0 . 0 f) {
51

52 c o l o r += h i t C o l o r ;
53 b r e a k ; / / Rompemos e l b u c l e
54 }
55 e l s e {
56

57 c o n s t vec4 h i t P o s = o r i g i n + d i r e c t i o n *
r a y P a y l o a d . d i s t a n c e ;

58 o r i g i n . xyz = h i t P o s . xyz + r a y P a y l o a d . normal *
0 .001 f ;

59 d i r e c t i o n . xyz = r e f l e c t (d i r e c t i o n . xyz , r a y P a y l o a d .
normal) ;

60 }
61

62 }
63

64 i m a g e S t o r e (image , i v e c 2 (gl LaunchIDEXT . xy) , vec4 (c o l o r
, 0 . 0 f)) ; / / Guardamos e l v a l o r

65 }

src/raygen.glsl

A.5.2 A closest-hit shader

1 # v e r s i o n 460
2

3 # e x t e n s i o n G L E X T r ay t r a c i ng : r e q u i r e
4 # e x t e n s i o n G L E X T n o n u n i f o r m q u a l i f i e r : e n a b l e
5

6

7 s t r u c t p a y l o a d {
8 vec3 c o l o r ;
9 f l o a t d i s t a n c e ;

10 vec3 normal ;
11 f l o a t r e f l e c t o r ;
12 } ;
13

14

15 l a y o u t (l o c a t i o n = 0) rayPayloadInEXT p a y l o a d r a y p a y l o a d
;

16

17 h i t A t t r i b u t e E X T vec3 a t t r i b s ;
18

19 l a y o u t (b i n d i n g = 0 , s e t = 0) un i fo rm
a c c e l e r a t i o n S t r u c t u r e E X T topLevelAS ;

20 l a y o u t (b i n d i n g = 2 , s e t = 0) un i fo rm UBO
21 {
22 mat4 v i e w I n v e r s e ;
23 mat4 p r o j I n v e r s e ;
24 vec4 p o s l u z ;
25 i n t t a m v e r t i c e ;
26 } ubo ;
27

28 l a y o u t (b i n d i n g = 3 , s e t = 0) b u f f e r V e r t i c e s { vec4 v [] ;
} v e r t i c e s ;

29 l a y o u t (b i n d i n g = 4 , s e t = 0) b u f f e r I n d i c e s { u i n t i [] ;
} i n d i c e s ;

30

31

32

33 s t r u c t T VERTICE
34 {
35 vec3 pos ;
36 vec3 normal ;
37 vec2 uv ;
38 vec4 c o l o r ;
39 } ;
40

41

42 T VERTICE l e e r v e r t i c e (u i n t n u m t r i a n g u l o)
43 {
44 c o n s t i n t m = ubo . t a m v e r t i c e / 1 6 ;
45

46 vec4 d0 = v e r t i c e s . v [m * n u m t r i a n g u l o + 0] ;
47 vec4 d1 = v e r t i c e s . v [m * n u m t r i a n g u l o + 1] ;
48 vec4 d2 = v e r t i c e s . v [m * n u m t r i a n g u l o + 2] ;
49

50 T VERTICE v ;
51 v . pos = d0 . xyz ;
52 v . normal = vec3 (d0 . w, d1 . x , d1 . y) ;
53 v . c o l o r = vec4 (d2 . x , d2 . y , d2 . z , 1 . 0) ;
54

55 r e t u r n v ;
56 }
57

58

59 vo id main ()
60 {
61 / / L e c t u r a de l a p o s i c i o n de l o s v e r t i c e s

Manuel Montoto: Hands-on study on Vulkan and the hardware ray-tracing extensions 11

62 i v e c 3 n u m t r i a n g u l o = i v e c 3 (i n d i c e s . i [3 *
g l P r i m i t i v e I D] , i n d i c e s . i [3 * g l P r i m i t i v e I D + 1] ,

i n d i c e s . i [3 * g l P r i m i t i v e I D + 2]) ;
63

64 T VERTICE v0 = l e e r v e r t i c e (n u m t r i a n g u l o . x) ;
65 T VERTICE v1 = l e e r v e r t i c e (n u m t r i a n g u l o . y) ;
66 T VERTICE v2 = l e e r v e r t i c e (n u m t r i a n g u l o . z) ;
67

68 / / C a l c u l o de l a normal d e l pun to
69 c o n s t vec3 b a r y c e n t r i c C o o r d s = vec3 (1 . 0 f − a t t r i b s . x −

a t t r i b s . y , a t t r i b s . x , a t t r i b s . y) ;
70 vec3 normal = n o r m a l i z e (v0 . normal * b a r y c e n t r i c C o o r d s .

x + v1 . normal * b a r y c e n t r i c C o o r d s . y + v2 . normal *
b a r y c e n t r i c C o o r d s . z) ; / / Mejor a s i ?

71

72 / / I l u m i n a c i o n
73 vec3 l i g h t V e c t o r = n o r m a l i z e (ubo . p o s l u z . xyz) ;
74 f l o a t d o t p r o d u c t = max (d o t (l i g h t V e c t o r , normal) , 0 . 6)

;
75 / / r a y p a y l o a d . c o l o r = v0 . c o l o r . rgb * vec3 (d o t p r o d u c t)

;
76 r a y p a y l o a d . c o l o r = ((v0 . c o l o r . rgb + v1 . c o l o r . rgb + v2

. c o l o r . rgb) / 3 . 0 f) * vec3 (d o t p r o d u c t) ; / / Mejor
a s i ?

77 r a y p a y l o a d . d i s t a n c e = gl RayTmaxEXT ;
78 r a y p a y l o a d . normal = normal ;
79

80 / / Marcamos e l o b j e t o como r e f l e c t i v o
81 r a y p a y l o a d . r e f l e c t o r = 1 . 0 f ;
82 }

src/closesthit.glsl

A.5.3 A simple miss shader

1 # v e r s i o n 460
2 # e x t e n s i o n G L E X T r ay t r ac i n g : r e q u i r e
3

4

5 s t r u c t RayPayload {
6 vec3 c o l o r ;
7 f l o a t d i s t a n c e ;
8 vec3 normal ;
9 f l o a t r e f l e c t o r ;

10 } ;
11

12 l a y o u t (l o c a t i o n = 0) rayPayloadInEXT RayPayload
r a y P a y l o a d ;

13

14

15 vo id main ()
16 {
17 / / Generamos un fondo con un deg radado usando l o s t r e s

e j e s de c o o r d e n a d a s
18

19 vec3 u n i t D i r = n o r m a l i z e (g l Wor ldRayDirec t ionEXT) ;
20 r a y P a y l o a d . c o l o r = vec3 (u n i t D i r . x , u n i t D i r . y , u n i t D i r .

z) ;
21

22 r a y P a y l o a d . d i s t a n c e = −1.0 f ;
23 r a y P a y l o a d . normal = vec3 (0 . 0 f) ;
24 r a y P a y l o a d . r e f l e c t o r = 0 . 0 f ;
25

26 / / r a y P a y l o a d . c o l o r = vec3 (1 . 0 , 0 . 1 , 0 . 2) ;
27 / / r a y P a y l o a d . c o l o r = vec3 (0 . 1 , 0 . 1 , 0 . 1) ;
28 }

src/miss.glsl

