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The causal factors of international inequality in CO2 emissions per capita: A 

regression-based inequality decomposition analysis 

Abstract 

This paper uses the possibilities provided by the regression-based inequality 

decomposition (Fields, 2003) to explore the contribution of different explanatory factors 

to international inequality in CO2 emissions per capita. In contrast to previous emissions 

inequality decompositions, which were based on identity relationships, this 

methodology does not impose any a priori specific relationship. Thus, it allows an 

assessment of the contribution to inequality of different relevant variables. In short, the 

paper appraises the relative contributions of affluence, sectoral composition, 

demographic factors and climate. The analysis is applied to selected years of the period 

1993–2007. The results show the important (though decreasing) share of the 

contribution of demographic factors, as well as a significant contribution of affluence 

and sectoral composition. 

 

JEL codes: C19; D39; Q43. 
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1. Introduction 

There is a huge inequality in the international distribution of CO2 emissions. 

Differences in emissions per capita and in their determinants lead to different views on 

the appropriate criteria to distribute abatement efforts among countries—and even on 

the ambition of mitigation goals—and so hamper mitigation agreements. The design of 

policies should appropriately take into account these inequalities, which show different 

responsibilities for the problem, as well as the different drivers of them. A wider 

participation in international abatement agreements on the part of developing and 

emerging economies would be facilitated by the perceived fairness of abatement 

sharing. This perceived fairness will increase if countries with greater responsibility in 

the problem are charged with the most important part of mitigation efforts. An 

agreement assuming a very uneven distribution of the CO2 absorption capacity of the 

atmosphere and not involving strong efforts by the main countries responsible for 

causing the problem would tend to disincentivise the participation of developing 

countries. These countries claim that the global sink capacity is being disproportionally 

used by the inhabitants of richer countries, which are also responsible for past overuse 

leading to the intensification of the greenhouse effect. On the other hand, the greater the 

degree of inequality, the more reluctant the main emitters may be to participate in 

agreements asking them to assume most of the burden of emissions reduction. 

 

Disparities in emissions per capita are due to factors that follow different paths in 

different countries. A good knowledge both of inequality changes and of the drivers of 

the differences in emissions per capita and their trajectories over time is essential to 

inform the debates on policy design and on the criteria to distribute abatement efforts. 
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The conclusions both for analysing the feasibility of agreements of a given situation and 

for informing policy design would be quite different depending on the different 

contributions of the relevant factors to emissions inequality.  

The increase in papers in recent years dealing with the international distribution of CO2 

emissions is noticeable. These analyses have followed two complementary paths. First, 

several works employ the methodologies developed in the literature on the measurement 

of income inequality (some of the reference works include Atkinson, 1970; Sen, 1973; 

and Cowell, 2011). They focus on aspects such as the properties of the measurements 

and their factorial decomposition. The application and adaptation of this literature to the 

analysis of environmental indicators extend the analysis made in the field of income 

distribution. Some references in this line include Heil and Wodon (1997, 2000), 

Alcántara and Duro (2004), Hedenus and Azar (2005), Duro and Padilla (2006), Padilla 

and Serrano (2006), Cantore and Padilla (2010), Cantore (2011) and Duro (2012). 

Second, there are some works analysing the international distribution of CO2 (and other 

environmental indicators), but by means of the methods developed in the literature on 

economic growth and convergence (Barro and Sala i Martín, 1991; Quah, 1995). Some 

examples of these works are Strazicich and List (2003), Nguyen Van (2005), Aldy 

(2006), Ezcurra (2007), Romero-Ávila (2008), Criado and Grether (2010), Jobert et al. 

(2010) and Barassi et al. (2011). Both lines of research analyse similar issues with 

different tools and coincide in the relevance of measuring emissions disparities as a tool 

for helping policy design. 

Such proliferation of analyses of the international distribution of CO2 per capita might 

be seen as the result of the awareness of ecological limits as well as of the need to 

inform discussions on the different responsibilities and on the mitigation efforts to be 

assumed by different countries. Moreover, this research complements the abundant 
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literature focused on the study of the driving forces of CO2 emissions (Grossman, 1993; 

Stern et al., 1996; Suri and Chapman, 1998; Torras and Boyce, 1998; York et al., 2003; 

Sharma, 2011). Among them, affluence, population, technology (the factors of the so-

called IPAT identity proposed by Ehrlich and Holdren, 1971),
1
 economic structure, 

demographic characteristics and climate characteristics are usually considered among 

the main drivers of environmental impacts. These analyses usually consist of 

econometric models whose emphasis is on the regression coefficients and their 

significance. However, as far as we know, the contribution of these factors to emissions 

inequality measures has not yet been explicitly and precisely approached. In this sense, 

a relevant methodological basis to approach such analysis is the regression-based 

inequality decomposition approach (RBID hereafter), which allows the development of 

such analysis without being constrained to an automatic accounting relationship 

between explanatory factors and emissions. Actually, previous analyses decomposing 

emissions per capita inequality have taken as reference multiplicative identities and 

group decompositions (Duro and Padilla, 2006). In contrast, the RBID technique allows 

one to widen the list of explanatory factors unrestrictedly. 

The method proposed in this paper consists of, first, running an auxiliary econometric 

estimation to derive an additive decomposition of CO2 emissions per capita. The model 

we will employ as reference for the identification of determinant factors may be seen as 

an extended version of the econometric models usually employed to test the 

environmental Kuznets curve hypothesis or the STIRPAT models. In short, it includes 

as explanatory factors affluence, demographic factors, sectoral composition and a 

climate variable. Second, the model applies the methods of additive decomposition of 

inequality (Shorrocks, 1982, 1983) to determine factoral contributions. Therefore, from 

a methodological point of view, the proposed technique merges two hot research topics: 
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the analysis of inequalities in the contribution to climate change and the econometric 

estimation of environmental impact driving forces. The contribution of such factors to 

global emissions inequality depends on two basic parameters: the average direct 

relationship between the examined factor and countries’ CO2 per capita (i.e. coefficient-

effect), and the relative magnitude of the international variation of the factor (i.e. 

dispersion effect). The methodology is applied to the analysis of international inequality 

in CO2 emissions per capita for the period 1993–2007.  

Our analysis will contribute, first, to informing how the evolution of disparities leads or 

does not lead to a situation in which it is more likely that countries share interests and 

perceptions of how to distribute abatement efforts; second, it will contribute to the 

analysis of the determinants of emissions and how they change over time; and third, it 

will show the factors behind the trajectory of inequality. These factors should be 

adequately taken into account for a proper design of policies that facilitate wider and 

fairer agreements.  

 

The remainder of this paper is organised as follows. Section 2 describes the RBID 

methodology. Section 3 measures the international inequality in CO2 emissions per 

capita and presents the results of the estimation of the driving forces of emissions and 

their contribution to the international inequality of CO2 emissions per capita according 

to the proposed methodology. Section 4 concludes the paper. 

 

2. The regression-based inequality decomposition: methodological aspects 

Inequality decomposition methods allow researchers to quantify which part of total 

inequality is attributable to different components. The traditional additive 
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decomposition approach (Shorrocks, 1982) consists in breaking down the inequality of 

any variable according to its additive components. Additionally, such an approach has 

been extended to decomposition into multiplicative factors by taking advantage of 

logarithmic inequality measures such as the Theil index. These methods require a 

consistent identity in order to perform the decomposition.
2
 Therefore, the main 

restriction is that the contributions to inequality considered are limited to the 

components of the mathematical identity.    

In contrast, the RBID approach allows us not only to account for the contribution to 

inequality of different components, but also to undertake causal analysis (since the 

contributions to inequality are attributed to the explanatory variables of an econometric 

model). Therefore, the model can incorporate any significant explanatory variable 

contributing to CO2 emissions inequality.
3
 The first step is to construct a linear 

regression function such as the ones typically used to estimate the driving forces 

elasticities for a given environmental pressure (E):   

  KK XXXE ...22110  (1) 

Where E is the vector of the environmental pressure in the different countries 

considered and Xi (i=0,…,K) the vectors for the driving forces or determinants of this 

pressure. 

Expression (1) presents environmental pressure, in our case CO2 emissions per capita, as 

the sum of K explanatory variables plus the constant and error terms. So, we can 

rearrange it and obtain:  
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The RBID is based on considering the product of the estimated coefficient k  and its 

variable kX  as the “causal component” of CO2 emissions per capita, where the 

coefficient plays the role of weighting the importance of component k. The explanatory 

variables jointly with the constant and the residual form a consistent identity as those 

required by traditional decomposition methods, so that the natural decomposition rule 

can be performed by sources (see Shorrocks, 1982; Fields, 2003).  

Although there are other methods to decompose inequality using regression-based 

techniques, we use the Fields (2003) method because of its simplicity and analogy to 

natural source decomposition described.
4
 In this RBID approach the functional form of 

the model is restricted to a semi-log linear function:
5
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Once the semi-log model is estimated, the procedure continues by taking variances on 

both sides of the equation. Note that the variance of the logarithm of emissions per 

capita is a common inequality index (see Cowell, 2011): 



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k
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By rearranging the right hand side of expression (4), we obtain the variance of 

logarithms as a sum of the covariances between each causal component and the 

dependent variable (the logarithm of CO2 emissions per capita):  
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This result is highly convenient since in the inequality literature those covariances are 

the natural decomposition of the variance, which indeed is a consistent decomposition 

rule. Hence, in order to obtain the relative contribution of each causal component, we 

define: 
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being sk the percentage contribution of factor k to the level of inequality observed.
6
   

Since the coefficients of the regression play a weighting role, it may be interesting to 

know whether the different trajectories of sk are caused by changes in the dispersion of 

factor k, or by changes in its importance in the function measured by :  
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where ktkt

k

t XZ  and ktkt

k

t XZ 11
ˆ

   . The first term of the right-hand side is the 

dispersion effect since the coefficients are not allowed to vary (and so only the 

dispersion changes between t - 1 and t). The second term is the coefficient effect since 

the dispersion of vector Xk is not allowed to vary (so only the coefficient changes 

between both periods). 
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Additionally, we may be interested in knowing the contribution of factor k to the change 

in inequality level between two periods. That inequality change contribution is 

expressed as:  

   
1

11
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tt
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k

II
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where I(.) is the inequality measure for period t. Notice that expression (8) is not 

restricted to the use of any particular inequality index. Our choice for the empirical 

analysis will be neutral indexes such as the generalized entropy index (GE(2)) or the 

coefficient of variation (CV), like in Duro (2012).
7
  

 

3. International inequality in CO2 emissions per capita and explanatory factors 

As stated above, we use logarithmic variance as a reference index. This choice is 

associated to the RBID methodology used, which, based on the work of Fields (2003), 

uses this measure for consistency. In any case, as shown below, the factoral 

decomposition can be applied to any consistent inequality index. Logarithmic variance 

is a well-known measure that fulfils the scale-independent property (that is, is a relative 

measure) but does not fulfil the progressivity principle for high observations, which 

does not have a significant impact in our case (Cowell, 2011). 

Our analysis covers the period from 1993 to 2007 by eight biannual cross-section 

samples. The data used for each year cover at least 92% of world CO2 emissions, 95% 

of world population and 96% of world GDP. Although the samples may be different 

among years, the results are virtually equivalent with balanced data. This means the 

results with balanced data (all years with the same countries) do not show any 
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significant differences with the results obtained with the non-balanced sample (where 

we take the maximum number of countries in each sample). This is because the 

countries that are not included in a specific sample represent a very little proportion of 

the world CO2 emissions (and of the world population and GDP). The data used comes 

from the World Bank (2013).  

Figure 1 shows the international dispersion of CO2 emissions per capita for the period 

1993–2007. Initially, it can be noted that in this period the total emissions increased 

40% and the per capita emissions 16.7%. Coinciding with this increase was a significant 

reduction in dispersion, with three different subperiods. In the first, from 1993–1997, 

there was an important reduction of inequality; in the second, 1997–2003, there was a 

stabilisation of inequality; and finally, in the third, 2003–2007, there was a new 

important reduction. Therefore, we may say that the international responsibility in CO2 

emissions, at least in per capita terms, is becoming more diffused. 

[FIGURE 1 ABOUT HERE] 

However, underlying such a trend different stories may be occurring. Are the major 

polluters reducing their emissions per capita, or, in contrast, are the minor polluters 

increasing their emissions? Or may it be both things? Observing the quantiles 

distribution in Table 1, the latter appears as more plausible since the first percentile per 

capita emissions increased 64%, while percentile 0.9 increased only 5%. Therefore, 

from the environmental point of view this reduction in inequality cannot be identified as 

good news as it was based on a greater increase in lower emitters and not on a reduction 

in major emitters. Obviously, in the quantiles analysis there is the anonymity axiom, i.e. 

we may talk of different countries for the same quantiles in different years. 
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[TABLE 1 ABOUT HERE] 

Decomposing the inequality in CO2 emissions per capita according to its determinants 

will enlighten the analysis of the causes of this inequality, complementing previous 

accounting approaches. The dependent variable used in the model is the CO2 emissions 

per capita of the different countries in log scale, while the independent variables are 

those typically used in the literature (such as in the above cited STIRPAT models and 

the extended models used to test the environmental Kuznets curve). Table 2 details the 

descriptive statistics of the variables used in the model. 

[TABLE 2 ABOUT HERE] 

The results obtained when applying the RBID methodology are twofold. First, we 

obtain the regression results of the estimation of the determinants of CO2 emissions per 

capita. Second, using the regression results we estimate the contributions of the 

explanatory variables to the international inequality in CO2 emissions per capita by 

using expression (6) of the previous section. The OLS results (i.e. auxiliary regressions) 

are presented in Table 3. The model estimated explains close to 85% of the cross-

country log-variance in CO2 emissions per capita (except for 1993, in which it explains 

around 80%), indicating that used variables provide a good fit. The significance and the 

sign of the coefficients obtained are coherent with the empirical literature dealing with 

the determinants of CO2 emissions. Besides, this high significance points out that 

multicollinearity may not be a very important problem. Indeed, we calculated quadratic 

partial correlations between the exogenous variables and the dependent variable, and the 

low values obtained indicate that multicollinearlity is not a substantial problem in our 

estimation.
8
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Since it is a semi-log model, we must interpret the significant coefficients as semi-

elasticities, i.e. an increase (decrease) of one unit in the explanatory variable yields a 

% increase (decrease) in the dependent variable. Hence, focusing on 2007 coefficients, 

an increase in one dollar of GDP per capita yields a 0.01% increase of CO2 emissions 

per capita, while an increase in the climate normal minimum temperature would yield a 

-2.10% decrease in emissions per capita, and so on. 

We are estimating cross-country determinants and so are not making assumptions about 

the individual behaviour of countries over time. A wrong assumption often made in the 

environmental Kuznets curve literature, when making panel data estimations, is to 

assume the same functional form and parameters for each country in their relationship 

between income (and other variables) and environmental pressure (or impact) over time. 

This assumption has been clearly rejected when appropriately tested (see Perman and 

Stern, 1999 and 2003; List and Gallet, 1999; Dijkgraaf and Vollenberg, 2005; Martínez-

Zarzoso and Bengochea-Morancho, 2003 and 2004; Piaggio and Padilla, 2012). Thus, 

our results just show cross-country relationships between independent variables that 

change across countries and CO2 emissions per capita in a given moment of time. These 

relationships may be caused by different underlying reasons (levels of development, 

international specialisation, different regulations, etc.) and be the result of different 

patterns followed by different countries, as the literature seems to support.  

Affluence variables indicate the existence of a non-monotonic relationship since both 

quadratic and cubic GDP per capita variables are significant. This shows an N-shape 

cross-country pattern (Friedl and Getzner, 2003; Sengupta, 1996; Taskin and Zaim, 

2000), though with a basic increasing segment and small coefficients for quadratic and 

cubic terms, and so the environmental Kuznets curve hypothesis is not supported by the 
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data. Therefore, it may be stated that in most cases greater affluence is accompanied by 

greater CO2 emissions per capita.  

Attending to sectoral composition determinants, a priori, a greater weight of industrial 

sectors is expected to be associated with greater emissions, while those economies with 

greater weight of services, and specifically of knowledge-based technology-intensive 

industries, are expected to have lower emissions than those based on energy intensive 

industry (Dinda, 2004). In any case, it should be taken into account that several services 

also make an intensive use of energy (Suh, 2006; Alcántara and Padilla, 2009), and the 

idea that services are immaterial sectors should be dismissed. Sectoral composition 

coefficients—industrial GDP share and agricultural GDP share—show the expected 

values. A positive coefficient of industrial share must be interpreted as the CO2 

emissions percentage increase when the share of the sector increases 1% and the base 

sector (services) decreases in this same percentage. In contrast, the agricultural share 

coefficient shows the inverse relationship with CO2 emissions per capita.    

Demographic variables have positive significant coefficients, indicating their influence 

in spurring emissions per capita. The non-dependent population (aged 15–65), which 

captures the most consumerist and productive segment of the population, exhibits an 

important role in driving emissions: a 1% increase represents a cross-country increase of 

8–10% in CO2 emissions per capita. This suggests that population age structure may 

play a significant role in explaining differences in emissions. This contrasts with 

previous results in the literature, such as Dietz et al. (2003) for the case of the ecological 

footprint and Cole and Neumayer (2004) for the case of total CO2 emissions, who did 

not find significant coefficients for age distribution. Some differences with the study of 
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Cole and Neumayer (2004) that may explain the different result is the use of per capita 

instead of total emissions, as well as the set of variables included our model. 

Urban population share exhibits a lower effect but is still significant and positive, 

except for years 2001 and 2007 when the estimated coefficient is not significant. Our 

estimates are consistent with the previous evidence in the literature (see Parikh and 

Shukla, 1995, for the evidence on developing countries; and Cole and Neumayer, 2004, 

for an international cross-section sample including developing and developed 

countries). We find, however, that the coefficient decreases over time. The positive 

impact of urbanisation on emissions stems from the fact that an urban lifestyle and 

facilities lead people to consume more energy and thus generate more CO2 emissions in 

urban areas than in rural ones, especially in developing countries, which represent the 

biggest part of the world. The migration of rural workers to urban areas in search of 

better jobs tends to yield a sprawl growth of cities with large suburbs and the need to 

commute every day by private vehicle. There is also more use of fossil fuels instead of 

fuel wood and longer distances travelled for the provision of food and other products 

(Jones, 1989; Parikh and Shukla, 1995). Moreover, the use of public and private motor 

vehicles—cars, buses, and motorcycles—is likely to be more extended in urban than in 

rural areas (Cole and Neumayer, 2003). However, the impacts of urbanisation on 

emissions are of a different type, and although most studies indicate that urbanisation 

tends to increase energy consumption and emissions due to the abovementioned 

reasons, there are other impacts that may go in the opposite way as urbanisation may be 

accompanied by greater access to information, technical innovation and efficient land 

and energy use, which may contribute to the reduction of energy consumption and 

emissions in the long run (Jiang et al., 2008; Jiang and Hardee, 2011). Actually, there 

are mixed results on the impact of urbanisation on energy consumption and emissions 
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(Jiang and Hardee, 2011). The decreasing coefficient of the variable may indicate that 

some of the gains associated with urbanisation may now be more effectively 

compensating the negative effects. 

Both demographic variables, jointly with others like household size (Liu et al., 2003) 

have only been studied to a limited extent in the literature but are projected to have quite 

an important impact on the future evolution of emissions (Jiang and Hardee, 2011). 

Lastly, the climate control variable, proxied by the climate normal
9
 of minimum 

temperature, indicates that an increase in normal temperatures of 1 °C would decrease 

CO2 emissions per capita approximately by 2%. This result shows the fact that colder 

climates require greater amounts of energy for heating and lower for cooling, the first 

impact being more important. Previous studies, such as Neumayer (2004), also found 

that a cold climate is significantly associated with greater CO2 emissions.  

[TABLE 3 ABOUT HERE] 

The regression results are used to calculate each factor’s weight, which jointly with 

variable’s vector dispersion (its inequality) will yield the contributions to per capita CO2 

emissions inequality observed. Table 4 presents the relative factor contributions to 

inequality (expression 6).  

[TABLE 4 ABOUT HERE] 

The affluence factor—which groups the GDP per capita variables—increased its 

contribution significantly to emissions inequality, reaching its largest share in 2007 with 

21%.
10

 Table 5 decomposes the change in this relative contribution of each factor into 

the two basic elements explaining it according to equation (7). Thus, these changes 
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could be explained by a dispersion-effect—and so by changes in the weight of the 

international variability of the factor—, by changes in the direct relationship between 

the factor and CO2 emissions per capita according to auxiliary regressions (Table 3), or 

by both. Taking the whole period, in which the relative contribution of this factor to the 

international inequality in CO2 emissions per capita increases by 6.5%, the result is 

explained by the relative increase in the dispersion component of this variable. 

Sectoral factors contribute 24.4% to total inequalities in 2007, ranging between 19.7% 

in 1993 to 30.9% in 1997. In any case, the two factors change in different directions: 

there is a significant decrease in the importance of the industrial share and a relevant 

increase in the role of the agricultural share. While in 1993 the agricultural GDP share 

made a lower contribution than the industrial one, both contributions being of similar 

weight (8.9% and 10.9%, respectively), the relative relevance of both factors reverse, 

and for the last year considered the contribution to inequality of the agricultural share is 

more than four times the one of the industrial share (19.8% and 4.6%, respectively). It is 

remarkable that the increase in the importance of the agricultural share to explain CO2 

emissions differences, which is concentrated in the period 1993–1997, is mainly given 

by a coefficient effect (Table 5). Thus, its explanatory power in the regression increased 

significantly while its coefficient became more negative. That is, a greater share of 

agriculture—and so lower of services—is increasingly associated with lower relative 

emissions. This different sectoral structure has increased its relative contribution to 

emissions inequality, given the small importance of the dispersion component. This may 

be seen as support for the rejection of the notion of service economies as immaterial 

economies, as the service sector includes activities which require great use of energy, 

both directly—such as transport services—as well as indirectly—such as hotels and 

restaurants (Suh, 2006; Nansai et al., 2007; Alcántara and Padilla, 2009; Fourcroy et al., 
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2012; Piaggio et al., 2015). Moreover, some of these high-polluting service activities 

have experienced an important development in the last decades. 

According to our results, demographic characteristics play the most important role in 

explaining inequality in CO2 emissions per capita, accounting for 34% of it. In the first 

years of the sample the urbanisation variable contributed as much to inequality as the 

non-dependent population variable, 17.4% and 22.3%, respectively. Nonetheless, the 

relative contribution of urbanisation reduced its level to a much lower value (3.2%). In 

contrast, non-dependent population increased its relative contribution over the period. In 

2007 it explains 30% of international inequality in CO2 emissions per capita. The 

reduction in the relative contribution of the urbanisation variable, which mainly 

occurred between 1993 and 1997, is largely attributable to the coefficient effect. As 

shown in Table 3, the positive relationship between urbanisation and greater CO2 per 

capita decreases until being non-significantly different from zero in 2007. The 

decreasing importance in explaining global inequality—jointly with an important 

reduction in inequality levels—means that some of the abovementioned gains 

associated with urbanisation may now be more effectively compensating the dominant 

negative effects.  

In contrast, the relative contribution of the age structure of population has increased, 

and the share of non-dependent population becomes the main explanatory factor of 

inequality. In this case, both parameters have contributed to this relative change, both 

the dispersion component (relative increase in the international dispersion in this 

variable) and the coefficient effect, for the clear increase in the relationship between 

non-dependent population share and emissions per capita, which increases from 0.078 

to 0.089. The increase in the dispersion effect is due to the stability in the international 
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dispersion of this variable in front of the decrease in the dispersion of the logarithm of 

emissions per capita. As regards the intensification of CO2 emissions associated to non-

dependent population, it seems clear that its greater mobility and energy intensive 

consumption holds over time as a driver explaining differences between countries. 

The contribution of climate variable is quite stable over time, and explains only 5% of 

the differences in CO2 emissions per capita. A direct conclusion is that international 

differences in CO2 emissions per capita are mainly caused by anthropogenic CO2 

drivers. 

Last, the residual contribution, which plays a significant role, needs a previous 

comment. In the typical applications of the STIRPAT models, T of Technology is 

estimated in the residual term rather than separately (see York et al., 2003). Therefore, 

we may interpret that the residual could show in part a technological effect where the 

resources are more efficiently used, though it may also be showing the impact of other 

omitted variables. Consequently, international spillovers may be occurring in benefit of 

more equitable per capita emissions. Such greater efficiency may be spurred on by 

either private gains in resource saving or environmental policy regulations. The 

contribution of this residual to total inequality in CO2 emissions per capita was quite 

stable, around 15% after its decline in first years. 

[TABLE 5 ABOUT HERE] 

Once we know the different relative contribution of factors to CO2 inequality, it is 

interesting to analyse the contribution of those factors to inequality change over the 

period analysed (expression 8 above). As we saw in Figure 1, the inequality between 

countries in CO2 emissions per capita decrease in the period considered. Other studies 
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also point in the same direction (Heil and Wodon, 2000; Duro and Padilla, 2006; Padilla 

and Serrano, 2006). In our period, the reduction in inequality measured with log-

variance was -18%. Table 6 presents the relative contribution of each factor to such 

inequality change. Those factors that are presented with a negative contribution change 

are the factors that have contributed to making the distribution of emissions more 

unequal. In contrast, those factors with a positive sign have contributed to a lower 

inequality in CO2 emissions per capita. The main driver of the reduction in emissions 

inequality was urbanisation, which accounts for 82.1% of the whole reduction. The 

industrial share and the residual—which may partly show a technology effect—also 

made a significant contribution to the reduction of CO2 inequality, with 39.7% and 

42.8%, respectively. In contrast, we could say that CO2 inequality could have decreased 

even more if affluence, agricultural share or non-dependent population had contributed 

in an opposite direction of what they did. 

[TABLE 6 ABOUT HERE] 

 

 

4. Conclusions  

This paper contributes to the literature of the international distribution of environmental 

pressures and especially to the literature focused on the empirical measurement of the 

international inequality of CO2 emissions. The analysis of the international distribution 

of CO2 emissions per capita is of great relevance to inform the debates on climate 

change responsibilities, the design of future agreements and the international 

distribution of abatement efforts. 
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We have used causal components instead of the usual analytical (identity) components 

examined in the literature of the measurement of environmental indicators inequality. 

The estimation of a model of the determinants of CO2 emissions per capita has enabled 

us to decompose the international inequality in these emissions in terms of affluence, 

productive structure, demographic characteristics and a climate variable showing 

differences in average daily minimum temperatures (variables that have often been used 

in STIRPAT models, and in the models employed to test the environmental Kuznets 

curve hypothesis, among others). We have used the RBID methodology developed by 

Fields (2003) which, despite being widely applied in empirical studies of income 

inequality, has not yet been applied to carbon emissions as far as we know. The 

empirical application of such a method opens the door to new possibilities in the 

research of distributional issues of the environment–society relationship.       

The empirical results contribute significantly to expanding knowledge of the factors 

contributing to the international disparities of CO2 emissions per capita. As may be 

expected, 95% of such disparities are accounted for by anthropogenic driving forces 

(since climate control contributed only around 5%). The country’s affluence factor was 

found as a variable contributing significantly to inequality, which means that remaining 

differences in GDP per capita are still avoiding greater reductions in emissions 

inequality. According to our results, its relative contribution, despite having increased to 

20%, is not the main driving force explaining emissions per capita differences. As for 

demographic variables, population age distribution (measured by non-dependent 

population share) appears as the main contributor to the analysed inequality because of 

its importance in spurring CO2 emissions per capita rather than by its dispersion among 

countries. This factor contributed to increasing inequality of emissions per capita during 

the period analysed. In contrast, of the factors considered, urbanisation became the 
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lowest contributor to international disparities in CO2 emissions. The reason must be 

found in its lower importance in explaining emissions (coefficient effect) rather than in 

its dispersion. Finally, the role played by the residual may (with caution) be seen partly 

as the consequence of international technology spillovers, since it has contributed to 

narrow differences between countries in terms of emissions per capita.        

The unequal use of the global sink capacity of the Earth is closely related to the 

difficulty of reaching consensus on how to share the burden of emissions mitigation and 

so appears as one of the main barriers to achieving effective international agreements on 

emissions control and mitigation. Moreover, the design of agreements could not be done 

without appropriately taking into account this unequal contribution to the problem and 

the reasons leading to it, if wide participation is to be achieved. The present paper 

provides information on the main factors behind the international inequalities in 

emissions per capita and so, the research indicates some of the roots of the difficulties 

of achieving global mitigation agreements. Besides, it gives some clues to which factors 

could lead to a greater convergence or divergence of emissions per capita among 

countries over time. According to our results, some implications could be highlighted. 

First, it seems of great relevance to analyse the different consumption patterns 

associated with demographic factors and how they can change over time. Analysing in 

depth the different energy consumption and CO2 emissions patterns associated to 

urbanisation and to the share of potentially active population seems of great importance 

to understanding emissions drivers, differences across countries and how can they 

change over time. These results also indicate the need to focus policies on controlling 

the emissions associated with these patterns. Second, the objective of economic 

convergence, which is a highly desirable objective by itself, would have a clear impact 

on reducing emissions inequality and so facilitating agreements between countries. 
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Third, the change in emissions inequality associated with different sectoral 

compositions may depend on whether future economies tend toward convergence to 

more similar economic structures or whether the trend is to increase international 

specialisation. In any case our results show that those countries more specialised in 

services tend to increase their differences in emissions with those specialised in 

agriculture, in contrast with the often-popular idea that the tertiary sector is a cleaner 

sector. Finally, though the residuals of our estimation may be the result of different 

things, they may be indicating that one of the ways in which more is to be gained is to 

decrease emissions differences via more effective technological diffusion.  
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Notes 

                                                 
1
 York et al. (2003) turned that accounting equation into a stochastic regression model, allowing them to 

make a test hypothesis and also to introduce further determinants of the environmental impact. 

2
 These analytical decomposition methods have been applied to ecological footprint in White (2007), 

Teixido-Figueras and Duro (2012) and Duro and Teixidó-Figueras (2012). For the case of CO2 emissions, 

Duro and Padilla (2006) made a multiplicative decomposition of the contribution of Kaya (1989) factors. 

3
 Most RBID applications analyse income inequality from a micro-approach, so there is an income-

generating function, and income inequality is decomposed in terms of the typical explanatory variables of 

those models: race, education level, gender, age, etc. (e.g. Cowell and Fiorio, 2009; Fields, 2003; 

Gunatilaka and Chotikapanich, 2009; Morduch and Sicular, 2002; Wan, 2004). 

4
 There are several empirical applications to income inequality comparing results obtained according to 

the different methods of RBID. Very often they conclude that there are no significant differences (Cowell 

and Fiorio, 2009; Fields, 2003; Gunatilaka and Chotikapanich, 2009; Morduch and Sicular, 2002; Wan, 

2004). 

5
 The semi-log model ikk FFFELn   ...)( 22110 is equivalent to 

)exp()exp()exp()...exp(
1

022110 ikk

k

k

ikk FFFFE   


. Then, the 

contribution 0 is null since it is a constant to each observation.  

6
 Independently of the index chosen by the researcher to assess inequality, the natural decomposition of 

the variance is the unique unambiguous rule given that it is the only decomposition rule that allocates 

indirect effects among components in a non-arbitrary way. In other words, the contribution of factor k is 

independent of the inequality index used (see Cowell, 2000; Shorrocks, 1982, 1983). 

7
 GE(2) corresponds to the Theil index with the sensitivity parameter equal to 2. It can be expressed as a 

linear transformation of CV. The CV is in fact a statistical dispersion index which is scale invariant and 

that considers all observations uniformly, regardless of its position in the distributive ranking (Duro, 

2012). 

8
 As can be expected the higher correlations belong to cubic and quadratic terms of GDP per capita; 

however, it must be taken into account that the non-collinearity assumption is about linear relationships 

among regressors, and despite its high correlation with linear GDP per capita, the cubic and quadratic 
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terms are a non-linear relationship. Hence, it does not violate the basic assumption (Gujarati and Porter, 

2009). Nevertheless, the results suggest that a non-linear relationship between GDP and CO2 fits better, 

although the linear term is clearly predominant. Regarding the rest of the explanatory factors, their 

Variation Inflation Factors (VIF) are well within accepted standards. As a robustness check, other models 

have been estimated with different regressors than those in Table 3. Results obtained were virtually 

equivalent. 

9
 Climatologists define a climatic normal as the arithmetic average of a climate element (such as 

temperature) over a prescribed 30-year interval in order to filter out many of the short-term fluctuations 

and other anomalies that are not truly representational of the real climate. The last climatic normal 

available is for the period 1971–2000. 

10
 This weight is clearly lower than the obtained by Duro and Padilla (2006) with a different 

methodology. Their study decomposed per capita CO2 emissions inequality by a multiplicative identity 

(Kaya factors) using the Theil index. As a result, they obtained an affluence net contribution close to 

60%, being the main contributor to CO2 inequality. However, this difference can be explained by some 

methodological factors. First, the Kaya identity used in Duro and Padilla (2006) assumes elasticity 

proportionality by construction, while in our regression model the elasticities are allowed to vary among 

factors (see York et al., 2003). Second, the affluence contribution is more precisely defined and isolated 

in our paper, given the more detailed list of potential factors. Their study can therefore be gathering 

effects that in our case are separated, such as the ones associated with demographic and structure factors. 
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FIGURES 

Figure 1. International inequality in CO2 emissions per capita measured by log-

variance 
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Source: Produced by the authors based on World Bank (2013). 
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TABLES 

Table 1. Distribution of countries (by quantiles) and changes in carbon emissions 

per capita, 1993–2007 

Quantiles q 1993 1999 2007 

% Q-

change 

1993–1999 

% Q-

change 

1999–2007 

% Q-

change 

1993–2007 

0.10 0.10 0.15 0.17 53% 8% 64% 

0.20 0.29 0.38 0.43 31% 11% 46% 

0.30 0.66 0.81 0.97 23% 20% 47% 

0.40 1.14 1.22 1.58 6% 30% 38% 

0.50 2.04 2.23 2.77 9% 24% 36% 

0.60 3.58 3.92 4.57 10% 16% 28% 

0.70 5.85 5.89 6.18 1% 5% 6% 

0.80 7.48 7.91 8.06 6% 2% 8% 

0.90 11.24 10.60 11.75 -6% 11% 5% 

Source: Produced by the authors based on World Bank (2013). 

Note: quantile refers to countries’ percentage. So Q0.10 in 2007 means 10% of world countries had CO2 

emissions per capita below 0.17 t. 
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Table 2. Descriptive statistics of explanatory factors 

 

Variable (1993) Obs Mean Std. Dev. CV Min Max 

CO2 emissions (ktonnes per capita) 189    4,739.77        7,031.45              1.48             1.69      62,517.04    

ln (CO2 emissions per capita) 189          7.35              1.83    

 

         0.53            11.04    

per capita GDP (constant 2000 US$) 187    6,423.19      10,135.28              1.58            79.58      68,695.23    

Agriculture GDP share (%) 165         19.43            16.23              0.83                 -              65.12    

Industrial GDP share (%) 166         29.02            10.98              0.38             8.70            64.00    

Urban population share (%) 210         52.82            24.67              0.47             6.84          100.00    

Non dependent population share (aged 15 to 65) 190         59.08              6.71              0.11            45.53            72.13    

Average daily min temperature 198         13.67              8.66              0.63    -       22.60            25.30    

       Variable (1999) Obs Mean Std. Dev. CV Min Max 

CO2 emissions (ktonnes per capita) 195    4,622.44        6,401.30              1.38            15.23      55,114.07    

ln (CO2 emissions per capita) 195          7.46              1.66    

 

         2.72            10.92    

per capita GDP (constant 2000 US$) 196    7,511.32      11,999.97              1.60            95.50      74,111.49    

Agriculture GDP share (%) 171         17.41            15.61              0.90                 -              76.19    

Industrial GDP share (%) 172         28.78            11.96              0.42             7.20            79.99    

Urban population share(%) 210         54.58            24.55              0.45             8.08          100.00    

Non dependent population share (aged 15 to 65) 190         60.41              6.52              0.11            48.14            72.74    

Average daily min temperature 198         13.67              8.66              0.63    -       22.60            25.30    

       Variable (2007) Obs Mean Std. Dev. CV Min Max 

CO2 emissions (ktonnes per capita) 198    5,096.36        6,849.85              1.34            22.61      57,660.25    

ln (CO2 emissions per capita) 198          7.58              1.66    

 

         3.12            10.96    

per capita GDP (constant 2000 US$) 194    9,191.87      14,631.59              1.59            96.25      98,397.09    

Agriculture GDP share (%) 169         12.53            12.28              0.98                 -              54.99    

Industrial GDP share (%) 171         31.11            14.10              0.45             5.86            94.58    

Urban population share(%) 210         56.99            24.16              0.42            10.10          100.00    

Non dependent population share (aged 15 to 65) 190         62.94              6.87              0.11            48.81            82.22    

Average daily min temperature 198         13.67              8.66              0.63    -       22.60            25.30    

Source: Produced by the authors based on World Bank (2013). 

Note: further descriptive data is available upon request. The most recent available climate standard 

normal has been used as climatic reference of the country. 
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Table 3. Results from auxiliary OLS regressions on CO2 per capita and explanatory factors, 1993–2007 

Variable 1993 1995 1997 1999 2001 2003 2005 2007 

Affluence         

   GDP per capita .00022778** .00021738*** .00015367** .00015564*** .00015664*** .00016302*** .00016393*** .00016841*** 

   Squared GDP per capita -1.431e-08** -1.322e-08*** -8.516e-09** -8.346e-09** -7.730e-09*** -7.707e-09*** -7.461e-09*** -7.006e-09*** 

   Cubic GDP per capita  2.497e-13** 2.243e-13** 1.346e-13* 1.278e-13** 1.116e-13*** 1.087e-13*** 9.962e-14*** 8.448e-14*** 

Sectoral Composition         

   Agric. GDP share (%) -.01342054* -.02222722*** -.02916964*** -.02927415*** -.02897955*** -.02527107*** -.02486403*** -.03068516*** 

   Indust. GDP share (%) .0347483*** .03459411*** .02564298*** .018115*** .02332022*** .02433404*** .01680331*** .01653982*** 

Population Structure         

   Urban population share .01733784*** .01225186*** .00822251** .00671887* 0.00546392 .00571538* .00623419* 0.00337771 

   Non-dependent pop. .07808158*** .06992016*** .08566869*** .09595006*** .10306478*** .10293884*** .10317962*** .08912037*** 

Climate          

   Av. daily min. temp. -.02463132** -.02426302*** -.02362798*** -.02221845*** -.01600683** -.01564607** -.01747623** -.02104922*** 

Constant 0.9419073 1.8809878** 1.5956777* 1.1516657 0.42887263 0.23336353 0.31073141 1.3898487* 

Countries1 154 161 161 160 163 165 161 155 

Squared R 0.79798729 0.84017732 0.85189569 0.84314694 0.85502122 0.8497542 0.84449959 0.84741744 

Adjusted Squared R 0.78684176 0.8317656 0.84410073 0.83483684 0.84748985 0.84204928 0.83631536 0.83905675 

log-likelihood -183.69907 -165.53358 -154.45728 -157.2094 -155.9453 -159.37318 -154.28651 -138.8818 

Note: * p<.1; ** p<.05; *** p<.01 

Source: Produced by the authors based on World Bank (2013). 
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Table 4. Relative factor contribution to inequality in CO2 per capita  

Factors 1993 1995 1997 1999 2001 2003 2005 2007 

Affluence 14.87 15.91 13.13 13.95 15.84 17.84 18.71 21.44 

Sectoral Composition 19.72 28.71 30.85 27.54 27.70 24.66 21.05 24.36 

agriculture GDP share 8.86 16.66 22.38 22.30 20.74 17.47 16.64 19.80 

Industrial GDP share 10.86 12.05 8.47 5.24 6.96 7.19 4.42 4.55 

Population Structure 39.67 34.05 35.68 37.51 38.53 39.14 40.64 33.88 

Urban pop. Share 17.39 12.99 8.76 7.00 5.51 5.65 6.11 3.24 

Non-dependent pop. 22.27 21.05 26.92 30.51 33.02 33.49 34.54 30.64 

Climate  5.55 5.35 5.54 5.31 3.44 3.33 4.04 5.06 

Residual 20.20 15.98 14.81 15.69 14.50 15.02 15.55 15.26 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Source: Produced by the authors based on World Bank (2013). 
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Table 5. Decomposition of the contribution of each factor to inequality changes 

into coefficient and dispersion effects 

 

Contrib. 

Change   Dispersion effect  Coefficient effect 

 1993–1997           

Affluence -0.0173 0.0199 -115% -0.0371 215% 

Agriculture GDP share (%) 0.1343 0.0143 11% 0.1201 89% 

Industrial GDP share (%) -0.0236 0.0063 -26% -0.0299 126% 

Non-dependent population share (aged 15 to 65) 0.0462 0.0225 49% 0.0237 51% 

Urban population share (%) -0.0858 0.0107 -12% -0.0965 112% 

Average daily min. temperature -0.0001 0.0023 -3887% -0.0023 3987% 

Residual -0.0538 -0.0538 100% 0.0000 0% 

 1997–2003           

Affluence 0.046 0.011 24% 0.035 76% 

Agriculture GDP share (%) -0.049 -0.022 45% -0.027 55% 

Industrial GDP share (%) -0.013 -0.009 70% -0.004 30% 

Non-dependent population share (aged 15 to 65) 0.065 0.010 15% 0.056 85% 

Urban population share (%) -0.031 -0.006 20% -0.025 80% 

Average daily min. temperature -0.022 -0.024 111% 0.002 -11% 

Residual 0.003 0.003 100% 0.000 0% 

 2003–2007           

Affluence 0.036 0.031 86% 0.005 14% 

Agriculture GDP share (%) 0.023 -0.012 -50% 0.035 150% 

Industrial GDP share (%) -0.026 -0.005 19% -0.021 81% 

Non-dependent population share (aged 15 to 65) -0.028 0.019 -66% -0.047 166% 

Urban population share (%) -0.024 -0.002 7% -0.022 93% 

Average daily min. temperature 0.017 0.004 25% 0.013 75% 

Residual -0.005 -0.005 100% 0.0000 0% 

 1993–2007           

Affluence 0.0648 0.1267 195% -0.0619 -95% 

Agriculture GDP share (%) 0.1087 -0.0020 -2% 0.1107 102% 

Industrial GDP share (%) -0.0626 -0.0128 21% -0.0498 79% 

Non-dependent population share (aged 15 to 65) 0.0832 0.0455 55% 0.0377 45% 

Urban population share (%) -0.1406 -0.0075 5% -0.1331 95% 

Average daily min. temperature -0.0048 0.0038 -79% -0.0086 179% 

Residual -0.0487 -0.0487 100% 0.0000 0% 

Source: Produced by the authors based on World Bank (2013). 
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Table 6. Contribution of factors to the change in inequality measured by log-

variance (%) 

Factors 1993–1999 1999–2007 1993–2007 

Affluence 24.48 -233.27 -15.19 

Sectoral Composition -62.14 132.67 -1.50 

Agriculture GDP share -131.79 104.81 -41.20 

Industrial GDP share 69.65 27.86 39.70 

Population Structure 62.24 157.21 66.12 

Urban pop. Share 126.16 131.09 82.14 

Non-dependent pop. -63.92 26.12 -16.02 

Climate  7.96 13.61 7.75 

Residual 67.46 29.78 42.82 

Total  100.00 100.00 100.00 

Total change in log-variance -9 -10 -18 

 

Note: The last row shows the total change in inequality for the different periods. The rest of the rows 

show the percentage of this change that is attributable to each factor. 

Source: Produced by the authors based on World Bank (2013). 


