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A behavioral approach is critical when developing practical AI systems in general. The

result might be a system that has the desired behavior but is hard to explain. In that case it

would be fair to say that the software system is similar to a human in that both cannot be

explained by a simple model.

Noam Chomsky
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SUMMARY

Agent-based modeling is a very useful computational tool to simulate complex behavior

using rules at micro and macro scales. This type of modeling’s complexity is in defining

the rules that the agents will have to define the structural elements or the static and dynamic

behavior patterns.

This thesis considers the definition of complex models of biological networks that rep-

resent cancer cells obtain behaviors on different scenarios by means of simulation and to

know the evolution of the metastatic process for non-expert users of computer systems.

Besides, a proof of concept has been developed to incorporate dynamic network analysis

techniques and machine learning in agent-based models based on developing a federated

simulation system to improve the decision-making process.

For this thesis’s development, the representation of complex biological networks based

on graphs has been analyzed, from the simulation point of view, to investigate how to in-

tegrate the topology and functions of this type of networks interacting with an agent-based

model. For this purpose, the ABM model has been used as a basis for the construction,

grouping, and classification of the network elements representing the structure of a com-

plex and scalable biological network.

The simulation of complex models with multiple scales and multiple agents provides a

useful tool for a scientist, non-computer expert to execute a complex parametric model and

use it to analyze scenarios or predict variations according to the different patient’s profiles.

The development has focused on an agent-based tumor model that has evolved from

a simple and well-known ABM model. The variables and dynamics referenced by the

Hallmarks of Cancer have been incorporated into a complex model based on graphs. Based

on graphs, this model is used to represent different levels of interaction and dynamics

within cells in the evolution of a tumor with different degrees of representations (at the

molecular/cellular level).
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A simulation environment and workflow have been created to build a complex, scalable

network based on a tumor growth scenario. In this environment, dynamic techniques are

applied to know the tumor network’s growth using different patterns.

The experimentation has been carried out using the simulation environment developed

considering the execution of models for different patient profiles, as a sample of its func-

tionality, to calculate parameters of interest for the non-computer expert, such as the evo-

lution of the tumor volume.

The environment has been designed to discover and classify subgraphs of the agent-

based tumor model to execute these models in a high-performance computer system. These

executions will allow us to analyze complex scenarios and different profiles of patients with

tumor patterns with a high number of cancer cells in a short time.

RESUM

El modelat basat en agents és una eina informàtica molt útil que permet simular un

comportament complex utilitzant regles tant a escales micro com macro. La complexitat

d’aquest tipus de modelat està en la definició de les regles que tendran els agents per definir

elements estructurals o els patrons de comportament estàtics i/o dinàmics.

La present tesis aborda la definició de models complexos de xarxes biològiques que rep-

resenten cèl·lules canceroses per obtenir comportaments sobre diferents escenaris mitjançant

simulació i conèixer l’evolució del procés de metàstasi per a usuaris no-experts en sistemes

de còmput.

A més es desenvolupa una prova de concepte de com incorporar tècniques d’anàlisi

de xarxes dinàmiques i d’aprenentatge automàtic en els models basats en agents a partir

del desenvolupament d’un sistema de simulació federat per millorar el procés de presa de

decisions. Per al desenvolupament d’aquesta tesi s’ha tingut que abordar, des del punt de

vista de la simulació, la representació de xarxes biològiques complexes basades en grafs i
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investigar com integrar la topologia i funcions d’aquest tipus de xarxes interactuant amb un

model basat en agents.

En aquest objectiu, s’ha utilitzat el model ABM com a base per a la construcció, agru-

pament i classificació dels elements de la xarxa i que representen l’estructura d’una xarxa

biològica complexa i escalable. La simulació d’un model complex de múltiples escales i

múltiples agents, proporciona una eina útil per a que un cientı́fic, no-expert en computació,

pugui executar un model complex i paramètric i utilitzar-ho com a eina d’anàlisi d’escenaris

o predicció de variacions segons els diferents perfils de pacients considerats.

El desenvolupament s’ha centrat en un model de tumor basat en agents que ha evolu-

cionat des d’un model ABM simple i bé conegut, al qual se li han incorporat les vari-

ables i dinàmiques referenciades per l’Hallmarks of Cancer, fins a un models basat en

grafs. Aquest model, basat en grafs, permet representar a diferents nivells d’interacció i

dinàmiques dins de les cèl·lules en l’evolució d’un tumor que permet diferents graus de

representacions (a nivell molecular/cel·lular).

Tot això s’ha posat en funcionament en un entorn de simulació i ha creat un flux de

treball (workflow) per construir una xarxa escalable complexa basada en un escenari de

creixement tumoral i on s’apliquen tècniques dinàmiques per conèixer el creixement de la

xarxa tumoral sobre diferents patrons.

L’experimentació s’ha realitzat utilitzant l’entorn de simulació desenvolupat considerat

l’execució de models per a diferents perfils de pacients, com a mostra de la seva funcional-

itat, per a paràmetres d’interès per a l’expert no-informàtic com per exemple l’evolució del

volum del tumor.

L’entorn ha estat dissenyat per descobrir i classificar subgrafs del model de tumor basat

en agents, que permetran distribuir els models en un sistema de còmput d’altes presta-

cions per poder analitzar escenaris complexos i/o diferents perfils de pacients amb patrons

tumorals amb un alt nombre de cèl·lules canceroses en un temps reduı̈t.

xvi



RESUMEN

El modelado basado en agentes es una herramienta computacional muy útil que permite

simular un comportamiento complejo utilizando reglas tanto en escalas micro como macro.

La complejidad de este tipo de modelado radica en la definición de las reglas que tendrán los

agentes para definir los elementos estructurales o los patrones de comportamiento estáticos

y/o dinámicos.

La presente tesis aborda la definición de modelos complejos de redes biológicas que

representan células cancerosas para obtener comportamientos sobre diferentes escenarios

mediante simulación y conocer la evolución del proceso de metástasis para usuarios no

expertos en sistemas de cómputo. Además se desarrolla una prueba de concepto de cómo

incorporar técnicas de análisis de redes dinámicas y de aprendizaje automático en los mod-

elos basados en agentes a partir del desarrollo de un sistema de simulación federado para

mejorar el proceso de toma de decisiones.

Para el desarrollo de esta tesis se han tenido que abordar, desde el punto de vista de

la simulación, la representación de redes biológicas complejas basadas en grafos e investi-

gar como integrar la topologı́a y funciones de este tipo de redes interactuando un modelo

basado en agentes. En este objetivo, se ha utilizado el modelo ABM como base para la

construcción, agrupamiento y clasificación de los elementos de la red y que representan la

estructura de una red biológica compleja y escalable.

La simulación de un modelo complejo de múltiples escalas y múltiples agentes, propor-

ciona una herramienta útil para que un cientı́fico, no-experto en computación, pueda ejecu-

tar un modelo complejo paramétrico y utilizarlo como herramienta de análisis de escenarios

o predicción de variaciones según los diferentes perfiles de pacientes considerados.

El desarrollo se ha centrado en un modelo de tumor basado en agentes que ha evolu-

cionado desde un modelo ABM simple y bien conocido, al cual se le han incorporado las

variables y dinámicas referenciadas por el Hallmarks of Cancer, a un modelo complejo
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basado en grafos. Este modelo, basado en grafos, se utiliza para representar a diferentes

niveles de interacción y dinámicas dentro de las células en la evolución de un tumor que

permite diferentes grado de representaciones (a nivel molecular/celular). Todo ello se ha

puesto en funcionamiento en un entorno de simulación y se ha creado un flujo de tra-

bajo (workflow) para construir una red escalable compleja basada en un escenario de crec-

imiento tumoral y donde se aplican técnicas dinámicas para conocer el crecimiento de la

red tumoral sobre diferentes patrones.

La experimentación se ha realizado utilizando el entorno de simulación desarrollado

considerado la ejecución de modelos para diferentes perfiles de pacientes, como muestra

de su funcionalidad, para calcular parámetros de interés para el experto no-informático

como por ejemplo la evolución del volumen del tumor.

El entorno ha sido diseñado para descubrir y clasificar subgrafos del modelo de tumor

basado en agentes, que permitirá distribuir los modelos en un sistema de cómputo de altas

prestaciones y ası́ poder analizar escenarios complejos y/o diferentes perfiles de pacientes

con patrones tumorales con un alto número de células cancerosas en un tiempo reducido.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Systems Biology (SB), mainly at the cellular level, is a complex natural phenomenon to-

day for research in drug development and biotechnological productions and applications.

Mathematical models of cellular level are built-in bio repeated cycles at a portion of time

to arrive at a decision.

The bio iterative cycles’ primary idea is to develop systems by allowing software de-

velopers to redesign and translate cellular metabolism.

The objective is to bring the desired decision or results closer to discovery in each

iteration. These experiments on a multiscale iterative cycle of computational modeling

besides experimental validation and data analysis would produce incremental samples for

the high-throughput technologies. Also, the cell’s behavior emerges at the network level.

It requires much integrative analysis, and due to the size and complexity of intercellular

biological networks, the computational model should be an essential part of the production

or application.

Systems Biology (SB) would not be needless of developing integrated frameworks for

analysis and data management. As well as the intercellular level that many kinds of research

in Systems Biology (SB) address, the cellular population matter too [48].

1.1 Agent-based modeling and Simulation

Agent-based modeling and simulation will be consummated by bringing up novelty in com-

puting clusters or clusters on computational grids. This novelty is based on the number of

interacting agents or the complexity of the model.

A novel complex system that has developed in this case needs to be understandable and

adaptive for both novice or veteran, so it must be a package that does something beyond
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computing, such as a versatile framework that has APIs, GUIs, or IDEs and has its intuitive

terminology [1].

Agent-based modeling allows developers to synthesize analyzed results between the

human environment and computing system environment. This synthesizing help model-

ers to investigate and design more persistent patterns at different levels through time and

resources space. ABM also prepares the dynamic of the system due to the interactions

between agents and output data. ABMs are recently becoming more complicated and in-

volved with several challenges.

Initializing and parameterizing get more and more difficult. Evaluation becomes hard,

and finally, analyzing the multidimensional output data will not be accessible at all [2].

Quantifying the level of complicatedness about the models is a fundamental investigation

for scientific researchers and developers to define the system’s flexibility dynamically for

future evaluation, especially when the final decision will be about human environments and

their behavior space. Besides, modelers have increased their models’ complications as fast

as the data availability and computation power improvements. They never could justify the

level of complicatedness that they have constructed [2]. The system, which has been called

complex, shows particular characteristics ordered as follows [4]:

1. Interacting agents

2. Modifying agents’ behavior space

3. Being open

4. Having emergent properties which appear without a central control

5. Showing both ordered and disordered behavior patterns

The behavior space pulls out from the simple relations between the agents in the bottom-

up agent-based model approach. Each agent analyses its current situation and operates

based on some algorithms, rules, and equations.

2



Large-scale behavior space in ABM depends on the number of agents in simulation

and its effects on the system’s reality level, constructed as a model. It may put the model

validation in danger. In the fields such as biology, ecology, and social modeling, simulating

realistic models contains agents being processed per time unit. This kind of large-scale

simulations needs a high demand for computing power and resources [3].

For complex systems, modeling must start with specific questions to formulate a con-

ceptual model that simulates the entire system’s elements and processes. Using observed

patterns for designing a model occurs at different spatial and temporal scales and different

hierarchical levels because multiple patterns were vital to modeling spatiotemporal dynam-

ics. This pattern-oriented theory development approach is increasingly used in agent-based

complex systems [3].

Agent-based modeling (ABM) focuses on the rules and interactions among the individ-

ual components of the system in a virtual world, and it should be noted that a mathematical

and computational model which has created based on agent-based modeling, concerning

the mechanisms of the real-world example, lead us to the patterns of data. Therefore,

ABMs start with the rules, mechanisms reconstruct through the mathematical or compu-

tational form, and observe data patterns. If the goal would be only finding patterns in an

existing dataset, then agent-based modeling cannot be useful.

ABMs, in comparison to the other object-oriented rule-based modeling systems, seem

more appropriate for grid-based and spatial nature models. Processing an individual agent’s

heterogeneous behavior within a dynamic population of agents that cannot be controlled by

an overall controller needs higher-level system parallelism that ABMs supports. There are

many available agent-based simulation frameworks, applications, and software like MA-

SON [1], REPAST [2], FLAME [3], Swarm [5], JADE [6], NetLogo [4], Meta ABM,

and a long list of others which some are highly specialized or labeled by specific general

fields such as business and organization, economics, infrastructure, crowds, military and

biology[1].
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A typical ABM framework that executes serially on the CPU needs new strategies to

evaluate the complex models. ABM mainly requires broad various input parameters that

each can have a range of different values. The system requires large-scale computational

experiments to explore the parameter variation space of such a complex model. The sim-

plest solution consists of decomposing models. Each component could be processed inde-

pendently by a processor to reach good scalability in ABMs; this could be an issue during

parallelizing ABMs [3].

From the modelers’ perspective, after implementing the model and scaling the parame-

ters to produce a good pattern or values, the next step will be checking the reliability of the

model’s implementation. Simple models with fewer parameters and work with simple pro-

cesses are more accessible to get verified and validated. The major challenge for modelers

happens in more complicated models with large parameter spaces and many interconnected

sub-processes [1].

Verification and validation are affected by replication in computational models. Repli-

cation effects model verification while the modeler is comparing the implemented model

with the conceptual model. On the other hand, it affects model validation during the corre-

spondence between the model and the real world. Computation replication often happens

both in parameters space and time. Data replication is not the purpose of the modelers’

perspective, but it could be the developer’s issue [4].

Regards to the above perspective, many challenges are identified. The first challenge is

the modeler’s and a researcher’s challenge to optimize their use cases to set the large pa-

rameter space and cover them by submitting millions of simulations as the job scheduling.

To achieve this goal, they put an extreme load on the system in many HPC sites [6] [7].

Monitoring and checking the results of these jobs has also been a very time-consuming

process. The second is about restrictions and limits for the number of jobs that a modeler

can submit to the local queue. Providing many simulations to run per job submission is

fatal for some local HPC sites. Furthermore, there are intervals in the execution times, such
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as early termination of some jobs, which should be detected by the researchers to save the

remaining time left of the CPU and fulfill the run time requirement for the other simulation

jobs manually.

The third is sharing dynamic libraries that are required for the run-time on the execution

machine. There are many restrictions for installing libraries on the local hosts, which means

there is no guarantee that researchers can install the required ones if they could not find

them on the machine, so the role of the tuned frameworks is linking shared libraries to

certify that the required libraries for the run-time will be available. The fourth challenge is

analyzing the output files during the simulation to cut the computation loops and loss [6]

[8].

1.1.1 Agent-based models in Systems Biology

Biological systems include random behaviors, and ABMs accommodate this via popula-

tion agents’ generation into the agent’s rules. ABMs have a level of abstraction to create

a new cellular state or environmental variable without changing the simulation’s core as-

pects. To aggregate the paradoxical nature of emergent behavior, which could observe from

any agent in contrast to the model’s conceptual rules, ABMs reproduces emergent behav-

ior. Emergent behavior has a range of stochasticity like real-world Systems Biology. In

summation, ABMs lead to the most robust relevance to the real-world [9].

Finding software platforms for scientific agent-based models requires comparing spe-

cific software issues such as emulating parallelism and developing schedulers for multiple

iterations that manage ABM runs. Agent-based models based on complex systems biol-

ogy are dynamic networks of many interacting agents. Since there has not yet been a

general framework for designing, testing, and analyzing bottom-up models of cellular au-

tomata or agent-based models, recent modeling advances have come together in a broad

strategy called pattern-oriented modeling. This strategy provides a unifying framework for

discovering agent-based complex systems’ organization and may lead to merging algorith-
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mic theories of the relation between adaptive functioning and behavior in complex systems

[10].

Pattern-oriented modeling can reduce uncertainty in model parameters in two ways.

First, it helps make models structurally realistic, making them less sensitive to parameter

uncertainty [10]. For instance, the model reproduces an array of probable patterns without

tuning parameter values taken from the user. Then, passing through the analysis work-

flow and changing parameters as feature subsets shows relatively independent effects on

different outputs from the patterns. So, the model could be calibrated manually and inde-

pendently. Second is the realism of the structure and mechanism of pattern-oriented models

help parameters interact in ways like interactions of the real mechanisms [10]. In this case,

using a technique which is known as ”inverse modeling” helped us scale the parameters by

finding values that reproduce multiple patterns simultaneously. For example, in the tumor

growth analysis scenario, this inverse modeling can help scientists find essential values and

profiles.

Pattern-oriented modeling explicitly considers mitosis is the primary idea for studying

avascular tumor growth in using agent-based dynamic networks of many interacting agents

within the tumor.

In evolutionary versions of these scenarios, modeling the interactions of these types

of models across large multiscale needs agent-based modeling. Each agent has a Boolean

network for itself expression, such as a gene. A proper production or application of systems

biology (SB) must support a compatible simulation method and suitable methods for model

parameter estimations that represent experimental data [10].

Graph-based Topology for Agent-based modeling

The representation of complex cellular networks as graphs has made it possible to system-

atically investigate these networks’ topology and function using well-understood graph-

theoretical concepts. Graph theory can be used to predict the structural and dynamical
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properties of the underlying network. Such predictions can suggest new biological hy-

potheses regarding, for instance, unexplored new interactions of the global network or the

function of individual cellular components that are testable with subsequent experimenta-

tion.

The graph structure could be a simplistic dynamical system originating from small

Boolean network models, where nodes represent discrete biological entities such as mRNA

or protein. The nodes can be thought to be either on or off and edges their Boolean rela-

tionships as genotypes, can give rise to a multitude of designable dynamical phenotypes

outputs. On the other hand, the Gene expression data are collected from the protein-protein

interaction (PPI) networks. In this system, genes are mapped to the corresponding proteins

for representing a network graph of (PPI).

Mathematical modeling also enables an iterative process of network construction, where

model simulations and predictions are closely coupled with new experiments chosen sys-

tematically to maximize their information content for subsequent model adjustments, pro-

viding increasingly more accurate descriptions of the network properties.

The topological relations underlying graph-based methods can also convey structure to

putative pathways that avoid approaches that test many known sets of molecules without

causal interactions. Furthermore, graph formalisms may provide powerful tools for omics

data integration to address fundamental biological questions at the systems level [11].

Analysis of Interaction Patterns

Graph algorithms have been used to characterize inter-connectivity and more complex re-

lationships between nodes. This method can facilitate biological network modeling and its

fundamental biological concepts, such as cellular pathways and gene expression profiles

gathering from the PPI network [11]. Once a biological network has been represented as a

graph, the conventional graph-driven analysis workflow involves [11]:

• Evaluating the specificity of the model predictions using graph evolving behavior
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patterns.

• The shortest path length of indirectly connected nodes.

• Computing the local graph properties such as the number and complexity of cluster-

ing sub-graphs.

• Centrality measures and statistics.

Mapping agents to the nodes in the graph-structure model coordinates the values’ assign-

ments to their variables to maximize their aggregation. Agents work as states, locations, or

even sometimes as controls of all the variables that map to the nodes.

Subgraphs and Centrality Discovery

Discovering a complex network community structure is a significant challenge. Many ad-

vanced algorithms have been proposed to detect community structures in complex net-

works, but most have limitations. The limitations include supporting the large-scale net-

work discovery, overlapping communities, large multiple parametric dependencies, specific

structures. Therefore still cannot generate stable partitions [127].

Some methods proposed to detect the community utilizing one kind of network repre-

sentation like topological measures. For example, spectral clustering (SC) for discovering

the community in the graph network can effectively cluster networks, but finding the crit-

ical factor to affect the graph clustering in biological networks is very difficult by using

this method because the algorithm for this task needs to overcome the problem of the data

representation of heterogeneous information in multiscale biological models.

One of the most critical tasks in the analysis of protein-protein interaction (PPI) is to

predict a group or cluster of transiently interacting proteins that together can accomplish

a biological function. These groups can be mapped to specific subgraphs in the network

[115].
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Characterizing nodes in a network is according to the number of closed walks starting

and ending at the node. Each closed walk is associated with a connected subgraph, and

the measure counts the times that a node takes part indifferently connected subgraphs of

the network. The node behaves like a hub. They have called this measure the ”sub-graph

centrality” (SC) for nodes in a network [115].

Since molecular sub-typing could be done based on gene expression patterns, and it

helps in tumor-derived cell classification [13], then a subgraph represents a subset of nodes

with a specific set of edges connecting them. As the number of distinct subgraphs grows ex-

ponentially with the number of nodes, efficient and scalable heuristics have been developed

and applied for detecting the given subgraphs and their frequencies in large networks.

Under the random graph model, it is also possible to calculate the estimated distribu-

tion of different subgraphs with a given number of nodes, edges, and their specific global

properties like degree distribution and clustering coefficient [12] analytically. Such approx-

imate analytical expressions will save substantial amounts of computing time when analyz-

ing, e.g., lists of proteins with large undirected graphs representing their known functional

relationships [13].

Centrality is a local quantitative measure of a node’s position relative to the other nodes.

It can be used to estimate its relative importance or role in the global network organization.

Different computations of centrality are based on the node’s connectivity (degree central-

ity), its shortest paths to other nodes (closeness centrality), or the number of shortest paths

going through the node (betweenness centrality) [11].

In particular, the best performance in identifying essential proteins was obtained with

a novel measure introduced to account for a given node’s participation in all subgraphs of

the network (subgraph centrality), which gives more weight to smaller subgraphs. It was

proposed that those ranking proteins, according to their centrality measures, could offer a

means of selecting possible targets for drug discovery [14].
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Paths and Pathways

In the directed graphs theory, a path is a chain of distinct nodes connected by directed

edges, without branches or cycles. Such pathways in cellular network graphs can represent.

Pathway redundancy (the presence of multiple paths between the same pair of nodes) is

an essential local property that is thought to be one reason for many cellular networks’

robustness.

Betweenness centrality can measure the effect of node perturbations on pathway redun-

dancy, whereas path lengths characterize the response times under perturbations. Besides

the various commercial software packages for pathway analysis, there exist also freely

available tools for any specific graph queries, such as finding the shortest paths between

two specified seed nodes on degree-weighted metabolic networks [15] or searching for lin-

ear paths that are similar to query pathways in terms of their composition and interaction

patterns of a given protein-protein interaction (PPI) network [16].

1.1.2 Towards Scalable HPC Simulation

Constructing a scalable and dynamic simulation tool capable of running HPC (High-Performance

Computing) is already a mature solution for dealing with extensive and multiscale model-

ing and simulation problems. Many simulation frameworks can be run in HPC environ-

ments, especially agent-based [86]; however, only a few of these are suited for large-scale

in parallel and distributed infrastructures [87].

A good example is REPAST-HPC [88], a framework based on the Message Passing In-

terface (MPI) standard [93]. Large-scale social science simulations could also be supported

by the PDES-MAS framework, based on the Parallel Discrete Event Simulation (PDES)

paradigm. In PDES-MAS, a simulation model is divided into a network of concurrent logi-

cal processes where the state shared between the workers is managed by a tree-like network

in a space-time Distributed Shared Memory (DSM) model [90]. The Pandora framework is

another example of an MPI-based tool with the possibility of using a Cloud infrastructure
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[91] alongside the traditional HPC resources.

As mentioned earlier, all the platforms use relatively standard technologies, like the

message passing (MPI) protocol, to create processes for parallel and distributed execution

and communication and synchronization mechanisms. This well-established standard has

been used in simulation for many years. The standard approaches employing MPI are im-

plemented in C++, which can offer good performance but is inefficient in rapid experiment

development and relatively inflexible as a general implementation technique [92].

The degree of distribution introduced by high-performance computing provides a greater

magnitude of a performance boost and exhibits all the disadvantages of distributed com-

putation [92]. A distributed solution’s performance is prone to decrease due to data syn-

chronization, inter-node communication, inefficient serialization, and hardware failures.

Maintaining a consistent state in a large-scale cluster is a challenge of its own and building

a solution on its basis requires much effort. This must be custom-tailored to ensure that the

overhead does not outweigh the advantages [92].

Usually, consistency and scalability make troubles. Consistency requires that nodes in

the cluster share information among themselves, which in turn reduces scalability. Cluster

sharding is a way to bridge these two qualities within a single concept. Cluster shard-

ing solves the problem by partitioning the Grid using the consistent hashing of aggregate

identifiers. These partitions are often called shards sets of actors. Each shard can only be

present on a single node at any given time [92].

Since this is an HPC hardware solution, there will be much inconsistency in resource

allocation. If there were too few shards, some nodes would not have any work to do.

The load-balancing mechanism will introduce unnecessary overhead, and it could be new

challenges for simulation complexity or simulation timeline.
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1.1.3 High-Performance Computing for Agent-Based Modeling

Different tools and environments can be found in ABM execution models using different

simulation methods and infrastructure kernels, as viewed in [83,84]. If it is considered

selection criteria as environments which supports parallel and distributed ABM simulation

then, it can be listed as D-Mason [86], EcoLab [94], FLAME [95], MobiDyc [96], Pandora

[97], and Repast HPC [98] and, as concurrent execution, Netlogo [4] but only for the

Behavior Space.

D-Mason is a parallel extension of the MASON library [99] that allows writing and

executing simulations of agent-based models.

EcoLab was initially designed to support an abstract ecology model and allows the

agent partitioning over processors and fault tolerance support.

FLAME (FLexible Agent-based Modeling Environment) is a code-generated tool that

allows the user to define their agent-based model and automatically generates an optimized

C code for efficient parallel processing [100]. Mobidyc aims to develop agent-based models

in the fields of ecology and biology.

Pandora is an ABMS tool from the Barcelona Supercomputing Center used in vari-

ous projects related to archeology. Repast HPC is an agent-based modeling and simula-

tion environment that implements the main concepts of Repast Simphony with support for

parallel-distributed environments. The objective of these designs is to obtain maximum

scalability in supercomputers for extensive project simulations.

Unlike the previous ones, Netlogo was designed as an academic project with teach-

ing/education objectives. However, its usability characteristics (including editing/ simula-

tion/visualization in the same environment) and a friendly interface, and a simple program-

ming API have become a reference in different areas where the simulation adds strategic

value. However, its users are distant from technological environments. Netlogo uses the

Java RTE and can run without difficulties on any computer/OS or in a browser with a Java

plugin (applet mode).
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The main Netlogo limitation is that it only supports multi-threading in the Behavior

Space tool, so its performance is limited to the number of cores/ threads in the local infras-

tructure. Different initiatives have emerged, such as Netlogo-cluster and GNU GLP 3, that

allow the parametric execution of Netlogo scenarios on an HPC cluster using script files. It

helps the execution and distribution of work on the cluster nodes.

New environments have emerged based on workflow formalisms such as OpenMOLE

[101] and SCOOP [102]. OpenMOLE is a workflow engine for exploring simulation mod-

els that use high-performance computing, where they transparently delegate their concur-

rent executions to the remote execution environment. SCOOP is a distributed task environ-

ment that allows concurrent parallel programming in multiple environments.

Although these environments provide extended functionality and many performances

in different languages/frameworks, none of them has turned out to have a simple interface

for using the HPC environment as an elastic environment for the ABM model simulation.

Except for a few exceptions, most of them require a series of technological knowledge to

interact with the environment, to re-code the model, to integrate it with the simulator/frame-

work, to configure the environment, or to generate the workflow that makes them unviable

for a community of scientists, which only need the ABM simulation as an instrument.

Nevertheless, we have always approached by NetLogo modelers, especially biologists,

economists, and epidemiologists, about their problem while they are designing a model

that is executing many repetitions to collect a comprehensive data set.

The process is computationally costly and puts a hefty load on discrete nodes. Most

of the NetLogo modelers want to farm out the experiment runs into different threads to

save time. Modelers are also non-expert users in confronting software described above

and clustering techniques. The only possible solution is to execute the model on separate

NetLogo instances running on discrete machines for them, which means data splitting and

regression parameters analysis.

NetLogo is widely recognized as a relatively easy platform for agent-based simulation,
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in the sense that it allows modelers, including both beginners and experienced ones, to

move rapidly through the design, programming, and testing stages and on to using models

for analysis and developing scientific understanding. However, NetLogo is not widely rec-

ognized as an easy, efficient platform in the sense of providing low (or at least reasonable)

execution times for working models. Potential users who hear NetLogo’s reputation as too

slow or limited for bigger models, or who perhaps look only at the elementary examples

that (understandably) dominate NetLogo’s built-in model’s library, may be discouraged

from selecting NetLogo as a platform for large scientific models.

Choosing another platform, especially those requiring programming in a base language,

such as C++ or Java, comes at a high cost: Programming will take much longer, mistakes

will be harder to find and hence more expensive, the tools necessary for testing and under-

standing models (graphically and interactive displays, experiment managers like Behavior

Space) must be developed, and unless the code is designed as cleverly as NetLogo’s primi-

tives appear to be the result may turn out to be slower than NetLogo.

There is now sufficient evidence that NetLogo is neither inherently slow nor incapable

of handling large and complex models. In previous experience comparing ABM platforms

[103] [104], while confirming the general understanding in computer science that it is not

simple or straightforward to say which platform or programming languages are faster or

slower, indicates that NetLogo is not dramatically slower at executing models than other

popular platforms are.

Perhaps the best evidence that NetLogo is suitable for large scientific models is that

many such models have now been successfully implemented and analyzed extensively in

NetLogo [104]. The use of a High-Performance Computing (HPC) cluster, typically an

extensive massively parallel computing system with many processor cores and a shared

storage system connected via a fast network, allows Behavior Space to execute large num-

bers model runs simultaneously and makes extensive simulation experiments feasible even

for prolonged models. In one example, Ayllón [103] reports parameterization and sensi-
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tivity analysis experiments that each required thousand of runs of a model that can take

hours to days per run, made possible via HPC and Behavior Space. In another example,

Sheppard [43] used HPC to run their vehicle model millions of times to optimize elec-

tric vehicle charging station locations in Delhi. Many universities and research laboratories

have HPC clusters, and some commercial ”cloud computing” services offer free trial access

to clusters.

Providing a job submission interface for many applications is a common strategy which

some famous tools such as Globus [105] or UNICORE [106] [107] have known in this

regard. Both software provides a scalable environment to compute resources for research

projects and submits the jobs through a gateway nod at each engaged site. This could

be a vulnerable point. At the same time, many simultaneous users require a thousand

submissions and cause overloaded gateway resource nodes.

Due to this occurred weakness, some other tools which suggested an alternative so-

lution came up. Pegasus/Condor-G, Nimrod, and APST [85] are all three other systems

that have scheduled submitting jobs through some smart central agents across the Grid.

Their solution indeed worked significantly better than overloading each gateway node by

submitting as many jobs as possible [108].

Based on the overview of job creation, submission, and execution in UNICORE mid-

dleware, which has been addressed in a study of four grid middleware technologies pub-

lished, a user creates his abstract job as an object in a serialized form java object or XML

format. The abstract job object (AJO) is how a UNICORE client specifies the UNICORE

server’s work. The specification of jobs can be retargeted to the different server addresses,

but the work specification remains the same. The abstract jobs’ executing order and their

child’s abstract actions are kept in a directed acyclic graph (DAG), a hierarchical data struc-

ture. UNICOR’s communication methods based on the AJO model does not support syn-

chronous message passing [8].

Another one was introduced as an open-source project led by the University of Mel-
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bourne called Gridbus [106]. The project runs the design and development goal through

service-oriented clusters and middleware technologies to support science applications. It

focuses on scaling the efficiency of computing models from the clusters to the Grid. The

Gridbus components provide software technologies such as a GridSim toolkit for simula-

tion and modeling of resources. GridSim can simulate parallel and distributed scheduling

systems such as brokers or grid schedulers for evaluating the scheduling algorithms’ per-

formance [106] [109].

These environments provide resource allocation and management by the web services

interface and services to collect data from any information source such as XML-based.

However, to do anything more complicated than submitting jobs, a user needs to use another

tool in conjunction or create his services that are not easy for most non-expert users.

Data splitting has been used for various purposes, such as eliminating the data attributes

that have unfavorable effects on the clustering performance and its time complexity. The

data splitting role is selecting and reconstructing the input data features. It could be the

fundamental step of the clustering analyses and execution process [110].

Many papers present data decomposition as one of the most prevalent tasks of paral-

lelizing applications for multi-core architectures. According to the bibliographic analysis

carried out, there are up to ten critical requirements for tool support to help HPC developers

in this area [111]. Interpreted languages are ideal for building control and administration

tools and providing a framework for non-time-critical components of a broader application

(e.g., GUI and file handling). A parallel scripting language is needed to provide the same

functionality [112].

Python language enables programmers to write truly distributed, parallel scripts that

allow developers to write parallel extension modules. Python has built-in and external

modules that simplify implementation [92].
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1.2 Complex Networks

The study of complex networks involves physics, mathematics, chemistry, biology, social

sciences, and information sciences. These networks are commonly represented by directed

or undirected graphs, including sets of nodes representing objects such as people or groups

of people, cellular and molecular entities, computers, or any other thing. These objects

joined together in pairs by edges in linking and presenting the type of relationship.

The network could be the Internet, the World Wide Web, social networks, information

networks, neural networks, metabolic networks, and protein-protein interaction networks

[26]. Network Informatics is an interdisciplinary science based on informatics, network

science, and other related scientific disciplines [31]. Network Informatics aims to un-

derstand and investigate the structure, properties, and organization of information in the

network. The scope of network informatics covers theories, algorithms, and software of

network informatics; mechanisms and rules of flow and organization of information in the

network; theory and Methodology of dynamics, optimization, and control of information

networks; network analysis of information networks; factors that affect organization and

communication of information, Etc. [34].

However, the representation of complex systems as a network is not enough to study

a particular problem because it gives minimal information about the system’s structure in

the real world. This limitation guides the study by expanding the network scale and levels.

The decomposition of large networks into distinct components, events, or modules, has

come to be regarded as a practical approach to deal with large-scale networks’ complexity

[27–29]. In summary, the Erdös-Rényi [37] model, Watts and Strogatz model, and the

Barabasi-Albert [38] model are three famous network models for random graphs.

Erdös-Rényi model takes a few vertices N and connects nodes by randomly selecting

edges from the N (N-1) /2 possible edges. The degree distribution for this model is given

by a binomial distribution [37][38]. Watts and Strogatz model use for small-world topol-
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ogy, and the Barabasi-Albert model describes scale-free networks. It is one of the most

basic models since it describes most biological networks by revealing information about

the network dynamics, especially from evolutionary models [36].

In the physics literature, networks with high clustering are commonly modeled by the

small-world network model of Watts and Strogatz(WS), while networks with the Power-

Law degree distribution modeled by the scale-free network model of Barabasi-Albert model[135].

Although both models have a logarithmically increasing with the network size, each model

lacks the property of the other model: the Watts and Strogatz (WS) model show a high clus-

tering, but without the Power-Law degree distribution, while the Barabasi-Albert model

(BA) with the scale-free nature does not possess the high clustering [135].

The ideal model is a network model with both the perfect Power-Law probability dis-

tribution and high clustering. However, for evolving models, the integration of Holme and

Kim’s algorithms as a generator of growing graphs with a Power-Law probability distribu-

tion and an approximate average clustering makes it possible to have a disconnected graph.

It is essentially the Barabasi-Albert (BA) growth model with an extra step that each random

edge is followed by a chance of making an edge to one of its neighbors, too (and thus a

triangle).

Holme and Kim’s algorithm improve on Barabasi-Albert (BA) growth model because

it enables a higher average clustering to be attained if desired. The initial m nodes may not

be all linked to a new node on the first iteration, like the Barabasi-Albert growth model.

Power-Law probability distribution and approximate average clustering methods to

complete the clustering and classifying helped cut off a large multiscale model. Agent-

based modeling of the complex network in some way drives the emergence of the agent

mining field. Agents can support and enhance the knowledge discovery process in many

ways [31]. For instance, agents can contribute to data selection, extraction, preprocess-

ing, and integration, and they are an excellent choice for peer-to-peer parallel, distributed,

or multi-source mining. In cases where precise contact network data are unavailable, an
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alternative is to mine [32].

1.2.1 Network Complexity of Biological Models

Networks follow patterns and rules and have a specific topology that allows scientists

to conduct a more in-depth investigation of biology information extraction. Within the

fields of biology and medicine, Protein-protein interaction (PPI) networks, biochemical

networks, transcriptional regulation networks, signal transduction, or metabolic networks

are the highlighted network categories in systems biology which could detect early diagno-

sis [34][35].

All these networks need consistent data to be produced experimentally or retrieved from

various databases for each network type. However, besides analyzing data structures for

computational analysis, several topological models have been built to describe the global

structure [34].

The network models can be constructed based on existing knowledge of molecular in-

teractions, the relationship between data profiles, or the mapping of data onto knowledge-

based networks. They have been developed to assist with a variety of decisions [33]. In

this construction method, once the model architecture has been defined, the network struc-

ture (i.e., the interactions between the components) and the model parameters (e.g., type-

/strengths of these interactions) need to be learned the data. Several different model archi-

tectures for reverse engineering GRNs from gene expression data have been proposed over

the last years. They cover varying degrees of simplification and reflect different assump-

tions of the underlying molecular mechanisms.

Generally, the network nodes represent compounds of interest, e.g., genes, proteins, or

even modules (sets of compounds). Knowledge-based modeling is tackling complex data

for studying complex metabolism. The aim is to provide support for laboratory test ordering

or designing a scientist’s decision support system. The knowledge-based modeling contains

the rules and associations of compiled data, mostly mined from the rules.
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Unlike non-knowledge-based modeling, knowledge-based models use a form of artifi-

cial intelligence to allow the computer to learn from past experiences or to recognize pat-

terns in the clinical data. Two types of non-knowledge-based systems are neural networks

or genetic algorithms. There is no need for writing rules or configuring expert parametric

inputs, but since the system cannot explain why it uses the data the way it does, mostly

clinical does not like to use them because of no reliability. This method always relies on

existing data and therefore encounters data security, and big data deficiencies will be the

consequences.

Building a Knowledge-based model that will cover multiple scales from the genotype

and various biochemical reactions to the details on cell morphology and the probable be-

havior pattern of millions of individual cells is interacting with the other cells is feasible.

The integrated network-based analysis aims at identifying coordinated changes in molec-

ular processes. In this sense, network-based analysis of high-throughput data provides the

means for generating biologically meaningful hypotheses and for extracting behavior pat-

terns from experiments to unveil the underlying regulatory mechanisms [33]. Tools and

measures have been developed to identify whether a given network is modular or not and

detect the modules and their relationships in the network to investigate the modularity of

interaction networks. By subsequently contrast the found interaction patterns with other

large-scale functional genomics data, it is possible to generate concrete hypotheses for the

underlying mechanisms governing, e.g., the signaling and regulatory pathways in a system-

atic and integrative fashion. For instance, interaction data together with mRNA expression

data can be used to identify active subgraphs, that is, connected regions of the network that

show significant changes in expression over subsets of experimental conditions [30].

A model which covers multiple scales from the genotype and various biochemical re-

actions to the details on cell morphology also shows the probable behavior pattern of mil-

lions of individual cells interacting with the other cells to form the whole tumor tissue, is a

mega-model with the structural complexity and it could be comparable with the biological
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network. Inevitably, this model consumes more computational time [33]. Therefore, it is

more desirable to find a way to integrate and bridge independent sub-models rather than

build a single mega-model that encompasses all the development complexity. This integra-

tion may be separate models that consider distinct parts of the evolving process or the same

process but on different scales.

Van Someren has described in [161] that model architectures can be distinguished by

representing the network components’ activity level.

The concentration or activity of a compound can be represented by Boolean (’on’, ’off’)

or other logic values (e.g. ’present’, ’absent’, ’marginal’), discrete (e.g. cluster labels),

fuzzy (e.g. ’low’, ’medium’, ’high’) or continuous (real) values. Moreover, network model

architectures can be distinguished by the type of model (stochastic or deterministic, static

or dynamic) and the type of relationships between the variables (directed or undirected;

linear or non-linear function or relation table).

A metabolic network reaction can be described as a weighted directed edge in a di-

rected graph where nodes are the chemicals and edges are the reactions. There is a lack

of a well-developed theory for the structural analysis of directed graphs, so two alternative

representations of a metabolic reaction are usually utilized [39]. One is a bipartite graph,

and the other is a substrate graph.

The bipartite graph is used when modeling relations divided into two different objects,

such as parents and children. The substrate graph is more useful to study chemical reactions

while two nodes are connected if the corresponding chemical compounds take part in the

same reaction. Global characterization of the metabolic network can be carried out by

obtaining the average sub-graph centrality. Small subgraphs capture specific patterns of

interconnection characterizing the biological networks at the local level [40].
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Tumor growth Network Complexity

Tumor evolution is a complex multiscale process that depends on molecular growth factors

such as genetic mutation, gene expression, cell adaptability, robustness, and cellular growth

factors significant from the cell micro-environment such as multiple metabolites nutrient

gradients.

On the other hand, tumor cells can mechanically interact with other tumor cells and

various other stromal cells, such as fibroblasts, macrophages, and immune cells. Primarily,

analyzing tumor evolution and metastasis was only taken into consideration at the gene

or protein scale. However, recently the impact of this evolution at the cellular scale and

level has also been considered since most tumors’ progression depends strongly upon the

interaction of the cells and the host tissue’s cellular architecture.

Cell evolution is often modeled using a specific cellular process simulation such as

cell growth, division, death, or movement. These simulations are determined sequentially

by comparing cell status, cell age, nutrient level, the number of cell neighbors, or the

configuration of cell membrane receptors [41]. Stem cells exist in many different types, as

they have been identified in various tissues and organs. Each stem cell type is classified

by their origin in the body and their potential to differentiate into other cell types. This

potential varies among stem cell types.

Cancer Stem Cells (CSCs) or tumor-initiating cells were identified and characterized

as a unique subpopulation with stem cell features in many cancer types. Current studies

about CSCs provide novel insights regarding tumor initiation, progression, angiogenesis,

resistance to therapy, and interplay with the tumor microenvironment. A cancer stem cell

niche has been proposed based on these findings.

The niche provides the soil for CSC self-renewal and maintenance, stimulating essential

signaling pathways in CSCs and reducing factors that promote angiogenesis and long-term

growth of CSCs. The tumor growth rate and angiogenesis of each transplantation were then

compared. Angiogenesis involves the stimulation of Endothelial Cells (EC) by growth
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factors. Gene Ontology (GO) provides a rich resource of gene functions and locations

in many different species, positive regulation of angiogenesis, and negative angiogenesis

regulation.

Another approach involves cell interactions with external factors that are taken a con-

centration of metabolites using the neural networks, signaling pathways, or protein net-

works [42]. Combining dynamic gene expression time-course data for stimulated EC with

protein-protein interactions associated with angiogenesis could reveal how different stimuli

result in different network activation patterns and could implicate signaling intermediates

as points for control or intervention.

A primary tumor model likes Wilensky’s tumor model addressing the avascular growth

state depends on differential equations. They are classified as ”lumped models” to predict

the temporal evolution of overall tumor size [17] [18]. Since lumped models just provide

a quantitative prediction of tumor size over time with only a few parameters and very low

computational results, they would not be enough for a detailed investigation of many other

events such as spatiotemporal dynamics oxygen and nutrients or cell to cell interactions.

Also, considering stromal cells, which play a significant role in cancer growth and pro-

gression in tumor cells’ interaction. This means disregarding the mutations in the tumor

microenvironment and metastasis [18].

These shortcomings lead us to In Silico models of the tumor microenvironment. In

silico [19] refers to computational models of biology, and it has many applications. It is an

expression used to mean performed on a computer simulation. In silico models are divided

into three main categories [19]:

• Continuum based models that solve the spatiotemporal evolution problems in density

and concentration of cellular population in the tumor microenvironment.

• Discrete based or agent-based on a set of rules to change the cells states and manage

the tumor microenvironment’s cell interactions.
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• Adaptive Hybrid models that integrate both the above solutions.

Spontaneous tumor, which progresses from the initial lesion to highly metastatic forms, is

generally profiled by molecular parameters such as prognosis response, morphology, and

pathohistological characteristics. Tumors can induce angiogenesis and lymph-angiogenesis,

which plays an important role in promoting cancer spread. The previous studies have shown

that the cancer stem cell (CSC) theory could become a hypothesis for tumor development

and progression.

These CSCs have the capability of both self-renewal and differentiation into diverse

cancer cells. So one small subset of cancer cells has the characteristics of stem cells as

their parents. Hereditary characteristics play a particular role in malignant proliferation,

invasion, metastasis, and tumor recurrence [20].

Recent researches show the possible relationship of cancer stem cells, angiogenesis,

lymph-angiogenesis, and tumor metastasis is becoming a challenge. Due to many pieces of

evidence and reviews such as [21] [22], metastasis is defined as the spread of cancer cells

from the site of an original malignant primary tumor to one or more other places in the body,

and more than 90 percentages of cancer suffering and death are associated with metastatic

spread. Folkman proposed in 19971 that tumor growth and metastasis are angiogenesis-

dependent, and hence, blocking angiogenesis could be a strategy to intercept tumor growth

[22]. Genetic approaches later confirmed his hypothesis. Angiogenesis occurs by migration

and proliferation of endothelial cells of original blood vessels [21].

Since tumor angiogenesis is critical for tumor growth, monitoring it validates biomark-

ers such as VEGF, CD45, EPCs [21] helps develop drug resistance. Accordingly, transla-

tional cancer research has contributed to the understanding of the molecular and cellular

mechanisms occurring in the tumor and in its microenvironment that occurs metastasis,

which could present relatively a model similar to the physiology of human or at least have

the capability for going through genetic manipulations that bring them closer to human.

Hence tumor modeling with a high spatiotemporal resolution combined with paramet-
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ric opportunities has been rapidly applied in technology [23]. Mathematical and compu-

tational models of the tumor should have covered different aspects of tumor interactions

in its microenvironment. Most of the avascular tumor models address the tumor growth

dynamics, not considering the angiogenesis setting. However, computational models have

started research on tumor-induced angiogenesis since cancer research, so the angiogene-

sis models have a solid background in experimental observations. The most established

research explicitly focused on stromal cells to achieve the closest computational model of

angiogenesis based on Monte-Carlo simulation[17].

According to Monte Carlo simulations and energy minimization, cellular models are

expanded and elaborated on cellular automata to allocate more than one lattice site to each

cell and describe cell to cell and tumor-stroma interactions. Nevertheless, building a bulky

model over a range of matrix densities, which covers numerous factors in this way for large

domain sizes and 3D simulations, is restricted by computational and application costs[17].

Based on paper [17], a minimal coupling of vascular tumor dynamics to tumor angio-

genic factors through agent-based modeling could progress the experimental studies during

recent years. They have mentioned in both reviews that it is challenging to simulate all

the processes of a complex system such as tumor growth, metastasis, and tumor response

treatments mathematically because mathematical modeling is still a simplification of the

systems biology; the results need validation. Also, to build a predictive experimental plus

theoretical application without clinical data required to parametrizing and validating again.

1.2.2 Network Analysis Tools

Several such software packages and tools are developed for these above challenging tasks

along with their specific functionalities. Publicly available software systems that use graph-

based data, integrating visual frameworks for networks include e.g. Cytoscape together

with its recent plug-ins [43–45], Osprey [46], GiGA [47], megNet [48], VisANT [49],

BioPIXIE [50], Pointillist [51, 52], PIANA [53] and PathSys [54].
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An essential component of such systems is the possibility to visualize the graphs under

analysis. This can be regarded as a fundamental tool in the explorative network analysis;

even if one wants to address only a particular question within the given network graph, it

may help visualize the result to discern possible flaws or follow-up questions. Recently

introduced graph drawing tools include, e.g., WebInterViewer [55] and PATIKAweb [56].

By meeting the challenges of automated construction and simultaneous visualization

of multiple pathways, such software tools can help relate the selected node sets and their

interconnections to the underlying biological significance. These advanced graph algo-

rithms and post-processing tools can also be used in conjunction with more specific, freely

available software packages.

One major challenge of computational network analysis deals with selecting appropri-

ate model types for analyzing data from different experimental approaches. Accurate mod-

eling and integration of protein interactions measured with the yeast two-hybrid and affin-

ity purification/mass spectrometry can be very critical, e.g., for understanding the physical

properties and functional operation of local protein complexes [57].

A few computational approaches have been tried to reconstruct the underlying global

network structure or even the causal regulatory relationships between the nodes from the

experimental data sets. This challenging problem is often referred to as network inference

or reverse engineering [85, 86]. For instance, several works have dealt with gene regulatory

network inference from gene expression microarray data alone. In such a hypothetical

network, the nodes conventionally correspond to both the gene and the protein it encodes,

and the edges to the statistical relations between the genes.

The Bayesian network offers a convenient probabilistic model, where nodes represent

gene expression levels as random variables. The edges represent their conditional depen-

dence relations and the corresponding DAG the joint probability distributions of the ob-

served expression patterns. However, it has been recognized that these data are enough

to reconstruct only relatively small networks. Even in idealized situations, the estimated
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models contain many false edges because the expression data alone cannot unambiguously

distinguish the underlying target network [58].

Further challenges are faced when applying the inference algorithms to limited quan-

tities of experimentally collected noisy data from real biological systems [59]. Suggested

solutions to tackle these problems include the usage of gene network motifs [60], network

pruning methods [63], or reduced network models [61]. Such reverse-engineered gene net-

works could be of great medical significance, for instance, in the identification of drug

targets [62].

Egocentric Network analysis

Egocentric social network analysis (SNA) is a methodological tool used to understand the

structure, function, and composition of network ties around an individual [136]. Both

socio-centric network analysis and egocentric network analysis share the basic assumption

that individuals’ behaviors, beliefs, attitudes, and values are shaped through contact and

communication with others [136]. However, these two methods are distinct in several

important ways [137]:

1. Unbounded versus bounded networks: Socio-centric network analysis collects data

on ties between all members of a socially or geographically bounded group and has

limited inference beyond that group, but egocentric network analysis recognizes in-

dividuals’ particular community networks across any number of social settings using

profile generators and is, thus, less limited in theoretical and substantive scopes.

2. Focus on individual rather than group outcomes: Socio-centric network analysis of-

ten focuses on network structures of groups as predictors of group-level outcomes

(e.g., the concentration of power, resource distribution, information propagation).

In contrast, the egocentric network analysis is concerned with how the population’s

interaction patterns shape their individual-level outcomes (e.g., security, behavior,

probabilities).
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3. flexibility in data collection: Because the socio-centric network analysis must use as

its sampling frame a census of a particular bounded group, data collection is very

time-consuming, expensive, and targeted to a specific set of research questions. In

contrast, because egocentric network analysis uses individuals as cases, potential

sampling frames and data collection strategies are virtually limitless.

Egocentric data collection tools can easily be incorporated into large-scale or nationally

representative surveys fielded for various other purposes [129].

Many computational methods have been developed to extract genome profiles or path-

way information from biological or clinical networks to identify subnetworks and hub

nodes, which have an essential role among other nodes and neighborhoods. For exam-

ple, analysis of protein-protein interaction (PPI) [16] networks helped to understand better

the complex biology of specific disease complex systems, including cancer.

Gene expression data have been collected from PPI networks on cancer tumors for de-

veloping algorithms. These algorithms functionally express gene profiles into some stan-

dard modules, shared in a subset of different cancers and tumors. Genes are mapped to

the corresponding proteins for representing a network graph of PPI to achieve the best-

translated modules.

There is a need to estimate many analysis techniques and modules that could trans-

late PPI networks’ most relevant expression to model a sizeable multiscale tumor network.

Egocentric network analysis techniques and modules frequently use in the social network.

However, some proposed new methods in Bioinformatics such as EgoNet [23] present their

method based on egocentric network-analysis techniques to search and prioritize disease

subnetworks and gene markers from large-scale biological networks. They have devel-

oped an algorithm to identify significant sub-networks that are functionally associated with

diseases and predict clinical outcomes.
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1.3 A Data-Science Approach for Agent-Based Modeling

Data-science uses scientific methods, processes, algorithms, and systems to extract knowl-

edge from structured and unstructured data. Data science is related to data mining, machine

learning, and big data. Data science has been applied in solving involved practical related

complications in various applications, becoming more popular and acceptable every day

[124]. Artificial Intelligence (AI) has been used in many applications to solve classification,

diagnosis, selection, and prediction problems. The techniques, models, capture the uncer-

tainty between real-life cause and effect scenarios, hence incorporating available episteme

with probabilities and probability inference computations [125]. The most widely used

techniques include artificial neural networks, fuzzy logic, expert systems, and generic al-

gorithms with interesting hybrid developments. Other existing techniques include support

vector machines, functional network, cased based reasoning, and expert systems. Many

artificial intelligence techniques have shown great potential in generating accurate analysis

and results in different areas of applications such as engineering, banking, medicine, eco-

nomics, military, marine, Etc. They have also been applied to identify, select, optimize,

predict, forecast, and control complex systems [126]. According to the Artificial Intelli-

gence Applications Institute (AIAI) [124], AI technology transfer’s areas of application are

as follows:

a) case-based reasoning: a methodology adaptation based on past evidence and existing

corporate resources such as databases to pilot diagnosis and fault finding;

b) genetic algorithms: a search technique adaption with extensive applicability in schedul-

ing, optimization, and model adaptation;

c) planning and workflow: the modeling, task setting, planning, execution, monitoring

and coordination of different endeavors;

d) intelligent systems: an approach to building knowledge-based systems.
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Data-Science is an in-depth process that involves preprocessing, analysis, visualization,

and prediction. Besides, AI is the implementation of a predictive model for anticipating

future events. Data Science includes several statistical techniques, whereas AI makes use

of computer algorithms.

As a subset of AI, machine learning algorithms build a model based on sample data.

Both machine learning and data science depend on each other for various applications

that need data analysis. Accordingly, Agent-based modeling (ABM) and Machine learning

(ML) can be combined in a variety of ways and has been examined in the past [65]. Genetic

algorithms (GAs), neural nets (NNs), and Bayesian Classifiers can easily be incorporated

into many agent-based models [64]. The machine learning algorithm can use the ABM

as an environment and a rewarding generator, while the ABM uses the machine learning

algorithm to maintain the agents’ internal models. Many practical details must be addressed

when deciding how to integrate ABM and data-science using ML.

Many specific algorithms are more or less useful and must be carefully considered.

Neural networks, for instance, are good at classifying large amounts of data relatively

quickly, but in the end, it is tough to determine how they are making their decisions. De-

cision trees, on the other hand, not very good at classifying continuous data. For the para-

metric execution, many parameters need to be set and tuned to work appropriately within

the ABM environment.

Much of this is a matter of art to get the results one desires, but some ML algorithms

have more advanced to tuning the parameters. It is possible to declare combining theo-

retical disciplines such as graph theory, machine learning, and statistical data analysis to

arrive at a new field to explore complex networks by using data-science methods in an in-

terdisciplinary manner considering a detailed analysis. Once the system is represented by a

network, network analysis methods can be applied to extract useful information regarding

essential system properties and investigate its structure and function. Various statistical and

data-science methods have been developed for this purpose and have already been applied
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to networks [67].

For instance, the partitioning of a complex mega-network into different clusters or com-

munities is of paramount importance, in particular, because the results of most methods are

highly sensitive to their parameters and data quality. On the other hand, the predicted clus-

ters can vary from one method to another, especially when the boundaries and connections

between the modules are not clear-cut.

1.3.1 Data Distribution with the help of Data-Science Techniques

Data-Science algorithms are increasingly popular for handling large-scale data analytics.

With the prevailing era of tremendous data sizes and complex algorithms, it is necessary to

use distributed parallel computing to compute these algorithms quickly.

Many frameworks are available to run such algorithms parallel from the High-performance

computing (HPC) and Big Data communities. Today, there is much focus on comparing

HPC technology with Big Data technology to understand its pros and cons. These com-

parisons contribute to the HPC/Big Data convergence by identifying areas that can be im-

proved in each technology domain [142].

From the modeling, multidimensional scaling (MDS) [142] is a popular, well-established

machine learning technique for projecting high dimensional data into a lower dimension to

be analyzed. It has been extensively used to visualize high dimensional data by projecting

into 3D or 2D models. Multidimensional scaling is a computationally expensive algorithm.

The best algorithms are in the range of O(N2). When applied to a more extensive data set,

the computation time increases exponentially. The algorithm can be made to run efficiently

in parallel to reduce the computation time requirements. Numerous frameworks exist in

the Big Data community for doing large-scale parallel computations for ML algorithms,

including Hadoop [143], Spark [144], Flink [145], [146], Tez [147] and Google Dataflow

[148]. It is worth noting that no single technology stands out, among others, as the best

[142].
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MDS is the most complex algorithm among the other algorithms. It is encountered in

many inefficiencies of Spark and Flink while implementing the algorithm. For Flink, the

most significant inefficiency is its inability to support nested loops. This leads to a very

laborious implementation where saving the intermediate data to the file system at each

iteration in the outer two loops is the matter [142].

Flink is designed to read the input files each time it does the iterations, adding to the

overhead. The Spark MDS implementation’s main inefficiency is caused due to the lack of

all-to-all collective operations. Using reduces operations followed by a broadcast opera-

tion added a couple of overheads to the algorithm [142]. K-Means showed some interesting

characteristics in these frameworks. In parallel, K-Means communication cost is a direct

function of the number of centroids involved, and it does not depend on the number of

points. With an increased number of points, the computation time increases, but the com-

munication time remains the same [142].

Most of the practical clustering problems do not have hundreds of thousands of clusters.

This means K-Means can perform equally in Flink or spark for practical data analytics task

transfers since they effectively use the networks in all the nodes[142]. The experiments

showed that big data frameworks usually do not scale well for algorithms with a high fre-

quency of communicating and compute regions. Also, it was evident that Spark performed

better than Flink when there was a high frequency of communication and computation

regions. The algorithms with more extended computation and communication times per-

formed well in Flink than Spark. However, MPI has implemented very efficient collective

communication algorithms, while Flink and Spark rely on point to point connections. Even

though we mainly talked about Spark and Flink, there are many frameworks utilized in the

Big Data community, each having pros and cons over each other.

Pregal [151], Apache Hama [152], and Apache Giraph [153] are frameworks that were

developed around the BSP model. There are also numerous distributed graphs processing

frameworks, including GraphX [154]. There are many comparisons in many distributed

32



graph processing frameworks, and much research has also been done on integrating HPC

technology into big data frameworks to improve performance [149] [150]. Hpc-abds [156]

discusses and summarizes HPC and Big data convergence.

Mlib is built on top of Spark and offers a wide variety of machine learning algo-

rithms. FlinkML is the requisite library for Flink. Intel Data Analytics Acceleration Li-

brary (DAAL) [157] from Intel has been tuned for Intel architecture; it provides functions

for deep learning, classical machine learning, Etc.

Tensorflow [158] is a library developed at Google. Algorithms developed using Ten-

sorFlow can be executed on various heterogeneous systems that range from mobile devices

to supercomputers. H2o [159] is a machine learning framework that supports Spark and

Hadoop with simplified APIs for ease of use. Apache Mahout [160] remains another pop-

ular framework developed initially to support machine learning on top of Hadoop and later

expanded to support other frameworks. This thesis’s concern is how a user of multidi-

mensional scaling (MDS) agent-based models can simulate the complexity and adapt the

machine learning techniques and frameworks for HPC integration.

1.3.2 Graph Clustering

An approach to identifying functional modules in biological complex networks is discov-

ering similarly or densely connected subgraphs of nodes (clusters), potentially involved in

standard cellular functions or protein complexes [68]. The challenges of clustering network

graphs are like those in the cluster analysis of gene expression data [68].

In particular, most methods are highly sensitive to their parameters and data quality. The

predicted clusters can vary from one method to another, especially when the boundaries and

connections between the modules are not clear-cut [69]. It is also important to note that

the modules are generally not isolated components of the networks, but they share nodes,

links, and even functions with other modules. The best perspective is partitioning a given

graph’s nodes into distinct clusters, depending on their neighboring interactions. Other
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local properties, such as centrality measures, can be used for clustering purposes as well.

A recent algorithm by Dunn et al. [70], for example, divides the network into clus-

ters by removing the edges with the highest betweenness centralities, then recalculating

the betweenness and repeating until a fixed number of edges have been removed. Another

approach to decompose biological networks into modules applies standard clustering algo-

rithms on vectors of nodes’ attributes, such as their shortest path distances to other nodes

[71]. Regarding the importance of the prediction, it can be argued that supervised cluster-

ing (or classification), rather than unsupervised clustering methods, should be employed.

In the context of cellular networks, classification aims at constructing a discriminant rule

(classifier) that can accurately predict the functional class of an unknown node based on

the annotation of neighboring nodes and connections between them [72].

There are two classes of algorithms typically using for network partitioning. The first

class of algorithms is graph clustering algorithms, and the second class of algorithms is

community detection algorithms. The relevant applications include very-large-scale inte-

gration (VLSI) and distributing jobs on a parallel machine for graph clustering algorithms.

The most famous algorithm in this domain is the Kernighan–Lin algorithm [73], which still

finds use as a subroutine for various other algorithms. The other graph clustering algo-

rithms include techniques based on spectral clustering [74].

Initially, community detection algorithms focused on social networks in sociology.

They now cover networks of interest to biologists, mathematicians, and physicists. Some

popular community detection algorithms include Girvan–Newman algorithm [34], New-

man’s eigenvector method [75,76], clique percolation algorithm [77], and Infomap [78].

Additional community detection algorithms include methods based on spin models [79,80],

mixture models [81], and label propagation [31]. Since Graph clustering algorithms ap-

ply to very large-scale integration, distributing jobs on a parallel machine, and other ap-

plications found in computer science, it can be an exciting solution for integrating high-

performance computing (HPC).
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1.4 Thesis Overview

The thesis’s general objective is to develop new methodologies, techniques, and policies

to execute large scale, complex ABM models oriented to immune system dynamics or

epidemiological propagation using HPC resources.

For this purpose, the thesis focused on two specific approaches. The first approach

provides an environment and Methodology for scientists to use HPC resources to execute

large ABM models in distributed form. The other is analyzing the execution data to obtain

efficient model data distribution (agents) in the underlying infrastructure.

The best improvement is expected to achieve predictive modeling in both preclinical

and clinical states while a scientist studies different patterns of the model.

Wilensky’s tumor model [18] in the Netlogo library is used from the beginning as the

base for the first approach in this thesis, explained in chapter two. This model is designed

as a self-organized ABM model that illustrates a tumor’s growth and how it resists chemical

treatment.

In this case, the model consists of two kinds of cells: stem cells and transitory cells and

includes controls to kill transitory cells that are younger, kill a stem cell, move cells, or

visual information about the total number of living cells their trajectory [25].

In chapter three of the thesis, the research goes to the next step of the simulation of a

multiscale graph agent-based model, which shows the dynamic behavior of tumor-growth

based on analytics computing. Designing a graph workflow simulation system for mod-

eling, growing behavior, and subgraph analysis leads the research deeper into dynamic

modeling by creating a discretion model from a growing multiscale agent-directed simula-

tion.

Expanding the research to the incorporated network analysis and ML clustering algo-

rithm into the agent-based tumor model is the functional implementation to achieve the

subgraphs. Chapter four’s open lining development is about Cloud simulation joined with
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High-performance simulation (HPS) to design an end-to-end system design for automation

using large relational databases.

Contributions of the thesis are:

a) Development of a methodology for parametric analysis of models based on ABM on

HPC for non-expert users.

b) implementation and deployment of a parametric simulation environment on HPC.

c) modeling and experimentation with a tumor growth model based on Hallmarks of

Cancer on the Netlogo platform.

d) Model-based on graphs and ABM for multilevel analysis of tumor growth.

e) Methodology, workflow, and development of an environment based on the Python +

Mesa Platform for graph-based tumor growth models.

f) Application of ML techniques for the subdivision of graphs and their subsequent

execution in HPC environments.
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CHAPTER 2

HIGH-PERFORMANCE COMPUTING (HPC) AS A SERVICE

High-performance computing as a service (HPCaaS) is the provision of high-level process-

ing capacity through the local high-performance computing (HPC) systems or the cloud

for scientific computing and big data analysis. One of the common problems with using

High-Performance Computing (HPC) environments for non-technological users, such as

economists, biologists, epidemiologists, Etc., is the complexity and difficulties involved

with the configuration of the agent-based simulations(ABM).

It is usual for the ABM models to have data distributions and scenarios representing

a large number of simulations to obtain statistic stability and explore a more prominent

parameter data-space (generally tens of thousands of simulations). The ABM parametric

simulation can benefit the power of these infrastructures and reduce the time for the anal-

ysis of parameter combinations. However, in order to use parametric simulations on HPC

clusters, the configuration, and adaptation of simulation parameters and passing them to an

HPC environment is too complicated for users who are not familiar with this methodology

and environments, even if they use a queuing system in an HPC environment where the

user should only access and execute a command.

From the modelers’ perspective, after implementing the model and scaling the param-

eters to produce a good pattern or values, the next step will be checking the reliability of

the model’s implementation. Simple models with fewer parameters and work with simple

processes are more accessible to get verified and validated. The major challenge for mod-

elers happens in more complicated models with large parameter spaces and many bound

sub-processes [82].

Verification and validation are affected by replication in computational models, espe-

cially when they become complicated. Replication effects model verification while the
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modeler is comparing the implemented model with the conceptual model. On the other

hand, it affects model validation during the correspondence between the model and the real

world. Computation replication often happens both in parameters space and time. Data

replication is not the purpose of the modelers’ perspective, but it could be the developer’s

issue [83].

Regards to the above perspective, many challenges are identified. The first challenge is

modelers. Researchers challenge to optimize their use cases to set the large parameter space

and cover them by submitting tens of thousands of simulations, although job scheduling.

To achieve this goal, they put an extreme load on the system in many HPC sites [84] [85].

Monitoring and checking the results of these jobs has also been a very time-consuming

process.

The second is about restrictions and limits for the number of jobs that a modeler can

submit to the local queue. Providing many simulations to run per job submission is fatal

for some local HPC sites [84]. Furthermore, there are intervals in the execution times, such

as early termination of some jobs, which should be detected by the researchers to save the

remaining time left on the CPU and fulfill the run time requirement for the other simulation

jobs.

The third is sharing dynamic libraries that are required for the run-time on the exe-

cution machine. There are many restrictions for installing libraries on the infrastructure

nodes, which means there is no guarantee that researchers can run the simulation experi-

ments using all available nodes. The last challenge is analyzing the output files during the

simulation to cut the computation loops and loss [84].

2.1 NetLogo Tumor ABM Model 1st approach

The first design proposed in this thesis was the definition of the agent-based tumor model

of the present work is based on the Wilensky model [1] and considers the premises stated

by Hallmarks of Cancer [5].
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Some considerations about hallmarks are listed in [4] with the acquired capabilities of

cancer:

a) Self-sufficiency in growth signals

b) Insensitivity to antigrowth signals

c) Evading apoptosis

d) Enabling replicative immortality

e) Sustained angiogenesis

f) Cells invasion and metastasis

Wilensky’s tumor model [1] permits us to change the parameters that affect tumor pro-

gression, immune system response, and vascularization. Outputs included the number of

living tumor cells and the immune system’s strength, which control cells.

In this model, two kinds of cells are considered: stem cells and transitory cells. An

agent represents each cell, and tumor cells can breed, move, or die where the time is mea-

sured in simulation steps (ticks). Initial tumor cells are blue, and the cells change their

color depending on their age (different colors from the red palette) with the age of fewer

than 16 ticks.

A stem cell can divide either asymmetrically or symmetrically during the mitosis. In

this case study, it is considered malignant tumors where asymmetric mitosis is followed.

In this process, the stem cell divides symmetrically into two stem cells, and the first child

of this division remains static, but the second cell moves to distant organs to generate a

metastasis.

The simulation presented cell control with different and constant immune responses by

killing transitory cells, moving stem cells, and original cells. The tumor grows and starts

to grow exponentially in the world size, with 60 immune cells present. The tumor grew

linearly over time. Linear growth over the periods will be observed when many initial
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Figure 2.1: Stem cells in the context of evolution and metastasis visualization (from 6
original stem cells to23, 000-29,000 in a steady-state).

immune cells were used in the model. So, increasing immune cell numbers is associated

with an impressive decrease in the tumor burden.

In this model, only metastasis (and not an invasion) is the mechanism of spreading can-

cer cells, reaching it to an organ different from the original tumor using blood or lymphatic

paths. In the model, the metastasis is red and made of cells that die young. As the tumor

propagate and get larger, stem cells reproduce and die younger.

To represent this behavior, the model includes parameters for modeling the number of

initial stem cells, the growth factor to model the self-sufficiency of growth signals and in-

sensibility to antigrowth signals, three values to represent the apoptosis grade (normal, low,

very low), and a replication factor to model the replicative immortality and angiogenesis

capacity of the tumor.

The simulated model represents a tumor outgrowth caused by symmetric mitosis of the

stem cell. The outgrowth will turn into metastasis and grow in remote regions. By exploring

the model, reveals a new dimension, and the preliminary simulation grasps tumor behavior,

which is shown in Figure 2.1 and Figure 2.2.

Figure 2.1 shows the simulated evolution of six original stem cells (center) with a ran-

dom position metastasis in new independent tumors with growth-factor=1.25, replication-

factor=high, and apoptosis=normal. In this case, the six stem cells’ evolution reaches, in a

steady-state, a range of 23,000 to 29,000 cells (agents). Figure 2.2 shows the steady-state of
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Figure 2.2: 6 stem cells, evolution and metastasis visualization with grow-factor=1.75,
apoptosis=low and replication-factor=high (near 200,000 cells in steady state).

a tumor metastasis visualization with six stem cells and the grow-factor=1.75, replication-

factor=high, and apoptosis=low. As can be seen, the growth of metastasis is more aggres-

sive, and through reducing apoptosis, there is a more significant number of cells that do not

die, amounting to near 200,000 cells (agents).

2.2 HPCNetLogo Framework

In order to provide an easy to use and user-friendly solution for non-technical users, we

have designed and deployed a workflow using different tools, collaborating in the simula-

tion of parametric ABM on an HPC cluster. The execution of this workflow is unassisted,

and the initial user interaction is through an interface based on Web technology. In the local

environment, the user configures his model, performs the local tests, sets up the Behavior

Space, and, through a service, schedules his model and indicates where and how he wants
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Figure 2.3: The architecture of the infrastructure environment.

to run. In the development environment, the Front-End service analyzes the user-specified

model. This generates all configuration files required for the proposed simulation scenar-

ios, creates the initialization files for the high-performance cluster queue system, and then

sends them to Back-end. There the system executes the experiment, and when it finishes,

the user can see the result through the same web interface. Figure 2.3 shows the proposed

architecture.

The tool for Front-end infrastructure is implemented in Python. The front-end interface

uses a splitter module to obtain the different simulation scenarios configured by the user

within the Behavior Space [15]. This module (based on [16]) performs the separation of

the different ABM simulation scenarios by generating a configuration XML file for each of

the combinations of the variables defined in the experimental set indicated by the user.

These configuration files are a parametric simulation with a subset of this model’s ”data

space” (scenario). Each simulation with its data set will run on an HPC node concurrently

with other simulations with a different data set, reducing the user-defined data space’s

overall execution time. The implementation process in the proposed infrastructure consists
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of three stages:

a) Initialization and integration,

b) Deployment and

c) Execution.

In the first phase, the interface receives data files and the user’s model. Then the interface

back-end analyzes the experiments and generates configuration and initialization of XML

files in the HPC queuing system automation.

In the second phase, the configuration and simulation data’s deployment is made to

cluster master node. Finally, in the third phase, the execution starts, and the back-end

waits for the results to forward them to the user. In order to maintain the confidentiality of

the data during the whole process, the interaction with the Front-end/Back-end is through

secure protocols (HTTPS in the case of Fronted and SSH+PKI in the case of the cluster).

Figure 2.4 shows the ABM simulation execution process. It explains the steps that are

performed in the proposed infrastructure.

As shown in Figure 2.5, task 53 (jobid) is running (indicated by the red status icon),

and task 54 has been deployed, but they have not been sent to execution as indicated by the

green arrow in the state. To start the process, the user must click on this arrow, and this will

start the execution of the model on the cluster.

Data splitting is used to be one of the phases of the parallelization of data-intensive

applications in the scientific domain for executing distributed-memory architectures. Data

splitting as a simple solution works where each necessary operation gets to the final result

executed by a single worker, and each worker executed the same number of operations.

There is an asymmetry of the relation between the number of workers and the quantity

of data that is decomposed in the real world. This directly affects the performance of the

solution [63] [64].
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Figure 2.4: Stages of the ABM simulation execution process.

Figure 2.5: User interface.
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Figure 2.6: Speedup and Efficiency for 8 to 256 Cores.

2.2.1 Experiments and Results

A set of simulations with different parameters and values has been performed to explore,

from the point of view of performance, the model’s behavior (speedup, efficiency, and scal-

ability) to analyze the developed model’s behavior on an HPC cluster. These experiments

are the proof of concept considering HPC performance where the scalability, number of

agents, and performance of the model are analyzed but not the simulation result as a growth

factor, apoptosis, angiogenesis, or other exciting values for an oncologist or researcher in

tumor propagation (however these are available as simulation results). Figure 2.6 shows the

speedup and efficiency of these executions. In this figure, the speedup is close to linear in

the lower number of cores and gets reduced towards the higher number of cores. Although

the speedup and efficiency of about 80 percentages seem promising, the main issue is the

memory contention problems at the Java run-time (Netlogo) for higher core configurations

and the I/O from the network file system (NFS).

Figure 2.7 shows how scalability effects of the model over the speedup and efficiency

considering a grow-factor equal to 2.0 and the speedup compared with the values of the
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Figure 2.7: Speedup and Efficiency for 13,000 and 110,000 Agents

grow-factor equal to 1.25. This growth-factor, in this case, study, implies that for the value

of 1.25, there are about 13,000 agents, and for the value of 2,00, there are about 110,000

agents. As can be observed, the speedup and efficiency are affected by the grow-factor

equals 2.00, but it keeps on showing the value’s performance.

Figure 2.8 shows the impact of the shared resources at the Java runtime (NFS, mem-

ory) during the model execution for the larger number of agents: 30 initial stem cells with

a growth-factor equal to 2.00 that arrives at 361,000 agents (cells). In this case, the figure

shows the distribution of the execution time in a box and whisker plot. As can be ob-

served, the model is executed in a fixed number of time units (1,000) at the eight cores and

runs about 2,234 seconds (average), but on 64 cores, it will be run about 4,417 seconds

(average).

Figure 2.9 shows the model’s scalability for different numbers of stem cells (from 6 to

60) and to values of grow-factor (1.25 and 1.75). As can be observed, the scalability of

the model is linear. In this experiment, the simulation shows that in the steady-state (1.000

simulation steps) for the grow-factor of 1.25 and 6 initial stem cells, the tumor arrived 6. 6k

agents (cells). For 60 initial stem cells, the tumor arrived at 122k agents (cells). For growth-

46



Figure 2.8: Box Diagram of Execution Time for 361,000 Agents.

factor of 1.75 and 6 initial stem cells, the number of agents (cells) was 76k, and for 60 initial

stem cells, the number of agents (cells) augments to 404k. It is necessary to remark that

employing HPC is extremely necessary because this type of analysis is time-consuming,

as can be seen. At these proofs of concepts, only the minimum number of repetitions to

obtain stable statistics data which have been executed, and only 1000 simulation steps have

been performed. It is important to consider that in other configurations/parameters may be

necessary to increase the number of simulation steps to justify employing HPC for this type

of experimentation.

Implementation

The core of the proposed solution is sequential python scripts, which call commands, mod-

ules, and libraries that, without user intervention, generates all the necessary automation

and adapts the user’s requests to the HPC environment. It is a web development frame-

work that handles user/modeler requests triggered by actions such as run their model from
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Figure 2.9: Simulation runtime (average) for growth factors 1.25, 1.75 and from 6 to 60
stem cells

a website. Those requests activate commands to run the shell for access to the clusters and

modules which generate fragmented data set.

The development environment dynamically and automatically creates shell scripts for

each pass and experiment. It is created based on the condition of the experiment. The

scripts created on the master node would safely run the experiment and update the go’s

progress. The algorithm and its different stages of the above pipeline presented in algorithm

1.

Using NetLogo on an HPC cluster is not necessarily tricky, especially if administrative

support is available. Doing so requires installing NetLogo and Java Runtime Environment,

so they are accessible to all nodes; and a batch file that specifies the path to the NetLogo

and Java directories, the path to and name of the NetLogo file, and the Behavior Space

experiment to run and its options (e.g., output file name and format). It is essential to use

the ”table” output format because the alternative ”spreadsheet” format stores all result in

memory and consume all available memory.
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In an HPC cluster, Behavior Space experiments are run in ”headless” mode, that is,

without any graphical user interface. Documentation and tools for using NetLogo headless

and on an HPC cluster are available in the NetLogo User Manual’s Behavior Space section

[104].

Algorithm 1 NetLogo jobs to the cluster-nodes algorithm
Input: (Model, Experiment, credentials)

Output: (Simulation results as csv)

SPLIT Model − Experiment pair by n

CREATE n sets of setup− files

UPLOAD Model and n× setup− files

CREATE output directories in server

UPLOAD n× scripts for n× setup− file

CALL submit {scripts} = qsub NetLogo JOB to Cluster-MasterNode

CALL agents

while <busy> do

wait!

end while

check stats agents

RECORD {stats}

DOWNLOAD {results}

DOWNLOAD {stats}

MERGE {results} to {stats}

EXPORT {stats}

EXPORT {results}

END

For the HPC environment, in this case, an SGE (Sun Grid Engine) Cluster has been

used but can be easily adapted to other HPC environments such as Scrum, PBS, Etc. The
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modelers use their secure credential and individual identifications to get a sign in, and

their SGE keys (cluster access) are encrypted. The SGE commands automatically run after

receiving the output XML files, which have been produced by the splitting method from

NetLogo behavior space experiments. At this level, user communication to the server is no

more needed, and the SGE allocation process will run in the background.

The complete code is available in Appendix A and can be found in the following URL

link: https://github.com/hpcnetlogo/hpcnetlogo.

2.3 Conclusion

Considering life science and systems biology(SB) data and network analysis, such as the

simulation and analysis of NetLogo’s tumor growth behavior, it is difficult for researchers.

Because almost everything is about cell communication and dependencies in such a model,

and it is not easy to identify insights. The processing could be prolonged and takes days

to finish experiments that depend on the tumor’s size. Graph-based representation of the

biological networks makes large amounts of data dependencies more accessible and multi-

dimensional. The next chapters describe how the model and the tools develop and translate

into a more dynamic structure in a different framework. The accepted publications with the

peer review for this chapter are P1 and P2, mentioned in section 4.3 of the thesis.
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CHAPTER 3

STATISTICS, DATA ANALYSIS, SIMULATION, AND VISUALIZATION

The most novel revision on the ground of the mitosis scenario of tumor growth in this chap-

ter of the thesis is modeling graph-based Python representation of a tumor network growth.

The past significant changes simulate the growth behavior in multi-state and multi-scale

components based on graph theory, state machine theory, and algorithmic state machine

(ASM) method nested in the agent-based model [31].

Choosing Python would make a simulation of agent-based modeling easier for peo-

ple in academia or who may not have experience coding. The speed, built-in functions

for recording variables during simulations and exporting them easily to HTML, XML to

view results, easy parallelism for running multiple simulations at once, simplifying object-

oriented programming (OOP) elements having beginner-friendly syntax all are the reasons

for this choice.

The initial design aspect comes from the acute inflammation based upon angiogene-

sis controlling rules and critical factors of the metastasis, which feeds a wider parametric

variety of input into the system.

3.1 The Tumor Simulation using Python+Mesa

Analyzing a new model using the Mesa (ABM framework) in Python relies on simulat-

ing agents’ interactions to evaluate their effects on each other and the system. It is often

used for prediction and detection in complex phenomena. Mesa is the agent-based python

project, which has started in recent years, and it has taken into consideration very fast

among researchers. Mesa is modular, and the meaning is that it is modeling, analysis, and

visualization components are kept separate but intended to work together.

Modules are model and agent classes, a scheduler to determine the sequence in which
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the agent acts and space for them to move around. The Analysis Tools collect data gen-

erated from the model by running it multiple times with different parameter values and

the visualization classes for launching an interactive visual model, using a server with a

JavaScript interface.

For studying each model’s behavior under different conditions, the scientist needs to

collect the relevant data of the model while it is running in which the ”Data Collector”

class is defined for this task. Running the model with different string points in Mesa deter-

mines in a Batch Runner class. Data collection and batch running are implemented in the

appropriately named analysis modules [31].

Mesa’s adapting modules allow scientists to make changes to existing ABMs to con-

form to future framework requirements. Also, monitoring the data management issues

while processing actions is happening in parallel seems facile in Mesa. Each module has a

Python part, which runs on the server and turns a model state into JSON data [113]. Figure

3.1 shows the chart of the adapting modules of Python+Mesa in this Simulation.

Figure 3.1: The chart of the adapting Python+Mesa modules in the new agent-based model.
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The idea of re-implementing the tumor model is to be the Python 3-based counterpart

to NetLogo.

Since Tumor progression is a complex multi-stage process in which several distinct

properties have to be acquired by the tumor cells sequentially, or in parallel, the first prob-

lem using the NetLogo or another software framework for simulation is modeling a behav-

ioral space which supports multithreading.

Considering the performance is limited to the number of cores at the local infrastructure,

this limitation expands the local processing problem. The extensive parametric simulations

need HPC clusters. It is revealed that an open framework is needed which does not have

scalability issues to design an extensive network. The framework is to reduce the necessary

time and explore a limited model data space and distribute the model for exploring the mega

model by digging into the microenvironment scales.

The initial design aspect of a multi-state architecture of the tumor growth model comes

from the acute inflammation based upon the key factors involved, such as angiogenesis

[10].

Tumor angiogenesis is critical for tumor growth and maintenance. The model strategy

must begin with an initial identification of a minor population of cells with the characteris-

tics of ”tumor-initiating” cancer stem cells. These cancer stem cells in the assumed tumor

reside close to blood vessels.

Therefore, choosing an angiogenetic switch for changing the state of the model must

balance the dynamic. Angiogenetic and anti-angiogenetic factors are essential values that

could be chosen for Data-Driven Decision Making (DDDM) involve collecting data based

on measurable facts and calculations, analyzing patterns and facts from these insights. In

the case of anti-angiogenetic, there will be the probability of a quiescent tumor. Inside the

agent-based model, tumor cells could be affected, inflamed, and turn quiescent. Consid-

ering the angiogenetic and anti-angiogenetic, the simulation of the evolution of metastasis

and measuring the tumor volume ratio and the dynamics of the tumor under the influence
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of variation of these factors are implemented.

As a foundation of the tumor model, a simple random graph agent-based on network

topology is a simple solution but selecting the most suitable topology is the matter. Barabasi-

Albert (BA) model [38] is a scale-free network, and it is one of the most basic models since

it describes most of the biological networks, especially from evolutionary models. Scale-

free networks are a network that includes few nodes highly connected to other nodes in the

network. These nodes present a much higher degree than most other nodes in the network.

The Barabási–Albert (BA) model generates random scale-free networks using a serial

degree distribution among the nodes. The random generator assigns N nodes, but first, it

begins with a small set of connected nodes and then adds nodes, one at a time, until the

model gets N nodes.

Adding each node at a time connects them to a small number of existing nodes with

degrees. As a result, nodes with higher degrees (the primary nodes) tend to get an even

higher degree. Since it cannot fulfill the cell interaction structure or helping the simulation

of the behavior of the angiogenetic switch within the tumor and also creating connections

are time-dependent during the simulation, then selecting the Erdös-Rényi [37] topology

seems a better choice.

In comparison to the Barabasi-Albert (BA) model, The Erdos-Renyi network assigns

N nodes at first. It then connects each pair with probability P. This means that no nodes

will have a much higher degree than the others. The growth is more open to the probability

rules of angiogenetic and anti-angiogenetic factors. The pseudo-code generating a random

network based on the Erdos-Renyi network is described in Algorithm 2. Thus, for P as a

Probability and edge creation in n number of nodes, if (Ps> log (n) /n)) almost all vertices

are connected, and this function returns a directed graph. Erdös-Rényi model takes a num-

ber of vertices N and connects nodes by randomly selecting edges from the (N (N-1) /2)

possible edges.
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Algorithm 2 Pseudo-code generating a random network
Input: (n, p, p*)

Output: (True, False)

for n in enumerate(nodes) do

for p in enumerate(Ps) do

if p<p* then

pconnected(n, p) = 1

else

return 0

end if

end for

end for

3.1.1 Visualized Results

As shown in Figure 3.2, The graph agent-based tumor model generated by Algorithm 2 in

the Mesa framework, shows the cancer stem cells (red metastatic) connected on the black

edges to the other stem cells (green) based on the probability of angiogenetic factor. The

gray dead cells were also created based on a quiescent tumor’s probability based on the

anti-angiogenetic factor. The interactive visualization in Mesa helps to identify insights

and generate value from connecting data.

The strength of using the browser user interface (BUI) of Mesa is an interactive data

visualization which allows the user such as an oncologist to see the model running in the

browser and second is setting up the data, parameters, figures, and plotting while exploring

the model data space. Figures 3.2 and 3.3 show the samples.

55



Figure 3.2: Graph visualization for three states (normal, dead and metastatic) which has

shown in three colors.

Python data visualization provides strong support for integration with several technolo-

gies and higher programming productivity across the development lifecycle compared to

just using agent-based modeling software.

The front-end integration is the strength of Python modeling based on packages such as

an ABM package (Mesa), analysis, and visualization packages (Numpy, SciPy, Matplotlib).

On the other hand, the simulation is getting more orchestrated. At the same time, it is

united with machine learning packages (NetworkX) or distribution utility modules and

third-parties (Pypi) and container facilities in deep at the back-end.

Figure 3.3, the generated tumor shows the changing state of a tumor metastasis with

1200 stem cells. From the biological perspective, the plot implemented in figure 3.3 shows

the changing scale of inflammatory (red line) because of angioprevention interference. The

gray line in the plot shows the increasing number of dead cells. Figure 3.3 shows the ratio

of the dead cells to the inflamed cells. It has also demonstrated different tumor growth

behavior upon the good laboratory condition from the angiogenic switch.

The transitory cells are dynamic intermediate states of the agent called inflammatory
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because of angioprevention. However, since the figure is the tumor’s final image, they all

changed to dead or metastasis.

Figure 3.3: Graph agent-based visualization of tumor growth to 1200 cells.

3.2 Simulating Tumor Growth

The data exploration of a multi-scale large parametric model needs incorporating data sci-

ence, graph analytic, and machine learning. Then, we proposed a simulating tumor model

and evolving behavior by modeling based on graph theory and statistical analysis on dif-

ferent scales to create the cell life cycle. The following figure 3.4 shows the four steps (a,

b, c, and d) for simulating the tumor growth model and evolving analysis.

The first step is simulating an initial tumor by setting up initial input features, including

normal cells and cancer cells. Since two disjoint sets of input features have no common

element, the initial pattern is better to be a bigraph.

57



Figure 3.4: The scenario of simulating tumor growth model and its evolving analysis.

The second step is nesting the initial bi-graph in an agent-based model, which feeds

from a probabilistic finite-state angiogenic switch model that acquires the acute inflamma-

tion.

Forwarding the initial bipartite graph agent-based model into the growing module, gen-

erating a directed graph with the given degree distribution is the final step of the workflow

to represent a growing tumor. The following is a description of each step.

a) Bipartite graph representation: The bi-graph normally is used to simulate disease

spread, especially detecting cancer in a behavior stated way except on a very large

scale.

Figure 3.5: The bipartite graph representation and its corresponding adjacency matrix.
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An initial tumor is simulated by setting up the graph in two different data classes

(Normal Cells, Cancer Cells) to create a bipartite graph model as the tumor’s static

scale. Figure 3.5 shows a sample of bipartite graph representation and its correspond-

ing adjacency matrix.

b) Finite-state machine: The fundamental biological aspect of the probabilistic finite-

state model of this tumor growth comes from the acute inflammation based upon

the critical factors involved, such as an angiogenic switch. Tumor angiogenesis is

essential for tumor growth and metastasis. The angioprevention factor threshold is

compared with the assessment values of transition probability selected by oncologists

interactively. They can verify and revise the parameters while the experimentation is

ongoing.

The comparison works as a trigger to change the cells’ state from their current state

to the proliferation state or the inflammatory state. Afterward, under the influence

of evolving angiogenic switch values, the inflamed state may turn to the progression

state, and metastasis happens. Since the stem cell quiescence is a way to control

the inflammation in the tumor microenvironment, the simulation considers probable

immune state at the state model. The way is targeting inflammation using angiopre-

vention to stop cancer cells from moving to the proliferating state. Figure 3.6 shows

the adopted finite-state machine for Angiogenic switch control in this tumor growth

model.

As shown in the figure, the angioprevention method causes proliferation by blocking

angiogenesis in one state. For causing the other state, which is inflammation of

the cells, it needs to switch to an angiogenic state. The inflammation state coming

after that causes the local invasion and progressive metastasis through lymphatic and

vascular.
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Figure 3.6: Finite-state machine for Angiogenic switch control in tumor growth model.

c) Agent-based modeling: The model has two core classes. The model has two core

classes. One is the tumor model states, attributes, and scheduler component, and the

other is the tumor age.Four states in the tumor model class are defined as metastasis

cells, dead cells, normal cells, and inflammatory cells. The graph generator and the

clustering method for sub-graphing are returned into the tumor model class.

The inflammation of the cellular neighborhood based on Angiogenic switch rules

and the help of the Finite-state machine probabilities, all selected and verified by

oncologists interactively to simulate the tumor’s growing scenario model is created

at the tumor agents class.

In Mesa framework, for studying the model’s behavior under different conditions,

it has needed to collect the model’s relevant data while running in which the Data

Collector class is defined for this task. The tumor model’s data collection is in the

tumor model class and extracts the CSV or XML files’ data. Figure 3.7 shows the

reduction of metastasis state of the cells affected by angiogenic control factors in

the time. In this experiment, the normal cells, Dead cells, and metastasis cells are

classified in three colors in green, gray, and red.

60



Figure 3.7: The reduction of metastasis state

d) Tumor network growing representation: Tumor growth curves are used to derive the

Tumor Control Index (TCI), such as tumor progression, rejection, and stabilization.

It is essential to combine both rejection and stabilization challenges for showing the

potential of extensive parametric and multi-scale agent-based modeling under the

influence of different control factors.

For simulating the growing behavior of the simulated tumor model, it is needed to

define some data analysis for computational statistics such as calculating the tumor

volume using degree distribution. The degree distribution is the probability distribu-

tion randomly is considered in the tumor model for a cell reached to other cells in

the community. The final model returns an evolved graph with the given degree se-

quences by generating a directed graph in the tumor model class based on the initial

graph data.
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3.2.1 Statistical Analysis and Results

There is a need for statistical analysis that leads to volume ratio measurements of the

tumor model, as it could be seen in figure 3.8.

Traditionally, calculating the tumor volume (mm3) is based on the presented formula

3.1 using tumor width (W) ,and tumor length (L):

TumorV olume = W 2 × L/2 (3.1)

This calculation, which works pretty well for clinical issues, was made based upon

the assumption that solid tumors are more or less spherical like the version of Netlogo

Wilensky’s tumor model, but not proper for the metastatic form due to the phase

transition and spreading dynamics.

By generating a random network with a given average degree (K) and initial size of

the tumor (N), we could construct a degree sequence (m) and it is presented in the

following formula 3.2:

1/2
N∑
i=1

K(i) = m

(
n

2

)
= N,K = 3, 4, 5, 6, 7, 8 (3.2)

For volume calculation, it is assumed that every cell inside the tumor has three states

(normal, dead, and metastatic) that correspond to the tumor by edges. With the given

K degree from three to eight and N initial nodes whose degree sequence of (m) could

lead the simulated model to calculate the tumor volume ratio and obtain the plot.

Algorithm 3 is a pseudo-code to simulate the degree sequence dynamics under the

influence of the mentioned factors producing tumor volume in a graph network.

Figure 3.8 shows the results of executing the simulated model with different angio-

genesis control factor in (0.1 to 0.9) for 60, 360, 650, 100, and 1200 cancer stem cells

(CSCs) to plot different tumor volume (mm3).
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Algorithm 3 The pseudo-code producing tumor volume.
Input: (P, N, K=3)

Output: (Tumor Volume)

while pconnected(n, p)=1 do

for N in nodes(G) do

if p
(
n
k

)
< Control Factor then

Return m/n

else

return 0

end if

end for

end while

return G

Figure 3.8: Tumor Angiogenesis volume ratio for 60 to 1200 cancers stem cells (CSC).
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3.3 Simulation and Computational Analysis Multi-scale Tumor Growth

Following the dynamic implementation of tumor growth, network analysis algorithms are

mainly concerned with network community identification [115]. The concept of commu-

nity is common, and it is considered as the classification of objects in categories. A commu-

nity is defined as a subset of nodes (as cells) within the graph. Such connections between

the nodes are denser because of identity or dependencies than connections with the rest of

the network.

The investigation of community structures in biological networks needs studying func-

tional studies in metabolic networks [115]. Evolving the cellular biological network to

the molecular level developing the tumor model to the other scale is like zooming in to

get more profound insights. Moving from the tumor’s cellular level to the molecular level

needs to transform the growing bipartite graph to a scale-free molecular format, which is a

better simulation of cellular interaction and molecular interconnections.

The simulation must illustrate an evolution of tumor growth in different patients and

the analysis of their data. Let us assume that an oncologist needs a growing analysis of a

patient’s cellular interplay with a newly diagnosed cancer disease to develop the modeling

workflow’s evolutionary idea. Therefore, the tumor’s basic level must be characterized for

future prediction of the possible growth behaviors.

Figure 3.9 proposes a computational simulation system’s workflow besides the model-

ing workflow about a scenario of tumor growth. The idea is preparing data from different

scales and stages of the tumor metastasis evolving behaviour.

As can be seen the part (ii) in Figure 3.9, it is defined as a three-step scenario for a

workflow. As the scenario of simulating tumor growth model and its evolving analysis

explained before in figure 3.4, the first step simulates an initial tumor by setting up initial

features to create an initial graph model as the scenario of simulating tumor growth model

and its evolving analysis. Then the second step is forwarding the initial graph to a growing
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module.

The third step is feeding the growing tumor by changing the subset features of the

angiogenic switch. The last two steps of the scenario as mentioned earlier are implemented

as a growing network module with redirection (GNR) [114] nested in the simulated tumor

agent-based model.

The growing information network with redirection (GNR) is defined as nodes connect-

ing new links through n redirection. The probability for a node to connect a link depends

on the number of paths of length n arriving at this node. When a new node is added to

the graph, it connects to a randomly selected node or the n ancestor of this selected node.

The ancestor is found by following n links from the randomly selected node. The growing

module with redirection is used to transition to a phase or scale where evolve is happening.

Also, it is useful for analytical predictions for the behavior of the degree distribution in a

graph.

The subset features of the angiogenic switch define as the state transition based on

the probabilistic state machine. It is considered that the probability of the transient state

adopted in the subset features is necessarily valued between 0 and 1. This fuzzifies all

input values before executing the growing rules to get the different behavioral patterns as

the fuzzy output. Finally, there is a designed data visualization tool for the oncologists

in the back-end computational part of the workflow. The next chapter will explain how

the workflow’s computational part is incorporated with network-based machine learning

techniques to make the back end of this workflow ready for distributing on the clusters.

It is deployed two complementary graphs-driven methods for analyzing and estimating

probable growing network patterns. The amount of data which is extracted from the meth-

ods address some problems in cell biology. A fast binomial graph generator is chosen on

Erdös-Rényi topology for initialization, so the static preliminary model is used as an initial

input.
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Figure 3.9: A workflow of a computational simulation system for modeling a scenario of

tumor growth.

To simulate the growing network nested in the agent-based model, a growing network

with redirection (GNR) graph with probability (p) helps add nodes one at a time with a link

to the initial nodes. In this graph, a target node is a node where a new link is attached. Target

nodes are selected randomly following a uniform distribution. The redirection probability

(p) is set, as shown in formula 3.3, which gives a new tumor growth pattern. Based on

[116], the following equation in formula 3.3 uses to calculate the probability (p) of tumor

growth. It contains five biological parameters, which are known as a cancer driver: the

number of divisions (d), the number of stem cells (N), the number of critical rate-limiting

pathway driver mutations (k), the mutation rate (u).

p = 1− (1− (1− (1− u)d)k)N (3.3)

All the subset features get in the computational simulation system through agents as

state transition probabilities to change the state of the cells and affect the growing module.
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3.3.1 Probabilistic State Machine Tumor Growth

Using probabilistic automaton (PA) in computational biology can be a useful aspect of

tracking a natural problem. Figure 3.10 shows the metabolic flowchart of this aspect and

how the probabilistic finite-state automata (PFA) for modeling state machine is created

based on the flow chart.

The strategy begins with the initial identification of a minor population of cells with

the characteristics of “tumor-initiating cancer stem cells,” They will be assumed inflamed

or dead under the influence of angiogenic switch factors. The inflammation triggers the

tumor progression, and the dead cells introduced the proliferation stage in this cycle. All

the transition states translated into the format of the PFA model.

The threshold of angioprevention K is compared with the assessment values of tran-

sition probability PA, selected by oncologists interactively. The comparison works as a

trigger to change the state of the cells from their current state S0 to the proliferation state

S1 or the inflammation state S3. Afterward, under the influence of changing angiogenic

switch values Ω, the inflammation state S1 may turn to the progression state S2 and metas-

tasis can happen.

Figure 3.10: Flowchart representation of the tumor behavior in a PFA model.
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From the probabilistic point of view in equation 3.4 and 3.5, a finite generic state SA is

transitioned under the influence of angiogenic probabilities defined by alphabets Ω. K is a

threshold drawn from a uniform [0,1] distribution. If the transition probability PA is greater

than K, the current state assumed to be extended with PA(s, b.s′). In the End, initial-state

probability IA, final state probability FA, and transition probabilities PA are considered

total, and PFA definition will be a tuple as it is shown in equation 3.5.

∑
s∈SA

IA(S) = 1 (3.4)

FA(s) +
∑

s′∈SA,b∈Ω

PA(s, b.s′) = 1 where ∀ Ps > Ki (3.5)

3.3.2 Results of Parametric Execution

Human-tumor-derived cell lines contain familiar and different, transforming genomic pro-

files, essential for a comprehensive understanding of tumorigenesis and identifying tumor

evolution’s earliest events [121].

four different parametric baseline executions are assumed for monitoring tumor-growth

model in four different patients, as can be seen in figure 3.11 to show the parametric execu-

tion. It is considered three repetitions as growth patterns to extract data from the growing

network in different redirection patterns for each baseline.

The goal is to simulate the dynamic behavior patterns of tumor growth. The first base-

line was set to an initial state of 200 stem cells and increase to 400 under the influence of

50 cancer stem cells. The second baseline was set to an initial state of 400 stem cells and

increase to 800 under the influence of 200 cancer stem cells. The third baseline was set to

an initial state of 600 stem cells and increase to 1200 under the influence of 400 cancer stem

cells. Moreover, the fourth baseline set to an initial state of 1200 stem cells and increase to

2400 under the influence of 650 cancer stem cells. Figure 3.11 shows the visual format of
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these baselines.

Figure 3.11: Initial tumor graph configuration of parameters to set up four baselines (Sym-

bol of four patients).

The configuration management of these four baselines based on their dynamic para-

metric potential is established to analyze tumor density variations, tumor-derived cells into

cancer redirection, and identify those essential cells’ genomic profiles. Significant revision

regarding graph pattern configuration is extracted from neighborhood analysis in graph the-

ory and graph centrality methods such as centrality closeness or betweenness. Centrality

closeness or betweenness quantifies the number of times a node acts as a bridge along the

shortest path between two other nodes.

In the graph-agent-based conception, vertices that have a high probability of occurring

on a randomly chosen shortest path between two randomly chosen vertices have a high

betweenness. The graph-agent-based reconstruction of tumor-derived cell lines and pro-

ducing the cellular profiles by extracting data from extensive parametric experiments helps

compare the baselines’ results in table 3.1 to Table 3.4. Each table shows three different

tumor growth patterns for each patient. The important extracted data include the essen-

tial genomic profile and the identification number (ID) of the tumor-derived cell in each
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pattern.

As could be seen, the most aggressive growth pattern belongs to table 3.4 about patient

number three for the average value of the essential genomic profile of tumor patterns. The

number of tumor-derived cells is higher than the other tumors.

Cell lines serve as models to study cancer biology and to connect genomic variation to

angiogenic responses. This modeling can aid in understanding different tumor behaviour.

The tumor-derived cell distribution results are significant for molecular and cell line

studies.

Molecular sub-typing could be done based on gene expression patterns, and it helps in

tumor-derived cell classification [123].

Table 3.1: Tumor-derived cells ID and their Genomic Profile for Patient1
initial Tumor (Patient1) Growth Pattern 1 Growth Pattern 2 Growth Pattern 3
tumor-derived cell ID 10 4 18

Essential Genomic Profile 2.19E-03 4.70E-03 3.34E-03

Table 3.2: Tumor-derived cells ID and their Genomic Profile for Patient2
initial Tumor (Patient1) Growth Pattern 1 Growth Pattern 2 Growth Pattern 3
tumor-derived cell ID 6 12 6

Essential Genomic Profile 1.34E-03 8.94E-04 1.50E-03

Table 3.3: Tumor-derived cells ID and their Genomic Profile for Patient3
initial Tumor (Patient1) Growth Pattern 1 Growth Pattern 2 Growth Pattern 3
tumor-derived cell ID 1 17 and 10 5

Essential Genomic Profile 3.96E-04 7.07E-04 6.85E-04

Table 3.4: Tumor-derived cells ID and their Genomic Profile for Patient4
initial Tumor (Patient1) Growth Pattern 1 Growth Pattern 2 Growth Pattern 3
tumor-derived cell ID 1 6 1

Essential Genomic Profile 2.70E-04 3.70E-04 2.13E-04

Figures 3.12 to 3.15 are visual representations of genome profiles variation of tumor-

derived cell distribution in the Tumor of patient number three.
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Tumor of patient number three is considered because it behaves more aggressively than

the others, mainly because it grows very radical in its growth patterns numbers two and

three. Figures 3.12 to 3.15 are line graphs representing how the genomic profiles have

changed over the growing tumor-derived cells. It can show dependencies between these

two parameters during a particular period of Tumor growing time.

Each pattern shows the diversity of dependencies between cell profiles and the redi-

rection growth of tumor-derived cells. All these patterns for representing a tumor growth

in different directions could be a predictive result of the most aggressive and probable

metastasis growth by distributing the tumor-derived cells. All the patterns illustrated in

figures 3.12 to 3.15 shows that each Tumor could grow into a different pattern based on

the probability of tumor-derived cell distribution. Each pattern shows the analysis of the

tumor-derived cell’s variation by identifying the genomic profiles of those cells.

Figure 3.12: Three patterns of redirected growing tumor in patient1 model based on its

tumor-derived cell distribution.

Figure 3.13: Three pattern of redirected growing tumor in patient2 model based on its

tumor-derived cell distribution.
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Figure 3.14: Three pattern of redirected growing tumor in patient3 model based on its

tumor-derived cell distribution.

Figure 3.15: Three patterns of redirected growing tumor in patient4 model based on its

tumor-derived cell distribution.

From another point of view, by computing the dead cells’ ratio to the inflamed cells, we

have demonstrated different tumor growth behavior upon the angiogenic switch’s adequate

laboratory condition.

The results of calculating the ratio of these two agents in the graph-agent-based model

help analyzing the other important motive for tumor growth behavior. Stem cell quiescence

is a way to control the inflammation in the tumor microenvironment, and increasing angio-

genic values cause inflammatory reactions and raise the number of inflamed cells. Targeting

inflammation by using angioprevention and stopping cancer cells from proliferating helps

decrease the number of inflamed cells.

The new experiments on this concept are done based on table 3.5, showing parametric
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input. The table below shows three columns of angiogenic switches that each column

considered three different probability values.

Table 3.5: Angiogenic switch key factors as transition probabilities

PA Values Angiogenic switch1 Angiogenic switch2 Angiogenic switch3

AngioPrevention 0.4 0.6 0.4

Angiogenesis 0.6 0.4 0.6

Quiescent 0.2 0.2 0.8

As shown in the table, angiogenic switches classify into three categories called angio-

genesis, angioprevention, and quiescence for one to three lists of input parameters called

an angiogenic switch. The experiments were executed on tumor number three, which was

the more aggressive one among the others. The results of these experiments are shown in

figure 3.16.

Figure 3.16 illustrates the change scale of inflammatory in tumor number three based

on different angiogenic key factor parameters determinate in table 3.5.

The X-axes show three different generated tumor growth patterns for patient number3,

and Y-axes show the number of cells, which in the first bar chart is a number of inflamed

cells, and in the second chart is the number of dead cells.

As shown in the charts, the number of inflamed cells is raised while the input angiogenic

switch number one was considered and in versus the number of dead cells got reduced. This

is evident in the chart that angiogenesis and inflammation are mutually dependent.
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Figure 3.16: The result of the change scale of inflamed and dead cells of tumor number

three.
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3.4 Incorporated Network Clustering Techniques into Tumor Model

Using a cluster computing system to analyze and extract information allows us to scale the

extensive, complex models and run many replicates of the large parametric simulation on

the SGE, as demonstrated in chapter two of this thesis. Implementing a discrete model

from a dynamic coherent agent-based model and distributing the subsets among the clus-

ters needs to discover the agent-based model’s complex network community structure and

classify the total number of agents based on detecting scales.

The growing agent network model is one of the most complex models for distribution

because since the agents behave in a stochastic, nonlinear manner over time, so there is a

need to discover a class of the agents based on a kind of similarity such as their scale or

state at their community. Therefore, there is a need to rely on a complex network similarity

decomposition algorithm for the parallel executions, which able to support traditional high-

performance computing environments.

In this chapter of the thesis, three main algorithms and techniques in network discovery,

decomposition, and analysis, are selected. They are Power-Law distribution, Egocentric

network analysis, and discovery of Subgraph Centrality [135] [137] [115]. Therefore, Dis-

covering, Classifying, and Sub graphing an extensive and multi-scale network implemented

and nested in the same scenario explained in the modeling and simulation chapter.

There is a methodological approach to the analysis of egocentric social networks and

the structure’s analysis, including the degree of the egocentric network, the strength of

the ego-node ties, and many other parameters that are similarly considered in biological

models. Power law distribution and Subgraph Centrality discovery methods as the ego

network features could simulate a definition of cellular or molecular neighborhoods in the

biological models.
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Figure 3.17: The proposed workflow for modeling and simulation system.

The workflow in Figure 3.17 shows that the modeling and simulation process built on

different modules such as generating a graph, devising the network structure and analy-

sis measures, machine-learning algorithms, and implementing state machine models for

computation.

The workflow engine is the agent-based model that gets fed from the computational

level. There is a browser user interface (BUI) for non-professional users to select and

change the variables of the parameters and rules quickly on top of all layers. The workflow

is used to construct a complex, scalable agent-based model on a tumor growth scenario

integrated by incorporating network analysis techniques.

3.4.1 Power-Law Distribution

Statistically, a power-Law [135] is a functional relationship between two quantities. A

relative change in one quantity results in the symmetric relative change in the other quantity,

independent of those initial profiles (state, size, or weight). The distributions of a wide
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variety of physical, biological, and artificial phenomena almost follow a Power-Law over a

wide range of values such as the size of activity patterns of the neuronal population in the

network or the scale of negotiations between the nodes in the different types of cellular or

molecular networks.

Considering the heterogeneous cell-agent population in the simulated tumor growth

model in chapter three, implementing Power-Law for the growth of a heterogeneous popu-

lation of the cells helps because the Power-Law is contrary to traditional Gaussian averages

in that they demonstrate correlated phenomena.

The idea is that a Power-Law encodes the high frequency of single-cell identical pro-

files. With the same hypothesis, the Power-Law sequence algorithm, as shown in algorithm

4, using Power-Law exponent growing graphs that should return a sequence of length n

from a Power-Law probable identical cell distribution is implemented in the model. The

following algorithm returns a sample sequence of length n from graph G using Pareto dis-

tribution function based on the probability P that shows n is a portion of the graph that

has power on the other nodes. The algorithm is in python implemented in the NetworkX

package.

Algorithm 4 Power-Law exponent growing graph algorithm.
Input: (n, p, exponent=2.0, source =G)
Output: (sample sequence of length n from a power law distribution)
while source > n do

if [(p < 1) ∨ (p > 0) ] then
for (i in integer range) do
Output← G.paretovariate(exponent-1)

end for
end if

end while

The graph generator of the tumor model using the Power-Law method works so that

each random edge is followed by a chance of making an edge of one of its neighbors (and

thus a triangle) and connecting these cells. The method is shown in algorithm 5.
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Algorithm 5 The Power-Law Algorithm for creating the tumor Graph
Input: (number of nodes, number of random edges to add for each new node, probability

of adding a triangle after adding a random edge)

Output: (Tumor Graph)

while loopcondition do

ADD m initial nodes

LIST the existing nodes

ADD m initial nodes

LIST the existing nodes to sample from

Now ADD the other n− 1 nodes

ADD one node to list for each new link

ADD m− 1 more new links

clustering step: ADD triangle

if there is a neighbor without a link n then

ADD triangle

end if

end while

ADD source node to list m times

RETURN the Graph

END

As shown in algorithm 4 and algorithm 5, the integration of a generator of growing

graphs with the Power-Law probability distribution and an approximate average clustering

makes it possible to have a disconnected graph.

Power-Law probability distribution and approximate average clustering methods to

complete the clustering and classifying the identical cell profiles simulated for each cel-

l/agent help to cut off the simulated large multi-scale graph agent-based model.

In this thesis, a network model has proposed that it has both the perfect Power-Law
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degree distribution and the high clustering. Furthermore, in this model, the clustering’s

degree, measured by the clustering coefficient, is shown to be tunable and thus controllable

by adjusting the parameters of the model. Figure 3.18 shows that the growing tumor model

to more than 10000 cells is clustered into 29 distributed clusters based on the Power-Law

probability distribution.

Figure 3.18: Growing Tumor to more than 10000 cells with the Power-Law probability

distribution.

3.4.2 Egocentric Network Analysis

It is necessary to estimate many analyses, such as agent profiles, agent populations’ patterns

of interaction, and structured data collection to simulate a sizeable multi-scale tumor net-

work model. The simulation must translate the most relevant expression of a tumor growth

model’s significant sub-networks, which are functionally dependent on each other. From a

new perspective, an ego-network module extracting from Network X returns induced sub-
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graph of neighbors centered at node n within a given radius by single-source Dijkstra’s

algorithm. This module has four input parameters: generated agent-based graphs, n node,

the radius, and the distance parameters. The radius parameter works as the cut-off fact.

This fact includes all neighbors from n that their distance is less than the radius criterion.

Figure 3.19: Egocentric graph of a tumor model (simulation of 600 cells).

Figure 3.19 shows a tumor graph agent-based model for ego-network simulation of 600

cells subdivided into seven subgraphs. Figure 4.4 shows the egocentric visual format of the

tumor growth model, which returns seven subgraphs of neighbors in the network of 2000
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cells.

Figure 3.20: Egocentric form of tumor growth model which returns seven identified sub-

graphs in the simulated network of 2000 cells.

As can be seen in figure 3.20, each subgraph has its different ego-node, which has its

agent’s role and works as a hub-node among the other nodes in the subgraph essentially.

Since the egocentric algorithm’s implementation is nested in the agent-based growing

model of the tumor, each ego-node shows a different color based on the agents’ different
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defined states. Six red ego-agents are the metastasis, and one purple ego-agent is inflamed

but not yet become metastatic. Finding these seven ego-agents was made possible after

growing the cells by the rule of the Power-Law distribution algorithm.

Because each ego-node works as a hub-node among the other nodes in its Subgraph

network, each ego-agent in the model becomes the same. The optimized egocentric each

subgraph has its different ego-node, which has its agent’s role also. Each ego-node works

as a hub-node among the other nodes among the subgraph networks.

3.4.3 Discovery of Subgraph Centrality

The subgraph centrality measure works as a benchmark for assessing the tumor-derived

cells’ essential genome profile in the simulated tumor model. One of the most critical tasks

in the analysis of cell to cell interaction is to predict a group or cluster of transiently(cancer

cells) interacting cells as the way that each genome profile at the molecular level is related

to the transiently interacting proteins and identify as hub genes. Together, these groups of

cells can accomplish a biological function, and they can be mapped to specific subgraphs in

the network. Characterizing nodes in a network by subgraph centrality is according to the

number of closed walks starting and ending at the node. Each closed walk is associated with

a connected subgraph, and the measure counts the times that a node takes part indifferently

connected subgraphs of the network. The node behaves like a hub. Assessing the essential

genome profile of the tumor-derived cells could be an optimal partitioning function for the

classification of tumor cells of the sizeable multi-scale model clustering and analysis.

Accordingly, the exclusive characteristic distribution of tumor-derived cells is illus-

trated by the subgraph centrality measuring in Figure 3.21. These measures are labeled as

genome profiles of tumor-derived cells. Figure 3.21, from another point of view, it shows

the genomic evolution of the tumor-derived cells, which causes biological function, such

as changing the state of the neighbor cells in the subgraphs.

In each run, a dictionary of nodes with subgraph centrality measures as the values are
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mined. The subgraph centrality value of a tumor-derived cell is the sum of weighted closed

walks of all lengths starting and ending at the cell.

At the molecular level, tumor-derived cells act as a hub gene and key pathways among

the others, so their genome profile could be the critical factor affecting the graph clustering

and data classification of heterogeneous information in multi-scale models. In this exper-

iment, 30 tumor-derived cells are identified among 1200 cells, but not all of them are a

metastasis. Egocentric networking helps identifying how many of them are metastasis and

the obtained value of subgraph centrality gives an estimate of the scope of influence of

them on the others. There are identified six metastasis cells in the egocentric graph of the

simulated tumor model.

Figure 3.21: Tumor-derived cell identification, distribution for 1200 growing cells.

After the graph optimization step by translating the generated graph into an egocen-

tric network based on the obtained Identical profiles, there is a need for partitioning these

subgraphs in different clusters.

The identical cell profiles, taken as the sub-graph centrality values, become a key value

to individual clusters. In a partitioned egocentric network, each cluster includes all the

neighbors of a determined distance less than the intended radius of the essential cells (ego-

nodes), and the connected neighbors in the same class of the cell profile are collected in the

same cell cluster.

Figure 3.22 shows six prepared clusters from Q1 to Q6 based on the obtained subgraphs
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extracted as dictionaries of nodes based on sub-graph centrality as the values. They are

considered the tumor-derived cell clusters, and six metastasis hub genes of 1200 growing

cancer cells are considered the hub-nodes that create the clusters. Each cluster includes all

the neighbors of a determined distance less than the hub node’s intended radius, and the

connected neighbors in the same class of the genomic profile collect in the same cluster.

Tumor cells in cluster number five (Q5) have the most effective behavior and essential

genome profile, which probably can accomplish an aggressive function among the others

or become the genetic reason for the metastasis.

Figure 3.22: Partitioning cells into clusters based on subgraph centrality.

The output dictionaries from the simulation are saved in Graph-ML and XML format

and ready at the containers to move the workloads in parallel to the pool of nodes on the

Cloud-HPC infrastructures.

3.5 Conclusion

Observing the above laboratory results based on a large amount of simulated data and the

significant variation of input parameters, it is obvious developing a discrete model from

a growing graph agent-based simulation helps simulate at different scales. As the model
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grows in multi-scale, multi patterns, and multi-stages, there is an urgent need for high-

performance simulation.

Since each agent is transitioning to several possible states and is dependent and in com-

munication with the other agents in the graph, distributing the model could be a substantial

challenge and an achievement for dynamic modeling and simulation. The past experiences

showed that computation-intensive and open scale agent-based models should not be sched-

uled on one computing node. Then it is more profitable to allocate a group of sub-models

that communicate with each other intensively on more than one computing node.

In this chapter, after developing the model in a graph’s format, we fed functional ML

clustering techniques into the model to generate subgraphs for distributed executions. The

statistical method and applied Mathematics used in this chapter help cluster the model into

submodels in subgraphs, extract, and transfer simulated data in different distribution files.

The performance monitoring of the simulation has been relegated to the future as an

open line. Also, handling the sub-models’ communication and dependencies is considered

an open line of this research in chapter five.

The accepted publications with the peer review for this chapter are P3, P4, and P5

mentioned in section 4.3 of the thesis. Also, there are two submitted manuscripts in the

revision process, which are D1 and D2. The complete code for the experiments of this

chapter is available in appendix B.
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CHAPTER 4

CONCLUSION AND OPENING LINES

4.1 Conclusion

In the scientific domain, many types of research today focus on the distribution and par-

allelization of data-intensive applications or models to execute distributed memory and

processor architectures. The goal of porting to such architectures improves performance,

and so the distributed memory and processor model is pertinent and facilitates scalability

and enables high-performance gains.

The evaluation technology of computing systems consists of many parts and processes.

There is a need for performance monitoring and evaluation of the simulation system, which

will guide us to the different computation and integration of infrastructures. For many

years, the past experiences showed that computation-intensive and open scale simulation

models should not be scheduled on one computing node. It’s more profitable to allocate

a group of sub-models that communicate with each other intensively on more than one

computing node.

The evaluation must test the running speed, CPU and memory usage, and network I/O

traffic of the physical/virtual simulation system. This test keeps the quality of performance.

This thesis is focused on the distribution techniques of data-intensive models to execute dis-

tributed memory and processor architectures. The evolving agent-based network model is

one of the most complex models for distribution because the agents behave in a stochastic,

nonlinear manner over time, so there is a need to discover a class of the agents based on

their relation, dependencies, and communication at their community.

The ability to leverage hardware acceleration is a challenge for resource discovery.

There is a need for an automated decision-making system to predict network growth pat-
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terns, classify sub-models, agent/node states, and dependencies to assign distributed com-

puting resources considering this challenge. In this regard, a workflow modeling and sim-

ulation system is proposed to construct a complex, scalable agent-based model on a tumor

growth scenario by applying three applicable algorithms to train the tumor network grow-

ing in different patterns and discover and classify the sub-models.

4.2 Opening lines

Distributed systems present new challenges, and the most important one is the efficient par-

allelization of the training process and the creation of a coherent model. Challenges and op-

portunities of distributed machine learning over conventional (centralized) mostly discuss

the techniques and performance. The HPC community has identified machine learning as

an emerging high-value workload and has started to apply HPC methodology.

Many types of research and experiences these days focused on these methodologies

such as training extensive parametric network on the High-Performance Computing, Opti-

mized the training of a neural network on Intel’s, Designing a chip for HPC applications,

Using deep learning to be optimized and scaled efficiently on large parallel HPC systems

or even Scheduling deep neural network applications on cloud computing infrastructure

by modeling the workload demand with techniques like lightweight profiling, which are

borrowed from HPC. Like for other large-scale computational challenges, there are two

fundamentally different and complementary ways of accelerating workloads: adding more

resources to a single machine (vertical scaling or scaling up) and adding more nodes to

the system (horizontal scaling or scaling out). Over the years, GPUs have shifted to more

flexible architectures.

Nonetheless, the diverging branches are still inefficient. The proliferation of GPGPUs

(General-Purpose GPUs, i.e., GPUs that can execute arbitrary code) must lead the vendors

to design custom products that can be added to conventional machines as accelerators.

For example, the NVIDIA Tesla GPU series is meant for highly parallel computing and
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designed to deploy supercomputers and clusters. While there are many different strategies

to increase the processing power of a single machine for large-scale machine learning,

there are reasons to prefer a scale-out design or combine the two approaches, as often seen

in HPC.

The first reason is the generally lower equipment cost. The second reason is the re-

silience against failures because, when a single processor fails within an HPC application,

the system can continue operating by initiating a partial recovery. The third reason is the

increase in aggregate I/O bandwidth compared to a single machine. Training ML models

is a highly data-intensive task, and the ingestion of data can become a severe performance

bottleneck. Since every node has a dedicated I/O subsystem, scaling out is a useful tech-

nique for reducing I/O’s impact on the workload performance by effectively parallelizing

the reads and writes over multiple machines. A significant challenge of scaling out is that

not all ML algorithms lend themselves to a distributed computing model, which can only

be used for algorithms that can achieve a high degree of parallelism [162, 163].

The lines between traditional supercomputers, grids, and the cloud are increasingly

getting blurred when it comes to the best execution environment for demanding workloads

like machine learning. On the other hand, GPUs and accelerators are now more common

in major cloud data centers. As a result, parallelization of the machine learning workload

has become paramount to achieving acceptable performance on a large scale.

There are two fundamentally different ways of partitioning across all machines: par-

allelizing the data or the model when it comes to distribution and parallelization of the

machine learning workload. These two can also be applied simultaneously. The idea of

this thesis is based on parallelizing the model. Partitioning the model makes everything

ready at the containers to move the workloads on the pool of nodes. However, in the fol-

lowing, there is a need for an extensive relational database to register each sub-model and

indexes them based on their current states and dependencies.

Considering the Lookup performance table, indexing strategies, and a decision-making
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locator and distributor engine for allocating the most appropriate and available resources

are the thesis’s opening lines. The proposed architecture of this idea is shown in Figure 4.1.

Figure 4.1: A locator and distributor engine for allocating linked Submodels which are

dependent.

Also, from the other point of view, developing and implementing new AI methodolo-

gies, techniques, and policies to allocate proper HPC or cloud resources to the large-scale

distributed agent-based models are demanded.

4.3 Publications

Accepted publication with the peer review process:

P1 High Performance Computing for Tumor Propagation Agent-based Model (Best Pa-

per Award), XXIII Congreso Argentino de Ciencias de la Computación (La Plata),

2017, Ghazal Tashakor, Emilio Luque, Remo Suppi
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P2 HPC for ABM using Netlogo, Jornadas Sarteco (Sociedad Cientı́fica Informática de

España), 2017, Ghazal Tashakor, Emilio Luque, Remo Suppi

P3 Agent-Based Model for Tumor-Analysis Using Python+MESA, The European Mod-

eling and Simulation Symposium (EMSS), 2018, Ghazal Tashakor, Remo Suppi

P4 Simulation and computational analysis of multiscale graph agent-based tumor model,

IEEE International Conference on High-Performance Computing & Simulation (HPCS),

2019, Ghazal Tashakor, Remo Suppi

P5 Simulation and analysis of a multi-scale tumor model using agent clustered network,

International Conference on Modeling and Applied Simulation 2019 (MAS19), Ghazal

Tashakor, Remo Suppi

Accepted collaborative publication with the peer review process:

C1 Crowd Evacuation Modeling and Simulation Using Care HPS, International Confer-

ence on Computational Science (ICCS), 2017, Mohammed J. Alghazzawi1, Ghazal

Tashakor, Francisco Borges, and Remo Suppi

C2 Performance Analysis of ABM Distributed Simulation for Real Crowd Evacuation

Scenarios, XXIII Congreso Argentino de Ciencias de la Computación (La Plata),

2017, Mohammed J. Alghazzawi, Ghazal Tashakor, Fancisco Borges, Remo Suppi

Submitted manuscripts in revision process:

D1 Feeding graph machine learning into the agent based model for network analysis,

IEEE International Conference on High-Performance Computing & Simulation (HPCS),

2020, Ghazal Tashakor, Alvaro Wong, Remo Suppi
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D2 Ghazal Tashakor, Remo Suppi,“Incorporating Data Science into the Agent-Based

Models for Constructing a Scalable Tumor model”, Journal of Artificial Intelligence

and Soft Computing Research (JAISCR), 2020
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[77] Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community struc-

ture of complex networks in nature and society. nature. 2005 Jun;435(7043):814-8.

99



[78] Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal

community structure. Proceedings of the National Academy of Sciences. 2008 Jan

29;105(4):1118-23.

[79] Wu FY. The potts model. Reviews of modern physics. 1982 Jan 1;54(1):235.

[80] Wu FY. Potts model and graph theory. Journal of statistical physics. 1988 Jul 1;52(1-

2):99-112. .

[81] Newman ME, Leicht EA. Mixture models and exploratory analysis in networks. Pro-

ceedings of the National Academy of Sciences. 2007 Jun 5;104(23):9564-9.

[82] Coakley S, Gheorghe M, Holcombe M, Chin S, Worth D, Greenough C. Exploita-

tion of high performance computing in the FLAME agent-based simulation frame-

work. In2012 IEEE 14th International Conference on High Performance Computing

and Communication & 2012 IEEE 9th International Conference on Embedded Soft-

ware and Systems 2012 Jun 25 (pp. 538-545). IEEE.

[83] Wilensky U, Rand W. Making models match: Replicating an agent-based model.

Journal of Artificial Societies and Social Simulation. 2007 Oct 31;10(4):2.

[84] Walker E, Guiang C. Challenges in executing large parameter sweep studies across

widely distributed computing environments. InProceedings of the 5th IEEE workshop

on Challenges of large applications in distributed environments 2007 Jun 25 (pp. 11-

18).

[85] Walker E, Gardner JP, Litvin V, Turner EL. Creating personal adaptive clusters for

managing scientific jobs in a distributed computing environment. In2006 IEEE Chal-

lenges of Large Applications in Distributed Environments 2006 Jun 19 (pp. 95-103).

IEEE.

100



[86] Cordasco G, De Chiara R, Mancuso A, Mazzeo D, Scarano V, Spagnuolo C. Bringing

together efficiency and effectiveness in distributed simulations: the experience with

D-MASON. Simulation. 2013 Oct;89(10):1236-53.

[87] Was, Jaroslaw, and Pawel Topa. ”Special issue on complex collective systems.”

(2019): 68-69.

[88] Collier N, Ozik J, Macal CM. Large-scale agent-based modeling with repast HPC: A

case study in parallelizing an agent-based model. InEuropean Conference on Parallel

Processing 2015 Aug 24 (pp. 454-465). Springer, Cham.

[89] Kiran M, Bicak M, Maleki-Dizaji S, Holcombe M. Flame: A platform for high per-

formance computing of complex systems, applied for three case studies. Acta Physica

Polonica. Series B, Proceedings Supplement. 2011 Jan 1;4(2).

[90] Suryanarayanan, Vinoth, Georgios Theodoropoulos, and Michael Lees. ”Pdes-mas:

Distributed simulation of multi-agent systems.” Procedia Computer Science 18 (2013):

671-681.

[91] Wittek P, Rubio-Campillo X. Scalable agent-based modelling with cloud HPC re-

sources for social simulations. In4th IEEE International Conference on Cloud Com-

puting Technology and Science Proceedings 2012 Dec 3 (pp. 355-362). IEEE.

[92] Bujas, Jakub, Dawid Dworak, Wojciech Turek, and Aleksander Byrski. ”High-

performance computing framework with desynchronized information propagation for

large-scale simulations.” Journal of Computational Science 32 (2019): 70-86.

[93] Clarke L, Glendinning I, Hempel R. The MPI message passing interface standard.

InProgramming environments for massively parallel distributed systems 1994 (pp. 213-

218). Birkhäuser, Basel.
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APPENDIX A

HPCNETLOGO

Hpcnetlogo is a frontend for the concurrent execution of Netlogo experiments defined in

Behavior Space (BS). The goal of this environment is that non-technological users can use

HPC to run their experiments in the BS without worrying about the configuration of SGE

or Netlogo-Java.This environment sends the experiments to be executed to a cluster using

SGE (but the scripts can be adapted for other queues systems such as SLURM).

The Github Link: https://github.com/hpcnetlogo/hpcnetlogo/tree/

master/jobs_project/job_manager

This frontend uses:

a) Netlogo Program (https://ccl.northwestern.edu/netlogo/5.2.1/) executed as headless

in a cluster with SGE.

b) Split nlogo experiment (https://github.com/ahrenberg/split_nlogo_

experiment) to create the xml files from Behavior Space.

c) Directory Lister (http://www.directorylister.com ) to show the output files (result of

execution).

HPCNetlogo code:

import os

import paramiko

from django.template.loader import get_template

from django.template import Context

def submit_job(job, hostname, username, password, model_name, cluster_number):

"""

Executed when clicking the play button, the parameters are what passed

111

https://github.com/hpcnetlogo/hpcnetlogo/tree/master/jobs_project/job_manager
https://github.com/hpcnetlogo/hpcnetlogo/tree/master/jobs_project/job_manager
https://github.com/ahrenberg/split_nlogo_experiment
https://github.com/ahrenberg/split_nlogo_experiment


from the interface to this function

"""

# Directory of the split command. Change if necessary.

actual_dir = ’/var/www/html/jobs_project/job_manager/’

# Netlogo directory-version

netlv = ’netlogo-5.2.1’

# Cluster Queues names

clusg = ’cluster.q@clus*.hpc.local’

clus1 = ’cluster.q@clus’

clus2 = ’.hpc.local’

try:

try:

expand = job.e_e

#making a directory for splitted experiments, it is current directory/experiments

xml_dir = os.path.join(os.path.dirname(job.file_first.path), ’experiments-%d-%d’

% (job.id, job.latest_run))

os.mkdir(xml_dir)

#splitting the model using command line and piutting the result in xml_dir =

current /experiments

if expand:

os.system(actual_dir + ’split_nlogo_experiment.py --repetitions_per_run 1 %s

%s --output_dir %s’ % (job.file_first.path, job.experiment_name, xml_dir))

else:

os.system(actual_dir+’split_nlogo_experiment.py %s %s --output_dir %s’ %

(job.file_first.path, job.experiment_name, xml_dir))

except Exception as e_s:

print(’*** Caught Split exception: ’ + str(e_s.__class__) + ’: ’ + str(e_s))

#setting server (cluster master node) key directories

netlogo_dir = ’/home/%s/netlogo-sge’ % username

java_prefs_dir = ’/home/%s/.java’ % username

# setting job-# directory and run, e.g. job-2/1

run_dir = os.path.join(netlogo_dir, ’job-%s’ % job.id, ’%d’ % job.latest_run)

output_dir = os.path.join(run_dir, ’output’)

error_dir = os.path.join(run_dir, ’error’)

model_filepath = os.path.join(run_dir, os.path.split(job.file_first.path)[1])

experiment_filepath = ’’

112



# login to master node

s = paramiko.SSHClient()

s.set_missing_host_key_policy(paramiko.AutoAddPolicy())

s.connect(hostname, username=username, password=password)

s.exec_command(’mkdir -p %s’ % run_dir)

# cd to run directory

s.exec_command(’cd %s’ % run_dir)

#copy experiment files to server

for experiment_filename in os.listdir(xml_dir):

file_path = os.path.join(xml_dir, experiment_filename)

destination_path = os.path.join(run_dir, experiment_filename)

copy_file(s, file_path, destination_path)

experiments_count = len(os.listdir(xml_dir))

# create output dir

s.exec_command(’mkdir -p %s’ % output_dir)

# create error dir

s.exec_command(’mkdir -p %s’ % error_dir)

simulator_name = ’run-simulator-%d-%d.sh’ % (job.id, job.latest_run)

# copy job submit script

context_dict = {

’experiment_name’: job.experiment_name,

’experiment_count’: experiments_count,

’work_dir’: run_dir,

’simulator_dir’: run_dir,

’netlogo_dir’: os.path.join(netlogo_dir, netlv),

’simulator_src_dir’: run_dir,

’output_dir’: output_dir,

’model_name’: model_name,

’error_dir’: error_dir,

’simulator_name’: simulator_name,

}

if experiments_count < 10:

job_submit_script = get_script(’job-submit.sh’, context_dict)

elif experiments_count < 100:

job_submit_script = get_script(’job-submit0010.sh’, context_dict)
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elif experiments_count < 1000:

job_submit_script = get_script(’job-submit0100.sh’, context_dict)

else:

job_submit_script = get_script(’job-submit1000.sh’, context_dict)

j_s = run_dir+’/job-submit.sh’

copy_script(s, job_submit_script, j_s, xml_dir+’/job-submit.sh’)

s.exec_command(’chmod +x %s’ % j_s)

# copy sge script

if cluster_number == ’*’:

cluster_string = clusg

else:

cluster_string = clus1 + cluster_number + clus2

context_dict = {

’cluster_number’: cluster_string,

’work_dir’: run_dir,

’simulator_dir’: run_dir,

’netlogo_dir’: os.path.join(netlogo_dir, netlv),

’simulator_src_dir’: run_dir,

’output_dir’: output_dir,

’model_name’: model_name,

’error_dir’: error_dir,

’simulator_name’: simulator_name,

}

sge_script = get_script(’sge-script2.sh’, context_dict)

s_s = run_dir+’/sge-script2.sh’

copy_script(s, sge_script, s_s, xml_dir+’/sge-script2.sh’)

s.exec_command(’chmod +x %s’ % s_s)

# copy run simulator script

context_dict = {

’work_dir’: run_dir,

’model_file’: model_filepath,

’experiment_file’: experiment_filepath,

’netlogo_dir’: os.path.join(netlogo_dir, netlv),

’output_dir’: output_dir,

’java_prefs_dir’: java_prefs_dir,

}

run_simulator_script = get_script(’run-simulator.sh’, context_dict)

r_s = netlogo_dir + ’/’ + netlv

r_version = ’run-simulator-%d-%d.sh’ % (job.id, job.latest_run)
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copy_script(s, run_simulator_script, r_s + ’/’ + r_version,

xml_dir+’/run-simulator-sh’)

s.exec_command(’chmod +x %s’ % r_s + ’/’ + r_version)

# copy .nlogo file

copy_file(s, job.file_first.path, model_filepath)

# execute job-submit

s.exec_command(’/bin/bash %s/job-submit.sh >> %s/output.txt’ % (run_dir, run_dir))

s.exec_command(’touch %s/ok’ % run_dir)

job.latest_run += 1

job.save()

s.close()

return ’Successfully ran the job’

except Exception as e:

print(’*** Caught Run Job exception: ’ + str(e.__class__) + ’: ’ + str(e))

def get_script(script_name, context_dict={}):

""" Get an Script & Context """

template = get_template(script_name)

context = Context(context_dict)

return template.render(context)

def copy_file(ssh, local_filepath, remote_filepath):

""" Copy a file """

ftp = ssh.open_sftp()

ftp.put(local_filepath, remote_filepath)

def copy_script(ssh, script, filename, local):

""" Copy a Script """

f = open(local, ’w’)

for line in script.split(’\n’):

f.write(line+’\n’)

f.close()

copy_file(ssh, local, filename)

def stop_job(job, hostname, username, password):

""" Stop a Job """

try:

# login to master node

s = paramiko.SSHClient()
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s.set_missing_host_key_policy(paramiko.AutoAddPolicy())

s.connect(hostname, username=username, password=password)

# send killall command - Warning: V.1.1 this will erase all the user’s jobs.

#Improvement: find the id and delete selectively.

s.exec_command(’qdel -u %s’ % username)

s.close()

return ’Successfully stop job’

except Exception as e:

print(’*** Caught Stop Job exception: ’ + str(e.__class__) + ’: ’ + str(e))
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APPENDIX B

MAIN METHODS FOR AGENT BASED TUMOR MODEL IN PYTHON USING

MESA AND NETWORKX

ABM Model:

class State(Enum):

METASTAISE = 1 # Tumor Cells

Transitory = 2 # daughter cell

Stem = 3 # Normal Cells

Dead = 0# Apoptotic Cells

def number_state(model, state):

return sum([1 for a in model.grid.get_all_cell_contents() if a.state is state])

def number_METASTAISE(model):

return number_state(model, State.METASTAISE)

def number_Stem(model):

return number_state(model, State.Stem)

def number_M(model):

return number_state(model, State.Transitory)

def number_dead(model):

return number_state(model, State.Dead)

class TumorModel(Model):

"""A Tumor model with some number of agents"""

def __init__(self, num_nodes, avg_node_degree, initial_outbreak_size,

Angiogenesis_chance, Mitosis_frequency,

recovery_chance, Angioprevention_chance):

self.num_nodes = num_nodes

prob = avg_node_degree / self.num_nodes

# self.G = nx.erdos_renyi_graph(n=self.num_nodes, p=prob)

self.G = nx.fast_gnp_random_graph(n=self.num_nodes, p=prob, directed=True)
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self.M = nx.to_numpy_matrix(self.G)

self.M = nx.write_adjlist(self.G, "test.adjlist")

self.N = nx.write_graphml(self.G, "test.graphml")

self.C = nx.betweenness_centrality(self.G, k=None, normalized=True, weight=None,

endpoints=False, seed=None)

self.D = nx.density(self.G)

self.grid = NetworkGrid(self.G)

self.schedule = RandomActivation(self)

self.initial_outbreak_size = initial_outbreak_size if initial_outbreak_size <=

num_nodes else num_nodes

self.Angiogenesis_chance = Angiogenesis_chance

self.Mitosis_frequency = Mitosis_frequency

self.recovery_chance = recovery_chance

self.Angioprevention_chance = Angioprevention_chance

self.datacollector = DataCollector({"METASTAISE": number_METASTAISE,

"Transitory": number_M,

"Dead": number_dead,

"Stem": number_Stem})

t_start = time.time()

# Create agents

for i, node in enumerate(self.G.nodes()):

a = TumorAgent(i, self, State.METASTAISE, self.Angiogenesis_chance,

self.Mitosis_frequency,

self.recovery_chance, self.Angioprevention_chance)

self.schedule.add(a)

# Add the agent to the node

self.grid.place_agent(a, node)

t_end = time.time()

print("[ Lapse: {} seconds".format(t_end - t_start))

# Transient some nodes

infected_nodes = random.sample(self.G.nodes(), self.initial_outbreak_size)

for a in self.grid.get_cell_list_contents(infected_nodes):

a.state = State.Transitory

self.running = True

self.datacollector.collect(self)

#np.savetxt(’TV.txt’, self.C, fmt=’%10.5f’, delimiter=’,’, newline=’\n’, header=’’,

footer=’’, comments=’# ’, encoding=None)
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def Stem_Transitory_ratio(self):

try:

return number_state(self, State.Stem) / number_state(self, State.METASTAISE)

except ZeroDivisionError:

return math.inf

def Density_Calculation(self):

try:

return self.D

except ZeroDivisionError:

return math.inf

def step(self):

self.schedule.step()

# collect data

self.datacollector.collect(self)

def run_model(self, n):

print("model run")

for i in range(n):

self.step()

class TumorAgent(Agent):

def __init__(self, unique_id, model, initial_state, Angiogenesis_chance,

Mitosis_frequency,

recovery_chance, Angioprevention_chance):

super().__init__(unique_id, model)

self.state = initial_state

self.Angiogenesis_chance = Angiogenesis_chance

self.Mitosis_frequency = Mitosis_frequency

self.recovery_chance = recovery_chance

self.Angioprevention_chance = Angioprevention_chance

def try_to_infect_neighbors(self):

neighbors_nodes = self.model.grid.get_neighbors(self.pos, include_center=False)

transitory_neighbors = [agent for agent in

self.model.grid.get_cell_list_contents(neighbors_nodes) if

agent.state is State.METASTAISE]

for a in transitory_neighbors:
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if random.random() < self.Angiogenesis_chance:

a.state = State.Stem

else:

a.state = State.Transitory

def try_gain_Quiescent(self):

if random.random() < self.Angioprevention_chance:

self.state = State.Dead

else:

self.state = State.Transitory

self.try_to_infect_neighbors()

def try_kill_cancer(self):

# Try to kill

if random.random() > self.recovery_chance:

# Failed

self.state = State.METASTAISE

self.try_gain_Quiescent()

else:

# Success

self.state = State.Stem

def try_check_situation(self):

if random.random() > self.Mitosis_frequency:

# Checking...

if self.state is State.Transitory:

self.try_kill_cancer()

def step(self):

if self.state is State.Transitory:

self.try_to_infect_neighbors()

self.try_check_situation()
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Main methods for Data and Graph Visualization:

from mesa.visualization.ModularVisualization import ModularServer

from mesa.visualization.UserParam import UserSettableParameter

from mesa.visualization.modules import ChartModule

from mesa.visualization.modules import NetworkModule

from mesa.visualization.modules import TextElement

from .model import TumorModel, State, number_METASTAISE

def network_portrayal(G):

# The model ensures there is always 1 agent per node

def node_color(agent):

if agent.state is State.Transitory:

return ’#008000’

elif agent.state is State.METASTAISE:

return ’#FF0000’

else:

return ’#808080’

def edge_color(agent1, agent2):

if agent1.state is State.Stem or agent2.state is State.Stem:

return ’#000000’

return ’#e8e8e8’

def edge_width(agent1, agent2):

if agent1.state is State.Stem or agent2.state is State.Stem:

return 3

return 2

portrayal = dict()

portrayal[’nodes’] = [{’id’: n_id,

’agent_id’: n[’agent’][0].unique_id,

’size’: 2,

’color’: node_color(n[’agent’][0]),

}

for n_id, n in G.nodes(data=True)]

portrayal[’edges’] = [{’id’: i,

’source’: source,

’target’: target,
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’color’: edge_color(G.node[source][’agent’][0],

G.node[target][’agent’][0]),

’width’: edge_width(G.node[source][’agent’][0],

G.node[target][’agent’][0]),

}

for i, (source, target, _) in enumerate(G.edges(data=True))]

return portrayal

network = NetworkModule(network_portrayal, 800, 800, library=’d3’)

chart = ChartModule([{’Label’: ’METASTAISE’, ’Color’: ’#FF0000’},

{’Label’: ’Transitory Cell’, ’Color’: ’#008000’},

{’Label’: ’Dead’, ’Color’: ’#808080’}])

class RatioElement(TextElement):

def render(self, model):

ratio = model.Stem_Transitory_ratio()

ratio_text = ’&infin;’ if ratio is math.inf else ’{0:.2f}’.format(ratio)

return ’Stem Cell/ Transitory Cells Ratio: ’ + ratio_text

class METASTAISERemainingElement(TextElement):

def render(self, model):

infected = number_METASTAISE(model)

return ’Metastatic remain: ’ + str(infected)

class Density(TextElement):

def render(self, model):

Density = model.Density_Calculation()

return ’Density: ’ + str(Density)

text = RatioElement(), METASTAISERemainingElement(), Density()

n_slider = UserSettableParameter(’slider’, "Number", 100, 2, 200, 1)

model_params = {

’num_nodes’: UserSettableParameter(’slider’, ’Number of agents’, 10, 10, 100000, 1,

description=’Choose how many agents to include in the

model’),

’avg_node_degree’: UserSettableParameter(’slider’, ’Avg Node Degree’, 3, 3, 8, 1,

description=’Avg Node Degree’),

’initial_outbreak_size’: UserSettableParameter(’slider’, ’Initial Tumor Size’, 1, 1,

3200, 1,

122



description=’Initial Tumor Size’),

’Angiogenesis_chance’: UserSettableParameter(’slider’, ’Angiogenesis Chance’, 0.4,

0.0, 1.0, 0.1,

description=’Probability that vascular neighbor will

be infected’),

’Mitosis_frequency’: UserSettableParameter(’slider’, ’Tumor propagation Frequency’,

0.4, 0.0, 1.0, 0.1,

description=’Frequency the nodes check whether they

are infected ’

),

’recovery_chance’: UserSettableParameter(’slider’, ’Recovery Chance’, 0.3, 0.0, 1.0,

0.1,

description=’Probability that the tumor will be

removed’),

’Angioprevention_chance’: UserSettableParameter(’slider’, ’ Quiescent Chance’, 0.5,

0.0, 1.0, 0.1,

description=’Probability that a recovered agent

will become ’

’dead in the future’),

}

server = ModularServer(TumorModel, [network, chart, *text],’Tumor Model’, model_params)

server.port = 8521
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Main methods for Power-Law Distribution and Clustering algorithm

self.GR = nx.read_graphml("GrowPatterm.graphml")

self.num_nodes = nx.number_of_nodes(self.GR)

self.prob = avg_node_degree / self.num_nodes

self.G = nx.gnr_graph(self.redirected_nodes, self.prob, create_using=self.GR,

seed=None)

self.G = nx.powerlaw_cluster_graph(n=self.num_nodes, m=2, p=self.prob, seed=None)

#self.G = nx.random_powerlaw_tree(n=self.num_nodes, gamma=3, seed=None, tries=10)

self.GP = nx.write_graphml(self.G, "Growcluster.graphml")

self.D = nx.density(self.G)

self.O = nx.write_graphml(self.G,"Output.graphml", encoding=’utf-8’,

prettyprint=True)

self.M = nx.to_numpy_matrix(self.G)

self.C = dict(nx.betweenness_centrality(self.G, k=None, normalized=True,

weight=None, endpoints=False, seed=None))

np.savetxt(’Matrix.out’, self.M, fmt=’%s’)

w = csv.writer(open("Dictionary6.1.csv", "w"))

for key, val in dict.items(self.C):

w.writerow([key, val])

Part2: Discovery of Sub-Graph Centrality through Egocentric Network Analysis

self.G = nx.read_graphml("Growcluster.graphml")

self.E = nx.ego_graph(self.G, n="3", radius=1, center=True, undirected=False,

distance=None)

self.SubG = dict(nx.subgraph_centrality(self.E))

w = csv.writer(open("Subgraphdic.csv", "w"))

for key, val in dict.items(self.SubG):

w.writerow([key, val])
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