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Joint outlier detection and variable selection using

discrete optimization

Mahdi Jammal1, Stephane Canu2 and Maher Abdallah3

Abstract

In regression, the quality of estimators is known to be very sensitive to the presence of spurious

variables and outliers. Unfortunately, this is a frequent situation when dealing with real data. To

handle outlier proneness and achieve variable selection, we propose a robust method performing

the outright rejection of discordant observations together with the selection of relevant variables. A

natural way to define the corresponding optimization problem is to use the ℓ0 norm and recast it as

a mixed integer optimization problem. To retrieve this global solution more efficiently, we suggest

the use of additional constraints as well as a clever initialization. To this end, an efficient and

scalable non-convex proximal alternate algorithm is introduced. An empirical comparison between

the ℓ0 norm approach and its ℓ1 relaxation is presented as well. Results on both synthetic and real

data sets provided that the mixed integer programming approach and its discrete first order warm

start provide high quality solutions.
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1 Introduction

We consider the linear regression model:

y = Xβ+ ǫ.

where y ∈R
n is the response vector, X ∈R

n×p is the model matrix, β ∈R
p is the vector

of regression coefficients and ǫ ∈ R
n is the error vector. It is convenient to estimate β

with a sparse vector, especially for high values of p.
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It is well known that dimension reduction or feature selection is an effective strategy

to handle contaminated data and to deal with high dimensionality while providing better

prediction (Bertsimas, King and Mazumder, 2015). Outliers, i.e. atypical or corrupted

observations, can also have a considerable bad influence on estimators (Yang et al.,

2010; Rousseeuw and Hubert, 2018). Usually, outliers are eliminated in a time consum-

ing data cleaning pretreatment (Hodge and Austin, 2004; Campos et al., 2016) while

variable selection is performed together with parameter estimation using the Lasso (Tib-

shirani, 1996), its variants (Tibshirani, Wainwright and Hastie, 2015) or the best subset

(Bertsimas et al., 2015) algorithms just to name a few. For a recent comparison of these

algorithms, see for instance Hastie, Tibshirani and Tibshirani (2017). However, it is well

known that, due to the ordinary least square (OLS) criterion used in the lasso, it is not

robust to outliers. For instance, Alfons et al. (2013) show that the breakdown point of

the lasso is 1/n, that is, only one single outlier can make the lasso estimate completely

unreliable.

Different attempts have been made to solve this problem by mixing variable selection

and outlier detection. A popular idea is to replace the OLS criterion of the lasso by a

loss robust to outliers such as the absolute deviation (Wang, Li and Jiang, 2007), the

least trimmed squares estimator (Alfons et al., 2013) introduced by Rousseeuw and

Leroy (1987) or the Huber’s loss (Dalalyan and Thompson, 2019). Also, to deal with

the specific case of cellwise contamination, that is the presence of outliers in the design

matrix, Öllerer, Alfons and Croux (2016) introduced the shooting S-estimator.

However, none of these approaches considered the use of the pseudo ℓ0 norm as

recently introduced by Bertsimas et al. (2015). In this paper we propose to get robust

estimates by solving these two problems of variable selection and outliers detection to-

gether using pseudo ℓ0 norms for both. Such an approach leads to reformulating the

double robust regression problem as a mixed integer program providing a global so-

lution with convergence guarantee in case of early stopping as well as flexibility and

adaptability. It also allows the use of efficient solvers such as Gurobi, the one used in

our experiments to obtain good results on both synthetic and real data.

Brief Context and Background

Let X = (x1, . . . ,xn)
T be a n× p design matrix and y ∈Rn a response vector. We consider

the following linear model to accommodate outliers:

∀i ∈ {1, . . . ,n}, yi =

{
xT

iβ+ ǫi if observation i is regular

γi if observation i is an outlier to be trimmed,
(1)

where β ∈ R
p is the unknown parameter vector to be estimated, ǫ ∈ R

n is the noise

vector and γ ∈ R
n an intervention vector. A way to model doubtful observations to be

trimmed is to introduce a vector τ ∈ R
n modeling outliers:
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∀i∈{1, . . . ,n}, τi =

{
0 if observation i has to be taken into account

yi− xT

iβ− ǫi if observation i is an outlier to be trimmed,

The model (1) can be rewritten as the following linear model She and Owen (2011):

y = Xβ+ ǫ+ τ . (2)

We are interested in minimizing the norm of the noise vector while selecting kv variables

and removing ko outliers, that is, solving the following optimization problem Chen,

Caramanis and Mannor (2013), for some q ∈ {1,2},

min
β∈Rp,τ∈Rn

1
q
‖Xβ+ τ − y‖q

q

s.t. ‖β‖0 ≤ kv

‖τ‖0 ≤ ko,

(3)

This formulation allows the selection of relevant variables and the avoidance of outliers.

When ko = 0, no outlier detection is performed and this problem boils down to the best

subset selection problem Miller (2002); Bertsimas et al. (2015); Miyashiro and Takano

(2015). When kv = p, no variable selection is performed, the resulting problem is known

as the least trimmed squares regression problem Rousseeuw and Leroy (1987); Giloni

and Padberg (2002). Due to the nature of the cardinality constraints, Problem (3) is a

non-convex optimization problem and has been shown to be NP-hard and considered

as an intractable problem. Mainstream research focused on solving a relaxed version of

Problem (3), by using the ℓ1 norm instead of the ℓ0 norm:

min
β∈Rp,τ∈Rn

1
2
‖Xβ+ τ − y‖2

2

s.t. ‖β‖1 ≤ λ

‖τ‖1 ≤ γ

(4)

where λ and γ are two nonnegative regularization parameters. Problem (4) will be de-

noted by ℓ1-RR. However, this approach is not globally optimal in the sense of (3) since

it will not necessarily provide the same solution provided by (3). We recall that the

lagrangian relaxation of Problem (4) is given by:

min
β∈Rp,τ∈Rn

1
2
‖Xβ+ τ − y‖2

2 +λ||β||1 +γ||τ ||1 (5)

Statistical properties of Problem (5) have been explored in Dalalyan and Thompson

(2019); Nguyen and Tran (2013). To retrieve the global minimum of Problem (3), we

propose to recast Problem (3) as a mixed integer optimization problem (MIO), which

allows the use of efficient solvers to solve it, “Gurobi” for example. The MIO approach

has a computational cost, but two decades of progress enabled its effective practical use

for moderately sized problems. We also present a discrete first order algorithm that pro-
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vides a high quality solution that could be used as a warm start for the MIO algorithm.

In addition, it is useful for high-dimensional data sets since it provides solutions in a

short time.

The remainder of the paper is organized as follows. In Section 2, we present our

approach for variable selection and outliers detection using the ℓ0 together with its for-

mulation as a mixed integer optimization allowing to obtain the global solution. Section

3 introduces a relaxation that provides efficiently a local solution to this problem. This

is followed by Sections 4 and 5 reporting empirical evidence on both synthetic and real

data sets respectively. Finally, the paper is concluded in Section 6.

2 Variable Selection and Outlier Detection as a MIO

We propose to reformulate Problem (3) as a mixed integer (binary) optimization (MIO)

problem by introducing binary variables representing whether or not variables and ob-

servations are useful.

2.1 Introducing Binary Variables

Variable selection involves the ℓ0 norm function to count the number of useful variables.

This counting function can be represented by introducing p binary variables z j ∈ {0,1}

such that

‖β‖0 =
p

∑
j=1

z j and z j = 0⇒β j = 0.

Different approaches can be used to force z j = 0⇔ β j = 0 into an optimization problem,

such as:

1. Replace β j by z jβ j for j = 1, . . . , p.

2. Set |β j|(1− z j) = 0 for j = 1, . . . , p or
p

∑
j=1

|β j|(1− z j) = 0.

3. Use a big-M constraint, |β j| ≤Mvz j for j = 1, . . . , p and for some fixed constant Mv

large enough (such as Mv ≥ max j |β
⋆
j |, β

⋆
j being the solution of the optimization

problem). In the setup of experimental resuls for synthetic data sets, we explain

how we can set a priori value of Mv.

4. Treat z j = 0⇔ β j = 0 as logical implications (also called indicator constraints

or special ordered set SOS-1). Note that this kind of logical implication can be

efficiently handled in a branch-and-bound procedure for MIO problems.

We now discuss and give a short overview of the advantages and drawbacks of each

approach. The two first approaches involve nonlinear interaction terms between binary

and continuous variables. Their interest lies in the possibility of obtaining interesting
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continuous relaxations. The main advantage of the big-M method (approach 3) is that it

brings only linear inequality constraints, but the value of the M term needs to be chosen

carefully since it shows a great deal of practical influence on the solver performance.

Logical implications (approach 4) have the advantage of avoiding these types of prob-

lems, as they do not rely on a separate constant value. However, they tend to have weaker

relaxations, a condition which may lead to longer solve times in a model. In this paper

we will use the third approach for our implementation since the presented discrete first

order algorithm allows to obtain a good upper bound of M and since the brought linear

inequality constraint do not have a significant influence on the computational time.

Outlier detection also involves the ℓ0 norm function to count the number of outliers.

As done above, this counting function can be represented by introducing n binary vari-

ables ti ∈ {0,1} such as

‖τ‖0 =
n

∑
i=1

ti and ti = 0⇒ τi = 0, (xi,yi) is not an outlier.

2.2 A MIO Formulation

Introducing binary variables for both variables and outliers with two big-M constraints,

given appropriate parameters kv,ko,Mv and Mo, Problem (3) becomes for some q ∈

{1,2}:

min
β∈Rp,τ∈Rn,z∈{0,1}p ,t∈{0,1}n

1
q
‖Xβ+ τ − y‖q

q

s.t.
p

∑
j=1

z j ≤ kv and |β j| ≤ z jMv, j = 1, . . . , p

n

∑
i=1

ti ≤ ko and |τi| ≤ tiMo i = 1, . . . ,n.

(6)

This problem turns out to be a mixed binary quadratic program when q = 2, it will be

denoted by ℓ0-RR and it will be used in the rest of the paper. However, we will introduce

other formulations that could also be efficient without using these formulations in the

experiments.

2.3 Convergence to the Global Optimum

Figure (1) shows the influence of the SNR value on the speed of convergence. In fact,

we consider a synthetic data set without adding outliers. When ko = 5%, the time needed

to certify the optimality decreased from 120 seconds for SNR = 0.5 to 52 seconds for

SNR = 5. In addition, after three hours of computation and when ko = 10%, the MIO-

Gap decreased from 0.2 (SNR = 0.5) to 0.1 (SNR = 5).
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Figure 1: The typical evolution of the MIO formulation (6) for a synthetic dataset with n = 150, p = 15,s =
5. The top and the bottom panels show the evolution of the corresponding MIO gap with time. The red line

is the y = 0 reference line.

In Figure (2) we shed light on the importance of estimating the true percentage of

outliers in the data set (10% in our case). When we set ko as the true percentage of

outliers (right panel), the optimality was certified in about three minutes. But when the

true percentage of outliers is underestimated (ko = 2.5%), the MIO-Gap was still about

0.2 even after 3 hours. Note that when we overestimate the percentage of outliers (ko =

15% for example) we observe slow convergence as we did when underestimating it.

In summary, the convergence rate depends on many factors:

• the size of the data set: smaller data leads to faster convergence to optimality,

• the estimation of the parameters kv and ko: better estimation of the number of rele-

vant features and of the percentage of outliers increases the speed of convergence

to optimality,

• the noise in the data (SNR): more time is needed to certify optimality for lower

SNR values.
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Figure 2: The typical evolution of the MIO formulation (6) for a synthetic dataset with n= 500, p= 100,s =
5. The left and the right panels show the evolution of the corresponding MIO gap with time. The red line is

the y = 0 reference line.

3 Proximal Alternating Linearized Minimization Algorithm

In this section, an efficient alternate projected gradient algorithm providing a local so-

lution to the optimization Problem (3) is introduced. This algorithm will be used as a

warm-start procedure for the MIO solver as well as an optimization algorithm itself

since it could provide high quality solutions in a short time. Before entering into the

details of the alternate projected gradient algorithm, it is appropriate to introduce the

problem of finding the projection of a vector u ∈R
p onto the set of k≤ p sparse vectors

min
v∈Rp

1
2
‖v−u‖2

s.t. ‖v‖0 ≤ k.
(7)

This problem is easy and its solution v⋆ is given by sorting on the absolute value of

vector |u|, that is by a sequence of indices ( j) such that |u(1)| ≥ |u(2)| ≥ . . . |u( j)| ≥ · · · ≥

|u(p)|. Using these indices, the projection v⋆ = Pk(u) of u is the vector u itself with its

smallest coefficients set to 0 that is

v⋆ = Pk(u) =

{
u j if j ∈ {(1), . . . ,(k)}
0 else.

(8)

We propose to use this projection mechanism, on both β and τ , to get a solution to the

initial Problem (3) at a low computing cost.
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A possible way to achieve this goal consists of using the so-called block Gauss-

Seidel iteration scheme on variables β and τ , also known as alternating minimization.

To this end, a sequence
{
(βℓ,τ ℓ)

}

ℓ∈N
is generated starting from some (β0,τ 0) using the

following scheme:







βℓ+1 = argmin
β∈Rp

(β−βℓ)TXT(Xβℓ+τ ℓ−y)

s.t. ‖β‖0 ≤ kv

‖β−βℓ‖2 ≤ dv







τ ℓ+1 = argmin
τ∈Rn

(τ −τ ℓ)T(Xβℓ+1 +τ ℓ−y)

s.t. ‖τ‖0 ≤ ko

‖τ −τ ℓ‖2 ≤ do.

(9)







1
2‖Xβ+τ ℓ−y‖2 ≤

1

2
‖Xβℓ+τ ℓ−y‖2 +(β−βℓ)TXT(Xβℓ+τ ℓ−y)+

1

2ρv
‖β−βℓ‖2

1
2‖Xβℓ+1 +τ −y‖2 ≤

1

2
‖Xβℓ+1 +τ ℓ−y‖2 +(τ −τ ℓ)T(Xβℓ+1 +τ ℓ−y)+

1

2ρo
‖τ −τ ℓ‖2.

(10)

Where dv and do are two given positive parameters that can be changed each step. The

idea of the proximal method is, at each iteration, to minimize a regularized first-order

approximation of the cost that can be interpreted as a local trust region mechanism (for

details see for instance Parikh and Boyd, 2014). This surrogate loss is also a local upper

bound of the targeted loss since, for well chosen ρv and ρo, the Lagrange multipliers

associated with the trust region constraints







1
2‖Xβ+τ ℓ−y‖2 ≤

1

2
‖Xβℓ+τ ℓ−y‖2 +(β−βℓ)TXT(Xβℓ+τ ℓ−y)+

1

2ρv
‖β−βℓ‖2

1
2‖Xβℓ+1 +τ −y‖2 ≤

1

2
‖Xβℓ+1 +τ ℓ−y‖2 +(τ −τ ℓ)T(Xβℓ+1 +τ ℓ−y)+

1

2ρo
‖τ −τ ℓ‖2.

(11)

For each iteration, this method introduced by Bolte, Sabach and Teboulle (2014) and

called the proximal alternating linearized minimization (PALM) algorithm, consists of

minimizing the upper bounds as follows:







βℓ+1 = argmin
β∈Rp,‖β‖0≤kv

(β−βℓ)T
X

T(Xβℓ+ τ ℓ− y)+
1

2ρv

‖β−βℓ‖2

τ ℓ+1 = argmin
τ∈Rn,‖τ‖0≤ko

(τ − τ ℓ)T(Xβℓ+1 + τ ℓ− y)+
1

2ρo

‖τ − τ ℓ‖2.
(12)

That is, after some algebra,







βℓ+1 = argmin
β∈Rp,‖β‖0≤kv

1
2
‖β−βℓ+ρvX

T(Xβℓ+ τ ℓ− y)‖2

τ ℓ+1 = argmin
τ∈Rn,‖τ‖0≤ko

1
2
‖τ − τ ℓ+ρo(Xβℓ+1 + τ ℓ− y)‖2.

(13)

These two minimization problems are of the same kind as Problem (7) and thus the

sequence can be generated by using two ℓ0 projected gradient, that is:

{
βℓ+1 = Pkv

(
βℓ−ρvX

T(Xβℓ+ τ ℓ− y)
)

τ ℓ+1 = Pko

(
τ ℓ−ρo(Xβℓ+1 + τ ℓ− y)

)
.

(14)
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Algorithm 1 presents the pseudo code of the PALM algorithm.

Algorithm 1: Proximal alternating linearized minimization (PALM) Bolte et al. (2014)

Data: X ,y initialization β,τ = 0

Result: β,τ
set ρv ≤

1

σ2
M

and ρo ≤ 1

while it has not converged (||βn+1−βn||2 > 10−6) do

d← β−ρvX⊤(Xβ+ τ − y) variable selection

β← Pkv(d)

δ← τ −ρo(Xβ+ τ − y) eliminating outliers

τ ← Pko(δ)

This algorithm converges towards a local minima of Problem (3) since it fulfills

the assumptions needed for Theorem 3.1 in Bolte et al. (2014). Indeed, if we con-

sider G(β,τ) = 1
2
||Xβ + τ − y||22, PALM converges if the partial gradients Gβ(β) =

X⊤(Xβ+ τ − y) and Gτ (τ) = (Xβ+ τ − y) are globally Lipschitz with modules L1 and

L2 respectively. It could be easily shown that Gβ(β) and Gτ (τ) are 1

σ2
M

and 1 Lipschitz

respectively, σM being the largest singular value of X . Thus the step sizes could be cho-

sen such that ρv ≤
1

σ2
M

and ρo ≤ 1 as proved in Bolte et al. (2014).

4 Results for Synthetic Data Sets

In this section we show the empirical performance of the MIO approach.

4.1 Setup

In Hastie et al. (2017), a follow-up paper to Bertsimas et al. (2015), the authors provide

a synthetic setup considering a wide range of SNR values. We use it here to compare

the best subset selection (Formulation (6) with ko = 0), the lasso, PALM, the ℓ0 robust

regression - ℓ0 RR and the ℓ1 robust regression - ℓ1 RR. The same notations as Hastie

et al. (2017) were used, namely n, p (problem dimensions), s (sparsity level), beta-type

(pattern of sparsity), ρ (predictor auto-correlation level) which controls correlations be-

tween predictor variables, and ν (SNR level).

• We define coefficients β0 ∈ R
p according to s and the beta-type, as described be-

low.

• We draw the rows of the matrix X ∈ R
n×p from Np(0,Σ), where Σ ∈ R

p×p has

entry (i, j) equal to ρ|i− j|, and ρ= 0.35.
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• We draw the vector y ∈Rn from Nn(Xβ0,σ
2I), with σ2 defined to meet the desired

SNR level, i.e., σ2 = βT
0 Σβ0/ν.

• We use 5-fold cross-validation and the tuning was performed by minimizing pre-

diction error on the test set.

• To assess the influence of outliers, 5% of outliers were added to the data set by

following a normal N(50,σ) instead of N(0,σ).

• We considered two configurations: the low setting with n = 150, p = 15, and the

medium setting n = 500, p = 100. For each configuration, we also considered two

settings: the first one with outliers generated as mentioned above, and the second

one without adding outliers.

• The lasso was tuned over 100 values of λ (as it is in glmnet).

• In order to determine the values of kv, Mv, ko and Mo, we run the PALM algorithm

for kv ranging from 1 to p and for ko ranging from 0 to 10% with a step size of

2.5%. Then, we choose the solution with the minimal error ||Xtestβpalm− ytest ||
2
2.

• Mv = (1+α)||βpalm||∞, Mo = (1+α)||τpalm||∞ with α = 0.1, kv and ko are set as

the number of nonzero elements in the solutions βpalm and τpalm respectively.

• The ℓ1 robust regression (ℓ1 RR) algorithm was tuned over five values of λ from

zero to 1.5||βlasso||∞ where βlasso is the solution obtained by the lasso method,

and over fifty one values of γ from 0 to 5000 with a step size of 100 for the low

dimensional case, and from 0 to 10000 with a step size of 200 for the medium

dimensional case.

• We run the best subset selection, the lasso, PALM, the ℓ0 robust regression (ℓ0 RR)

the ℓ1 robust regression (ℓ1 RR) using a 5-fold cross-validation. The tuning was

performed by minimizing the error on the test set.

• We repeat 10 times for the low dimensional setting and 5 times for the medium

dimensional setting and average the results.

Coefficients: We considered three settings for the coefficients β0 ∈ R
p as in Hastie

et al. (2017):

• beta-type 1: β0 = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, . . . ,0
︸ ︷︷ ︸

p−10 times

);

• beta-type 2: β0 has its first 5 components equal to 1, and the rest equal to 0;

• beta-type 5: β0 has its first 5 components equal to 1, and the rest decaying expo-

nentially to 0, specifically, β0i = 0.5i−s, for i = s+1 . . . p, where s = 5;

Following Bertsimas et al. (2015); Hastie et al. (2017), we use, as an accuracy metric,

the relative risk (R.R) defined by:

R.R(β̂) =
E(xT

0 β̂− xT
0 β0)

2

E(xT
0 β0)2

=
(β̂−β0)

T Σ(β̂−β0)

βT
0 Σβ0

,
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The best score is 0 (when β̂ = β0) and the null score is 1, obtained when β̂ = 0.

We also use the proportion of variance explained (PVE) defined by:

PVE(β̂) = 1−
E(y0− xT

0 β̂)
2

Var(y0)
= 1−

(β̂−β0)
T Σ(β̂−β0)+σ2

βT
0 Σβ0 +σ2

.

The maximum value for the PVE, also called the perfect score, is SNR/(SNR+1) (see

Hastie et al. (2017) for details).

4.2 Computational Costs

For the lasso, we used the Matlab “lasso” function with 100 values of λ as implemented

in glmnet. The solution is delivered in a very short time. For the best subset selection

problem, we implemented the method using the MIO Formulation (6) with ko = 0, used

PALM to compute a warm start and then call Gurobi through its Matlab interface. We

used a time limit of 3 minutes for Gurobi to optimize the best subset selection problem

for both low and medium dimensional case. The same procedure is followed for the ℓ0

robust regression problem but with a time limit increased to 10 minutes for the medium

dimensional setting.

For the ℓ1 robust regression, we obtained 5×51 = 255 ( 5 values of λ and 51 values

of γ) solutions for each test. The time needed to obtain each solution depends on the

size of the dataset, but it varies from 0.16 second to about 1 second.

We can conclude that for low dimensional setting, we faced around 15 hours of com-

putation (10 repetitions), and more than 45 hours for the medium dimensional setting

(5 repetitions) for each type of β. Using only one cross-validation loop would decrease

significantly the computational time of the experiments. We note that the computations

were carried on in a windows 10 64-bit server - Intel(R) Core(TM) i7-4700MQ CPU @

2.40 GHz and 8 GB of Ram. So using a more powerful machine would help to decrease

the computational cost.

4.3 Results

Figures (3)-(8) plot the relative risk (left panel) and the proportion of variance explained

(right panel) as functions of signal-to-noise ratio (SNR). The results can be divided into

two main categories:

4.3.1 No Outliers

In this case, no outliers were added to the synthetic data sets generated as mentioned

before. Figures (3), (4), (5), (6), (7) and (8) show that for small SNR values, the ℓ1

methods (lasso and ℓ1 RR) have the lead on the other methods (best subset selection,

PALM and ℓ0 RR). While for high SNR values the ℓ0 approaches outperform the ℓ1
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approaches even though all the methods perform quite similarly for high SNR values.

These results shed the light on the capability of the MIO approach to perform well when

no outliers exist in the data set.

4.3.2 Presence of Outliers

In this case, Figures (3), (4), (5), (6), (7) and (8) show that PALM, ℓ0 RR and ℓ1 RR

outperform the best subset selection and the lasso, which is not surprising since the last

two methods are not robust to outliers. The obtained results ensure that adding the vari-

able τ helped to improve the performance of the estimators and guaranteed obtaining

robust methods. In addition, for SNR < 0.25 the ℓ1 RR performs, in general, better than

PALM and the ℓ0 RR. But for higher SNR values, there is no clear winner. An important

caveat to emphasize up front is that the Gurobi MIO algorithm for ℓ0 RR was given only
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Figure 3: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 1 in the setting with n = 150, p = 15, and s = 5 with and without outliers (top panel and bottom

panel respectively).
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Figure 4: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 2 in the setting with n = 150, p = 15, and s = 5 with and without outliers (top panel and bottom

panel respectively).

10 minutes per problem, which may have caused the ℓ0 RR to underperform, and that

the performance of the MIO algorithm depends on the parameters tuned using PALM.

4.4 Detection Rate for the Feature Selection and Outlier Detection Tasks

To determine whether the ℓ0 robust regression approach can detect the outliers and select

the right features, we generated two low-dimensional and two medium-dimensional data

sets using the β type-2, with SNR values 0.5 and 5. We added 5% of outliers in the

response vector (as in the setup of the synthetic data sets). kv and ko were set as the true

sparsity level of β and as the percentage of outliers (5%). In all cases, the detection rate

of both outliers and features was 100%, noting that no cross-validation was performed.



60 Joint outlier detection and variable selection using discrete optimization

0.05 0.25 1.22 6
Signal to noise ratio

0

0.75

1.5

2.25

Re
la
ti
ve

 r
is
k

with outliers

0.05 0.25 1.22 6
Signal to noise ratio

0

0.25

0.5

0.75

PV
E

with outliers

0.05 0.25 1.22 6
Signal to noise ratio

0

0.75

1.5

2.25

Re
la
ti
ve

 r
is
k

without outliers

0.05 0.25 1.22 6
Signal to noise ratio

0

0.25

0.5

0.75

PV
E

without outliers

ℓ0 RR PALM ℓ1 RR Lasso Best subset

beta-type 5, n=150 and p=15

Figure 5: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 5 in the setting with n = 150, p = 15, and s = 5 with and without outliers (top panel and bottom

panel respectively).

In the experiments performed on both real and data sets, we used PALM to tune the

parameters kv and ko. Thus the performance of the MIO approach depends on PALM.

To this end, each data set was split into two parts: the training set (70%) and the testing

set (30%). We added 5% of outliers in the training set’s response vector. PALM was per-

formed for kv ∈ [1, . . . , p] and ko
n
∈ [0,0.025,0.05,0.075,0.1]. PALM failed to estimate

the true sparsity level and the true percentage of outliers as seen in Figures (9) and (10).

This leads the PALM-MIO approach to fail at detecting the percentage of outliers and

selecting the correct number of relevant features, even though all the true outliers were

considered as outliers by this approach.
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Figure 6: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 1 in the setting with n = 500, p = 100, and s = 5 with and without outliers (top panel and bottom

panel respectively).

5 Real Data Sets

The performances of all methods have been compared on real data sets. To this end we

have used 7 data sets presented in Table 1. The different methods have been compared

on all these data sets according to the following setup:

• The response vector y and the columns of the matrix X have been standardized to

have zero mean and unit standard deviation;

• Two 5-fold cross-validation loops have been implemented. The inner one has been

used to give a relevant choice for the hyper-parameters. The outer one has been

used to estimate the average mean squared error MSE;
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Figure 7: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 2 in the setting with n = 500, p = 100, and s = 5 with and without outliers (top panel and bottom

panel respectively).

• As for synthetic data sets, we run PALM for kv ranging from 1 to p, and ko ranging

from 0 to 10% with a step seize of 2.5%, and pick the solution with smallest cross-

validation error. This obtained solution is used to set the values of Mv and Mo and

as a warm start for the ℓ0 robust regression algorithm as well;

• The hyper-parameter λ of the lasso was tuned over 100 values as per the default in

glmnet;

• The ℓ1 robust regression algorithm was tuned over 5 values of λ (as for the syn-

thetic data sets) and over 40 values of γ varying from 0 to 2000 with a step size

of 50. We remarked that, for the normalized and standardized data set considered,

it’s enough to bound ||τ ||1 by 2000;

• Outliers were generated by replacing 5% of the response vector values yi by yi +

2(max(y)−min(y)) that is a constant value set to the range of the response variable

in the training set;
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Figure 8: Relative risk (left panel) and proportion of variance explained (right panel) functions of SNR, for

beta-type 5 in the setting with n = 500, p = 100, and s = 5 with and without outliers (top panel and bottom

panel respectively).
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Figure 10: Percentage of outliers over estimation by PALM. The percentage of outliers in the data set is

5%.

Each experiment is repeated 3 times. Tables 2 and 3 report the average of the results

and the standard deviation in parentheses for the raw data.

Table 1: Periods and sites extracted from clear archaeological contexts with radiocarbon determinations.

Name of the dataset number of instances n number of attributes p Origin

Body Fat 252 15 lib.stat.cmu.edu

Concrete Compressive Strength 1030 9 UCI

Concrete Slump Test 103 10 UCI

Real Estate Valuation 414 7 UCI

Diabetes 442 10 stat.ncsu.edu

Boston Housing 489 3 Web1

Auto Mpg 398 8 UCI

Table 2: Cross-validation MSE rates (standard deviations) of the best subset, lasso, PALM, ℓ0 robust re-

gression (ℓ0 RR) and ℓ1 robust regression (ℓ1 RR) on 7 real datasets.

Best subset Lasso Palm ℓ0 RR ℓ1 RR

Body Fat 2.2797 (7.2e−5) 4.2644 (1.5e−4) 2.5958 (5.2e−5) 2.6270 (4.77e−5) 4.5008 (6.2e−5)

Concrete Compressive Strength 0.3588 (0.018) 0.3602 (0.019) 0.3692 (4.2e−4) 0.3693 (3.5e−4) 0.3603 (0.015)

Slump Test 0.0880 (0.008) 0.0863 (0.012) 0.0864 (0.011) 0.0880 (0.008) 0.0869 (0.010)

Real Estate Valuation 0.2994 (0.024) 0.2924 (0.036) 0.3010 (0.026) 0.2992 (0.026) 0.2950 (0.033)

Diabetes 0.3917 (0.037) 0.3914 (0.038) 0.3889 (0.028) 0.3888(0.038) 0.3952 (0.039)

Boston Housing 0.2460 (0.007) 0.2460 (0.007) 0.2446 (0.008) 0.2440 (0.009) 0.2448 (0.006)

Auto Mpg 0.1469 (0.002) 0.1458 (0.005) 0.1523 (0.007) 0.1516 (0.007) 0.1478 (0.008)

An important caveat to emphasize upfront is that the ℓ0 robust regression algorithm

was given 10 minutes time limit per problem instance per subset size. This practical

restriction may have caused this algorithm to underperform in some cases. For the best

subset selection problem, the time limit was set to 2 minutes. We note that the optimality

was certified for almost every case in less than two minutes. In the absence of outliers,

results in Table 2 show that there is no clear winner. It is remarkable that all methods

lib.stat.cmu.edu
stat.ncsu.edu
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performed quite similarly, with a little advantage of using the lasso. In the presence of

outliers, results in Table 3 show the dominance of the robust regression algorithms used

over the best subset selection and the lasso. The ℓ0 robust regression performed better

than the other methods.

Table 3: Cross-validation MSE rates (standard deviations) of the best subset, lasso, PALM, ℓ0 robust re-

gression (ℓ0 RR) and ℓ1 robust regression (ℓ1 RR) on 7 real datasets corrupted by 5% of outliers in the

initial response vector y.

Best subset Lasso Palm ℓ0 RR ℓ1 RR

Body Fat 0.3923 (0.023) 0.4039 (0.034) 0.3679 (0.024) 0.3764 (0.009) 0.3882 (0.023)

Concrete compressive strength 0.5891 (0.063) 0.5877 (0.059) 0.5843 (0.070) 0.5842 (0.071) 0.5857 (0.755)

Slump test 0.2749 (0.186) 0.2463 (0.128) 0.1110 (0.022) 0.0958 (0.012) 0.1039 (0.018)

Real estate valuation 0.6581 (0.131) 0.6680 (0.146) 0.6587 (0.137) 0.6580 (0.138) 0.6688 (0.147)

Diabetes 0.5087 (0.015) 0.5002 (0.011) 0.5012 (0.009) 0.5009 (0.011) 0.4923 (0.014)

Boston housing 0.5408 (0.240) 0.5293 (0.231) 0.5425 (0.241) 0.5441 (0.241) 0.5235 (0.225)

Auto mpg 0.5498 (0.139) 0.5596 (0.128) 0.5406 (0.160) 0.5406 (0.160) 0.5370 (0.163)

6 Conclusion

In this paper we propose a method for linear regression which solves the underlying

optimization problem that handles both variable selection and outlier detection. We for-

mulate the problem as a mixed-integer optimization problem and present a fast alternat-

ing minimization algorithm to find local minima. Furthermore, we present an empirical

comparison between this method and its ℓ1 relaxation on both synthetic and real data.

We have found that neither the ℓ0 norm problem nor its ℓ1 relaxation dominates the other.

Our recommendation is to use the ℓ0 norm problem for large SNR while ℓ1 relaxation

is preferred when SNR is small. While the ℓ0 approach is considered to be intractable,

especially, for high dimensional regimes, one can propose to use screening rules helping

in accelerating the solvers. Moreover, we have shown that if the true number of features

and percentage of outliers are well estimated, the speed of convergence to the global

minimum decreases significantly. Dealing with data sets of high dimensionality is the

main limitation of the proposed MIO approach because of the high computational cost.

However, we suggest to use the PALM algorithm in the high-dimensional case since it

provides high quality solutions in a short time.
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