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SUMMARY 

 

 

The relationship between phenotype and genotypic information is considerably intricate and 

complex. Machine Learning (ML) methods have been successfully used for phenotype 

prediction in a great range of problems within genetics and genomics. However, biological 

data is usually structured and belongs to ‘nonstandard’ data types, which can pose a 

challenge to most ML methods. Among them, kernel methods bring along a very versatile 

approach to handle different types of data and problems through a family of functions called 

kernels. 

The main goal of this PhD thesis is the development and evaluation of specific kernel 

approaches for complex phenotype prediction, focusing on biological problems with 

structured data types or study designs. 

In the first study, we predict drug resistance from HIV mutated protein sequences (protease, 

reverse transcriptase and integrase). We propose two categorical kernel functions (Overlap 

and Jaccard) that take into account HIV data particularities, such as allele mixtures. The 

proposed kernels are coupled with Support Vector Machines (SVM) and compared against 

two well-known standard kernel functions (Linear and RBF) and two nonkernel methods: 

Random Forests (RF) and the Multilayer Perceptron neural network. We also include a 

relative weight into the aforementioned kernels, representing the importance of each protein 

position regarding drug resistance. Our results show that taking into account both the 

categorical nature of data and the presence of mixtures consistently delivers better 

predictions. The weighting effect is higher in reverse transcriptase and integrase inhibitors, 

which may be related to the different mutational patterns in the viral enzymes regarding drug 

resistance. 

Next, we extend the previous study to consider that protein positions may be not 

independent. Mutated sequences are modeled as graphs, with edges weighted by the 

Euclidean distance between residues, as obtained from crystal three-dimensional structures. 

A kernel for graphs (the exponential random walk kernel) that integrates the previous 

Overlap and Jaccard kernels is then computed. Despite the potential advantages of this kernel 
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for graphs, an improvement on predictive ability as compared to the kernels of the first study 

is not observed. 

In the third study, we propose a kernel framework to unify unsupervised and supervised 

microbiome analysis. To do so, we use the same kernel matrix to perform phenotype 

prediction via SVM and visualization via kernel Principal Components Analysis (kPCA). We 

define two kernels for compositional data (Aitchison-RBF and compositional linear) and 

discuss the transformation of beta-diversity measures into kernels. The compositional linear 

kernel also allows the retrieval of taxa importances (microbial signatures) from the SVM 

model. Spatial and time-structured datasets are handled with Multiple Kernel Learning and 

kernels for time series, respectively. We illustrate the kernel framework with three datasets: 

a single point soil dataset, a human dataset with a spatial component, and a previously 

unpublished longitudinal dataset concerning pig production. Analyses across the three case 

studies include a comparison with the original reports (for the two former datasets), as well 

as contrast with results from RF. Our kernel framework does not only allow a holistic view of 

data but also gives good results in each learning area. In unsupervised analyses, the visual 

main patterns detected in the original reports are conserved in kPCA. In supervised analyses 

SVM has better (or, in some cases, equivalent) performance than RF, while microbial 

signatures are consistent with the original studies and previous literature. 

 



 

RESUM 

 

 

La relació entre fenotip i informació genotípica és considerablement intricada i complexa. Els 

mètodes d'aprenentatge automàtic s'han utilitzat amb èxit per a la predicció de fenotips en 

un gran ventall de problemes dins de la genètica i la genòmica. Tanmateix, les dades 

biològiques sovent estan estructurades i són de tipus "no estàndard", el que pot suposar un 

repte per a la majoria de mètodes d’aprenentatge automàtic. Entre aquestos, els mètodes 

kernel proporcionen un enfocament molt versàtil per manejar diferents tipus de dades i 

problemes mitjançant la utilització d’una família de funcions anomenades de kernel. 

L’objectiu principal d’aquesta tesi doctoral és el desenvolupament i l’avaluació d’estratègies 

de kernel específiques per a la predicció de fenotips complexos, especialment en problemes 

biològics amb dades o dissenys experimentals de tipus estructurat. 

En el primer estudi, utilitzam seqüències de proteasa, transcriptasa inversa i integrasa per 

predir la resistència del VIH a fàrmacs antiretrovirals. Proposam dos kernels categòrics 

(Overlap i Jaccard) que tenen en compte les particularitats de les dades de VIH, com per 

exemple les barreges d’al·lels. Els kernels proposats es combinen amb Support Vector 

Machines (SVM) i es comparen amb dos kernels estàndard (Linear i RBF) i dos mètodes que 

no són de kernel: els boscos aleatoris (RF) i un tipus de xarxa neuronal (el perceptró 

multicapa). També incloem en els kernels la importància relativa de cada posició de la 

proteïna pel que fa a la resistència. Els resultats mostren que tenir en compte la naturalesa 

categòrica de les dades i la presència de barreges millora sistemàticament la predicció. 

L’efecte de ponderar les posicions per la seua importància és més gran en la transcriptasa 

inversa i en la integrasa, el que podria estar relacionat amb les diferències que hi ha entre els 

tres enzims pel que fa als patrons de mutació per adquirir resistència a fàrmacs 

antiretrovirals. 

A continuació, ampliam l’estudi anterior per considerar la possibilitat de no-independència 

entre les posicions de la proteïna. Representam les proteïnes com grafs i ponderam cada 

aresta entre dos residus per la seua distància euclidiana, calculada a partir de dades de 

cristal·lografia de rajos X. A continuació, hi aplicam un kernel per a grafs (el random walk 
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exponential kernel) que integra els kernels Overlap i Jaccard. A pesar dels avantatges 

potencials d’aquesta estratègia, no aconseguim millorar els resultats obtinguts en la primera 

part. 

En el tercer estudi, proposam un kernel framework per unificar els anàlisis supervisats i no 

supervisats en el camp del microbioma. Aprofitam la mateixa matriu de kernel per predicció 

mitjançant SVM i visualització mitjançant anàlisi de components principals (kPCA). Discutim 

com transformar mesures de beta-diversitat en kernels, i definim dos kernels per a dades 

composicionals (Aitchison-RBF i compositional lineal). Aquest darrer kernel també permet 

obtenir les importàncies dels tàxons respecte del fenotip predit (signatures microbianes). Per 

a les dades amb estructuració espacial i temporal utilitzam Multiple Kernel Learning i kernels 

per a sèries temporals, respectivament. El framework s’il·lustra amb tres bases de dades: la 

primera conté mostres de sòl, la segona mostres humanes amb una component espacial i la 

tercera, no publicada fins ara,  dades longitudinals de porcs. Totes les anàlisis es contrasten 

amb els estudis originals (en els dos primers casos) i també amb resultats de RF. El nostre 

kernel framework no només permet una visió global de les dades, sinó que també dóna bons 

resultats a cada àrea d’aprenentatge. En les anàlisis no supervisades, els patrons visuals 

detectats en estudis previs es conserven a la kPCA. En anàlisis supervisades, el SVM té un 

rendiment superior (o, al menys, equivalent) al dels RF, mentre que les signatures 

microbianes són coherents amb els estudis originals i la literatura prèvia. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

 

 

The inference of phenotypic traits from genotypic data has the utmost importance in biology. 

The present chapter introduces several themes that are at the core of this thesis: the 

complexity of the genotype-phenotype map (section 1.1), how this has spurred the 

generation of huge amounts (both in diversity and in volume) of data, and the current 

application of machine learning as a way to analyze them (sections 1.2 and 1.4). We overview 

some typical kinds of data and structured study designs (sections 1.2 and 1.3) in the field, and 

summarize the machine learning basics that underlie this thesis (section 1.5), including widely 

used methods like Decision Trees, Random Forests and Artificial Neural Networks (section 

1.6). Finally, we outline some of the challenges faced by most machine learning methods 

when applied to current genetic and genomic data. 

1.1 Phenotype-genotype relationship 

One of the most striking traits of the living beings is their great variability. Variation is not 

limited to the inter-individual level: individuals themselves also undergo dramatic physical 

changes with time, from embryo to adult and old age form. 

With the term phenotype we refer to the observable traits of an organism (Orgogozo et al., 

2015). This covers not only its morphological traits, but also its physiology, developmental 

processes and even behavior. Thus, the scope of phenotype concept is not circumscribed 

strictly to the “straightforward” and “external” appearance of the organism: it also includes 
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internal structures or molecules (e.g. blood groups), which are not immediately visible to the 

human eye but which can be observed using different techniques. 

The study of the phenotype variation has not been limited to cataloging living organisms 

according to their traits (as is done, for instance, in taxonomy). The objective is also looking 

for the underlying causes that make these differences to arise in the first place (Ahnert, 

2017). In the 19th century, Mendel's classical studies in pea plants pointed towards the 

existence of a hereditary information (or genetic information) that is passed from progenitors 

to their offspring, and which is expressed in the form of phenotypes. Three basic rules that 

explain both inheritance mechanisms and trait expression were summarized in the Mendel’s 

laws. Thus, the concept of phenotype was opposed to that of genotype, which corresponds to 

the genetic makeup inherited by the organisms, and whose changes may be mirrored by 

phenotypic changes (Orgogozo et al., 2015). The basic unit of genetic information was called 

gene, while the different variants of the same gene were referred as alleles. 

The link from genotype to phenotype has the utmost importance in biology. For instance, the 

identification of the genetic basis of a disease may allow its diagnosis, a better understanding 

of its molecular mechanisms, the design of specific drugs to target it and/or personalized 

therapies based on the patient genetic background. In agriculture and livestock production, it 

is useful to improve traits with economic interest, e.g. using breeding programs. However, in 

most cases the map from genotype to phenotype is considerably intricate and complex. One-

to-one deterministic relationships, in which a single genetic change is both necessary and 

sufficient to change a phenotypic trait (as in certain rare pathologies like sickle cell disease) 

constitute a minority of cases (Chial, 2008). First, because the majority of phenotypic traits 

are polygenic –i.e. they are influenced by multiple genes, which may interact. Second, 

because the genetic information is not the only factor determining phenotype: so is the 

environment. Therefore, complex phenotypes are produced as the interplay of multiple genes 

and environmental variables (Orgogozo et al., 2015). Last, because genes need being placed 

in a cell, and surrounded with certain molecular and physicochemical environments, to be 

expressed. Nongenetic but heritable cell material, which may control genic expression 

(epigenetics), and/or stochastic events during early stages of the development of an organism 

can determine some phenotypic aspects (West-Eberhard, 2003). 

Large-scale DNA molecular techniques have caused a progressive drift from classical genetics 

(focused on studying individual genes and their effect in a given phenotype) to current 

genomics (the study of all genes of a given organism as a whole, that is, its genome). In 

addition, the global study of genes is not limited to a single individual, but it can be extended 
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to an environment; this is the case of metagenomics, where all microbial genomes of a given 

sample (e.g. a soil or water sample) are analyzed together. 

 

1.2 Data types in genetics and genomics 

In all living organisms, as well as some viruses, genetic information is physically stored in DNA 

molecules. In the rest of viruses this role is played by RNA, although in some of them (e.g. the 

Human Immunodeficiency Virus or HIV) DNA and RNA are sequentially used at different 

points of their replication cycle. The central dogma of molecular biology states that the 

information flow within an organism is from DNA to RNA (transcription) and from a specific 

class of RNA (mRNA, shortened form of messenger RNA) to proteins (translation). In the 

particular case of group VI and VII viruses (e.g. HIV), reverse transcription from RNA to DNA is 

also possible. Reproduction implies the copy of the whole genome (be it DNA or RNA) by the 

cell machinery. 

Although DNA (and, secondarily, RNA) is the basic object of study in genetics and genomics, 

the aforementioned complexity of the genotype-phenotype map has widened the lens to 

include the analysis of higher-level molecular data and processes. For instance, transcriptomic 

technologies allow studying the ensemble of all RNA transcripts of a cell or tissue, protemics 

the same with the proteome, and metabolomics with the metabolites. Overall, this has 

allowed focusing on different aspects of cells, tissues and organisms (Gligorijević & Pržulj, 

2015). When dealing with a complex phenotype, including these intermediate layers 

decreases the gap between the trait and the basic genotype information. This hierarchical 

and multi-level analysis relies on the production of vast amounts of different types of 

biological data, which are not limited to ‘omics’. Without intending to present a complete list, 

some examples are given in Table 1.1. 

In order to be stored, curated and analyzed, all this biological data generated by different 

techniques need first be properly represented. Some very general data representations 

typical of the genetics and genomics field are discussed in the following subsections. 

1.2.1 Sequences 

DNA, RNA and proteins are long linear biopolymers. Their basic units (or monomers) are 

nucleotides in the case of DNA and RNA, and amino acids in the case of proteins. Thus, a 

straightforward way of representing DNA, RNA or protein chains is as sequences, i.e. vectors 

of characters wherein each monomer is represented as a different letter (see Figure 1.1). 
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Thus, there is a set of four letters for DNA bases (A, C, G and T), four for RNA bases (A, C, G 

and U) and twenty for the canonical amino acids. 

Table 1.1 Common data types in genomics and genetics. Adapted from Schölkopf et al. (2004). 

Sequence data is obtained through a highly automated process called sequencing. The first 

DNA sequencers were based on the Sanger sequencing developed in the 70’s. This technique 

allows sequence reads of >500 nucleotides and is adequate for studying single genes or small 

genomic regions. However, it is very slow when dealing with whole genomes. During the first 

sequencing of the human genome (which started in 1990 and ended in 2003), it was evident 

the necessity of new large-scale, high-throughput and low cost (Collins et al., 2003) 

technologies. The advent of next-generation sequencing (NGS) platforms in 2005 allowed 

massive parallel sequencing of whole genomes, while the costs dropped dramatically 

Data type Details Representation 

Sequences 
DNA Genes and genomes String over {A, C, G, T} 
Expressed sequence tags, full-length 
mRNAs and other classes of RNAs 

Gene transcriptions String over {A, C, G, U} 

Proteins  String over amino acids 
Structures 
Metabolites Atomic positions and bonds Labeled graph 
Macromolecules e.g. DNA, RNAs, proteins Labeled graph 
Interactions 
Proteins x Metabolites  Graphs or real vectors 

(binding energies) 
Proteins x DNA  Graphs 
Proteins x Proteins  Graphs 
Expression / Localization data 
Gene expression Abundance of mRNAs Count vector or matrix 
Protein expression Protein abundance Count vector or matrix 
Metabolite expression Concentration of metabolites Count vector or matrix 
Protein localization Compartment Categorical 

Presence/absence 
Cell / Organism data 
Genotype Single Nucleotide 

Polymorphisms 
Vector of {A, C, G, T} 

Phenotype Observable traits Vector of real and/or 
categorical attributes 

Clinical data Disease presence, blood 
analysis, etc. 

Vector of real and/or 
categorical attributes 

Environment Temperature, pH, etc. Vector of real and/or 
categorical attributes 

Population data 
Linkage disequilibrium LOD scores Real numbers 
Pedigrees  Tree-like graphs 
Phylogenies  Tree-like graphs 
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(National Human Genome Research Institute [NHGRI], n.d.). Figure 1.2 summarizes the 

differences between the two approaches. 

 
Figure 1.1. DNA, RNA and protein sequences. Figure taken from Cao and Xiong (2014). License: CC BY 
3.0. 

RNA and proteins can also be sequenced. However, the process typically relies at some point 

on DNA sequencing. In the case of RNA, by using reverse transcription that gives 

complementary DNA (cDNA) strands. Protein sequences can be determined with Edman 

degradation or mass spectroscopy (Gundry et al., 2010). However, in most cases the 

knowledge of both the genetic code that governs nucleic acids  protein translation and the 

postranscriptional edition processes endured by mRNA (e.g. splicing) are exploited to save 

costs. For instance, >95% of the protein sequences stored in UniProtKB database come from 

automatic translations of coding regions obtained by DNA sequencing  (UniProt, n.d.). 

Sequences are probably the most classic data type in genetics and genomics. Detection of 

differences among sequences (called mutations, polymorphisms or alleles, depending on the 

context) is fundamental to trace the genetic basis of phenotypes. However, analysis of 

sequences present some challenges. First, their nature as categorical (not numeric) vectors. 

Second, because mutations may affect single monomers, as in the case of single nucleotide 

polymorphisms, but also whole regions of the sequence (e.g. insertions, deletions, inversions, 

copy number variants...). Furthermore, polymorphic positions within the same sequence may 

be in linkage disequilibrium (LD) (i.e. their alleles are non-randomly associated) by the mere 

fact of being physically placed in the same DNA biomolecule. The recombination of 

homologous DNA sequences that occurs naturally in cells breaks down LD and prevents the 

association to be absolute. Thus, linkage varies with distance: the closer two positions are in a 

sequence, the higher the disequilibrium between them, while very distant positions tend to 

not be in LD at all. 

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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Figure 1.2. Sanger sequencing (left) versus NGS sequencing (right). Taken from Price et al. (2018). 
License: CC BY-NC 4.0. 

1.2.2 Counts 

Count data is aimed to quantify the abundance of some trait or analyzed variable. Formally, it 

consists of non-negative integer values. This is a widespread data type in biological science. 

For instance, it is usually encountered in ecology, e.g.: number of species in a given area, 

number of individuals in each species, number of offspring, etc. (St-Pierre et al., 2018). The 

development of NGS technologies also brought this type of quantification analyses to ‘omics’ 

data. As stated in subsection 1.2.1, NGS were primarily aimed to sequencing applications as 

genome assembly and variant discovery. However, NGS can be used as well to quantify the 

abundance of previously known (and well-assembled, annotated, etc.) sequences in a given 

https://creativecommons.org/licenses/by-nc/4.0/
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cell, tissue or sample (Holmes & Huber, 2018; Quinn et al., 2018). Examples are RNA-seq or 

microarrays for gene expression profiling (Nguyen et al., 2016). Metagenomics (which rely 

heavily on NGS) are not focused only on detecting and solving the taxonomic classification of 

the microorganisms present in a given ecosystem from their DNA sequence, but also on the 

obtention of their abundances. 

Count data present several challenges and is not always easy to handle with traditional 

statistical analyses (St-Pierre et al., 2018). It has a nonsymmetric distribution, a potentially 

large dynamic range (from zero up to millions) (Holmes & Huber, 2018), and there exist upper 

and lower bounds on detection caused, for instance, by the instrument resolution. In some 

cases, like most metagenomic studies, this data is notably prone to zeros (sparsity) within the 

“count matrix” (Quinn et al., 2018), which may not reflect an actual absence, but a quantity 

below the detection limit. 

1.2.3 Graphs 

The chemical and biological functions of (bio)molecules are strongly dependent on their 

three-dimensional structure. That is the case of proteins, which perform essential catalytic 

and structural functions in all living organisms. For instance, enzymes (proteins specialized in 

catalyzing chemical reactions) need to be properly folded to perform their activity in optimal 

conditions. The structural arrangement of proteins and other biomolecules can be 

represented using graphs. Apart of three-dimensional relationships, graphs can model other 

relationships like pathways or networks (e.g. metabolic and signaling pathways, gene 

regulatory networks) or phylogenetic trees (Gligorijević & Pržulj, 2015; Wooley et al., 2005). 

Graphs consist of a set of objects, called vertices or nodes, such that some of these nodes are 

pairwise related, and that relationship is represented by an edge. Graphs can be represented 

in a diagram form or as an adjacency matrix (Figure 1.3). Each row (and column) of the 

adjacency matrix correspond to a node, so the elements of the matrix indicate the existence 

(and in some cases, additional information like the weight) of edges linking each pair of 

nodes. 

 

1.3 Spatial and temporal structured datasets 

Living organisms are very dynamic entities, so part of the phenotypic variation occurs over 

time and space. For this reason some studies are not limited to single-point data; this is 

especially true if the objects of analysis are systems or processes, which are not well grasped 
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with a partial snapshot but with a complete follow-up in its spatial and/or temporal 

dimension. A typical challenge of this kind of data is autocorrelation, i.e. the presence of 

related samples that structure the dataset in a particular way. For instance, repeated 

measures of the same subjects over time are dependent on previous measures (Coenen et al., 

2020), while in the spatial case there may be more similarities between closer samples than 

between distant ones. 

 

Figure 1.3. Graphs represented as diagrams (above) or as adjacency matrices (below). Taken from 
EMBL-EBI webpage (https://www.ebi.ac.uk/training/online/course/network-analysis-protein-
interaction-data-introduction/). License: CC BY-SA 4.0. 

1.3.1 Spatial dimension 

The relevance of spatial axis as a dimension that structure life is present in every biological 

level and resolution. The clearest example is in ecological studies, with the variation of 

biological populations along the geographic space. For instance, the composition of microbial 

communities varies across soils in a continental scale (Lauber et al., 2009). There also exist 

internal spatial structures within a given ecosystem, with different species occupying unique 

niches (Berg et al., 2020). At the intra-individual level, living organisms can be viewed as 

multi-compartment systems able to decrease their local entropy (Davies et al., 2013). For 

instance, cells (especially eukaryotic cells) are strongly structured entities, in which different 

parts have distinct functions. Returning to the general data types of section 1.2, genomic data 

in pluricellular organisms is expected to be constant across tissues, but this is not the case of 

proteomic, transcriptomic or metabolomic data. In fact, a lot of effort has been devoted to 

search for differential expression profiles in different tissues (Li et al., 2018). In metagenomic 

https://www.ebi.ac.uk/training/online/course/network-analysis-protein-interaction-data-introduction/
https://www.ebi.ac.uk/training/online/course/network-analysis-protein-interaction-data-introduction/
https://creativecommons.org/licenses/by-sa/4.0/
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studies, it has also been observed that microbial communities vary across different parts of 

the body within the same individual (Charlson et al., 2010; Costello et al., 2009). Then, 

analogously to the case of the multi-level, vertical integration of different ‘omic’ data, the 

combination of spatial-structured data allows a more unitary and holistic view of living 

organisms as complex systems. Formally, data containing different spatial samples of the 

same individuals can be represented as a collection or list of datasets sharing the same data 

type. 

1.3.2 Temporal dimension 

A time series consist in an ordered set of repeated samples indexed by time. When the 

research design involves the follow-up of several individuals, the resulting data is referred as 

longitudinal. A natural way to summarize time series is through mathematical functions. 

Longitudinal analyses have a great relevance in health research. For instance, the purpose of 

this kind of studies may be inferring a given trait (e.g. the outcome of a certain disease) from 

the evolution over time of the subjects. This study design is expected to be more informative 

than focusing in a single time point. 

The Berkeley Growth Dataset (Tuddenham & Snyder, 1954) gives a good illustration of this 

approach. This dataset follows the physical growth of 54 girls and 39 boys from the ages 1 to 

18 (Figure 1.4, left). It can be observed that, for most of the follow-up, the height distribution 

in boys and girls is similar. Age 18 is the time point with most marked difference between the 

two groups (mean heights: 180 vs. 166 cm). However, even in the 18-years-old, both 

distributions are not completely set apart, and have an overlap area of 0.29 (Figure 1.4, right). 

This is to be expected, as height is a multifactorial trait that is not only polygenic –it involves 

more than 400 loci according to Wood et al. (2014)– but, also, is affected by environmental 

factors as poor nutrition (Roser et al., 2013). This illustrates that, even at the time point of the 

dataset when the two groups have more distant distributions, height alone is an imperfect 

predictor of sex. 

Let’s then focus not on height, but on height evolution over time in girls and boys. Specifically, 

we will focus on the puberty growth spurt (see Figure 1.5), as is the time when more striking 

differences between the two groups arise. Typical puberty in girls is dominated by the sex 

hormone estradiol, which accelerates both the growth spurt and the closure of epiphyseal 

plates, thus stopping the growth (Weise et al., 2001). Estradiol is produced by ovaries but also 

in low levels as a part of testosterone metabolism, and in this case the physical growth is 

slowed and prolonged. This explains why epiphyseal closure is reported to happen between 
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ages 12-16 for girls and 14-19 for boys (Crowder & Austin, 2005). In this case, as illustrated in 

Figure 1.5 and Usage – Longitudinal data (‘kernInt’ vignette, Annexes), taking into account the 

whole time series is more informative than taking a single time point, even if it is that of 

maximum separation between the groups. 

 

Figure 1.4. Left: height versus age of 54 girls and 39 boys (Berkeley Growth Dataset). Right: height 
distribution for girls and boys at age 18 (above) and age 11 (below). 

 

Figure 1.5. Growth profile during puberty for the boys (left) and girls (right) of the Berkeley Dataset. 
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1.4 The big data paradigm in biology 

The advances that led to NGS and ‘omics’ technologies have had a profound impact in 

modern molecular biology. The classical genetics approach was insufficient to tackle the 

inherent complexity of the genotype-phenotype relationship, thus justifying genomic studies 

that could get a better grasp of complex diseases and phenotypes. Nowadays, large volumes 

of big and heterogeneous datasets, with a high variety of data types and hierarchical layers 

(i.e. big data), are produced routinely. However, these datasets may be difficult to analyze 

with traditional, one-variable-at-a-time methods (Yip et al., 2013). Thus, big data revolution 

not only has turned biology into a data-intensive enterprise: it also has affected deeply the 

approaches to research itself. 

Traditional biology research is primarily directed by the hypothesis-driven scientific method. 

This implies adopting a deductive approach: first formulate a hypothesis, then test it with an 

experiment, analyze the results and finally accept or reject the hypothesis (Mazzocchi, 2015). 

In contrast, data-driven research is inductive. The aim is finding patterns or hidden structures 

in data examples that may led to generalize on other samples drawn from the same source 

(Shawe-Taylor & Cristianini, 2004). In biology, the Human Genome Project was a historical 

turning point that spurred a more data-driven way of thinking research (Collins et al., 2003). 

Although the over-reliance in this paradigm has been criticized (Mazzocchi, 2015), the fact is 

that data-driven methodologies are becoming increasingly attractive to deal with the massive 

amount of NGS and ‘omics’ datasets. An example of data-driven approach is machine learning 

(ML). ML allows to automatically identify patterns in data, which is highly useful when the 

problem at hand is novel or a very complex one, when the expert knowledge is incomplete or 

scarce, or when the amount of available data is simply too large to be handled. As in this 

situation ML can be the best option or even the only one feasible, it is not surprising that its 

popularity had risen in the last years. The following sections provide a primer about ML and 

its application to biological sciences. 

 

1.5 Machine Learning primer  

In a broad sense, an algorithm can be defined as the steps that should be followed to solve a 

problem or performing a task. More precisely, an algorithm transforms a given input to the 

desired output through a finite sequence of unambiguous instructions (Alpaydın, 2010). An 

essential part of computer science involves designing and implementing algorithms. Design 
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and implementation tasks are usually carried out by a programmer, while the computer role 

is running the program, thus obtaining the output from the given input in an automatic way. 

However, there exists a subset of problems for which designing an algorithm is a very 

complex or even impossible task. An example is face recognition. Most people recognize faces 

effortlessly but, at the same time, they cannot define or instruct others how to do so. In other 

cases, an algorithm may be effectively defined, but is too simple to grasp the intricacies of the 

problem. Machine learning field is focused in providing tools to solve this kind of challenges. 

When a human-defined algorithm is either difficult, insufficient or impossible to achieve, we 

can let the computer to automatically generate it from available data examples. The key idea 

is that the computer learns underlying patterns from data that are useful for solving the 

problem at hand. Human intervention is no longer dictating explicit instructions to do so, but 

to assist the learning process. In this thesis, the human-selected and designed algorithm that 

guides learning is called a ML method (and sometimes simply method or algorithm or even 

machine). Instead, a model always refers to the automatically learned algorithm whose aim is 

solving a particular problem. 

Depending on the final goal and how the learning is performed, ML field is divided in several 

areas: 

1.5.1 Supervised learning 

In supervised learning, we have a set of  data objects  such that each object is 

associated or paired to a label . The objects consist of features or predictor 

variables, while the label is also called the target variable. The main objective is building a 

predictive model, i.e. a model that from the feature variables (the input) is able to return the 

right label as output. For instance, one might want to use genomic data  for predicting a 

certain phenotype . To do so, it is necessary to find a map . In turn, obtaining this 

map (i.e. the model) from example data is the desired result of using the ML method (Bishop, 

2006). 

In supervised learning, the most important thing about a model is its generalization power. A 

model is said to generalize when is able to correctly label new data examples extracted from 

the same source (Alpaydın, 2010). Then, not only is it important to build a model, but also 

evaluating how good it is at predicting previously unseen data. To do so, the learning process 

typically consists in splitting the original dataset in two parts: the training set and the test set. 

The training set is the fraction of data used to build the model, while the test set is the 

fraction of data reserved to evaluate its prediction performance. In a first step, a model is 

learned using the knowledge extracted from the features-target pairs of the training set. 
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Methods typically do so by minimizing the misfit, measured by a loss (error) function, 

between the original labels of the training data and the models’ labels. On a second step, the 

feature variables of test data are used as input to the model, while the real labels are 

withheld. The generalization ability is assessed afterwards by comparing the model’s 

predicted labels with the observed (real) labels, and computing the prediction performance. 

However, for the results to be reliable, the training and the test set should be completely 

independent. 

For a model, there exist two ways to “wrongly” grasp the underlying nature of a problem. If 

the model is not complex enough to capture the relationship between features and the target 

variable (for instance, a linear regression is used to model a nonlinear relationship), we have a 

poor performance caused by underfitting. Instead, overfitting appears when the model is too 

complex and takes the noise of the training set for meaningful variation. Overfitted models do 

not generalize well: they perform much better in the training set (in some way, they 

memorize it) than in the test set. Both concepts are related to the bias/variance trade-off. 

There is bias if we observe a systematic error when training the method with different 

example data. That means that the model is missing relevant relationships between the 

features and the target, which is related to underfitting. Instead, there is variance if 

prediction is highly changing in the different training sets used to generate the model. 

Variance is akin to overfitting, as it indicates too much dependence on the specific training 

data. The optimal solution is the one with best balance between bias and variance, and that 

does not fall in underfitting, nor in overfitting. 

Supervised methods typically provide a way to assist the learning process and avoid 

under/overfitting: an example is the tuning of hyperparameters. In ML, hyperparameters are 

parameters whose value is not inferred during training (like normal parameters) but that 

should be provided externally. Hyperparameters introduce flexibility in the modeling process. 

Regularization is another technique that is often used in supervised methods to control 

overfitting. Regularization consists in adding a penalty term to the error function, which 

hinders the model’s coefficients to become excessively large and controls its effective 

complexity. Within the new error function, the weight of this regularization term (with 

respect to the error term) is governed by a regularization hyperparameter. Either way, the 

values of the hyperparameters may be fixed a priori or by selecting the best one from a set of 

candidate values. In the latter case, a validation step should be added between training and 

test. During this stage, different models (say, with different hyperparameter values) may be 

compared, so the best one is selected. The original dataset may be split in training, validation 

and test sets or, if data is scarce, a related technique called cross-validation can be used 
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instead over the training set (see Figure 1.6). The (cross)validation results assess how the 

models will generalize when faced to an independent test set. 

 

Figure 1.6. K cross-validation. K itself is a hyperparameter whose value has to be decided.  

There exist different types of supervised problems. Depending on the nature of the target (or 

targets) y, the two main types are: 

 Classification: In this case, the target is categorical – i.e. it can take as value a finite 

number of discrete categories (Figure 1.7, left). 

 Regression: The target is continuous (Figure 1.7, right). 

Some supervised methods are specialized either on classification or on regression, while 

others may be used for both (Bishop, 2006). 

 

Figure 1.7. Visual example of classification (left) and regression (right) models. 
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1.5.2 Unsupervised learning 

Unlike supervised learning, data objects in unsupervised learning are unlabeled. Therefore, 

there is not a ‘correct’ solution known beforehand. The objective of unsupervised learning is 

instead finding patterns and hidden associations that structure the dataset. 

There exist different types and applications of unsupervised learning. Some of the most 

widely used are summarized next: 

 Clustering: The aim is finding groups (or clusters) in data (Alpaydın, 2010). Thus, 

objects belonging to the same cluster are expected to be more similar to each other 

that to the remaining objects. 

 Outlier / novelty detection: The approach is in some sense opposite to clustering. 

Here, the main goal is the identification of “rare” objects, i.e. objects that differ from 

the rest and cannot be easily placed in any group. 

 Ordination: Ordination techniques intent to reduce the complexity of a dataset. If 

some degree of redundancy across the original variables exists, they can be 

rearranged and combined to derive new variables (feature extraction). This is 

especially useful to “compress” datasets with a large number of variables (i.e. high-

dimensional). Another utility is visualization: the compression of the original features 

to two or three variables enables data projection to  or  and its graphical 

visualization, as in Principal Component Analysis (PCA). 

1.5.3 Other types of learning 

There exist other types of learning that cannot be classified as unsupervised or supervised. 

For instance, semi-supervised learning combines the two previous approaches. Here, the 

dataset consist of some labeled data instances together with a large amount of unlabeled 

data. The basic idea is to apply an unsupervised approach to detect which objects are similar, 

and then using the labeled examples to assign labels to the rest of data. Semi-supervised 

learning is especially useful when acquiring large volumes of unlabeled data is easy and/or 

cheap, whilst the process of labeling is comparatively expensive. Semi-supervised learning, for 

instance, has been applied to drug-protein interaction prediction (Xia et al., 2010). 

In the case of reinforcement learning, the learning process is aimed to find an optimal 

sequence of actions for reaching a goal. Thus, the method is not given output examples, but 

has to discover the best sequence by trial and error (Bishop, 2006). Typical application 

examples are games like backgammon or chess. Beyond playing games, reinforcement 

learning can be applied to complex interactions between a living organism and its 
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environment, for instance predator-prey relationships or cases of habitat destruction (Neftci 

& Averbeck, 2019). 

 

1.6 ML methods applied to genetics and genomics  

Currently, ML is applied to a broad range of areas within genetics and genomics. ML methods 

have been used to find patterns in a wide variety of data (e.g.: DNA sequences, microarray or 

RNA-seq expression data, DNAase-seq, protein sequences, and more) and to solve problems 

like prediction of transcription start sites, promoters or enhancers, to identify potentially 

valuable disease biomarkers or to assign functional annotations to genes (Libbrecht & Noble, 

2015). In phenotype prediction problems, a great range of different supervised methods have 

been tested. Without intending to perform an exhaustive review, popular supervised 

methods in current biology like Decision Trees, Random Forests and Neural Networks are 

presented in subsections 1.6.1-1.6.3, while an introduction to kernel methods can be found in 

section 3.1. 

1.6.1 Decision Trees 

Decision Trees (DT) are a type of supervised learning models. Their structure is reminiscent to 

that of a tree (Figure 1.8): they consist in directed, hierarchical graphs with a root, internal 

decision nodes, branches and terminal leaves. Starting at the root, each node n implements a 

decision function . These decision functions interrogate each data object, so the 

outcome will redirect it to a particular node on the next layer. This process is repeated 

recursively until the object arrives to a terminal leaf, at which point the particular label on the 

leaf constitutes the output (Alpaydın, 2010). DT can be used both for classification and 

regression. In the former case, each terminal leaf represent a different class of the target 

variable, while in the latter case the leaves contain intervals of numeric values. 

There exist different DT methods for producing the DT model. In all cases, the final goal is the 

generation of a map  (i.e. the DT) in which  is broken down to decision functions 

 (the nodes) ordered with a certain hierarchy.  are simple functions, which often 

split the input space according to if a variable is higher or lower than a threshold (with 

continuous feature variables) or by specific classes (with categorical variables). There exist 

different DT subtypes that differ in how the  are generated. However, in all approaches, 

and even from a fixed number of nodes, the determination of the tree’s optimal structure 

(and this includes which features are chosen for each split) by testing all possible 
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combinations is computationally infeasible (Bishop, 2006). Instead, all DT methods carry out a 

greedy optimization process: that means that, instead of searching for the global optimum, 

they try to find a local optimum choice at each step. Thus, the root node first splits the whole 

training set, and then the tree is grown “organically” by sequentially adding nodes that 

further split the space. This strategy might not lead to the optimal tree arrangement, but it 

may approximate it with an inferior computational cost. At each step, the set of variables that 

is used to split (as well as the threshold for each one of them) is chosen. Fortunately, this joint 

optimization can be efficiently implemented via exhaustive search. 

 

Figure 1.8. Decision Tree for a classification problem. Adapted from Bishop (2006). Copyright (2006) by 
Christopher M. Bishop. 

In classification trees, the “goodness” of a node is quantified by its impurity: a split is pure if 

(for all its output branches) all the objects on a branch belong to the same class. In that case, 

it is not necessary to split anymore, as all objects have been successfully separated; there 

only rest to add the terminal leaves. Instead, if the node is not pure, more splits are required 

to decrease impurity. Among all possibilities, we look for the split that minimizes node 

impurity, which is the difference between the impurity of branches reaching node n and the 

impurity in its output branches after the split (Alpaydın, 2010). In classification, the impurity 

may be quantified in different ways. One of them is the Gini index: 

 ∑  (1.1) 

where  is the proportion of training data in a given branch that belong to class .  

For regression, the impurity is measured by residual sum of squares within that node: 
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 ∑ ̂  (1.2) 

where  is the number of training instances arriving to the node,  their actual target 

values, and ̂ their average value in each branch after splitting. 

DT present several advantages over other methods. They are computationally fast, accept 

numeric and categorical data in the target variable and also in the feature variables, have an 

inherent in-built variable importance metric (the total decrease in node impurity) and, 

therefore, perform their own internal feature selection by not using irrelevant variables. Most 

of all, they are highly interpretable: DT models consist in a set of if/then rules that mirrors 

human decision making, and that can be graphically displayed. Their main weaknesses are: 

overfitting tendency, great dependence on the particular composition of the training set, and 

lower prediction performance that other ML methods (Alpaydın, 2010). 

1.6.2 Random Forests 

Random Forests (RF) consist of an ensemble of DT. The underlying idea is that setting a group 

of DT (the “forest”) to predict a given target and then combining their predictions is a better 

approach than relying on a single DT. RF belong to a specific type of ensemble methods called 

bagging. Bagging means “bootstrap aggregating” and is a learning technique focused on 

decreasing the model variance. Thus, RF was proposed as a way to correct the instability and 

propensity to overfit of DT. The general steps followed by the method are: 

1. The original training set is sampled with replacement L times (bootstrap), so L 

slightly different versions of the training set are obtained.  

2. Each one of the training sets is used to grown a different DT. However, to avoid 

correlation across the trees, a different random subset of the D original features is 

used at each candidate split. A classic heuristic consist in using √  features in 

classification and  features in regression. 

3. In the test stage, the L trees independently predict the label assignation on each 

object, and finally: 

4. the definitive prediction is computed as the most voted class (in classification) or 

the mean value (in regression). 

1.6.3 Artificial Neural Networks 

The term “Artificial Neural Network” (ANN) covers a wide set of different types of models, so 

broad that there exist specific variants for supervised, reinforcement and unsupervised 
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learning, which have in common that their structure loosely remind that of a biological neural 

network. The general structure of an ANN consists in a directed graph, where each neuron 

(i.e. node) receives an input, transforms it with a combination function , and 

produces an output that (analogously to the activation threshold of biological neurons) may 

be smoothed by an activation function . There exist different functions that can 

fill the latter role, as the logistic sigmoid, the hyperbolic tangent, or the ReLU (Rectified Linear 

Unit). Activation functions introduce nonlinearity, while the combination function is often a 

linear combination over input data using certain coefficients. Neurons are interconnected and 

have multiple possible inputs and outputs. Each connection is assigned a weight w that 

controls their importance. If the resulting graph is acyclic (i.e. the information moves in only 

one direction) the resulting model is a feedforward neural network. That was the first type of 

ANN devised. Instead, the recurrent neural networks include loops in their structure. 

The most known ANN architecture is probably the Multilayer Perceptron or MLP. This is a 

type of feedforward neural network wherein neurons are organized in layers. Neurons of a 

given layer are directly connected only to the precedent and following layers (Figure 1.9). The 

output layer produces the final outcome, e.g. in supervised learning, the labeling of the 

object. The activation function  and number of neurons of this layer depend on the nature 

of the output: for example, in supervised learning, if the target is continuous or categorical – 

i.e. if the network is intended to perform regression or classification (Table 1.2). The 

preceding layers are called hidden layers, as their output is used as the feeding of the 

subsequent layers and, therefore, is “hidden”. Deep learning architectures are a subtype of 

ANN characterized for having multiple hidden layers. 

 

Figure 1.9. Graphical representation of a MLP. This specific architecture is denoted as 3-3-2. Taken 
from: https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetworkBigger_english.png.  
Author: Christoph Burgmer. License: CC BY-SA 3.0. 

https://commons.wikimedia.org/wiki/File:MultiLayerNeuralNetworkBigger_english.png
https://creativecommons.org/licenses/by-sa/3.0/
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Neural networks are a very general class of parametric nonlinear functions. Thus, they are 

very complex maps that have a vector  as input and give in return a certain output  

(Bishop, 2006). The learning process of a MLP implies determining a great quantity of 

parameters (the weights). Instead, the number of layers and neurons per layer are 

hyperparameters, which may be fixed a priori or chosen by cross-validation. The 

determination of network parameters can be done by maximum likelihood, which results on a 

nonlinear optimization problem that involves the derivatives of the log-likelihood function 

with respect to the MLP parameters. This is carried out with relative efficiency through error 

backpropagation (Bishop, 2006). Thus, we turn maximization of the log-likelihood to a 

minimization of a loss function, which depends on the activation function at the output (Table 

1.2). The MLP is feed forward to fit the objects on the training set and the difference between 

true and fitted values is computed. This is followed by a backward process of computing on 

each layer the gradient of the loss function with respect to each weight, iterating until the 

first layer is reached. This way, the weights can be updated. The whole process should be 

repeated (each one of this iterations is called an epoch) until convergence. 

Table 1.2. An example of possible activation functions, loss functions and number of neurons at the 
output layer in MLP architectures for regression, binary and multi-class classification. 

 Regression Binary Classification Multi-class classification 

  Identity Logistic sigmoid Softmax 

Loss function Sum-of-squares Cross-entropy Multiclass cross-entropy 

Number of neurons 
at the output layer 

As many as target 
variables 

One As many as classes 

Using ANN presents important advantages. First, they can approximate any continuous 

function to an arbitrary accuracy (Zhou, 2020). Thus, ANN are able to model complex 

nonlinear relationships between dependent and independent variables, and also detect all 

possible interactions between predictor variables (Tu, 1996). There exist subtypes of ANN 

that can handle structured data, e.g. Convolutional Neural Networks for time series 

(Binkowski & Donnat, 2018). In general, they have been successfully adapted to all classes of 

supervised, unsupervised and reinforcement learning problems. 

Some of the ANN drawbacks are related to the many architectures available and the large 

number of parameters they need. ANN (especially if large and complex) require considerable 

time and computing resources during the training phase. They are prone to overfitting (Tu, 

1996) and may have problems when the number of dimensions is much higher that the 

number of data objects. Also, unlike RF, they function like “black boxes”: a network can be 

very successful (e.g. at predicting) in the context of a particular problem, but that does not 
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mean that it is easy to determine why. For instance, it is not trivial to retrieve which variables 

are the most important contributors to a particular output; also, the model may rely in a 

certain number of unimportant predictor variables. 

1.6.4 Challenges of ML applied to genomic data 

Although ML methods have been successfully applied to a great variety of problems, they 

face several general challenges. As seen in section 1.2, typical data in genetics and genomics 

does not consist in “simple” real vectors, but in more complex data types with some kind of 

structure. Also, in section 1.3 it is shown that certain study designs produce related samples 

that structure the dataset in a particular way. However, the standard input data type in most 

ML methods is real data (Schölkopf et al., 2004). That is the case of ANN, while RF can 

additionally accept categorical data. In general, this forces the recoding of complex data types 

into numeric vectors. For example, categorical data may be recoded by one-hot encoding: for 

each categorical variable,  or  binary (also called “dummy”) variables are generated, 

where  is the number of different categories. 

Another challenge in current ‘omics’ is the high dimensionality of microarray and NGS data. 

Although the cost of sequencing continues to decrease, the dimension (number of variables) 

of whole genomes (and transcriptomes, etc.) is typically much larger than the number of 

analyzed individuals. For most ML methods, as for example ANN, a prohibitive quantity of 

data objects is needed to work with these high-dimensional datasets. Otherwise, the method 

may fail to achieve good estimations of the parameters and overfitting models are produced 

instead. This phenomenon is known as the curse of dimensionality (Libbrecht & Noble, 2015; 

Bishop, 2006). 

Finally, one of the strengths of traditional hypothesis-driven research was that correctly 

understanding a problem provided the solution or, at least, the way to reach it. Instead, in 

machine learning we often have a trade-off between solving the problem and understanding 

it (Libbrecht & Noble, 2015). Very sophisticated ANN may achieve highly accurate predictions, 

and while this has very useful applications (recall, for instance, the face recognition problem), 

knowledge about an underlying biological mechanism is not necessarily acquired. To counter 

this, a strategy is using methods that are “clear boxes” (in the sense that we can see how the 

model approached the problem, e.g. which predictor variables it considered important) or 

developing strategies to retrieve this information out of the models. 

Apart from gaining some kind of new knowledge (in addition to the outcome of the learning 

process), in some cases it is interesting to improve prediction by including additional 

information at the input of the ML method. This beforehand-known information is frequently 
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supplied in indirect ways, e.g. pre-processing decisions about data representation and 

curation, feature extraction, etc. Direct encodings of additional knowledge (probabilistic 

priors, for instance) into the model tend to be more difficult to perform, at least in ANN and 

RF (Libbrecht & Noble, 2015). 



 

CHAPTER 2 

OBJECTIVES 

 

 

 

The main objective of this PhD thesis is the evaluation and development of specific kernel 

approaches to phenotypic prediction and pattern inference from biological data, focusing on 

problems with structured data types or study designs. 

The specific objectives are: 

o Development and evaluation of the performance in HIV drug resistance prediction of 

novel categorical kernels adapted to HIV sequence data intricacies. 

o Inclusion into the aforementioned kernels of prior knowledge about the proteins 

targeted by the antiretroviral drugs. That includes: (i) weighting each protein position 

by its importance and (ii) protein three-dimensional structure. 

o Proposal of specific kernels for compositional metagenomic data, along with kernels 

derived from well-known beta-diversity measures. 

o Integration of unsupervised, supervised and taxa importance analyses in the 

microbiome area using the kernel framework. 

o Meaningful integration of spatial and temporal-structured samples exploiting the 

advantages of the kernel approach. 





 

CHAPTER 3 

GENERAL METHODS 

 

 

 

The present chapter is entirely devoted to kernels and kernel methods. It is organized as 

follows: in section 3.1 we present the basics about kernel functions, kernel matrices and the 

kernel methods used in this thesis (Support Vector Machines and kernel Principal Component 

Analysis). The advantages of using kernels to tackle typical genetic and genomic problems are 

highlighted. In section 3.2, a general view of all kernels used throughout this thesis is given. 

We discuss the most important traits of each one of them and explain for which problems we 

used them and why. Finally, in section 3.3, we show how the importance given to each 

variable in a Support Vector Machine model can be recovered. 

3.1 Introduction to the kernel framework 

Kernel methods are a subset of ML methods that share the use of kernel functions. Let 

 be a dataset containing  objects of any type. The kernel function evaluates 

all possible pairs of objects, and these evaluations are stored in a kernel matrix: 

. Thus, the kernel matrix (and not the original data) is the input for the kernel 

method. In the sequel we explain the details of this approach and the advantages it presents 

when dealing with biological data. 

3.1.1 Kernel functions 

Kernel functions (also called simply kernels) have a crucial role in kernel methods. Intuitively,  

 can be understood as a function that measure the similarity between  and . 

Generally speaking, all kernels are similarities; however, not every similarity measure is a 
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kernel: only those that generate squared, symmetric and positive semi-definite (PSD) 

matrices (i.e. kernel matrices). A more formal definition of kernel is: 

Definition 1: A mathematical function   is a kernel iff: 

(i)  ( )   for any  

(ii) ∑ ∑ ( )  

For any , any finite set of objects  and any choice of numbers  

 (Schölkopf et al., 2004). 

As the objects  are never represented explicitly, only via their pairwise similarities, 

kernels can handle directly data types that are not standard. Thus, it is no longer necessary to 

find a way of recoding complex data types to real vectors so they can be used as input of a ML 

method. Instead, the challenge is designing kernels that extract valuable information from 

specific data types or problems. This requires a notion of what is considered “similar” in that 

given context. Prior knowledge about the problem at hand can also be encoded explicitly into 

the kernel (Libbrecht & Noble, 2015). Furthermore, kernel design is modular, allowing the 

creation of complex functions from simpler ones, each one capturing one aspect of the data 

(Schölkopf et al., 2004). An inadequate choice of the kernel at this stage will cause a 

suboptimal performance of the method, as the only contact it has with the original data is 

through the kernel: once the kernel matrix is generated, all information left behind is lost. 

The first kernels described were intended for standard continuous data. The most basic 

kernel is called the linear kernel and is defined as the inner product of two real vectors: 

 ( )  (3.1) 

Where   , being  the vector dimension. It is related to the cosine of the angle 

between two vectors, which is maximum when they share direction and 0 if they are 

perpendicular. This kernel has a clear linear nature, as it can be rewritten as: 

 ( ) ∑  (3.2) 

The definition of the linear kernel holds a great importance because all kernels can be 

expressed as inner products in some space: 

 ( )  (3.3) 
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 maps an object from the original (input) space  to the so-called feature space . 

This feature space is endowed with an inner product and, typically, has a higher dimension 

than the original space. However, all the process happens behind the scenes: when using a 

kernel, one does not have to compute or even know the mapping  that it used. This is 

because the object representations are never explicitly used. Instead, what the kernel does is 

to directly compute their similarities (i.e. inner products) in feature space. This is known as 

the kernel trick. The advantages of this approach are essentially two: 

(i) It allows solving nonlinear problems using linear methods. An visual example can 

be seen in Figure 3.1: by using , the kernel takes the original nonlinear data to a 

higher dimensional space where it can be operated in a linear way with inner 

products. 

(ii) It avoids the computational cost of explicitly computing the representation of the 

input data in feature space + the inner product. Not only this cost can be quite 

heavy (depending on the dimensionality of the feature space), but also in some 

cases the explicit computation is impossible because  has infinite dimension. 

 

Figure 3.1. A classification example of how the kernel trick allows solving nonlinear problems in a 
linear manner. 

3.1.2 Kernel matrices 

Kernel matrices store the evaluations of the kernel function and serve as input for the kernel 

method. As stated before, only squared, symmetric and PSD matrices are considered kernel 

matrices. This limits the spectrum of functions that one can use, but also guarantees that 

every matrix generated can be processed by the kernel method. There exist a complete 
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independence between the choice of  and the choice of the method, so any kernel 

function can be combined with any kernel method. 

Kernel matrices have dimension , which has important consequences in computational 

complexity. For instance, consider that the dataset objects are real vectors of length . The 

original dataset is transformed from a  table to a  kernel matrix. Unlike RF, ANN or 

ridge regression, which extract the information from the variables (dataset columns), kernel 

methods “look” at data focusing on the objects (rows). A dataset of  objects is always 

represented by a  matrix, irrespectively of the dimension of the objects, which is very 

attractive in cases where  (see subsection 1.6.4). This also sets the minimum 

asymptotic complexity of computing a kernel matrix in . 

As stated in section 1.2, after the advent of the ‘omics’ era more interest is being paid to the 

problem of data fusion. It is increasingly common to have data, for the same  individuals, 

from different  sources, thus raising the question of how to integrate them. In the kernel 

framework, we have a straightforward approach: directly combining the kernel matrices. The 

easiest way to do so is: 

 
∑  (3.4) 

 is a lineal combination of valid kernel matrices and thus a kernel matrix itself, as long as 

the   are nonnegative. The goal is to choose the best coefficients of the combination: 

that is called Multiple Kernel Learning or MKL. A lot of research has been done in this area, 

mostly in supervised learning (Schölkopf et al., 2004), but also in unsupervised scenarios. In 

the latter case, a consensus matrix can be obtained choosing the  that maximize  average 

similarity with all  matrices (Mariette & Villa-Vialaneix, 2018). MKL allows the fusion of 

data coming from the same individuals, irrespective if this data have different number of 

variables, or even if it is not of the same type. Thus, for instance, data as different as genomic, 

metabolomic and blood analyses from the same patients can be integrated at the kernel 

matrix level if suitable kernel matrices are chosen for the three kinds of data. Also, the kernel 

approach is useful when we have missing individuals in some sources of data but not in 

others. This is typical, especially, of clinical data. The missing entries can be by-passed using 

the kernel matrix or matrices from alternative data sources (Schölkopf et al., 2004), or even a 

mutual matrix completion can be performed. Although this is beyond the scope of this work, 

some techniques to do so can be found in Bhadra et al. (2017) and Rivero et al. (2017). 
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3.2 Kernel methods 

The first kernel method as such was the Support Vector Machine (SVM) (Boser et al., 1992). 

Since then, new kernel methods have been proposed –e.g. Relevance Vector Machine 

(Tipping, 2000)– to perform a great range of tasks, including clustering, classification, 

regression or visualization. Also, classical ML methods that can be reformulated in terms of 

inner products have been successfully “kernelized”, as is the case of kernel Principal 

Components Analysis (kPCA). SVM and kPCA will be used extensively throughout this thesis 

and are reviewed next: 

3.2.1 Support Vector Machine (SVM) 

SVM are mostly used in supervised learning problems. From a dataset containing  data 

objects , the purpose of SVM is to predict a target variable  (which can be 

categorical or continuous) by finding a mapping .  

In the most basic case,  and the target variable is binary:  Classification 

is achieved by constructing a hyperplane that separates the two classes. The map is defined 

as: 

  (3.5) 

where a label  is assigned if ( ) , and a label  is assigned if  .  is 

the intercept, and  is the normal vector of the separating hyperplane. The distance 

between the two resulting half-spaces is called margin and is exactly . The optimal 

separating hyperplane is that of maximum margin. However, infinite hyperplanes fulfill (3.5).  

Thus, an additional constraint to find a unique solution is required: 

 | |  (3.6) 

The objects for which (3.6) is an equality are called support vectors. The hyperplane found by 

the SVM does not change when non-support vectors are removed from the training set. A 

visual example is given in Figure 3.2, left. 

Leaning excessively onto the training data increases the complexity of the model and causes 

overfitting. Thus, some data points are allowed to dwell within the margin (Figure 3.2, right) 

by introducing a regularization hyperparameter: the cost ( ).  can be understood as the cost 

of misclassification. When  takes larger values, the margin narrows and more training points 

are correctly classified with strong confidence. However, the complexity increases. On the 

other hand, the closer  is to 0 the wider is the margin, causing a progressive decrease of the 
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complexity so underfitting can be an issue. The best separating hyperplane is found solving 

the optimization problem: 

 
∑  (3.7) 

subject to constraints (3.6). 

 

Figure 3.2. SVM graphical representation. Left: the black straight line separates the two classes. This 
line is the intersection of the feature space where lie the objects x with the separating (hyper)plane. 
Support vectors are highlighted. Right: the same with examples of points violating the margin,  and 

. 

( ) ( )  is the hinge loss error function. It is not differentiable, so the 

minimization is done numerically. Let us introduce a vector of nonnegative slack variables 

 that measure the amount of violation of the constraint. Thus we rewrite (3.7) as: 

 
∑  (3.8) 

subject to constraints: {
| |

 

This can be expressed and solved using the Karush-Kuhn-Tucker approach. We introduce 

nonnegative Lagrange multipliers:  for each of the constraints | |

, and  for each of the constraints : 

 ( )
|| ||

∑ ∑ ( | |) ∑  (3.9) 
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The Lagrangian has to be minimized with respect to  and maximized with respect to 

. The former step, the “primal” problem, gives us: 

 ∑  (3.10) 

  (3.11) 

 ∑  (3.12) 

Then we plug (3.12), which gives us the optimal separating hyperplane, into (3.9), and 

proceed with the maximization step (the “dual” problem). At this point,  disappears of the 

expression. It can be recovered with (3.11), and so we have to check that  holds. 

The other constraint is (3.10). Then, the dual problem is finally set as: 

 
( ) ∑ ∑∑  (3.13) 

In (3.13),  for nonsupport vectors. Support vectors satisfy  if they are on the 

boundary margin and  if they lie on the wrong side of the boundary. The linear kernel 

term (i.e.  ) can be replaced by any other kernel ( ) (3.3). In this case, the SVM 

separation no longer happens on the input space but on feature space, where data is 

implicitly mapped. Then, all advantages of using kernels can be achieved: e.g. using 

nonstandard data and/or achieving linear separations in the feature space that are nonlinear 

with respect to the original space. 

Once the model is solved, for predicting the label of a (previously unseen) object , we use: 

 
∑ ( )  (3.14) 

The SVM is not only used for classification purposes. It can be applied to regression, as 

exemplified in Figure 3.3. In this case, the intersection of the feature space with the 

hyperplane defines a regression line, instead of separating the classes. With the purpose of 

controlling the sparsity in the support vectors, we use ε-insensitivity as the loss function: 

 
{

| ( )|

| ( )|
 (3.15) 
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Thus, the ε-insensitive loss consider equal to zero all errors that are within ε distance of the 

actual value of the target. This sets the width of the margin: small values of ε increase the 

number of support vectors and thus the complexity of the model, and vice versa. 

Meanwhile,  value controls the penalty imposed on the objects that lie outside the ε-limited 

tube.  

 

Figure 3.3. SVM for regression. In blue: points within the ε-tube, so the difference between actual and 
predicted value is considered 0. In black: points outside the ε-tube, so | ( )|  applies 
instead. Support vectors are highlighted. 

3.2.2 Kernel Principal Components Analysis (kPCA) 

PCA (Principal Components Analysis) is an ordination technique that is routinely used for 

feature extraction and data visualization. The aim is to project the original data in  to a 

lower dimensional space (usually  or ) such that the maximum variance is preserved on 

the projections. The new axes are called Principal Components (PC) and are a linear 

combination of the original axes. The first PC is the direction with maximum variance, and 

next PCs are defined as the orthogonal projection directions sorted by decreasing variance. 

Let  be a set of  centered vectors of dimension . In that case, the 

 sample covariance is given by: 

 
∑( )  (3.16) 

The direction  of maximum variance (i.e. the first PC) is the eigenvector  of  with largest 

eigenvalue: 
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  (3.17) 

The eigenvalues  correspond to the variance of the projections. Thus, the rest of PCs are the 

 (orthogonal) eigenvectors of  such as: ( ) ( ) . There are as many PCs 

as original dimensions, but for visualization purposes usually only the first two or three are 

kept. 

(3.16) introduces the possibility of kernelizing the standard PCA (Bishop, 2006). In kPCA, the 

data is implicitly mapped (by the kernel trick) onto some feature space, where a standard PCA 

is performed. The new sample covariance is: 

 
∑ ( )  (3.18) 

The PCs are obtained by substituting (3.18) in (3.17). All solutions  lie in the span of ( ), 

and then a given eigenvector is the linear combination of the mapped data:  

∑ ( ). Thus, we have: 

 
∑ ( ) ∑ ( ) ∑ ( ) 

(3.19) 

As a kernel matrix is , (3.19) finally gives: 

  (3.20) 

The kernel matrix  is precisely the covariance matrix in feature space. To center the 

projected data, we do: 

 ̃  (3.21) 

 denotes the  matrix filled with . Now, we rewrite (3.20) as an 

eigenvector/eigenvalue problem: 

 ̃  (3.22) 

The solutions of (3.22) satisfy (3.20). If we require that eigenvectors in feature space are 

normalized: 

 ∑∑ ̃ ̃ ̃  (3.23) 
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The eigenvector problem is solved, and then the projection of a data object  onto the 

eigenvector k is given by: 

 ̃ ∑ ̃ ̃ ∑ ̃  (3.24) 

kPCA presents several advantages when compared to standard PCA. It enables nonlinear 

projections and using nonstandard data as graphs or sequences. Kernel matrix  grows with 

the number of objects , while matrix  grows with dimension . However, there is also 

an important drawback: the PCs no longer are computed explicitly (since they reside in 

feature space), and only the projections of our data onto them are known. 

 

3.3 Kernel functions used throughout this thesis 

In this section we present all kernels used over the course of this thesis. Among them, the 

Linear and RBF kernels are both well known and widely used. The Overlap kernel, the Jaccard 

kernel (both for presence/absence and quantitative data), the exponential random walk 

kernel, the Jensen-Shannon kernel and the RBF for time series are already described 

elsewhere, but have been mostly used in restricted fields of research. The “RBF-like” and 

“structural” versions (via the exponential random walk kernel) of the Overlap and Jaccard 

kernels are original contributions of this thesis, and the same applies to the Aitchison-RBF and 

compositional linear kernels. 

3.3.1 Kernels for real vectors 

The standard input in most ML methods is continuous data in the form of real vectors with 

length , so each object . Two well-known kernels for this kind of data, used in 

Chapter 4, are presented next: 

 Linear kernel  

The linear kernel is the most simple kernel function. (3.1) shows that it is defined as the inner 

product of two vectors, and (3.2) its linear nature. When used in a kernelized method the 

result is the same that of the original method (e.g. linear kPCA is equivalent to standard PCA). 

It has no hyperparameters to optimize, which may speed up the model calculation compared 

to other kernels. 
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 Gaussian Radial Basis Function (RBF) kernel 

The Gaussian Radial Basis Function (RBF) kernel is extensively used on real-life applications 

and is considered the gold standard among kernels. Its most common formulation is: 

 
|| ||  (3.25) 

This fulfills (3.3) but, as data is mapped onto an infinite-dimensional feature space,  is not 

obvious (Schölkopf et al., 2004; Shawe-Taylor & Cristianini, 2004). The || || term can be 

easily identified as the Euclidean distance ( ) between two real vectors, while  is an 

hyperparameter. Similarities and distances are opposite: the closer two points, the smaller is 

the distance between them and the higher the value given by the RBF kernel. The maximum 

value is 1, and is given by  and . 

The RBF kernel is related to the linear kernel, as the inner product induces a L2 norm that, in 

real vectors, is equivalent to the Euclidean distance. However, the RBF kernel is nonlinear and 

can be used to model any decision boundary. The hyperparameter  has great importance on 

how this kernel adapts to data. For instance, when it is coupled to a SVM,  is a sum of 

Gaussians with width controlled by  and centered on the support vectors (see Figure 3.4). 

The smaller the  value, the more sharp the distributions around support vectors, with the 

subsequent rise in model complexity and greater risk of overfitting. When  increases, the 

Gaussians become smoother and the RBF kernel loses its nonlinear power, to the point that 

(with very large values) it behaves similarly to the linear kernel (Shawe-Taylor & Cristianini, 

2004). For simplicity, in this thesis the hyperparameter   is used in (3.25) instead of . 

      
Figure 3.4. Effect of  in defining the RBF-SVM boundary shape around the support vectors. Left: 

, right: . Created with https://cs.stanford.edu/people/karpathy/svmjs/demo/.  

https://cs.stanford.edu/people/karpathy/svmjs/demo/
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3.3.2 Kernels for categorical data & categorical sets  

In Chapter 4, HIV protein sequences are analyzed as vectors of categorical data. That is: if  

is the set of the 20 canonical amino acids, a sequence of length  is . The aligned 

sequences were compared position by position. In this view, the independence of the 

different polymorphic positions (i.e. absence of LD) is assumed. The order of the sequence is 

also not considered. Instead, the main focus was set on the phenomenon of amino acid 

mixtures, which is very widespread in HIV sequence data. Thus, each position of the sequence 

(understood as a categorical variable) may contain a single amino acid (a single category) or a 

mixture of amino acids (a categorical set). This justifies the use of two kernels: a kernel for 

categorical variables, derived from the Overlap kernel, and another for sets, derived from the 

Jaccard kernel. 

 The Overlap kernel  

The Overlap kernel is the most basic categorical kernel. It assigns a similarity of 1 if the two 

compared objects are identical and 0 if they are different. If only one categorical variable is 

assessed, then: 

 
( ) {  (3.26) 

This definition fulfills (3.3), as the Overlap kernel is equivalent to apply (3.1) after performing 

one-hot encoding (which is precisely the  map) over the dataset. Here the kernel trick saves 

us the costs associated to an explicit computing: the one-hot encoding transforms each 

categorical variable with m categories to m variables in feature space. 

The Overlap kernel is also named the Dirac kernel (Belanche & Villegas, 2013) when applied 

to objects with more than one categorical variable (i.e. the multivariate case): 

 
( ) ∑  (3.27) 

where  stands for the number of variables. The sum of kernels is guaranteed to give another 

kernel (Shawe-Taylor & Cristianini, 2004). 

In Chapter 4, a new categorical kernel that combines the multivariate Overlap with the RBF 

nonlinearity is used: 

 
( ) ∑  (3.28) 
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It is also well known that, for any ( ), ( )  gives a valid kernel (Shawe-Taylor 

& Cristianini, 2004). Prior knowledge about the importance of each categorical variable can 

be introduced in a vector of weights ѡ. That results in a kernel as long as that nonnegative 

weights are used (Schölkopf et al., 2004).  

 The Jaccard kernel 

The Jaccard index, extensively used in some fields such as community ecology, measures the 

similarity between two finite sets. It is proven elsewhere (Bouchard et al., 2013) that it is 

positive definite, and thus a kernel. Let  and  be two sets. Then, a possible definition of 

the Jaccard index is: 

 

( ) {  (3.29) 

where  denotes the cardinality of the set. An alternative formulation is given if we 

represent both sets as bitstrings by one-hot encoding. For instance, we can 

consider that 0 represents the absence and 1 the presence of a given element.  is the 

number of different elements observed on the sets (i.e. the cardinality) and now the Jaccard 

kernel is defined by comparing the number of matches in the two bitstrings: 

 
( )

| | | |
 (3.30) 

It can be seen that categories absent in both objects ( –  matches) are irrelevant for 

computing the result. This is not the case of other kernels on sets, for instance, the Simple 

Matching Coefficient (Pekalska et al., 2001). 

As in the case of the Overlap kernel, a new nonlinear and multivariate variant of the Jaccard 

kernel is used in Chapter 4: 

 
( ) ( ∑ ) (3.31) 

As –  matches have no relevance in (3.30), when  (i.e. no mixtures) the 

two versions provided of the Jaccard kernel reduce to the analogous Overlap kernel – (3.29) 

and (3.30) to (3.26), and (3.31) to (3.28). 
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3.3.3 Kernels for graphs 

A graph   consists of a set of nodes  and a set of edges . A labeled graph has 

labels at the nodes. Conversely, a weighted graph is a graph with weights at the edges. The 

adjacency matrix of G is represented by: 

 [ ] {
( )

 (3.32) 

In an unweighted graph,  for all connected pairs of nodes. 

In Chapter 5 we reanalyzed the protein sequences of Chapter 4, but considering potential 

associations between the protein positions. The three-dimensional structures of the proteins 

were represented as graphs, wherein each node represented a residue, and the weights on 

the edges were the Euclidean distance (in Å) among residues. 

 Exponential Random Walk kernel 

A random walk of length –  over a graph is the sequence of nodes  connected 

by edges, so that at each step: ( )  for . Two objects modeled as graphs 

(e.g. two proteins, or two mutated variations of a protein) can be compared by performing all 

possible random walks in both graphs separately, and then assessing the similarity between 

these random walks with a kernel. The computation can be simplified using the direct product 

of two graphs (Vishwanathan et al., 2010): 

Definition 2: The direct product of two graphs  and generates a graph 

 such that: 

( )  

( ) ( ) ( ) ( )  

It is well known that performing random walks on  is equivalent to doing so on the two 

graphs  and  and then comparing the walks. Then, the exponential random walk kernel 

over two graphs is defined as in Gärtner et al. (2003): 

 ( ) ( ) ∑ ∑ ∑  (3.33) 

Where the adjacency matrix of  is denoted , and  is a hyperparameter that 

controls the “decay”. Thus, the more edges separate two nodes, the weaker is their 

interaction, so each edge crossed in the random walk is penalized. The penalty grows as   

takes values closer to 0, thus causing a faster decay. Unlike previous kernels, which have 
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straightforward  time complexities, a naive implementation of (3.33) is 

computationally infeasible. Some possible optimizations are discussed in Chapter 5. 

3.3.4 Kernels for count data 

Count data consists in nonnegative integer vectors of dimension  ( ). In Chapter 6 we 

analyzed the microbial abundance of several soil, human and piglet samples, where  

represented the number of taxa. Two different classes of kernels were used: on one hand, 

kernels derived from traditional ecology beta-diversities; on the other hand, kernels that take 

into account some particularities of count data obtained with NGS technologies, which we 

called compositional kernels. 

Kernels derived from ecological beta-diversities 

In community ecology, the diversity indexes measure how many different species (or, more 

generally, how many taxa of interest) are present in a given habitat or habitats. The alpha 

diversity is the diversity in one habitat, whereas the beta diversity represents the difference 

between the communities of two habitats (Gardener, 2014). There exists a large catalogue of 

beta-diversity measures, which may be distances (metric) or dissimilarities (semimetric). A 

dissimilarity or distance, , can be transformed into a similarity  in several ways. An example 

is: , considering that  is normalized to have a maximum value of 1. However, not 

all similarities that one can obtain fulfill Definition 1 and are, therefore, kernels. 

Beta-diversity indices can be computed from abundance tables only, as Bray-Curtis and 

Jensen-Shannon (Gloor et al., 2017; Gardener, 2014), or may also need a phylogenetic tree, as 

Unifrac. The present work is only concerned with the kernelization of the former kind of 

measures. The definition of the Jensen-Shannon divergence is: 

 ( ) [∑ ( ) ∑ ] (3.34) 

It can be easily converted into a kernel, which is already described in Bai and Hancock (2011) 

as the Jensen-Shannon kernel: 

 ( ) ( ) (3.35) 

Considering that the abundance counts are converted from absolute to relative frequencies. 

There exist several definitions of the Bray-Curtis dissimilarity. For instance, it can be defined 

as in Coenen et al. (2020): 
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( )

∑

∑
 (3.36) 

BCD is semimetric and, therefore, not a distance in the strict sense. The Jaccard distance, also 

used in community ecology, is rank-order similar to BCD and fulfills the conditions to be a 

metric (Gardener, 2014). It is paired with a kernel that was already presented in (3.30) for 

presence/absence data. For abundance data, the following quantitative version exists: 

Some alternate names are the Ružička index or the min-max kernel (Li, 2015). 

 Kernels for compositional data 

Taxonomic counts obtained by NGS technologies are a particular case within abundance data. 

They are not equivalent to counts obtained by direct observation, because the number of 

reads delivered is constrained by the instrument capacity (see also subsection 1.2.2). Thus, 

after sequencing, information about actual absolute frequencies is lost and only relative 

frequencies are of use. Data consisting in proportions with uninformative sum is called 

compositional and deserves a specific mathematical treatment. This data does not live in the 

real space (i.e. ) but in the simplex, a  subspace of it (Quinn et al., 2018): 

Definition 3:  A D-part composition is represented as a vector  with 

sample space the simplex: ( ) ( ) ∑

, where  is a given positive constant (Mateu-Figueras et al., 2011). 

A visual example of count vectors that are different in real space but equivalent in the simplex 

is shown in Figure 3.5. As D-parts compositions are usually expressed as numeric vectors in 

, it is very tempting to compute standard distances, correlation measures and multivariate 

statistical methods typical of real data when dealing compositional samples. In fact, this can 

lead to spurious results (Quinn et al., 2018; Mateu-Figueras et al., 2011). This is because of 

their nature as proportions, which leads to a mutual dependence among features: i.e. 

increasing the abundance of one decreases the abundance of the rest.  

There exist at least two strategies for facing the treatment of compositional data. The first 

one is to think of   as equipped with its own geometry (known as the Aitchison 

geometry) and use suitable metrics and statistical methods for working “within” the simplex 

(Mateu-Figueras et al., 2011). The most widespread strategy, however, consist in using  

 ∑  (3.37) 
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Figure 3.5.  The  simplex embedded in R3. 3-part compositions  and  are all different in 

terms of absolute counts, but  is equivalent to  in terms of proportions (i.e. compositionally 

equivalent), and the same is true for   and . 

 transformations that map compositional data into the real space. One the most used (Gloor 

et al., 2017) is the center log-ratio (clr) transformation:  

 ( ) (
( )

) (
( )

) (
( )

)  (3.38) 

where x here is a count vector of dimension , and ( ) (∏ )  is the geometric 

mean. Recently, is has also been suggested the PhILR mapping (based on the isometric log 

ratio or ilr transformation), which take into account phylogenetic information (Silverman et 

al., 2017) as an alternative to Unifrac. 

In Chapter 6, two compositional kernels (i.e. kernels for compositional data) analogous to the 

linear (3.2) and RBF (3.25) kernels are proposed. From now on we define the compositional 

linear kernel as: 

 ∑  (3.39) 
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Returning to (3.3), it is immediately clear that here  is the clr-transformation. Changing it for 

other transformations (e.g. the aforementioned PhilR) would generate other variants that 

could, for instance, encode phylogenetic information into the kernel. 

Currently, an extensive research is being carried out in the microbiome area for generating 

new tools that take into account the compositionality of data (Gloor et al., 2017). Apart from 

clr and other related mappings, the Aitchison distance has been proposed as an alternative to 

beta-diversity measures like BCD in ordination and clustering (Quinn et al., 2018; Gloor et al., 

2017). It is defined as: 

 √∑  (3.40) 

The Aitchison distance over compositional data has the properties of scale invariance, 

permutation invariance (i.e. is not affected if the order of the features is changed), 

perturbation invariance, and subcompositional dominance (Quinn et al., 2018; Aitchison et 

al., 2000). A “perturbation” is analogous to a “translation” in real space, while 

subcompositional dominance means that the distance between two full compositions is 

greater or equal to the distance between them when considering any subcomposition 

(Pawlowsky-Glahn et al., 2007). Besides,  gives the same result than computing the L2 norm 

of two compositions “within” the simplex using the Aitchison geometry (Mateu-Figueras et 

al., 2011; Aitchison et al., 2000). 

It can be seen in (3.40) that the Aitchison distance is equivalent to the Euclidean distance 

after performing a clr-transformation over the compositions. By changing dE for dA in (3.25) 

we define the Aitchison-RBF kernel: 

 ∑  (3.41) 

It is straightforward to prove that this is a valid kernel. Let  be any kernel over 

, and  a map  (as it is the case of the clr-transformation). In that case, it is 

well known that  is PSD. See Shawe-Taylor and Cristianini (2004) for a 

complete demonstration. 

3.3.5 Kernels for temporal-structured data 

In Chapter 6, a dataset concerning the evolution of the microbial composition of the gut 

during the first week of life of several piglets is presented. As stated in subsection 1.3.2, the 
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time series from an individual is typically obtained as a set of samples indexed by time , 

which is usually summarized through a function. This function modeling the data can be 

obtained in several ways, e.g. polynomial interpolation, splines, etc. Functions can be used as 

input to specific kernels; thus, the evolution over time among individuals is compared and 

used afterwards for phenotype prediction or unsupervised tasks. 

The inner product defined for vectors can be generalized to continuous functions (Lipcshutz & 

Lipson, 2009). Thus, a suitable kernel, analogous to the standard linear kernel for real data, 

can be defined. Let and  be continuous and real valued functions that model the 

time series of two different individuals. In a given interval , the functional linear kernel 

can be defined as: 

 ∫ ( ) ( )  (3.42) 

As an inner product induces an L2 norm, a RBF kernel for functions, analogous to the standard 

RBF kernel (3.25), can also be obtained.  The functional RBF kernel, described in Chen et al. 

(2013), derives from the L2 norm for functions in the interval : 

 
( ) ∫ | ( ) ( )|  (3.43) 

fLin and fRBF can also be defined for discrete functions. In this case,  and  may 

directly denote the original objects , so each time value directly maps to a certain value 

of the feature variable . If is the total number of time points and  the time increment, 

then: 

 ∑( ( ) ( ))  (3.44) 

 ∑ ( ) ( ) (3.45) 

This way the calculation of the integral can be avoided. However, unlike (3.42)-(3.43), the 

time points should coincide across the individuals assessed and no missing values are 

allowed. Here  is considered constant across all assessed points. 

If multiple variables are followed over time, the aforementioned kernels can be combined as 

in: 

 ∑  (3.46) 
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 ∏  (3.47) 

where  and  are continuous or discrete functions that model variable k in two individuals, 

and  is the total number of variables. The computational complexity is  if fLin and 

fRBF are computed using (3.44) or (3.45). 

 

3.4 Recovering variable importance from SVM 

As shown in subsections 1.6.1 and 1.6.2, ML methods like DT or RF focus on extracting 

information from the predictor variables. Instead, kernel methods are more interested on the 

similarity between data objects. The latter approach presents some major advantages (as 

exposed in sections 3.1 and 3.2) but also has a drawback: unlike DT, RF or ridge regression, 

computing the variable importances is not immediately obvious in SVM. These importances 

can be used in a descriptive way, to gain knowledge about the relationship between predictor 

variables and the target (see subsection 1.6.4), or to perform feature selection. In the case of 

SVM, the most famous feature selection technique is called SVM-RFE, where RFE means 

Recursive Feature Elimination (Guyon et al., 2002). The steps taken by SVM-RFE are:  

1. Learn a SVM model from the training set. 

2. Rank the variables according to a certain criterion. 

3. If dimension is still higher than intended, remove the lowest-ranked variable (or, to 

speed-up the algorithm, half of the remaining variables) and go to step 1. 

A key part of the algorithm lies in the ranking criterion chosen. In the original work it was 

proposed that the importance of the k-th variable can be computed as . w is the normal 

vector of the separating hyperplane in the SVM, which is computed with (3.12). The main idea 

is that the orientation of the hyperplane indicates how relevant the SVM model considers the 

variables with respect to predicting the target: the closer to orthogonal the hyperplane is to a 

particular dimension, the more important it is, and vice versa. This criterion acknowledges 

mutual information across features and handles well the cases of multicollinearity. However, 

as stated in the original paper, it is necessary to use the linear kernel for retrieving . This is 

because the separating hyperplane does not lie in input space, but in feature space, and is 

computed using the mapped objects. Only in the case of the linear kernel (3.1) the input 

objects are unmapped and, thus, this issue does not exist. In order to perform SVM-RFE with 

other kernels, several general strategies have been proposed. These strategies include 

obtaining  using the linear kernel and then performing SVM-RFE with another kernel, or 
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changing the ranking criterion, so the importance of variable k is the difference in the cost 

function (3.13) when k is removed of the dataset (Guyon et al., 2002): 

 ( ) ∑∑ ( ) ∑∑ ( ( ) )  (3.48) 

Removing or modifying a feature (or a group of features) at a time to assess its impact on 

prediction is a very general feature extraction technique, valid for virtually all ML methods, 

and in the case of SVM it has been extensively used for nonlinear kernels (Sanz et al., 2018; 

Alonso-Atienza et al., 2012; Maldonado & Weber, 2009). However, it can be quite heavy 

computationally. 

Indeed, in some cases  can be computed in an exact form even if the linear kernel is not 

used. The condition is that the specific map  used by the kernel should be known. If that is 

the case, we can map the original data onto feature space explicitly, thus doing . 

Then, instead of (3.12), we can use:  

 ∑  (3.49) 

Although obtaining  is not feasible for all kernels (not for the RBF and RBF-like kernels, for 

example) it allows extending variable ranking and SVM-RFE to a subset of kernels beyond the 

linear kernel. Of kernels reviewed in section 3.3, importances can be computed explicitly for: 

(i) The linear kernel Lin (3.1) 

(ii) The compositional linear kernel cLin. In this case,  is the clr-transformation 

(3.39). 

(iii) The functional linear kernel fLin for discrete functions (3.45). 

(iv) The univariate (3.26) and multivariate (3.27) Overlap kernels, as  is the one-hot 

encoding. 

(They can also be computed explicitly for some kernels, e.g. polynomial kernels, not treated 

in this thesis.) 

In some cases, like (iii) and (iv), the number of variables in feature space does not coincide 

with the number of original variables. For instance, for the Overlap kernel, the importances of 

each one of the modalities are obtained instead. As operations in feature space are of linear 

nature, to recover the global importance of each input variable we can sum the partial 
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importances of its modalities. A similar approach can be used with the functional linear kernel 

by adding the importances of all time points of each feature. 

In some cases, importances can be also retrieved when dealing with data from different 

sources. Let’s return to the MKL definition (3.4), but now expressed as a convex combination 

of kernels instead of kernel matrices: 

 ( ) ∑ ( ) ∑ ( )  (3.50) 

Data is operated as inner products (i.e. the linear kernel) in feature space, as it can be seen in 

(3.3) and (3.13). If all  are known, we can map the original objects onto feature 

space, and then do: 

 ∑ ( ) ∑ ∑ √ √  (3.51) 

For notation simplicity, only the case with  different sources is illustrated. The  

operator denotes concatenation of two vectors: 

√ √ √ √ [(√ ) (√ )] [(√ ) (√ )] 

Then, performing MKL with the linear kernel over  real data tables is equivalent to applying 

the linear kernel over the concatenation of the same  tables, each one weighted by its 

respective . Changing  for [√ ( ) √ ( )] in (3.49) gives the 

importance of all variables in feature space. When the variables of different data sources 

coincide (as in Chapter 6, wherein the same taxa over four airway sites are used to predict 

smoking status) they can be added to obtain the overall importance across all sources. 
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Abstract 

Background: Antiretroviral drugs are a very effective therapy against HIV infection. However, 

the high mutation rate of HIV permits the emergence of variants that can be resistant to the 

drug treatment. Predicting drug resistance to previously unobserved variants is therefore very 

important for an optimum medical treatment. In this paper, we propose the use of weighted 

categorical kernel functions to predict drug resistance from virus sequence data. These kernel 

functions are very simple to implement and are able to take into account HIV data 

particularities, such as allele mixtures, and to weigh the different importance of each protein 

residue, as it is known that not all positions contribute equally to the resistance. 

Results: We analyzed 21 drugs of four classes: protease inhibitors (PI), integrase inhibitors 

(INI), nucleoside reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse 

transcriptase inhibitors (NNRTI). We compared two categorical kernel functions, Overlap and 

Jaccard, against two well-known noncategorical kernel functions (Linear and RBF) and 

Random Forest (RF). Weighted versions of these kernels were also considered, where the 

weights were obtained from the RF decrease in node impurity. The Jaccard kernel was the 

best method, either in its weighted or unweighted form, for 20 out of the 21 drugs. 

Conclusions: Results show that kernels that take into account both the categorical nature of 

the data and the presence of mixtures consistently result in the best prediction model. The 

advantage of including weights depended on the protein targeted by the drug. In the case of 

reverse transcriptase, weights based in the relative importance of each position clearly 

increased the prediction performance, while the improvement in the protease was much 

smaller. This seems to be related to the distribution of weights, as measured by the Gini 

index. All methods described, together with documentation and examples, are freely 

available at https://bitbucket.org/elies_ramon/catkern.  

Keywords: HIV, Drug Resistance Prediction, Categorical Kernel, Weighted Kernel, PI, NRTI, 

NNRTI, INI, Machine Learning, Support Vector Machine, Random Forest, kernel PCA 

https://bitbucket.org/elies_ramon/catkern
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4.1 Background 

HIV is a retrovirus that infects human immune cells, causing a progressive weakening of the 

immune system. When untreated, the affected person develops acquired immunodeficiency 

syndrome (AIDS), which leads to a rise of opportunistic infections and, finally, death. HIV has 

infected more than 35 million people worldwide and is considered a global pandemic (The 

Joint United Nations Programme on HIV/AIDS [UNAIDS], 2019). Despite the efforts, to date 

there is no definitive cure that eradicates the virus from the organism. However, the lifespan 

and quality of life of many people that live with HIV have expanded greatly thanks to 

antiretroviral therapy. Antiretroviral drugs lower the virus level in blood by targeting different 

stages of the virus life cycle. The most important classes of antiretroviral drugs are protease 

inhibitors (PIs), which target the protease, and nucleoside and non-nucleoside reverse 

transcriptase inhibitors (NRTIs and NNRTIs, respectively) which target the reverse 

transcriptase. Other classes of antiretroviral drugs are the integrase inhibitors (INIs) and the 

fusion inhibitors. 

Some of the main reasons why HIV is so difficult to fight are its short life cycle (1-2 days), high 

replication rate (108-109 new virions each day), and high mutation rate (10-4-10-5 mutations 

per nucleotide site per replication cycle) caused because reverse transcriptase lacks 

proofreading activity. This permits the fast emergence of new HIV variants, some of which 

may be resistant to the drug treatment (Iyidogan & Anderson, 2014). These variants can be 

transmitted, and some studies show that ~10% of patients who had never been on 

antiretroviral therapy carry at least one resistant HIV (German Advisory Committee Blood 

Subgroup ‘Assessment of Pathogens Transmissible by Blood’ [Blood G. A. C], 2016). Cross-

resistance (simultaneous resistance to two or more drugs, often of the same class) is also a 

common phenomenon. It is therefore advisable to do a resistance test before the treatment 

to find the best drug choice (Iyidogan & Anderson, 2014; Shafer et al., 2001), especially in 

developing countries, as recommended by the WHO and the International AIDS Society-USA 

Panel (Blood G. A. C, 2016). A resistance test can be performed in vitro, obtaining HIV samples 

from the patient and using them to infect host cells cultured in presence of increasing levels 

of drug concentration. The virus susceptibility is then obtained empirically as the IC50 (Shafer 

et al., 2001) and usually delivered as the relative IC50 (resistance of the virus variant 

compared to the wild type). Another strategy is to infer the HIV variant resistance from its 

sequence. This can be either gene sequence or the translated protein sequence; this latter 

approach eliminates the noise of synonymous mutations. In any case, as genome sequencing 

is cheaper, faster and more widely available than performing an in vitro drug susceptibility 
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test, much effort has been invested in developing algorithms that predict the drug resistance 

from the virus sequence (Bonet, 2015). 

The first attempts of automatic prediction can be traced back, at least, to the early 2000s 

(Schmidt, 2000). These approaches were rule-based: study the mutational profile of the HIV 

variant to look for known major drug-associated resistance mutations –lists of these 

mutations are periodically updated and can be found in reviews, e.g., Wensing et al. (2017)–. 

The rule-based algorithms continue to be used to this day because of their interpretability. 

Some publicly available examples are the Stanford HIVdb, Rega or ANRS softwares (Bonet, 

2015). However, the aforementioned high mutation rate of the HIV, which favors the 

emergence of large numbers of new resistance mutations and complex mutational patterns, 

makes the rule-based approach suboptimal. In this scenario machine learning methods can be 

extremely helpful, especially in recent years with the increasing size of available data. This 

second approach is also very popular and there exists machine learning software to predict 

resistance online (Riemenschneider, Hummel, et al., 2016; Beerenwinkel et al., 2003). 

Different methods have been proposed, the most common ones being Linear Regression (Yu 

et al., 2014; Rhee et al., 2006), Artificial Neural Networks (ANN) (Sheik Amamuddy et al., 

2017; Pasomsub et al., 2010; Rhee et al., 2006; Wang & Larder, 2003), Support Vector 

Machines (SVM) (Khalid & Sezerman, 2016; Masso & Vaisman, 2013; Rhee et al., 2006), 

Decision Trees (DT) (Rhee et al., 2006; Beerenwinkel et al., 2002) and their ensemble 

counterpart, Random Forests (RF) (Tarasova et al., 2018; Shen et al., 2016; Khalid & 

Sezerman, 2016; Yu et al., 2014). Some machine learning studies have complemented the 

sequence data with structural information (Khalid & Sezerman, 2016; Shen et al., 2016; Yu et 

al., 2014; Masso & Vaisman, 2013), or have benefited from the knowledge about major drug 

associated mutations to perform feature selection. The inclusion of cross-resistance 

information in the form of ensemble methods has also been reported to improve resistance 

prediction (Xing et al., 2019; Riemenschneider, Senge, et al., 2016; Heider et al., 2013). 

Nevertheless, HIV sequence data specificities pose significant challenges to resistance 

prediction. First, sequence data is categorical in nature. However, most machine learning 

algorithms are designed to cope with numeric data (DT and RF being exceptions), thus 

obliging to perform some kind of pre-processing. A typical approach is to recode each 

position into  or  "dummy variables", which can take the values 0 or 1 (Bonet, 2015). 

Usually,  is the number of all possible alleles that can be potentially found in a position (i.e., 

 in protein sequences). However, some authors restrict the dummy variables to the 

drug associated mutations already appearing in the literature (Schmidt, 2000; Rhee et al., 

2006; Wang & Larder,2003). A very different approach is found in Sheik Amamuddy et al. 
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(2017), where each amino acid was codified as an integer ranging 1-22 (the 20 canonical 

amino acids plus two extra characters B and Z). Other encodings have been used with HIV 

sequence data, like amino acid composition frequencies, reduced amino acid alphabets or 

physicochemical properties (Khalid & Sezerman, 2016; Bonet, 2015; Heider et al., 2013). 

Another challenge is the presence of mixtures of alleles (normally two, rarely three or four) in 

at least one position of the viral sequence for most clinical samples. In the case of HIV, this 

event indicates that the patient carries two or more virus variants (Shafer et al., 2001). It is 

well established that HIV tends to generate viral swarms of closely related viruses 

(quasispecies), as a consequence of its high mutation rate (Iyidogan & Anderson, 2014). 

Mixtures introduce ambiguity in the genotype-phenotype correlation (Schmidt, 2000) and a 

problem of technical nature: the vast majority of machine learning methods are not able to 

deal directly with these “multiallelic” codes. To our knowledge, algorithms so far have 

handled allele mixtures with some sort of previous pre-processing of the data, e.g. keeping 

only the most frequent amino acid of the mixture (Tarasova et al., 2018), replacing the 

positions by a missing value (Beerenwinkel et al., 2002), excluding the affected sequences 

(Masso & Vaisman, 2013) or expanding the data to obtain all the possible sequences that 

could be generated with the observed mixtures (Sheik Amamuddy et al., 2017; Shen et al., 

2016; Yu et al., 2014). 

In this paper, we propose the use of kernel functions specifically adapted to the 

aforementioned HIV data intricacies, and able to integrate the relevance of the major 

resistance-associated protein residues. Kernels are mathematical functions with interesting 

properties. They can be coupled to numerous machine learning algorithms, the so-called 

kernel methods, and provide a framework to deal with data of virtually any type (e.g. vectors, 

strings, graphs). They can also encode complementary knowledge about a problem, as long as 

some mathematical conditions are satisfied (Schölkopf et al., 2004). Our aim using kernel 

functions that address the aforementioned HIV data particularities was not only to improve 

prediction, but also reduce pre-processing, thus preserving the data integrity and lowering 

the risk of inserting spurious patterns. 

 

4.2 Methods 

4.2.1 Datasets and data pre-processing 

The Genotype-Phenotype Stanford HIV Drug Resistance Database (n.d) is a public dataset 

with sequences from HIV isolates and its relative susceptibility to several antiretroviral drugs. 
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We retrieved the PhenoSense dataset from Stanford webpage (version date: 2019-2-20). The 

data is split in four databases (PI, NRTI, NNRTI and INI), which contain between 1,000-3,500 

HIV isolates. INI is a new addition to the Stanford database and includes some of the drugs 

most recently approved for therapeutic use. The complete dataset contains eight protease 

inhibitors: atazanavir (ATV), darunavir (DRV), fosamprenavir (FPV), indinavir (IDV), lopinavir 

(LPV), nelfinavir (NFV), saquinavir (SQV) and tipranavir (TPV); five integrase inhibitors: 

bictegravir (BIC), cabotegravir (CAB), dolutegravir (DTG), elvitegravir (EVG) and raltegravir 

(RAL); and two classes of reverse transcriptase inhibitors: six NRTIs, lamivudine (3TC), 

abacavir (ABC), zidovudine (AZT), stavudine (D4T), didanosine (DDI) and tenofovir (TDF); and 

four NNRTIs, efavirenz (EFV), etravirine (ETR), nevirapine (NVP) and rilpivirine (RPV). 

Sequence length is 99 amino acids in the case of PI database, 288 in the case of INI database 

and 240 in the case of NRTI and NNRTI databases. The dataset contains the strain virus 

resistance (relative IC50) to each drug, and the sequence of the protein targeted by this drug. 

We built the regression models for each drug separately, taking each polymorphic protein 

position as a predictor variable and the drug resistance value as the target variable. Since the 

distributions of resistances are highly skewed we used the log-transformed values, as 

recommended in (Bonet, 2015). Redundant viruses obtained from the same patient were 

removed to minimize bias. We deleted all sequences affected by events that changed protein 

length (protein truncations, insertions and deletions). These events were uncommon in the 

dataset and affected less than 5% of HIV sequences. Also, we removed all isolates with one or 

more missing values. Missing values are present in the target variables as well as in the 

sequences, because not all HIV isolates have been tested for all drugs. The final number of 

data instances for each drug is shown in Table 4.1. To ensure a minimum of data rows for 

training/test partitions and cross-validation, we did not consider drugs with a sample size 

lower than 100. 

Table 4.1 Final number of HIV isolates per drug. 

Drug Data size  Drug Data size  Drug Data size  Drug Data size 

ATV 1058  SQV 1603  DDI 1511  BIC 84 

DRV 665  TPV 766  TDF 1236  CAB 0 

FPV 1559  3TC 1482  EFV 1511  DTG 209 

IDV 1607  ABC 1513  ETR 502  EVG 577 

LPV 1372  AZT 1502  NVP 1517  RAL 636 

NFV 1654  D4T 1510  RPV 181    
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4.2.2 Methods 

We compared the performance of a nonlinear, nonkernel method (RF) to a kernel method: 

SVM. SVM can be either linear or nonlinear, depending on the kernel used. The linear kernel 

is the simplest of all kernel functions, given by the inner product of two vectors in input 

space,  and : 

 ( )  (4.1) 

In our case,  and  represent the protein sequence of two HIV isolates, i and j, recoded as 

dummy variables (Belanche & Villegas, 2013). We used this kernel as the linear method of 

reference. An alternative expression is: 

 ( ) ∑  (4.2) 

where  is the length of the sequence. This expression stresses the possibility of assigning a 

weight  to each protein position, as it is known that not all positions contribute equally to 

the virus resistance (Iyidogan & Anderson, 2014). Weights are nonnegative and sum to one. 

We considered two options: the simplest one was to consider that all positions have the same 

importance, i.e., assigning equal weight  to all variables. The second one was including 

additional information into the kernels, using RF mean decrease in node impurity as a metric 

for position importance. 

RBF kernel 

It is a nonlinear kernel, usually defined as: 

 || ||  (4.3) 

Where || ||  is the squared Euclidean distance between two vectors, and  is a 

hyperparameter. As in the case of the linear kernel, the original data was recoded. We also 

introduced the possibility of weighting the positions: 

 ( ) ∑  (4.4) 

The RBF kernel is a widely accepted default method (Belanche & Villegas, 2013; Schölkopf et 

al., 2004), so we used it as a benchmark to compare with the categorical kernels. 
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Overlap kernel 

This is the most basic categorical kernel. This kernel assigns 1 if the two instances compared 

are equal and 0 otherwise. 

 
( ) {  (4.5) 

where  and  represent the alleles of a given protein position k in two HIV sequences,  

and . 

Jaccard kernel 

The Jaccard index measures the similarity between two finite sets and is a valid kernel 

function (Bouchard et al., 2013). We used it to handle allele mixtures, while in the rest of 

methods we randomly sampled one allele of the mixture. Letting again k denote a given 

protein position (so that  and  are non-empty sets of alleles in the k-th position for 

isolates i and j) then: 

 ( )  (4.6) 

When , i.e., none of the individuals have an allele mixture at that k-th 

position, Jaccard reduces to the Overlap kernel. Unlike Overlap, the Jaccard kernel can deal 

simultaneously with allele mixtures and categorical data. 

“RBF-like” categorical kernels 

For the whole protein sequences, we can aggregate all single position Overlap and Jaccard 

evaluations as the convex combination of kernels evaluations –(4.5) or (4.6)– and position 

weights. This results in a valid kernel function, since the product of a positive scalar and a 

kernel is a kernel, and the sum of kernels is also a kernel. To ensure that the only difference 

between categorical kernels and RBF was the categorical part, we introduced an exponential 

factor and the hyperparameter , in a way analogous to (4.3) and (4.4): 

 ( ) ∑  (4.7) 

This is also a valid kernel function, since the exponential of a kernel gives another kernel, and 

where  normalizes the kernel matrix, keeping the evaluations between 0 and 1. The final 

versions of the Overlap and the Jaccard kernels are obtained replacing the  term by 

(4.5) or (4.6), respectively. In our analyses, we compared weighted and unweighted versions 
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for all linear, RBF, Overlap and Jaccard kernels. Thus we can ensure a fair comparison 

between the categorical and the noncategorical kernels. 

Stacked models 

So far, we have built prediction models for each inhibitor separately. As mentioned in the 

Introduction (section 4.1), it is reported that there exists some degree of relationship 

between the resistance of different drugs (e.g. in case of cross-resistance). To check whether 

the use of this information can improve prediction, we implemented the stacking algorithm 

described in Xing et al. (2019) for continuous outcomes. This meta-learner approach consists 

of two principal steps. In the first step, single drug models are built from the training data as 

usual. In the second step, the fitted values (i.e. predictions of the training data) of all drugs 

obtained in step 1 are used as input to a new (stacked) model, being each drug a different 

predictor. The method that integrates the single drug models in step 2 and delivers the 

definitive predictions is called a combiner algorithm. Data size largely varied between drugs 

(see Table 4.1), even within the same drug class, so we chose Decision Trees (DT) as our 

combiner algorithm, as they can easily handle missing data. We combined the drugs within 

the same database (PI, NRTI, NNRTI and INI) and applied this stacking methodology to our 

previously proposed weighted kernels (Linear, RBF, Overlap and Jaccard). 

4.2.3 Experimental setup and model tuning 

To assess the performance of the methods used, each database was split at random in two 

partitions: training set (60% of the database) and test set (40%). Hyperparameter 

optimization was done by a 10x10 cross-validation on the training set. Once the optimum 

hyperparameter was found, the final model was built using the whole training set. To assess 

the model performance, the NMSE (Normalized Mean Square Error) between the actual and 

the predicted drug resistances of the test set was computed: 

 ( )
∑( )

( ) ( )
 (4.8) 

NMSE can be understood as the fraction of target variance not explained by the model. 

We repeated the whole process 40 times, each time with different 60/40 randomly split 

training/test partitions, to obtain an error distribution. Kernel position weights were 

calculated using the training set only. Note that only the Jaccard kernel can directly handle 

allele mixtures; for the rest of kernels and the RF, we generated 40 versions of the database 

randomly sampling one allele at a time. Then, the 40 replicates were used to compute all the 
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models except Jaccard, which could deal directly with the database without further 

preprocessing. This way we can ensure an honest comparison between Jaccard and the rest 

of kernels and methods. 

All analyses were implemented in the R statistical computing language. A documented 

package implementing these methods is available at 

https://bitbucket.org/elies_ramon/catkern/. 

4.2.4 Visualization 

Kernel PCA (kPCA) is a kernel method obtained by coupling kernel functions to a Principal 

Components Analysis. We used the Jaccard kPCA to visually check whether sequences that 

are considered more similar by the kernel function are also similar in their drug resistance. As 

this method is for visualization purposes only, we did not separate training and test 

sequences. Thus, we used the mean kernel weights of the 40 training sets to compute the 

weighted Jaccard. 

To check whether the important protein positions (i.e. kernel weights) detected by RF could 

have an structural relevance, we highlighted our top ranking positions on the three-

dimensional structure of the protein. Pictures of protein-drug complexes were generated 

with Molsoft ICM-Browser v.3.7-2 using structural data obtained from RCSB Protein Data 

Bank. 

4.2.5 Performance comparison to other approaches 

We compared our SVM plus weighted Jaccard with the ANN approach described in Sheik 

Amamuddy et al. (2017), which to our knowledge achieves the best performance so far in this 

dataset. We used the R interface to keras to implement the ANN. First, we followed the 

specifications described in Sheik Amamuddy et al. (2017) about the range of candidate 

architectures (1-3 hidden layers, with 2-10 nodes per layer, for all drugs), number of epochs 

and early stopping. As our dataset version and data pre-processing differ from Sheik 

Amamuddy et al. (2017), we also evaluated a different range of hyperparameters: three fixed 

ANN architectures (one hidden layer with 30 nodes, two hidden layers with 20 and 10 nodes 

respectively, and three hidden layers with 30, 20 and 10 nodes) with the L2 regularization 

parameter . Both approaches (from now on referred to as ANN1 and ANN2) were trained 

and tested as for the rest of methods (see: Data and dataset pre-processing), with the 

previously described 40 replicates, allele mixture treatment, training/test ratio and 10x10 

cross-validation to choose the best number of layers and nodes per layer (in the case of 

ANN1) or  (in the case of ANN2). We chose the best architecture obtained in training within 

ANN1 and ANN2 options for each drug. 

https://bitbucket.org/elies_ramon/catkern/
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4.3 Results 

As expected, HIV protein sequences showed a large variability. As many as 93% of the 

protease positions were polymorphic and, among these, the number of different observed 

alleles varied between 2 and 16. In the case of reverse transcriptase, 89% of the positions 

were polymorphic and the number of alleles per polymorphic position ranged between 2 and 

14. Integrase was the least variable protein: 75% of the positions were polymorphic and, in 

these positions, the number of alleles ranged between 2 and 8. Almost 60% of the sequences 

had at least one allele mixture. 

Figure 4.1 shows the NMSE distribution boxplot for four representative drugs: FPV (PI 

database, panel A), DDI (NRTI database, panel B), NVP (NNRTI database, panel C) and EVG (INI 

database, panel D). The remaining 17 boxplots can be found in Supplementary material 

Chapter 4, figures S1-S9 (Annexes). 

4.3.1 Performance overview 

NMSE varied greatly across drugs and methods. The best prediction was achieved for 3TC, 

with an average NMSE ranging 0.07-0.16 depending on the method used (Figure S4, right). 

The drug with worst prediction error was DTG, with an average NMSE ranging 0.65-0.75 

(Figure S8, right). This was also the second drug with lowest data size (Table 4.1). Not 

unexpectedly, methods applied to drugs with low  had considerably worse performance 

overall (especially DTG, RPV, ETR and TPV, but also TDF and to some extent DRV). In the PI 

database, errors were fairly similar across all drugs and around 0.12-0.20 on average (e.g. 

Figure 4.1A), with the sole exception of TPV, with an average NMSE ranging 0.30-0.45. In turn, 

predictive performances for the integrase and reverse transcriptase inhibitors were far more 

variable across drugs. Overall, the best method was the SVM with the Jaccard kernel (either in 

its weighted or in its unweighted version), which achieved the best performance in 20 out of 

21 drugs. 

Unweighted case 

Nonlinear kernels performed much better than the linear kernel in almost all drugs, with the 

only exception of ETR and D4T. Categorical kernels outperformed RBF, although RBF was 

close to Overlap (or even marginally better) in some cases. Among categorical kernels, the 

Jaccard kernel performed better than Overlap in all inhibitors, sometimes by a large margin, 

as in the cases of SQV, 3TC, AZT, EFV, NVP, RAL or EVG (Figure 4.1 panels C and D). Predictive 

performances of unweighted kernels and of RF were markedly different in protease with 

respect to integrase and transcriptase inhibitors. RF was consistently worse than kernel 
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methods for the PI database (e.g. Figure 4.1A), whereas RF performance was comparable or 

better than those of kernel methods in both reverse transcriptase and integrase inhibitors 

(e.g. Figure 4.1B, C and D). 

 

Figure 4.1. NMSE distributions for a PI (FPV), an NRTI (DDI), an NNRTI (NVP) and an INI (EVG). Note 
that NMSE scale varies between panels. 

Weighted case 

Figure 4.2 shows three representative examples of the weights obtained from RF. The 

remaining plots are shown in Suppl mat, figures S10-S27. We ascertained that RF detected 

most of the major resistance-associated positions described in the literature –e.g. review in 

Iyidogan and Anderson (2014)–. Overall, a higher percentage of relevant positions were 

identified in protease inhibitors than in both reverse transcriptase and integrase inhibitors. To 
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evaluate this numerically, we computed the Gini index of the RF importance distributions for 

each of the drugs. This index is shown in Figure 4.2 and Suppl mat, figures S10-S27. We also 

noticed differences regarding the location of the important positions in the three-dimensional 

structures of protease (Figure 4.3A) and reverse transcriptase (Figure 4.3B). The most 

important protease positions according to RF are distributed over the whole structure, 

whereas in the case of the reverse transcriptase they are located at the drug binding site. 

Figure 4.2. RF relative importance of each protein position for three drugs: a protease inhibitor (A), a 
reverse transcriptase inhibitor (B) and an integrase inhibitor (C). Standard error across the 40 
replicates is marked with error bars. Asterisks highlight the major drug related positions reported in 
the literature (Iyidogan & Anderson, 2014). 



 

Figure 4.3. A: Wild type protease (in yellow and blue) with an inhibitor (NFV, in green) (PDB code: 3EKX). We highlight the ten most important positions 
according to RF: 10, 90, 54, 46, 71, 88, 84, 30, 20 and 83. These positions are scattered throughout the protein and only a few belong to the drug binding site 
(e.g. 30, 82 and 84). Mutations at the binding site reduce the affinity for the inhibitor, but can impair the protease catalytic activity as a collateral damage. 
Mutations in distant residues are typically concurrent with these binding site mutations and often have a compensatory role (e.g. stabilizing the protease 
structure or restoring the catalytic activity). Position 30 appears to be important only in the case of the NFV drug, while the other positions are found in all (or 
almost all) protease inhibitors. This agrees with the literature (Iyidogan & Anderson, 2014). B: Binding pocket of the reverse transcriptase (in yellow) with an 
NNRTI (NVP, in pink) (PDB code: 3V81). We highlight the five most important positions for NVP according to RF: 103, 181, 190, 188 and 101. All these positions 
reside in the NNRTI binding pocket of the enzyme, and also appear in the other NNRTIs analyzed. Thus, in EFV, we find 100 (but not 181) in the top 5; and in ETR, 
we have 179 instead of 188 (also highlighted). Positions 103 and 101 are located near the entry of the inhibitor binding pocket and, when mutated, interfere 
with the entrance of the inhibitor to the binding site. Y181 and Y188 have a crucial contribution the NVP binding via stacking interactions between its side chains 
and the inhibitor aromatic groups. G190 mutations lead to resistance through steric hindrance, because of the substitution by a more voluminous side chain. 
L100 effect is also related to steric hindrance (Iyidogan & Anderson, 2014). 



As for predictive performance, weighting was more effective in integrase and reverse 

transcriptase inhibitors than in protease inhibitors. In NRTI and NNRTI databases, weighted 

kernels outperformed RF in all cases, whereas their unweighted counterparts did not. This 

was particularly the case for 3TC, DDI (Figure 4.1B), EVG (Figure 4.1D) and especially NVP 

(Figure 4.1C), where weighting decreased the Jaccard kernel error by around 50%. In contrast, 

the effect of weighting was less marked in the PI database: similar errors were obtained (e.g. 

Figure 4.1A) for all drugs but TPV, where the error actually increased. In the INI database, 

weighting decreased dramatically the error in RAL and EVG drugs but not in DTG. In summary, 

Jaccard was the best weighted kernel followed by Overlap, RBF and Linear. 

4.3.2 Factors affecting prediction error 

To investigate the relevance of each factor in prediction, we fitted the following linear model 

to NMSE obtained in each replicate across all kernels and drugs (40 replicates x 21 drugs x 8 

kernels): 

 

where  is the drug data size (Table 4.1),  is a class variable with the kernel used (Linear, 

RBF, Overlap or Jaccard),  or  depending on whether the kernel was unweighted or 

weighted, respectively, and  is the standardized Gini index of RF weights. Table 4.2 

summarizes the coefficients and their significance. We found that all factors are significant 

and behave additively (interactions were not significant; results not shown). As expected 

NMSE decreases with  but, interestingly, also with Gini index, i.e., prediction improves when 

there are only a few positions of large effect. Categorical kernels were consistently better 

than noncategorical ones and Jaccard was the best option in all cases. Weighting protein 

positions significantly lowers the error, although only in reverse transcriptase and integrase 

inhibitors (as also observed in Figure 4.1 and Suppl mat, figures S1-S9). 

Table 4.2. Linear model coefficient estimates and p-values. 

 All drugs PIs NRTIs + NNRTIs INIs 

 increment -3.1·10-4 *** -3.0·10-5 *** -1.8·10-4 *** -1.3·10-3 *** 

Unweighted → Weighted -3.0·10-2 *** 3.0·10-3 -3.4·10-2 *** -3.1·10-2 *** 

Gini Index increment -4.9·10-3 *** -6.0·10-2 *** -5.4·10-2 *** 1.7·10-2 ** 

Jaccard → Linear 4.5·10-2 *** 3.1·10-2 *** 5.0·10-2 *** 9.4·10-2 *** 

Jaccard → RBF 3.5·10-2 *** 1.3·10-2 *** 3.8·10-2 *** 4.7·10-2 *** 

Jaccard → Overlap 1.9·10-2 *** 9.3·10-3 *** 3.1·10-2 *** 3.6·10-2 *** 

Legend: Significance codes are 0 *** 0.001 ** 0.01 * 0.05 

To visualize the impact of Gini index not ascribable to the effects of data size ( ) and the 

kernel used ( ), we plotted the residuals of model  against  (Figure 4.4 
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panels A, B and C). For protease inhibitors, the Gini effect is confined to TPV drug (red dots in 

Figure 4.4A). The effect is rather linear for reverse transcriptase inhibitors, although NMSE 

variability was larger than average for RPV (red dots), the drug with lowest . In the case of 

integrase inhibitors, Gini takes values in a narrow range and does not seem to have an impact 

on prediction. As in the case of RPV, large variability in NMSE values is observed in DTG (blue 

dots), which is the drug with second lowest sample size. 

 

Figure 4.4. A, B and C: NMSE residuals (observed − fitted values) of the linear model containing only 
data size (N) and kernel (K) vs. Gini index. Each color represents a different drug. Note different scale 
for the Gini index between panels. D, E and F: Residuals (observed − fitted values) of the linear model 
containing K, W and GINI vs. data size (N). Each color represents a different drug. 

Sample size is one of the most important factors in any experimental design, and the main 

one influencing total cost. Figure 4.4 panels D, E and F show the residuals of model 

 vs. . Although Table 4.2 shows that the NMSE decreases with 
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sample size for all drugs and proteins, a clear trend appears only for reverse transcriptase 

inhibitors. In this case, a law of diminishing returns is observed, and adjusted NMSE decrease 

with  is very small for . 

4.3.3 Kernel PCA 

Even if weighting increases prediction accuracy overall, the effect was markedly different 

when we compare reverse transcriptase and integrase with protease (Table 4.2). In the latter 

protein, weighted kernels were not clearly superior. To further investigate this issue, we 

performed a PCA on the Jaccard kernel. Figure 4.5 shows the results of for FPV (a protease 

inhibitor, panels A and B) and NVP (a reverse transcriptase inhibitor, panel C and D), both 

with unweighted and weighted Jaccard kernels. The remaining figures can be found at Suppl 

mat, figures S28-S46. Unweighted kPCA results, overall, in a good, spectrum-like separation 

between resistant and susceptible isolates for protease inhibitors, whereas weighted kernels 

can improve dramatically the separation in the case of reverse transcriptase. The integrase 

inhibitors RAL and EVG behave similarly to reverse transcriptase inhibitors, while DTG (which 

has a very small sample size) do not achieve a good separation either in the weighted or the 

unweighted kPCAs. 

4.3.4 Stacked models 

We compared the performances of four methods (SVM plus weighted Linear, RBF, Overlap 

and Jaccard kernels) with those of their stacked counterparts in Suppl mat, tables S1 (mean 

NMSE) and S2 (NMSE standard error). Intriguingly, we found that the stacked versions of SVM 

with weighted kernels have similar performances to those of the individual models. This 

suggests that all the information of the sequence has been already extracted in the first step, 

and so stacking the models was of no additional value. 

4.3.5 Performance comparison to other approaches 

Figure 4.6 shows the performance comparison between our best method (SVM with weighted 

Jaccard kernel) with the ANN1 and ANN2 (see subsection 4.2.5). ANN2 tends to have better 

performance than ANN1, especially in drugs with small sample size, but also presents greater 

standard errors in some drugs. In the case of protease inhibitors (panel A) both ANN1 and 

ANN2 are only marginally worse than the weighted Jaccard SVM, with the exception of the 

FPV drug. In the case of reverse transcriptase and the integrase inhibitors (panels B, C and D), 

the difference between the performance of weighted Jaccard and the ANN increases. The 
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latter method presents higher NMSE and larger standard errors, especially for 3TC, DDI, TDF, 

the NNRTIs, and the INIs. 

 

Figure 4.5. The Jaccard kPCA in a protease inhibitor (FPV, panels A and B) and a reverse transcriptase 
inhibitor (NVP, panels C and D). Panels A and C correspond to unweighted Jaccard, and B and D to 
weighted Jaccard. Dot color represents the actual log-resistance value for each specific drug; in red the 
more resistant, and in green the least resistant. Sequences with missing resistance value are in gray. 

 

4.4 Discussion 

Recent results on predicting HIV drug resistance as a regression problem can be found in 

Sheik Amamuddy et al. (2017) and Shen et al. (2016). Shen et al. (2016) used RF and 

computed the 5-fold cross-validation R2. Sheik Amamuddy et al. (2017) used ANN and 

computed the R2 of the test set without replicates. The two approaches were based in a 

previous version of the Stanford dataset (version date: 2014-9-28) and share a similar 

treatment of amino acid mixtures based on sequence expansions. We did a comparison with 
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the ANN, which to our knowledge achieved the best performance so far in this dataset (Sheik 

Amamuddy et al., 2017). We observed that weighted Jaccard outperforms ANN in all drugs, 

and that the ANN prediction performances were worse than those originally reported (which 

had R2 values ranging between of 0.85 and 0.99). It has to be stressed, however, that we used 

different versions of the dataset (the version used by Sheik Amamuddy et al. (2017), for 

instance, did not contain information about the INIs) and that we followed very different 

strategies concerning pre-processing. In Sheik Amamuddy et al. (2017), a pre-processing with 

removal of outliers and rare variant filtering is performed, which can result in a loss of 

generalizability, as is acknowledged by the authors. Another reason for the discrepancy is 

probably the treatment of allele mixtures, as we discuss next. 

 

Figure 4.6. Mean NMSE values and their corresponding standard errors for the SVM + weighted 
Jaccard kernels (red), ANN1 (light gray) and ANN2 (dark gray). PIs are shown in panel A, NRTIs in panel 
C, NNRTIs in panel B and INIs in panel D. 

In this work, we present a novel approach to predict drug resistance in HIV, using kernel 

functions that directly address the presence of allele mixtures and the categorical nature of 
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the data. Previous work handled these two issues using several pre-processing strategies. 

Categorical data are systematically recoded into numeric data, usually in the form of dummy 

data or, in Sheik Amamuddy et al. (2017), assigning an integer to each category. Here, we 

have shown that addressing the categorical nature of the data and the presence of allele 

mixtures does lower the test error in comparison to the dummy variable approach (Table 

4.2). In fact, even the simplest categorical kernel (i.e. the Overlap kernel) improves prediction 

upon the standard RBF kernel, although the extent of the improvement depends on the 

specific drug. It has to be stressed that recoding the categorical data into dummy variables 

increases the dimensionality of the problem, thus increasing computation needs and leading 

to sparse datasets. As this effect depends on the number of different categories of the 

variables, categorical methods may be more useful when data has more than few categories. 

Coding the different alleles as an integer does not increase the dimensionality either, but 

introduces an order without biological meaning among the amino acids. 

The treatment of amino acid mixtures is more challenging. In the data analyzed we observed 

that it is a widespread phenomenon: about 60% of the sequences had at least one mixture. 

Mixtures introduce ambiguity in the genotype-phenotype correlation since it makes 

impossible to know the actual sequences of strains. Also, the quasispecies distribution may 

have undergone undefined modifications during the in vitro assay (Perrin & Telenti, 1998). 

Previous approaches to deal with this issue included keeping the most frequent amino acid of 

the mixture (Tarasova et al., 2018) and sequence expansion (Sheik Amamuddy et al., 2017; 

Shen et al., 2016; Yu et al., 2014). The latter strategy consists in expanding the data to 

sequences with single amino acids at each mixture location until all possible combinations 

have been exhausted. These “derived” sequences share the resistance value, i.e., the 

resistance of the original sequence. This approach dramatically enlarges data size (in the 

aforementioned works, minimum by a 10x factor in the protease inhibitors and almost a 30x 

in the reverse transcriptase inhibitors). This might be one of the main reasons for the 

discrepancy between the ANN performance computed in this work and in Sheik Amamuddy 

et al. (2017). Without expansion, the data size ranges between 200-1500, but the number of 

(dummy) variables is almost 2000 in the PIs, and more than 4000 in the other drugs. The 

higher number of variables compared to observations might have adversely affected the ANN 

performance in comparison to the original work and, also, in comparison to SVM, as the latter 

are less prone to over-fitting. Furthermore, the expansion potentially biases the dataset by 

over representing sequences with mixtures (especially those with a larger number of mixtures 

and/or alleles per mixture) and it can generate HIV variants not found in the patient. 

Expansion also increases the difficulty of the training/test splitting because all expansions of 

the same sequence must be placed either in the training set or in the test set; otherwise, the 
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independence of both sets is lost. In our work, we preferred keeping only one amino acid of 

the mixture, which is allegedly the most conservative pre-processing choice. This differs from 

e.g. Tarasova et al. (2018), because we keep one amino acid at random, while they pick the 

most frequent one, which is sound if mixtures are considered a technical artifact. However, in 

case of HIV, this event mostly reflects the coexistence of actual HIV variants in the body of the 

patient (Iyidogan & Anderson, 2014; Shafer et al., 2001; Schmidt, 2000; Perrin & Telenti, 

1998) and the ambiguity lies in the resistance value delivered via the in vitro test. In any case, 

part of the original information is lost by picking one of the alleles of the mixture. This does 

not happen when using the Jaccard kernel, which naturally handles allele mixtures. We have 

shown that Jaccard is clearly the best among kernels assessed and that also improves the RF 

results, in most cases by a large margin. Both Overlap and Jaccard are basic kernel functions, 

but our kernel definition (4.7) is general enough to replace them for more sophisticated 

categorical kernels, perhaps with improved prediction performance. 

An additional theoretical proposal was to weigh kernel positions according to its inferred 

influence on drug resistance. Here we employed RF decrease in impurity as weights but 

numerous options are equally justified and so additional research on this topic is warranted. 

Using RF we were able to identify, from protein sequence alone, important positions for the 

drug resistance that have a structural meaning (Figure 4.3). We observed a distinct effect of 

weighting in protease inhibitors and transcriptase reverse inhibitors that correlates with the 

distribution of the importances. At least part of this behavior might be due to differences in 

the mutational pattern between the two enzymes in regards to drug resistance. In the reverse 

transcriptase, the major resistance mutations tend to be located in specific positions, 

particularly at the drug binding sites of the N-terminal side, weakening the affinity between 

drug and enzyme. As early as 1998, it was noted that a single mutation of the reverse 

transcriptase may confer high resistance to drugs like 3TC and NVP (Perrin & Telenti, 1998), 

whereas the virus acquires resistance to protease inhibitors by accumulating mutations. First, 

primary resistance mutations arise at the active site pocket and the surrounding residues. 

But, as these mutations often cause conformational changes, additional secondary mutations 

that compensate the impaired catalytic activity and stabilize the protease tend to be selected 

in turn. There are at least 36 important residues (out of a total of 99) involved in protease 

drug resistance mutations and (unlike reverse transcriptase) they are distributed along the 

whole sequence (Iyidogan & Anderson, 2014). These differences may explain why RF, and 

therefore the weighted categorical kernels, performed better at the NRTI and NNRTI 

databases. Further, the estimate of the variable importance is more reliable when few 
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relevant protein positions have a large impact on resistance. In contrast, the compensatory 

secondary mutations of the protease probably introduce some degree of correlation between 

protein positions, which may explain why weighting in PI database does not result in a clear 

improvement of performance. 

 

4.5 Conclusions 

Machine learning is an effective approach to predict HIV drug resistance, and a 

straightforward alternative to the much slower and expensive in vitro assay. Results show 

that kernels that take into account both the categorical nature of the data and the presence 

of mixtures consistently result in the best prediction model. As for the introduction of 

position weights, we found that the amount of improvement was a function of the number of 

positions with large effect on drug resistance, which may be related to the known different 

mutational patterns regarding drug resistance among the viral proteins. Using more 

sophisticated categorical kernels and/or kernels able to take into account structural 

information may improve even more the resistance prediction. 
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Abstract 

A definitive cure to HIV infection does not exist yet and, thus, patients rely in antiretroviral 

therapy for life. In this scenario, the emergence of drug resistance is an important concern. 

The automatic prediction of resistance from HIV sequences is a fast tool for physicians to 

choose the best possible medical treatment. In a previous work, we devised two kernel 

functions that took into account the categorical nature and the presence of allelic mixtures in 

HIV sequence data. Here, we expand the aforementioned kernels to consider that sequence 

positions may be associated. As background linkage disequilibrium has been reported to be 

low in HIV due to its high recombination rate, we focused on functional associations between 

protein positions. Mutated protein sequences were modeled as graphs, with edges weighted 

by the Euclidean distance (obtained from three-dimensional crystal structures) between 

residues. A kernel for graphs, the exponential random walk kernel, was combined with the 

previous categorical kernels to generate kernels ad hoc for this data. Despite the potential 

advantages of this approach, an improvement on predictive ability was not observed. 

Keywords: HIV, Drug Resistance Prediction, Protein Structure, Random Walk Kernel, Allele 

mixture, PI, NRTI, NNRTI, Support Vector Machine, kernel PCA 

 

5.1 Introduction 

Actual HIV treatment is based on antiretroviral drugs that target several key stages of the 

virus replication cycle. Resistance occurs in all classes of antiretrovirals and can pose a threat 

to the treatment effectiveness. One of the main causes of the emergence of resistant variants 

is the HIV mutation rate, which is as high as 10-4-10-5 per viral genome and replication cycle. 

As patients have to follow the therapy for life, drug resistance is a serious concern (Anstett et 

al., 2017). 

In a previous work (see Chapter 4) we used SVM coupled to categorical kernels to predict, 

from HIV mutated sequences, the resistance of virus isolates to 21 drugs from four different 

classes: PI (protease inhibitors), INI (integrase inhibitors), NRTI and NNRTI (nucleoside and 

non-nucleoside reverse transcriptase inhibitors, respectively). We performed a sequence-

based prediction that assumed that each one of the sequence positions was completely 

independent from the others. This approach did not take into account potential cases of 

linkage disequilibrium or LD, i.e. non-random associations between alleles from different loci. 

These associations may arise for different causes; for instance, when the analyzed loci are 
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placed in the same sequence, so specific sets of alleles are co-inherited en bloc from a 

common ancestor. This is called genetic linkage or background LD (Wang & Lee, 2007), and it 

is known to decay with distance by the action of recombination.  

Associations can also be due to structural and functional interactions among protein residues. 

Protein three-dimensional folding is determined by its sequence and, in turn, determines 

protein function. Thus, there exist some constraints posed to specific combinations of alleles 

that completely disrupt the protein structure. Other associations may arise because of 

selective pressure. Contrarily to background LD, functional associations can be observed 

between positions that are distant in the sequence but that have some kind of interaction 

once the protein is folded. 

In the case of HIV, recombination occurs at a very high rate, between 10−5-10−4 breakpoints 

per site per generation, depending on the report (Song et al., 2018). Each HIV virion contains 

two single-stranded RNA genomes, and it is well known that reverse transcriptase switches 

between the two during reverse transcription (Schlub et al., 2014). It is reasonable to expect 

that these high levels of recombination in HIV, together with the short generation time of 

virions, greatly accelerate the disappearance of background LD. In this direction, Wang and 

Lee (2007) reported that pairwise associations within pol gene are mainly due to functional 

interactions, and that background LD was present in a much lower amount. The pol gene 

encodes reverse transcriptase, integrase and protease, which catalyze reactions as important 

for HIV infection as RNA  DNA reverse transcription, integration in human genome and 

cleavage of precursor polypeptides into mature viral proteins. It is widely acknowledged that 

three-dimensional structure is key for enzymatic activity, as it determines the kind of 

reactions catalyzed and, also, allows the enzyme to be very selective about its substrates. As 

antiretroviral drugs are intended to target specific proteins and block their activity, structure 

also has a great importance in drug effectiveness. For instance, most PIs are competitive 

inhibitors that mimick the transition state of protease natural substrates, and were the first 

success of structure-based drug design (De Clercq, 2009). Interestingly enough, Wang and Lee 

(2007) found that most associations detected in HIV data from therapy-experienced patients 

vanish in sequences from untreated HIV carriers, which suggest that these interactions are 

mainly due to drug selection pressure. 

In this work, we aim to expand the two categorical kernels over sequences of Chapter 4, the 

Overlap and the Jaccard kernel, to include structural information. The main difference 

between these two kernels is that the latter can handle amino acid mixtures, which are very 

widespread in HIV sequence data. We will take advantage of the modularity in kernel design 

to combine them with a type of kernels based on random walks in graph data (Vishwanathan 
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et al., 2010; Borgwardt et al., 2005; Gärtner et al., 2003). These kernels for graphs have been 

applied successfully to general protein function prediction (Borgwardt et al., 2005). In our 

case, we will model the three-dimensional folding of HIV viral proteins as graphs and, then, 

apply over them the extensions of the Overlap and Jaccard kernels for structural data. 

 

5.2 Material and Methods 

5.2.1 Protein structures, sequence datasets and data pre-processing 

The mutated HIV sequences were obtained from Genotype-Phenotype Stanford HIV Drug 

Resistance Database (version date: 2019-2-20). Protease sequences and their relative 

resistance to eight protease inhibitors are in the PI dataset. NRTI and NNRTI datasets contain 

data of reverse transcriptase sequences and their resistance to two different classes of 

inhibitors (six NRTIs and four NNRTIs). Finally, the INI dataset contains integrase sequences 

and resistance to five inhibitors. Both the assessed drugs and the pre-processing of HIV 

sequences was exactly the same than in Chapter 4. 

Structural data was retrieved from RCSB Protein Data Bank for protease (PDB code: 3OXC) 

and reverse transcriptase (2WOM). We did not find complete crystal structures of integrase, 

and so the INI dataset was not included in subsequent analyses. Euclidean distance (in Å) 

between all pairs of protein residues was computed from the (x,y,z) coordinates of their alpha 

carbons (Cα). Then, a graph was generated for each one of the HIV mutated sequences. Each 

protein position was assigned a different node, labeled with the specific allele of the HIV 

isolate at that position. Edges connected every pair of two nodes and were labeled with the 

Euclidean distance between each pair. Possible structural changes in the neighborhood of 

mutated protein residues were not assessed, and so the same weights were used in all the 

protease sequences on one hand, and reverse transcriptase on the other. In return, the set of 

nodes differed among graphs, as each one contained a different HIV sequence. 

5.2.2 Random walk kernel 

The pairwise similarity between graphs was computed using the exponential random walk 

kernel (Gärtner et al., 2003): 
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 ( ) ∑ ∑  (5.1) 

where  and  are the graph representations of the same enzyme (protease or reverse 

transcriptase) coming from two different HIV isolates,  is the adjacency matrix of the direct 

product graph ,  is the set of nodes of the direct product graph, and 

 is the decay hyperparameter. 

To compute , let  and  be the set of nodes of  and , i.e. the protein sequences of two 

HIV isolates.  can be obtained in a straightforward way by comparing all nodes of both 

graphs and keeping only those with identical labels (i.e. as with an Overlap kernel): 

 ( ) ( ) ( )  (5.2) 

with , , and ( ) being the allele at the i-th node (protein position). , 

the number of nodes of , is at most . 

On other hand, the adjacency matrix of a graph is the matrix that contains the weights of its 

edges. In our case,  contains the Euclidean distance between nodes i and j.  can 

be obtained as the Kronecker product of the adjacency matrices of  and , i.e.  

(Vishwanathan et al., 2010). For  and  to match, we kept only the i,j entries of such 

that nodes i and j exist in , which following (5.2) is the case if ( ) ( ) and 

( ) ( ). Again, the rank of  is at most . 

The exponential random walk kernel allows using more sophisticated kernels than the 

Overlap for comparing the nodes of  and  (Borgwardt et al., 2005). In that case,  in (5.1) 

should be replaced by: 

 (( ) ( )) (5.3) 

Where  summarizes the information of nodes i and j and the edge connecting them: 

We took advantage of the fact that the protein sequences from different isolates are aligned 

and have equal length. Thus, we first applied the Overlap kernel to ensure that the two nodes 

 correspond to the same protein position (that is: ). Then, either the Overlap or the 

Jaccard kernels for protein sequences were used over the labels on the nodes. The 

 
(( ) ( ))

(( ) ( )) 
(5.4) 
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Exponential-Overlap kernel (expOv) checks for complete equality between the nodes of two 

proteins from two different isolates and was computed as follows: 

 ( ) ( ) (5.5) 

Instead, the Exponential-Jaccard kernel (expJac) had the advantage of handle the potential 

amino acid mixtures: 

 ( ) ( ) (5.6) 

We can obtain the edges by applying the Kronecker product over the adjacency matrices of  

and : 

 (( ) ( ))  (5.7) 

However, ( ) sets most rows and columns to zero. These all-zero rows and columns can 

be eliminated of , which now has a maximum rank of . Thus, we only need to compute 

the submatrix of (5.7) for which . This can be easily computed as the element-wise 

product of the adjacency matrices  and : 

 (( ) ( ))  (5.8) 

as the same adjacency matrix is shared across all protease sequences, on one hand, and all 

reverse transcriptase sequences, on the other. 

5.2.3 Kernel function implementation 

At first sight, it seems that a naive implementation of (5.1) has exponential asymptotic 

complexity due to  summation (even when an upper limit for k is set). This can be 

substantially improved using dynamic programming, but nonetheless remains the most 

prohibitive step of the kernel computation, even when a “reduced”  as in (5. 8) is used. 

In fact, the summation term in (5.1) is a Neumann series and can be computed in an exact 

form (Kress, 2012). As a Neumann series, it converges in: 

 ∑  (5.9) 
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Where  is the identity matrix with the same dimension of . The cost of matrix inversion is 

roughly cubic. Another possibility consists in diagonalizing . This is a squared and 

symmetric matrix, so its spectral decomposition is: 

  (5.10) 

where  is the square matrix of eigenvectors and  is the diagonal matrix whose diagonal 

elements are the corresponding eigenvalues. Then, as matrix product is continuous, we can 

take off the sum: 

 ∑ (∑ )  (5.11) 

Diagonalizing  greatly facilitates the calculations, as the powers of  can be obtained by 

the power of each entry on the main diagonal. If this approach is combined with (5.9): 

 ∑ ( )  (5.12) 

Again, the inverse of a diagonal matrix is the inverse of each one of its elements (in this case, 

the eigenvalues of ), so [ ]  and [ ] . Computing the eigenvalues and 

eigenvectors of  also has cubic complexity. A third possibility (Gärtner et al., 2003) is: 

 ∑  (5.13) 

In this case,  the diagonal contains the exponential of the product of  and  eigenvalues. 

5.2.4 Experimental set-up and kernel visualization 

All analyses were run in R. To combine the exponential random walk kernel with the Overlap 

(expOv) and the Jaccard kernels (expJac) we computed  using (5.5) and (5.6), 

respectively. Implementation of the exponential random walk kernel was done as in (5.12) 

using the R packages Rcpp and RcppArmadillo. The former package provides an API to easily 

write C++ functions and running them in R, and the latter allows accessing to the linear 

algebra library Armadillo. That way the computation of the exponential kernel was speed up. 

Resistance prediction was done by coupling the expOv and the expJac kernels to SVM. 

Experimental set-up was mostly the same than in Chapter 4. The difference was that we 
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randomly sampled the amino acid mixtures only once prior to computing (5.5). The reason 

was the high cost of computing 40 versions of the expOv kernel. 

We used kernel PCA (kPCA) to visually check whether sequences that were considered more 

similar by the kernel were also similar in their drug resistance. kPCA was computed over the 

whole dataset. For both SVM and kPCA, results of the exponential random walk kernel were 

compared to our previous results. 

5.2.5 LD measures 

To further interpret the SVM and kPCA results, we computed the LD among protein positions. 

Given two multi-allelic loci  and , the disequilibrium between any possible pair of alleles of 

these loci is: 

 ( ) ( ) ( ) (5.14) 

where ( ) is the observed frequency of i-th allele in locus , ( ) is the observed 

frequency of j-th allele in locus , and  the observed frequency of the haplotype . 

The correlation between  and  is obtained from , doing: 

 
( ) ( ( )) ( ) ( ( ))

 (5.15) 

Out LD measure was , the overall correlation between  protein  positions (Zhao et al., 

2007): 

 ∑∑ ( ) ( )  (5.16) 

A p-value was computed using the statistic , as proposed by Zaykin et al. (2008): 

 ∑∑  (5.17) 

Correlation measures were computed for protease (PI dataset) and reverse transcriptase 

(NRTI+NNRTI, removing sequences that appeared in both datasets). To deal with mixtures, we 

repeated the analysis 40 times, with different versions of the datasets randomly sampling one 

allele at a time. Results were averaged, considering that nonsignificant p-values were equal to 

. 
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5.3. Results 

The prediction performance for two PI and two reverse transcriptase inhibitors is shown in 

Figure 5.1. NMSE for the rest of drugs can be found in Suppl mat, figures S47-S53 (Annexes). 

Within the two kernels over graphs, the expJac achieved better results than the expOv kernel, 

as happened in the first study (Chapter 4). However, the inclusion of structural information 

via the exponential kernel did not result in an improvement of the Normalized Mean Squared 

Error (NMSE). Only in a single drug, ETR (Figure S53, left), a small improvement was observed. 

In the remaining cases, the kernels over graphs delivered equivalent or slightly worse 

performances than their Overlap and Jaccard counterparts over sequences. 

 

Figure 5.1. NMSE distributions for two PIs (FPV and ATV, panels A and B), an NRTI (DDI, panel C) and an 
NNRTI (NVP, panel D). Plain colors correspond to the unweighted kernels over sequences from 
Chapter 4, while the striped lines correspond to the exponential random walk kernels. RF results are 
also included as an additional benchmark. Note that NMSE scale varies between panels. 
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In Suppl mat, figures S54-S71, we show the kPCA for all drugs. Results are quite similar to the 

unweighted kernels over sequences of Chapter 4 (see Suppl mat, figures S28-S46): they 

present a spectrum-like separation from resistant to susceptible HIV isolates without clear-

cut clusters, especially in PIs. Overall, separation by drug resistance is better in that drug class 

than in reverse transcriptase inhibitors, mirroring the results of the SVM analysis. 

Results of LD r2 measure in protease and reverse transcriptase sequence data are in Figure 

5.2. Correlation values were, overall, weak. The ten positions more strongly correlated (in 

average) to other positions were 54, 90, 71, 46, 10, 33, 84, 20, 36 and 32. All of them are 

associated to drug resistance (Iyidogan & Anderson, 2014). In the case of reverse 

transcriptase, r2 reached a higher maximum value than with protease (0.71 vs. 0.40), but the 

matrix was very sparse. The positions more strongly correlated (in average) to other positions 

were 41, 210, 215, 118, 67, 44, 208, 116, 219 and 151. Among them, at least seven are known 

to be resistance-associated positions, which is remarkable as reverse protease has few 

positions involved in resistance. 
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Figure 5.2. r2 values (averaged over the 40 replicates) of protease (A) and reverse transcriptase (B). 

5.4 Comparison with other works 

Some previous works have also combined structural and sequential information to predict 

drug resistance in HIV. For instance, in Masso et al. (2014), resistance to an INI (EVG) was 

predicted training a RF and a SVM with 115 protein sequences. They first identified 1417 

different integrase chains in PDB and modeled them as a convex hull of non-overlapping 

tetrahedra (Delaunay tessellation), so the four vertex of a tetrahedron are nearest neighbors 

residues in the protein. For each combination of four amino acids, a relative frequency of 

occurrence was calculated as the proportion of tetrahedra observed in all 1417 protein 

tessellations. A score for each tetrahedron was obtained by contrasting this observed 

frequency with the frequency expected by chance. Then, the tessellation was computed for a 
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partial crystal structure of wild type integrase, so each one of the 115 HIV variants was 

threaded onto it, re-labeling the protein position if a mutation was present. By adding up the 

scores of all tetrahedra that shared a particular residue, the environment score was obtained 

per protein position. Finally, each integrase variant was represented as a feature vector of 

structure-based attributes. They reported a regression performance that achieved, at best, an 

r=0.78 and a MSE=0.20.  

In Shen et al. (2016), the crystal structure of a protease and a reverse transcriptase was 

modeled using the Delaunay triangulation. Resistance to the same eight PIs, six NRTIs and 

four NNRTIs evaluated in the present work was assessed. For each HIV variant, a feature 

vector was built by adding the distances between Cα atoms along each arc of the Delaunay 

triangulation, given that the arc connected a specific pair of amino acids. The vector was 210 

features long (as the canonic amino acids generate 210 unique pairs). Their best results were 

obtained with RF, with an R2 that ranged between 0.772-0.995.  

Instead, Khalid and Sezerman (2016) approach was based on using a large quantity of 

different data, including one-hot encoding of the sequences, hydrophobicity measures, 

evolutionary conservation, frequency occurrence count, solvent accessibility, amino acid 

volume information and contact energies of the interacting protein residues. As the number 

of features was high they performed feature selection prior to the model training. They used 

RF and SVM to classify HIV variants in susceptible or resistant to six PIs, four NRTIs and three 

NNRTIs. Best results were achieved by the SVM, with cross-validation accuracies between 95-

96% (depending on the drug), and test set accuracies between 98-99.2%.  

Direct comparison of our results with the three aforementioned reports is not trivial. Khalid 

and Sezerman (2016) posed the resistance prediction as a classification problem, with no 

regression results reported. In the cases of and Masso et al. (2014) and Shen et al. (2016) it is 

important to stress that they report cross-validation performances and not the performance 

of an independent test. 

Another question is if adding structural information to the sequence data effectively improves 

the resistance prediction. In contrast with our work, this is unsolved in Masso et al. (2014) 

and Shen et al. (2016), as their encodings completely tangle both kinds of data. In the case of 

Khalid and Sezerman (2016), the feature selection procedure highlighted the effect of several 

high-impact protein positions, as well as structural effects like the amino acid volume or 

contact energies between multiple protein residues. 
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5.5. Discussion 

The goal of the present study was expanding the two categorical kernels over sequences of 

Chapter 4 to consider dependence between protein positions. We embedded them into the 

exponential random walk kernel, and the two ad hoc kernels generated (expOv and expJac) 

were used over graphs containing structural information about the proteins (specifically, 

distance between residues). 

Despite the potential advantages of this approach, a clear improvement on predictive ability 

was not observed. One of the causes may be the choice of the kernel. At least a previous 

work (Borgwardt et al., 2005) reports the utility of random walk kernels in predicting function 

from proteins represented as graphs. However, in that study, proteins of different families 

(i.e. with a very low sequence and structure identity) were assessed. It is possible that other 

types of kernels for graphs, e.g. diffusion kernels (Schölkopf et al., 2004) or information 

theoretic kernels (Bai & Hancock, 2011), give better results when applied to this particular 

problem. 

Aside from the kernel chosen, it is quite possible that a large part of problem stems from an 

oversimplified representation of protein structure. A major weakness of our approach was 

that only one crystal structure per protein was used. Then, only the graphs’ nodes varied 

between HIV variants, while distances on the edges remained always the same. This is a clear 

simplification, as it is well known that amino acid changes disturb the protein structure, at 

least, in the neighborhood of the mutation. For example, resistance-associated mutations in 

protease lead to structural rearrangements (Iyidogan & Anderson, 2014). Also, in the case of 

NNRTIs, mutations block the entrance or change the shape of the inhibitor binding pocket. 

Thus, our results may be improved by inferring the specific structure of each HIV variant. 

However, it should be stressed that determining the mechanistic impact of single mutations is 

not easy at all. Complex techniques involving molecular dynamics simulation and energy 

minimization may be used to this effect (Masso et al., 2014). 

On the other hand, LD between pairs of protein residues showed that positions with strong 

average associations are either drug resistance-associated positions or positions close to 

them. This was found also by Wang and Lee (2007) and points to functional interactions due 

to drug selection pressure. The number of correlation pairs in protease was higher than in 

reverse transcriptase, as expected by the different mutational pattern of the two enzymes 

(see section 4.4). In any case, with some exceptions, overall correlations were very weak. This 

may be misleading, as r2 considers the frequencies of the alleles involved. Because of the high 

mutation rate of HIV, in most protein positions we observed high frequencies of the wild type 
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allele and a large number of alternative alleles in low frequency. This can cause small r2 values 

(Wray, 2005). 

Taking into account all the above-mentioned, it seems that there exist some degree of 

association (and at least part of it is related to drug selective pressure) between residues, but 

it has not been correctly grasped by our models. Not only more accurate measures of 

distance between mutated residues are needed; probably, using only distance information is 

not enough. As shown in Khalid and Sezerman (2016), combining data as diverse as amino 

acid volumes, chemical interactions, contact energies, etc. may draw a more complete picture 

of the enzyme structure. Fortunately, the great modularity of the kernel approach allows 

using different kernels to evaluate each aspect of data and, then, performing an integration. 

This can be achieved with Multiple Kernel Learning or by including a larger range of kernels 

for nodes and edges in the exponential random walk kernel. That way, there may be room for 

improving the results presented in this chapter. 
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Abstract 

The advent of next-generation sequencing technologies allowed relative quantification of 

microbiome communities and their spatial and temporal variation. In recent years, supervised 

analysis (i.e. prediction of a phenotype of interest) from taxonomic abundances has become 

increasingly common in the microbiome field. However, a gap exists between supervised and 

classical unsupervised analyses, based on computing ecological dissimilarities for visualization 

or clustering. Despite this, both approaches face common challenges, as the compositional 

nature of next generation sequencing data or the integration of spatial and temporal factors. 

Here we propose a kernel framework to unify unsupervised and supervised microbiome 

analyses, including the retrieval of microbial signatures (taxa importances). We define two 

compositional kernels (Aitchison-RBF and compositional linear) and discuss how to transform 

noncompositional measures into kernels. Spatial data is integrated with Multiple Kernel 

Learning, while longitudinal data is evaluated by specific kernels. We illustrate our framework 

through a single point soil dataset, a human dataset with a spatial component, and a 

previously unpublished longitudinal dataset concerning pig production. The proposed 

framework and the case studies data are freely available in the kernInt package at 

https://github.com/elies-ramon/kernInt. 

Keywords: microbiome, metagenomics, kernel, supervised, unsupervised, spatio-temporal, 

SVM, kPCA. 

 

6.1 Introduction 

The microbiome is defined as the ensemble of microorganisms and their genomes in a given 

environment. Microorganisms are present in ecological niches as diverse as soil, oceans, 

freshwater, plants and animals, but a large fraction of these taxa cannot be cultivated with 

culture-dependent methods. The advent of the next generation sequencing (NGS) 

revolutionized this field by allowing the massive sequencing and quantification of microbial 

habitats. 

Proper analysis of microbiome data is challenging for a variety of reasons. Abundance data 

obtained with NGS is multivariate, sparse and compositional in nature (Gloor et al., 2017). 

Also, microbial communities are very dynamic biological systems, thus justifying spatial or 

time-course studies (Bodein et al., 2019). The first approach on the field used statistical tools 

from standard ecological studies (Gloor et al., 2017). For example, one of the first steps in 

https://github.com/elies-ramon/kernInt
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nearly all microbiome studies consists in computing alpha and beta-diversities. Beta diversity 

measures, like Bray-Curtis or Unifrac, quantify the difference in diversity between samples 

from different habitats. They are used for clustering analysis or, more commonly, for 

visualization techniques like PCoA (Principal Coordinates Analysis) or MDS (Multidimensional 

Scaling). However, this approach has been challenged, as the abundance data obtained by 

NGS has a particular nature. The total number of reads delivered is constrained by the 

sequencing capacity of the instrument; thus, only relative frequencies are informative. Data 

consisting in proportions with an uninformative sum is consequently compositional and has a 

specific mathematical treatment (Gloor et al., 2017). In the case of metagenomics, extensive 

research is being done to translate current statistical techniques to this paradigm (Rivera-

Pinto et al., 2018; Gloor et al., 2017; Silverman et al., 2017). One example is the proposal of 

using the compositional Aitchison distance instead of the classic beta-diversity measures. 

In machine learning, the aforementioned visualization, clustering and ordination techniques 

belong to the so-called unsupervised learning. Supervised learning, which is focused on 

prediction, is not so widespread in microbiome analysis yet, but the number of studies using 

this kind of approach is rapidly growing in the last years (Zhou & Gallins, 2019). Supervised 

methods include Random Forests (RF), Artificial Neural Networks (ANN), Support Vector 

Machines (SVM), k-Nearest Neighbors and ridge regression (Namkung, 2020; Qu et al., 2019; 

Zhou & Gallins, 2019). Among the aforementioned, RF are popular in the microbiome context 

and tend to outperform other methods (Namkung, 2020; Zhou & Gallins, 2019). ANN have 

shown excellent performance in some cases but are susceptible to overfitting, especially if 

sample size is greatly exceeded by the number of taxa, as is often the case in metagenomics 

and metataxonomics. A desirable feature for supervised methods is the identification of 

microbial signatures (i.e. taxa that are predictive of a certain phenotype) that may enable 

biological interpretation of the results. RF are endowed with variable importance measures 

that can be used to this effect, while there is not such straightforward heuristic for ANN –

although several possible strategies exist (Ibrahim, 2013)–. Another supervised method, 

selbal (Rivera-Pinto et al., 2018), is focused on the identification of microbial signatures based 

on balances (a log contrast of geometric means of data from two groups of taxa), and has the 

particularity of being purely compositional. 

As microbial communities are highly dynamic systems, it is important to address their spatial 

and/or temporal variation (Berg et al., 2020). In spatial-structured studies, repeated samples 

of different sites (e.g. body sites, depth layers) are obtained from the same individuals or 

entities, thus raising the question of how to integrate them. A more general challenge is the 

integration coming from datasets of different sources (e.g. ‘omics’), which may have different 
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data types. Several statistical methods have been proposed to solve this question in the 

microbiome field. Some examples are Link-HD (Zingaretti et al., 2020), mixKernel (Mariette & 

Villa-Vialaneix, 2018) and MOFA (Argelaguet et al., 2018), all focused in the unsupervised 

learning setting. In most supervised methods, this integration is usually performed at the 

input data level (early integration), for example by concatenating the datasets; or after the 

model is built (late integration), combining their scores as in ensemble methods. However, 

early integration may be not possible if data nature differs across sources (Schölkopf et al., 

2004). The case of the longitudinal studies (which follow the evolution over time of microbial 

communities) is more complex. Typically, longitudinal data is modeled by fitting a function 

(e.g. polynomial interpolation, splines) to the data points over time. To date, there exist few 

analytical tools for this kind of data in the microbiome field. Two examples can be found at 

Bodein et al. (2019) and Coenen et al. (2020), but they are restricted to unsupervised analysis. 

Difficulties like the compositionality of data or how to accommodate the spatial and temporal 

dimensions affect supervised and unsupervised methods alike. However, there is a gap 

between the most widely used supervised methods and the unsupervised analyses typical of 

the microbiome field. Carrying out all analyses in a common mathematical framework would 

provide a new, holistic view to microbiome studies. With all this in mind we propose a generic 

and flexible kernel framework as a way to unify supervised and unsupervised microbiome 

analyses, while paying special attention to data compositionality and spatial and temporal 

integration. Kernel methods are a family within machine learning methods that share the use 

of kernel functions or, simply, kernels. Some of these methods have been already applied to 

some specific problems or areas within microbiome analysis (Zhou & Gallins, 2019; Mariette 

& Villa-Vialaneix, 2018; Zhan et al., 2017) but their potential has not been fully exploited. In 

this work, we propose two new compositional kernels and discuss how to translate 

noncompositional, but nonetheless widespread, beta-diversity matrices to the kernel 

framework. We perform supervised and unsupervised analyses from the same kernel matrix, 

and show how to extract microbial signatures. Spatial and longitudinal data are also treated 

with specific kernel tools. This kernel framework is illustrated with three case studies: a single 

point soil metagenomic dataset, a human dataset with a spatial component, and a previously 

unpublished longitudinal dataset concerning pig gut microbiota. An R package implementing 

the proposed methods, along with the case studies data, is freely available at 

https://github.com/elies-ramon/kernInt. 

https://github.com/elies-ramon/kernInt
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6.2 Material and methods 

6.2.1 Kernels for microbiome data 

A real symmetric two-place function is a kernel iff, for every finite set of objects , it 

generates a symmetric matrix that is positive semi-definite (Schölkopf et al., 2004, Shawe-

Taylor & Cristianini; 2004). Probably the most widely known and used kernel functions are the 

linear and RBF (Radial Basis Function) kernels, both defined for real vectors. 

Intuitively, a kernel can be understood as a measure of the similarity between  and . As 

objects are never represented explicitly, kernels can be designed for nonstandard 

data types if a notion of what is considered “similar” in that given context exists (Schölkopf et 

al., 2004). Also, as similarity measures, kernels are related to the beta-diversity dissimilarities 

widely used in microbiome analyses. We now present two compositional and two 

noncompositional kernels. In this work, we are restricted to measures that can be obtained 

from taxonomic abundance tables only, but further insights can be found in the Discussion. 

Compositional kernels 

Here we define two kernels analogous to the linear and RBF kernels, but specific for 

compositional data. We introduce the Aitchison-RBF kernel as: 

 ∑  (6.1) 

where  and  represent the taxonomic abundances in two different individuals,  is the 

number of different taxa,  is the geometric mean, and  is a hyperparameter that 

has to be tuned. This nonlinear kernel derives from the Aitchison distance, which is Euclidean 

and therefore (6.1) is a valid kernel. The logarithm term can be identified as the 

compositional clr-transformation (Gloor et al., 2017) over the original data. 

Analogously, we define the compositional linear kernel as: 

 ∑  (6.2) 

Although cRBF is related to Aitchison distance and has the advantage of nonlinearity, cLin is 

easier to interpret and allows the retrieval of the microbial signatures. 

Noncompositional kernels 

The most widely beta-diversity measures are Bray-Curtis, Unifrac and Jensen-Shannon (Gloor 

et al., 2017). Bray-Curtis and Jensen-Shannon are computed from taxonomic tables, while 
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Unifrac additionally needs a phylogenetic tree. The Jensen-Shannon is metric and is paired 

with a kernel that is already described in Bai and Hancock (2011) as the Jensen-Shannon 

Kernel (JSK): 

 ( ) [∑ ( ) ∑ ] (6.3) 

provided that  and  contain relative frequencies. The Bray-Curtis dissimilarity is 

semimetric, and so we propose using a similar distance (Gardener, 2014), Jaccard, instead. 

The Jaccard distance is paired with a well-known kernel (Bouchard et al., 2013) and has a 

variant suitable for quantitative data. The quantitative Jaccard (also known as Ružička) kernel 

is defined in Gardener (2014) as: 

6.2.2 Kernel methods and framework 

Kernel methods share the use of symmetric and positive semi-definite matrices (i.e. kernel 

matrices), and not the original data, as input. This places all different analyses in a common 

mathematical ground, which we refer as the kernel framework. We will use SVM, a classical 

method that can perform both regression and classification, for phenotype prediction. For the 

unsupervised analyses we will use kPCA (kernel Principal Components Analysis), a kernelized 

version of the standard algorithm. 

6.2.3 Spatial data 

The kernel framework is particularly well suited for the integration of spatial or 

heterogeneous data types (Mariette & Villa-Vialaneix, 2018; Schölkopf et al., 2004). This is 

because the integration can be done directly at the kernel matrices level. Let  be 

the kernel matrices computed from  different sources of data coming from the same 

individuals. Then, we can obtain a consensus kernel matrix : 

 
∑  (6.5) 

with the restriction . The optimal  values can be selected through an optimization 

process, which is known as MKL (Multiple Kernel Learning) (Schölkopf et al., 2004). In 

unsupervised scenarios, a consensus matrix  can be obtained by choosing the  values that 

maximize average similarity of  with all  matrices (Mariette & Villa-Vialaneix, 2018). 

 ∑  (6.4) 
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6.2.4 Temporal data 

A time series is an ordered set of repeated samples indexed by time, in the form . The 

natural way to summarize this type of data is through a function, which can be obtained using 

polynomial interpolation or splines. When data contains the time series of several individuals 

it is commonly referred as longitudinal data. Kernels specific for this data compare the 

evolution over time among individuals, so that information is used afterwards for phenotype 

prediction or unsupervised tasks. 

The functional RBF kernel (Chen et al., 2013) translates the RBF kernel to accept functions as 

input. Let  and  be continuous functions, so that they represent the time series of 

two different individuals between the time interval [ta, tb]. Then, the kernel definition is: 

 
( ) ∫ | ( ) ( )|  (6.6) 

In an analogous way, the functional linear kernel is defined as: 

 ∫ ( ) ( )  (6.7) 

These kernels allow irregular sampling intervals and missing time points, but suffer of the cost 

of computing numerically the integral (e.g. if an algebraic solution is not possible). The 

calculation of fRBF and fLin can be simplified if the modeling of the time series as continuous 

functions is skipped. Let the original finite sets of points indexed by time for both individuals 

be denoted directly as  and . fRBF and fLin for discrete functions are now defined as: 

 ∑( ( ) ( ))  (6.8) 

 ∑ ( ) ( ) (6.9) 

where  is the total number of time points and  the time increment. This can be a sound 

approach in cases with few data points, when the modeling is less reliable. However, 

contrarily to (6.6) and (6.7), these expressions cannot deal with irregular sampling times or 

missing data. 

In multivariate scenarios, for instance microbiome data, many variables are simultaneously 

sampled over time. Let  and  model taxon k in two individuals, being  the total number 

of taxa. The aforementioned kernels can be combined as in: 
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 ∑  (6.10) 

 ∏  (6.11) 

It should be noted that the kernel approach allows the simultaneous integration of temporal 

and spatial (via MKL) data. 

6.2.5 Microbial signature 

In a broad sense, the microbial signature is the collection of taxa associated with a trait of 

interest and that has a high predictive value in the context of a given model (Rivera-Pinto et 

al., 2018). It can be retrieved from a linear SVM using the orientation of the separating 

hyperplane (Guyon et al., 2002): if the plane is orthogonal to a particular feature dimension, 

then that feature is maximally informative. This method takes into account the correlation 

between taxa. As cLin is a translation of the linear kernel for compositional data, using (6.2) 

we can retrieve the microbial signatures, which should be understood as the taxa 

importances after the clr-transformation. The same occurs when assessing the variable 

influence on the principal components in kPCA. A general permutation technique is proposed 

in Mariette and Villa-Vialaneix (2018), but using cLin permits obtaining the taxa influence in 

the same straightforward way than standard PCA. 

The linearity also permits extending the microbial signature retrieval when using SVM to the 

longitudinal and spatial cases. When performing MKL, as long as the cLin kernel is strictly 

applied to all sampled sites, the global importance of a given taxon among all sites can be 

computed as the weighted sum (using the optimal  coefficients) of its partial importance in 

each site. In the longitudinal case, the global importance of each taxon k can be obtained 

from (6.9) by addition of the partial importances over all  time points.  

6.2.6 Case studies and data preprocessing 

We illustrate our framework with three case studies: a single point dataset, a dataset with a 

spatial component, and a longitudinal dataset. The latter is previously unpublished while the 

rest of the data is public. 

Soil dataset 

Bacterial composition of soil varies significantly at a biogeographical scale, and is related to 

chemical and environmental factors. Here we reanalyzed a single point dataset by Lauber et 

al. (2009), who used 16S small-subunit ribosomal (16S rRNA) gene pyrosequencing to profile 

the bacterial communities of different soils across North and South America. Authors 
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reported that soil pH was significantly correlated with beta-diversity distances between 

samples. They also found correlation with alpha diversity, which was highest in soils with 

near-neutral pHs. To perform our analysis, we retrieved the taxonomic abundances as well as 

the associated metadata from Qiita https://qiita.ucsd.edu/ (ID: 103). The number of OTUs 

(Operational Taxonomic Unit) was 7,396, while the number of soil samples was 89. As a part 

of the preprocessing, we excluded sample number 89, with only 1 read, which was also not 

included in the original paper.  

Smokers dataset 

Charlson et al. (2010) analyzed the impact of cigarette smoking on the global airway microbial 

population. Bacterial communities were profiled using 454 pyrosequencing of the 16S rRNA 

gene in four airway sites: the left and right sides of nasopharynx and oropharynx. Authors 

reported that composition was primarily determined by airway site, with individuals 

exhibiting minimal lateral or temporal variation. They used RF to predict the smoking status 

from the taxonomic abundances. We retrieved the dataset (metadata and taxonomic 

abundances) from Qiita (ID: 524) to perform our analysis. Of the original 70 individuals, we 

discarded those that reported airway illness or antibiotic usage in the three months prior to 

sampling. Thus, we analyzed the same 62 individuals of the original work. Number of different 

OTUs was 2,817.  

Pig dataset 

Here we present an original dataset, which evaluates the relationship of pre-weaning 

diarrhea with the early gut microbiota colonization in piglets. The experiment was conducted 

at Schothorst Feed Research B.V. facilities (Netherlands) where management, environmental 

and housing factors were controlled for all animals throughout the whole study. Gut 

microbiota was profiled in 153 piglets during their first week of life. Between days 8 and 21 

(weaning day), 79 out of the 153 piglets had diarrhea and were treated with antibiotics. 

Piglets sampling (swabs) was done within 5 minutes after farrowing (day 0) and at days 3 and 

7 post-farrowing. DNA was extracted from faecal samples and profiled using Illumina 

sequencing of 16S rRNA gene in each of the three time points. The cleaned sequences were 

processed into Amplicon Sequence Variants (ASVs). Further details are described in 

Supplementary methods S0. Analyses were carried out at the ASV (3,577 ASVs were obtained) 

and at the Genera taxonomic levels. 

6.2.7 Experimental set-up 

Analyses across the three datasets included a comparison with the original reports (for Soil 

and Smokers datasets), as well as contrast with results from RF. The cLin and cRBF kernels 

https://qiita.ucsd.edu/


kernInt: A KERNEL FRAMEWORK FOR INTEGRATING SUPERVISED AND UNSUPERVISED 
ANALYSES IN SPATIO-TEMPORAL METAGENOMIC DATASETS  

135 

 
 

were applied directly to the raw counts, as they handle data in an inherently compositional 

manner. Following Quinn et al. (2018), a number under the detection limit was added to all 

dataset to handle zeroes. An alternative normalization of data, the cumulative sum scaling 

(CSS) (Paulson et al., 2013) was performed prior to applying the noncompositional Jensen-

Shannon and Jaccard kernels. That way the compositional and noncompositional kernels 

could be compared. In the rest of cases (RF and longitudinal functions) we used the 

compositional clr-transformation over data. RF were obtained using the R package 

‘randomForest’ (Liaw & Wiener, 2002), and the kernel methods with ‘kernInt’. 

Unsupervised analyses (e.g. kPCA) were computed over the whole datasets. In the Smokers 

dataset, we additionally computed the similarity among kernel matrices of different body 

sites with the mixKernel package (Mariette & Villa-Vialaneix, 2018). For the supervised 

analyses, each dataset was split at random into the training set (80% of data) and test set 

(20%). Optimal hyperparameters and  coefficients for MKL were obtained by 5×5 cross-

validation on the training set. Then, the final model was built using the whole training set. We 

repeated the whole process 40 times, each time with different 80/20 randomly split 

training/test partitions, to obtain an error distribution. Performance over the test set was 

computed using Normalized Mean Squared Error (NMSE) for regression and Accuracy for 

classification.   

For the Pig dataset additional considerations had to be taken into account. To make sure that 

the training and test sets were completely independent, piglets from the same litter (full sibs) 

were always placed either in one or other set. Performance of fLin and fRBF was contrasted 

to those of RF and their analogous nonlongitudinal kernels (cLin and cRBF) using all available 

days at once. For the nonlongitudinal methods, 80% of the piglets were used to train the 

model, using their three time points data in separate rows, with time included as an 

additional variable. The remaining piglets were reserved to test the model, but using only one 

of their time points (either day 0, 3, or 7) chosen at random and discarding the rest. This way, 

both longitudinal and non-longitudinal approaches had the same test set size. Longitudinal 

kernels fLin and fRBF were computed using (6.9) and (6.8), as only three time points were 

available and we preferred not to interpolate the days in-between. Also, using the expression 

for discrete functions we could obtain the microbial signatures. The information of all taxa 

was combined as in (6.10) and (6.11), and the training/test partitions were carried out as in 

the normal case. In a second step, the dataset was decomposed by sampling times and the 

analysis was carried out for days 0, 3 and 7 separately using RF, cLin and cRBF in the usual 

way. 



136   Kernel approaches for complex phenotype prediction 

 

Microbial signatures from SVM were obtained from the hyperplane normal vector w, so the 

importance of taxon k was computed as  (Guyon et al., 2002). In RF, we used the mean 

decrease in node impurity (for regression tasks) and mean decrease in Gini index (for 

classification). Both RF and SVM give absolute values of taxa importance, so they were 

converted to relative values. 

6.3 Results 

6.3.1 Soil data 

The cLin kPCA over the bacterial abundances is shown in Figure 6.1A. The remaining kPCAs, 

which gave a similar profile, can be found at Suppl mat, Figure S72. Soil samples are clearly 

separated by their pH, in agreement with the original results. The U-shaped projection is 

typical of banded metagenomic data, i.e. data structured by a gradual transition with few 

overlapping OTUs at the endpoints (Suppl mat, Figure S73). The peak diversity in near-neutral 

soils in contrast with extreme pHs may also have some effect (Suppl mat, Figure S74).  

 

Figure 6.1. A) Compositional linear kPCA over the 88 soils. Color represents pH, while point size stands 
for the number of different observed taxa. B) pH prediction error distribution over the 40 replicates. C) 
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and D) Top relevant taxa for pH prediction according to RF and cLin-SVM. Standard error across the 40 
replicates is marked with error bars. 

In addition, we used SVM with the four kernels described above to predict the pH of each soil 

site from the bacterial abundances. This was not done in the original work and so we used RF, 

a nonkernel, alternative method, as benchmark. Results are shown in Figure 6.1B. The best 

compositional kernel was cLin, having a median error of 0.09; and the best 

noncompositional one was JSK, with a median error of 0.10. In comparison, RF had a higher 

median error, almost the double of cLin, around 0.17. 

To go further in the interpretation of the results, we analyzed the microbial signatures 

retrieved from RF and cLin-SVM. The distribution of the importances was highly skewed. For 

subsequent analyses we kept only 5% of the taxa, which accounted for around the 90% (RF) 

and 95% (SVM) of total importance, with the two methods having 42% of OTUs in common. 

Top ten relevant taxa are shown in Figure 6.1C (RF) and D (SVM). In agreement with the kPCA 

results, prediction is primarily driven by few OTUs of extreme pH ecosystems (e.g. genera 

Rubrobacter and Balneimonas on the basic side, orders Solibacterales and RB41 on the acid 

side). 

6.3.2 Smokers data 

We predicted smoking status from the taxonomic abundances. At first models were built 

using the four sites separately, as in the original study. Authors used RF and reported a 

median accuracy of 64% on the right and 65% on the left oropharynx (i.e. throat), and 71% on 

the right and 68% on the left nasopharynx (Suppl mat, Figure S75). In our case, the worst 

kernel was cLin (Suppl mat, Figure S76), which nonetheless gave similar accuracies to those 

reported in the original paper. The best kernel was the Jaccard kernel (Figure 6.2A), which 

improved substantially the RF accuracies, especially in the throat (median accuracies: 79% 

right side and 75% left side). Then, we combined the spatial-structured samples of the same 

individuals to test if accuracy increased when using an integrative approach. Using MKL, we 

combined kernel matrices by airway (nasopharynx on one hand and oropharynx on the other) 

and, finally, we integrated all sites. This decreased the error substantially and delivered the 

best classification result, with a median accuracy of 92%. Also, we compared this result with 

performing an early integration approach, concatenating the 4 datasets of each individual 

previously to compute the kernel matrix. This approach gave a median accuracy of 83%. The 

results for the rest of kernels can be found in Figure S76. In all cases, integration of the four 
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datasets using our MKL proposal increased the accuracy, and doing so at the kernel matrix 

levels was better or equivalent to concatenating the four datasets. 

We show the top ten most important taxa across the four sampling sites in Figure 6.2B. The 

importance distribution is not as skewed as in the Soil dataset: here the top 5% taxa 

accounted for the 62% of overall importance. Neisseria sp. large impact in discriminating 

smokers from nonsmokers was already reported in the original work, especially in oropharynx 

models. The rest of highlighted taxa in Figure 6.2B were also noted to have a role, either in 

models from nasopharynx alone or from both airways sites (Charlson et al., 2010).  This 

mostly agrees with our results when the sampling sites are analyzed separately (Suppl mat, 

Figure S77). 

 

Figure 6.2. Analysis using the Jaccard kernel. A) Nonsmoker/smoker accuracies from taxonomic data: 
NoseL, NoseR, OroL and OroR models are obtained from single datasets data, Conc from the 
concatenation of the datasets, and Oro, Nose and All models from MKL. B) Top ten of the global cLin-
SVM importances across all body sites. C) Similarity across the kernel matrices of the four sites 
(Nasopharynx Right and Left and Oropharynx Right and Left). D) Jaccard kPCA of the taxonomic 
abundances. Color code represent airway site, whereas shape indicates the laterality of the samples. 

Following the original work, differences in bacterial communities among the body sites were 

also analyzed. We present results for the Jaccard kernel in Figure 6.2C and D, while the other 

kernels are in Figure S78. Panel C shows the similarity across kernel matrices derived from left 
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and right nasopharynx and oropharynx. The highest similarity was achieved within matrices of 

the same airway site but different laterality. As in the original paper (Figure S75), using a kPCA 

(Figure 6.2D) we could discriminate between nasopharynx and oropharynx sites (first PC) but 

not between left and right. 

6.3.3 Pig data 

Evolution of gut microbiota from 153 healthy piglets over their first week of life was used to 

predict the occurrence of pre-weaning diarrhea. In Figure 6.3A we compared the 

performance of the longitudinal kernels (fLin and fRBF) versus their analogous 

nonlongitudinal kernels (cLin and cRBF) plus RF when using all available days at once.  

 

Figure 6.3 A) Accuracy for RF, non-longitudinal kernels (cRBF, cLin) and longitudinal kernels (fLin, fRBF) 
in the prediction of neonatal diarrhea from all available days. B) Accuracy for RF and non-longitudinal 
cLin and cRBF kernels from metagenomic data of days 0, 3 and 7 post-birth separately. In both panels, 
the red dashed line marks the accuracy of the random model. 

It can be observed that the longitudinal approach clearly outperformed the nonlongitudinal 

approach at both Genera and ASVs levels. fRBF had a better performance than fLin, and 

worked best at the ASV level (with a median accuracy around 76%) than in Genera data 

(median accuracy around 70%). Although aggregating taxa to the genus level is a relatively 
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common practice –see e.g. Rivera-Pinto et al. (2018)–, in our case using a coarser taxonomic 

resolution decreased the accuracy. Within the non-longitudinal approach, we obtained similar 

accuracies using RF and kernels, and both were close to the median accuracy of the random 

model (50.1%).  To further understand the results, the analysis was carried out in days 0, 3 

and 7 separately using RF, cLin and cRBF kernels. Figure 6.3B reveals that all models from 

days 0 and 3 had no predictive power. Accuracy increased dramatically after day 7 to a 

maximum of 73% for cRBF (ASV level), only slightly worse than its analogous longitudinal 

kernel fRBF. 

In a second step, we discarded all models without predictive power and analyzed the kPCA 

and microbial signatures. Figure 6.4A and B show the fLin and cLin (day 7) kPCA, while fRBF 

and cRBF are in Suppl Mat, Figure S79.  

 

Figure 6.4. Above: kPCA of fLin in panel A and of cLin (day 7) in panel B. Below: microbial signatures at 
the Genera level. Global importance for the first week is in panel C. Importances for the day 7 
according to the cLin kernel and RF are in panels D and E. Standard error across the 40 replicates is 
marked with error bars. 
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In all cases, a partial separation between healthy and sick piglets, with a large area of overlap, 

is observed. Genera relevance on prediction of pre-weaning diarrhea is shown in panels C, D 

and E. We discuss the microbial signature at the Genera level, as around 2/3 of the ASVs lack 

species assignation (Suppl mat, Figure S80). According to fLin, beneficial genera like 

Lactobacillus and Bacteroides had the higher overall importance during the first week. In day 

7, it was striking the great importance given by cLin to genus Desulfovibrio, and secondarily to 

Streptococcus. RF also highlighted the butyrate-producing genus Dorea. Distribution of the 

microbial signature at the ASV level was skewed, but again much less than in the Soil dataset 

case. The top 5% ASVs accounted between 46% and 58% of the total importance, with an 

overlap between RF and cLin in day 7 of 2/3 of the ASVs. 

 

6.4 Discussion 

The kernel framework allows performing a great diversity of analyses in a common ground. 

However, within the microbiome field, previous application of kernel methods has been 

mostly restricted to specific areas. Zhan et al. (2017) proposed a kernel-based semi-

parametric regression method for testing the association of the human microbiota 

communities with multiple phenotypes. In turn, Mariette and Vila-Vialaneix (2018) combined 

metagenomic data and environmental measures of the TARA ocean expedition using 

unsupervised MKL integration. In some reports that compare the performance of different 

supervised methods in microbiome data, SVM often appear along RF or ANN (Namkung, 

2020; Qu et al., 2019; Zhou & Gallins, 2019). These methods were used in an isolated way, 

without exploiting the kernel framework ability to integrate a great range of analyses while 

giving a unitary view. Another advantage of this framework is that it can handle virtually any 

data type. However, to our best knowledge, it has not been previously applied to longitudinal 

microbiome studies. Finally, in previous works there was a lack of kernels that took into 

account the compositional nature of metagenomic datasets. 

Throughout this work, we summarized the microbiome analyses in three branches: 

unsupervised learning (represented by kPCA), supervised learning (SVM) and identification of 

phenotype-associated microbial signatures. The Soil case study clearly illustrated how all 

three types are intertwined and complementary. In agreement with the original publication, 

both SVM and kPCA results showed that taxonomic abundances and pH are strongly related. 

This granted a quite low prediction error (up to a median NMSE of 0.09) but, by itself, does 

not explain the underlying mechanism connecting microbial abundance and pH. Microbial 
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signature revealed that the SVM learning is driven by few taxa of opposite pH ecosystems. For 

instance, RB41 belong to the phylum Acidobacteria. The Rubrobacter genus contains well 

known extremophiles and, like the Balneimonas (renamed Microvirga) genus, has preference 

for clearly alkaline soils (Chen et al., 2018; Dahal & Kim, 2017). Furthermore, the arch in the 

kPCA projection indicated that communities from acid and basic habitats did not overlap 

(Morton et al., 2017). Taken together, these complementary views point that soil microbial 

structure is shaped by a gradual niche differentiation strongly modulated by the pH. This 

agrees with previous findings on this dataset (Morton et al., 2017; Lauber et al., 2009) but 

appears in a more concise and unified way using the kernel framework. 

In comparison to other methods, the kernel framework did not only allow a holistic view of 

data, but also gave good results in each learning area. In our unsupervised analyses, when 

comparing to the original MDS (Soil dataset) and PCoA (Smokers dataset), the main structure 

(ordination by pH in the former, and by body site in the latter) was conserved in kPCA. On the 

other hand, microbial signatures obtained with SVM had a biological interpretation. In 

general, the most important taxa retrieved from SVM coincided with those of RF (40-65% of 

overlap depending on the dataset). Concerning supervised analyses, SVM were consistently 

better (or at least equivalent) to RF in all three case studies. This disagrees with some 

previous reports in the microbiome area, e.g. Zhou and Gallins (2019). However, it should be 

noted that SVM performance depends on the kernel used, and these reports used generic 

linear and RBF kernels. Even when using kernels specific for metagenomic data, we observed 

differences among their mean NMSE or accuracies as large as fifteen percentage points. At 

the same time, our results suggest that there is not a single kernel that systematically 

achieves the best performance in every problem. We found that cLin was the best one in the 

first case study, qJac in the second and fRBF in the third. In this scenario, we consider that the 

linear-like kernels like cLin are a safe starting point. They allow for the retrieval of the 

microbial signatures, are faster to compute and easier to interpret than nonlinear kernels, 

and with high-dimensional data (> 103 - 104 taxa) they tend to match the RBF kernel (usually 

considered the gold standard) in performance (Hsu et al., 2003; Keerthi & Lin, 2003). 

Phylogenetic kernels were beyond the scope of this work, nor the available datasets had the 

phylogenetic trees needed to compute them. However, they can be derived from (6.1) and 

(6.2) by replacing the clr term with other transformations, e.g. the PhILR transformation 

(Silverman et al., 2017). A phylogeny-based kernel was also proposed in Xiao and Chen 

(2017). 

We illustrated the integration of spatial-structured samples with the Smokers dataset. The 

analysis in the original work was carried out in each sampling site independently, with a 
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maximum median accuracy of 71%. Here we showed how combining the body sites using MKL 

increased the median accuracy to 92%. Therefore, our results remark the relevance of using 

an integrative approach to improve the accuracy of phenotype prediction when spatial-

structured samples of the same individuals are available. 

In addition to the package and framework proposal, we presented a novel dataset profiling 

the microbiota evolution and pre-weaning diarrhea incidence in 153 piglets. Through this 

dataset we illustrated the kernel framework application to time-structured samples. Pre-

weaning diarrhea is an important issue in pig production, as the antibiotic treatment 

increases both the emergence of resistances and the economic costs. It is already known that 

gut colonization starts immediately after birth, and it evolves from a highly variable to a more 

stable and homogeneous ecosystem over the first weeks. However, most of the current 

studies in pig production ignore early dynamics in gut microbiota (Massacci et al., 2020; Han 

et al., 2018; Mach et al., 2015). We wanted to test if pre-weaning diarrhea could be 

anticipated as soon as the first week of life. In this sense, our results suggest that the first 

stages of intestinal microbiota convey some valuable information indeed. kPCAs showed a 

partial separation between piglets affected of diarrhea versus healthy piglets, and by using 

longitudinal kernels we achieved a moderate accuracy of 76%. However, it was unclear if this 

accuracy was to be attributed to a different taxa evolution in the two groups over the first 

week, or to a single time point with a great predictive value. The day-by-day prediction 

clarified this issue, and showed that day 7 achieved a median accuracy of 73% while the rest 

of points lacked predictive power. Even so, longitudinal kernels were able to slightly improve 

prediction (76% vs. 73% at the ASV level, and 69% vs. 64% using Genera), so global taxa 

evolution may also have a small role. 

This is also seen in the underlying microbial signatures of the global first week (fLin) versus 

day 7 (cLin). To be noted, in day 7 the most important genus was sulfate‐reducing bacteria 

Desulfovibrio, which is known to have a relevant role during pig gut colonization (Mach et al., 

2015). Instead, the global model was mainly led by Lactobacillus and Bacteroides. 

Relationship of both genera to pre-weaning diarrhea is well sustained in literature. 

Lactobacillus spp. are well known probiotic bacteria, while members of Bacteroides genus are 

associated with increased infants gut microbial diversity (Stewart et al., 2018). Furthermore, 

both play an important role on mammals’ gut microbial colonization (Wexler & Goodman, 

2017; Sawicki et al., 2017) and are dominant in healthy pigs compared with diarrhea-affected 

piglets (Song et al., 2017), which gives confidence in the reliability of our findings. 
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In summary, our kernel framework successfully unifies the most important analyses in the 

microbiome field, takes into account the compositionality of data, and is flexible enough to 

integrate spatial and temporal dimensions of the datasets. 

 

Declarations 

Conflict of Interest 

The authors declare that the research was conducted in the absence of any commercial or 

financial relationships that could be construed as a potential conflict of interest. 

Author Contributions 

YRC, MPE and RQ, and ER contributed to conception and design of the study. FM was in 

charge of the pig data sampling. YCR and MPE supervised the overall research, while LBM 

supervised the machine learning part. ER performed all analysis and wrote the first draft of 

the manuscript. YRC, MPE and LBM revised and re-wrote sections of the manuscript. All 

authors contributed to manuscript revision, read, and approved the submitted version. 

Funding 

This work was funded by projects AGL2016–78709-R and AGL2017–88849-R awarded by the 

Spanish Ministry of Economy and Competitiveness. ER has funding from a FI-AGAUR PhD 

studentship grant, with the support of the Secretaria d’Universitats i Recerca de la Generalitat 

de Catalunya and the European Social Fund. YRC was funded by Marie Skłodowska-Curie 

grant (P-Sphere) agreement No 6655919 (EU). We acknowledge further financial support 

from the Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa 

Programme for Centres of Excellence in R&D” 2016–2019 (SEV-2015-0533)”, and from the EU 

through the BFU2016–77236-P (MINECO/AEI/FEDER, EU).  

Acknowledgments 

The authors warmly thank all technical staff from Schothorst Feed Research.  



 

CHAPTER 7 

DISCUSSION AND FUTURE RESEARCH 

 

 

This work uses specific kernel tools to perform phenotype prediction and pattern inference 

from biological data. The main contribution of this thesis is showing how the flexibility and 

modularity of kernel functions enable a “personalized” approach to different problems. This is 

illustrated across the different chapters, as in all of them we use kernels adapted to the 

nature of data: sequences in Chapter 4, graphs in Chapter 5, and abundance data in Chapter 

6. For the former two cases, we propose new kernels based on the Overlap and Jaccard 

kernels: the “RBF-like” versions and the ones embedded into the exponential random walk 

kernel. In the latter chapter, we propose the Aitchison-RBF and the compositional linear 

kernels. Results were always contrasted with those of previously described kernels and well-

established machine learning (ML) methods: Random Forest (RF) and Artificial Neural 

Networks (ANN). Additionally, Chapter 6 deals with space and time-structured datasets, for 

which we propose using Multiple Kernel Learning (MKL) and specific kernels for time series, 

respectively. 

Another important subject in this thesis is the use of the kernel framework to give both a 

supervised (via Support Vector Machines or SVM) and unsupervised (kernel Principal 

Components Analysis or kPCA) view over data. This is a novel approach in microbiome 

analysis and thus has the utmost importance in Chapter 6, but also plays a secondary role in 

chapters 4 and 5. Finally, a relevant question was how previous knowledge can be encoded 

into a model to improve prediction; or conversely, how the machine learning model can 

provide valuable insights into a specific problem. Examples of prior knowledge inclusion were 

the weighting of all kernels of Chapter 4 or the use of structural information in Chapter 5. 

Instead, knowledge retrieval from the model was performed in Chapter 6 to obtain microbial 

signatures. Our main contributions were implemented in two R packages (see ‘catkern’ and 
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‘kernInt’ vignettes in the Annexes), which contain the main kernels proposed, the integration 

of space and time-structured datasets, the supervised and unsupervised view, and the 

automatic recovering of microbial signatures. Though in the present PhD thesis we dealt with 

HIV drug resistance prediction and metagenomic analysis, the tools we provide can also help 

to tackle other related problems.  

Strengths and limitations of our work are reviewed next. In section 7.1, some general 

considerations valid for all chapters are discussed. In section 7.2, we give a complete picture 

of our approach to HIV genomic data particularities (chapters 4 and 5) and suggest future 

research lines. Lastly, in section 7.3, we do the same with the application of the kernel 

framework to microbiome analysis in Chapter 6. 

7.1 General remarks 

Data-driven approaches stress the importance of adapting models to data. Even so, these 

approaches are not completely agnostic and without assumptions. Assumptions are taken, for 

instance, in the very moment the problem is posed and a particular machine learning 

method, with its own set of strengths and weaknesses, is chosen. Also, data gathering and 

pre-processing are constrained by implicit assumptions, e.g. which data is considered relevant 

to the problem in question, or how this data is represented (Libbrecht & Noble, 2015). During 

this process, valuable information may be lost and/or noise might be added inadvertently by 

the person conducting the study. It is important to be aware of these pitfalls, as data pre-

processing is an important step in the machine learning workflow. 

In this work, we have tried to minimize pre-processing by adapting the kernel to the 

characteristics of the problem analyzed. Some reasons for doing so were already advanced in 

Chapter 4: it reduces the risk of inserting spurious patterns and is, in general, more 

computationally efficient. Furthermore, the structure of the original data may convey useful 

information on itself. Thus, we relied in the intrinsic properties of each dataset (for instance, 

data type and structure), as well as in additional knowledge obtained from previous reports 

and studies. The idea was that prior knowledge can help to frame the learning process in a 

reasonable way and to discard unfruitful pre-processing and model choices. 

Kernels have a rich literature about how previous knowledge can be encoded in an implicit or 

explicit form into the kernel function. Probably, the more exhaustive work about this subject 

in the biology field is Kernel Methods for Computational Biology or KMCB (Schölkopf et al., 

2004). That book is concerned, among other objectives, ‘to operate on structured data types 

with the use of kernel functions’ (p.33). Although our goals coincide, there is little overlapping 

between the kernels they use and those assessed in the present work. KMCB deals primarily 
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with kernels for strings, kernels over parametric statistical models (e.g. the Fisher kernel), and 

some kernels for graphs. Kernels specific for counts, time series and categorical data are 

absent –in general, there is a surprising lack of categorical kernels in the field (Belanche & 

Villegas, 2013)–. Furthermore, albeit SVM has reached a wide audience and is now a quite 

standard method, some of its advantages as a kernel method (particularly, the adaptability 

provided by using specific kernels) are often underused. We could assess, when reviewing 

previous work on metagenomic and HIV data, that SVM is usually coupled with default 

kernels. That, in turn, leads to recode the original data into numeric vectors. For example, in 

the case of drug resistance prediction in HIV, Yu et al. (2014), Rhee et al. (2006) and 

Beerenwinkel et al. (2003)  used the linear kernel, Rhee et al. (2006) also used a polynomial 

kernel, Masso et al. (2014) used the RBF kernel, and Khalid and Sezerman (2016) do not 

specify the kernel used. Khalid and Sezerman (2016), Rhee et al. (2006), and Beerenwinkel et 

al. (2003) stated that HIV sequences were recoded into binary variables, while Yu et al. (2014) 

and Masso et al. (2014) proposed encodings that combine sequence and structural data and, 

ultimately, generate a numeric vector. In the case of general reviews concerning phenotype 

prediction from metagenomic data, Zhou and Gallins (2019) used the linear kernel and 

Namkung (2020) the RBF kernel. Counts were typically normalized using diverse strategies 

e.g. rarefaction or CSS, or were transformed with clr or ilr (Zhou & Gallins, 2019; Gloor et al., 

2017). Furthermore, in the microbiome field, we did not find any mention of kernels for 

spatial or temporal-structured datasets. 

Using kernels adapted to the data nature can be considered as an “implicit” way to make use 

of our prior knowledge of the dataset (Libbrecht & Noble, 2015). Additionally, we guided the 

learning process explicitly in some cases. That was done by introducing the protein position 

importances into the kernels of Chapter 4 and, in a sense, by using structural information in 

Chapter 5. The weighted kernels of Chapter 4 dramatically improved the resistance prediction 

for NRTIs, NNRTIs, and some INIs (but not for PIs), while the graph kernel of Chapter 5 did not 

succeed in extracting valuable information from protein structure. It seems that the 

improvement observed in reverse transcriptase and integrase inhibitors is caused because 

few positions have a great impact on drug resistance. Instead, at least 1/3 of protease 

positions are involved in resistance and, in addition, there exists some degree of association 

among them (Iyidogan & Anderson, 2014). In this case, a larger dataset is probably needed to 

give a reliable estimate of the importance of each position. On the other hand, as discussed in 

Chapter 5, a more complete picture of structural properties that does not stop at residue 

distances may be able to capture the functional association between positions. Overall, this 

highlights the difference between having prior knowledge about a biological mechanism and 
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being able to put it in numbers in an effective manner. When quantification is not reliable, or 

when an essential part of the information is missing, it is probably better to stick to simpler 

models than introduce noise inadvertently. 

In Chapter 6, we took a different approach: instead of encoding information into the model, 

we retrieved it as the importance given to each variable. Although the main purpose of our 

models is prediction, the obtention of variable importances is desirable in fields like 

microbiome analysis. It can also be applied to feature selection. Many algorithms to do so in 

SVM exist –for a review, see Sanz et al. (2018)–. However, retrieving the variable importances 

from an SVM is only trivial if the linear kernel is used. In the other cases, complex techniques 

that often include the removal or modification of a variable at a time are used. Here we have 

shown that, for some kernels, variable importance can be obtained in a rather 

straightforward manner. The key lies in knowing the map used implicitly by the kernel. In 

Chapter 6 we applied this approach for retrieving the microbial signatures of the three case 

studies reviewed, and the results we got were quite consistent with previous literature and 

with the variable importances given by RF. The weaknesses of this strategy are, mainly, two:  

first, it is very difficult to generalize, as some kernels implicitly map data into an infinite-

dimensional space –for the RBF kernel, though, some approximations have been proposed; 

see Liu et al. (2011)–. The second limitation is that the input data has to be explicitly mapped 

into feature space, so the appeal of the kernel trick is lost. 

Finally, we chose using simultaneously a supervised and an unsupervised view of the 

problems assessed. “Seeing” the same data (and the same kernel matrix) through the prism 

of different methods is another advantage of the kernel approach that is not always 

capitalized. At the end, SVM prediction is evaluated numerically (e.g. with NMSE, accuracy, 

etc.), but sometimes the reasons behind a specific performance outcome may be obscure. 

Keeping kPCA results side-to-side with those of SVM has several useful applications: it may 

help interpreting the SVM behavior, provide a complementary view of data, show some visual 

pattern that reinforce SVM results, or assess how different kernels grasp data. In Chapter 4 

and 5, kPCA was more intended to bolster SVM results. We found that it mirrored the 

differential pattern between protease and reverse transcriptase inhibitors, and also 

anticipated the improving of performance in weighted kernels. In Chapter 6, it was a more 

integral part of the process, as the aim was to obtain a holistic view by analyzing kPCA, SVM 

and microbial signatures at once. kPCA not only reinforced the SVM results, but also provided 

some valuable information on its own (e.g: the band nature of the Soil dataset). 
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7.2 The approach to HIV data particularities 

Viruses are the only known organisms that can use RNA as genetic material. There exist RNA 

viruses in the strict sense and others that, like HIV, switch between RNA and DNA during their 

replication cycle. In any case, both of them tend to present a genetic variability per 

generation time much higher than any organism purely based on DNA (Moya et al., 2000). 

They have strikingly high mutation rates, around 100 times greater than those of DNA-based 

viruses (Peck & Lauring, 2018). Indeed, a large number of deleterious mutants is generated at 

each generation, but this drawback is compensated by small replication times, high virion 

yields and large populations. RNA-based viruses evolve at very high rates within their infected 

hosts (Lythgoe & Fraser, 2012), creating a complex and dynamic constellation of genetically-

linked variants: the quasispecies. Furthermore, high rates of recombination (as those of HIV) 

further increase variability in the viral population by redistributing new alleles and forming 

complex mutational patterns (Iyidogan & Anderson, 2014). All together, these traits allow a 

fast exploration of potential sequence variants to overcome selective pressure, e.g. host 

immune system or drug therapy. 

The Stanford HIV Drug Resistance Database reflects the extremely high genetic variability of 

HIV. Considering only missense mutations, the number of polymorphic positions ranged from 

93% in protease (1700 sequences analyzed) to 75% in integrase (652 sequences analyzed). 

The number of different observed alleles was as high as 16 in some protease positions. Mean 

number of mutations per sequence, with respect to the consensus, ranged between 10 in 

protease –in agreement with Nalam and Schiffer (2008) data from therapy-experienced 

patients– and 7.31 in integrase. That said, most positions were dominated by wild type 

alleles, while alternative ones tended to be present in low frequencies or even once 

(averaging the three proteins, this was seen in 73% of positions). This further remarks the 

singularity of each HIV isolate. Finally, almost the 60% of samples contained mixtures from 2 

to 4 amino acids in at least one position, pointing to the presence of quasispecies. 

Thus, HIV sequence datasets have very unusual features: high range of alternative alleles 

(many of them in very low frequencies), mixtures of an arbitrary number of these alleles in a 

given locus, and uniqueness of the sequences. These particularities complicate classic genetic 

analyses, as the r2 estimation of LD in Chapter 5. They also pose several challenges to 

predictive models. Most supervised methods cannot deal with categorical variables, and so 

(as reviewed in Chapter 4 and section 7.1) protein sequences are typically converted to binary 

“dummy” variables by one-hot encoding. But what happens when more than a negligible 

fraction of mutations is observed once? Some of these instances will be placed in the test set 
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and not in the training set. If the model is built from the alleles observed in the training set, 

binary variables for these rare mutations will not be generated and a proper prediction in the 

test set cannot be done. Rare variant filtering has been applied in other works (Sheik 

Amamuddy et al., 2017; Khalid & Sezerman, 2016); however, this approach plays down the 

emergence of novel mutations, which is an important mechanism for HIV to evade the 

antiretroviral therapy. An alternative solution is to generate as many dummy variables as 

canonic amino acids, thus expanding the dataset features in a 20x factor. This increases 

computational costs and operates against methods like ANN, which are more vulnerable to 

the curse of dimensionality. As for amino acid mixtures, we do not consider that they are well 

handled with sequence expansion, as is extensively discussed in Chapter 4. Other strategies, 

as keeping only one allele, lead to losing part of the information and do not take into account 

that HIV variants coexist within infected hosts as quasispecies. 

Contrarily to other works (Sheik Amamuddy et al., 2017; Khalid & Sezerman, 2016; Shen et 

al., 2016; Yu et al., 2014; Masso et al., 2014), we decided to proceed with minimal dataset 

pre-processing. To do so, we proposed kernel functions capable to handle data with so much 

intrinsic variability: the Overlap and the Jaccard kernels. As said in subsection 3.3.2, the plain 

Overlap kernel gives the same kernel matrix that the linear kernel applied over data 

transformed by one-hot encoding, but has the computational advantages of the kernel trick. 

We modified the standard formulation of the Overlap and Jaccard by introducing an 

exponentiation, which allowed the nonlinear approach of the standard RBF kernel, but 

without increasing the dataset dimensionality.    

In both chapters 4 and 5, the Jaccard kernel stood out among the other kernels because it 

could also accept amino acid mixtures as input. That allowed for more fidelity to the HIV 

quasispecies structure while sparing a great deal of dataset pre-processing. Although the 

Jaccard kernel is equivalent to the Overlap kernel in absence of mixtures, it systematically 

improved the Overlap kernel performance, sometimes by a large margin. It was the best 

kernel in all drugs but one, thus confirming that the amino acid mixtures need to be taken 

into account by the resistance prediction models. 

Research on the most relevant and widespread mutations has been one of the most 

important contributions to the inference of HIV drug resistance. That knowledge is the 

foundation of rule-based algorithms, but it is not particularly exploited in ML prediction 

models. A possible reason is that many methods do not provide a straightforward way to 

encode additional information. In our case, that was possible by modifying the definition of 

all kernels so each position was assigned a weight. But we encountered several issues to 

directly use the rule-based information as input to our kernels: (i) this information is binary in 
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catalogs like Wensing et al. (2017), i.e. important/not important, and we wanted a weighting 

that acknowledged that there may be different levels of importance, (ii) software like 

Stanford HIVdb provide the fold-decrease in susceptibility per specific mutation or group of 

mutations, but not per protein position. Thus, we obtained this information instead for the RF 

mean decrease in node impurity. We already showed in Chapter 4 that the variable 

importance profiles obtained with RF mostly agrees with the major drug resistance-

associated residues found in catalogues. Weighting was not of much use in the PIs, but it 

delivered a dramatic improvement of prediction in most INIs and reverse transcriptase 

inhibitors. We found a significant relationship between this result and the inequality of the 

position importances’ distribution. The reasons behind this trend seem to be related to two 

well-known different mutational strategies among viral proteins: few high-impact residues 

cause reverse transcriptase to become resistant to its inhibitors, while protease tends to 

accumulate a greater number of mutations. 

Kernels of Chapter 4 assumed perfect independence between protein positions and did not 

consider any type of LD. That is completely opposite to the treatment of sequence data that is 

done, for instance, in KMCB. They mostly use string kernels, which are based on comparing 

the substrings (e.g. of length k) or motifs present in two sequences. That approach has been 

successfully applied to problems as homology detection. However, as they look for substrings 

or motifs, string kernels implicitly assume that only close positions within the sequence are 

associated. That is compatible with background LD but, in HIV, this kind of association is 

continuously scrambled by the high recombination and mutation rates of the virus. It has 

been reported (Wang & Lee, 2007) that (at least in datasets containing HIV isolates from 

treatment-experienced patients) most associations are caused by functional interactions 

between protein residues. In addition, our analysis of LD in the Stanford datasets shown that 

positions with more strong associations in average are also known to be involved in drug 

resistance. 

Henceforth, in Chapter 5, we decided to embed the Overlap and the Jaccard kernels into a 

kernel for graphs: the exponential random walk kernel. The underlying idea was that close 

positions within the folded protein are more likely to interact. We modeled each protease 

and reverse transcriptase isolate as a graph. To do so, we used empirical data obtained with 

X-ray crystallography, so the edges were the Euclidean distance between each pair of protein 

positions, while each allele of the sequence was the label of a node. The implementation was 

optimized as much as possible to make the exponential kernel computation feasible. 

However, at the end, we did not succeed in improving the prediction performances of the 

unweighted kernels over sequences of Chapter 4, while the computation time was much 
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more costly (even with the optimized implementation). The most likely reasons for this 

outcome are: (i) oversimplification of the graph model, as the same values on the edges were 

used for all HIV isolates, (ii) not using other types of information (apart of distances) related 

to enzyme structure and (iii) failing to consider that some functional associations might 

appear between positions that are not close in space. 

Thus, at the end, our better effort for predicting drug resistance in HIV was the Jaccard kernel 

over sequences, either in its weighted or unweighted form. In average, it achieved a median 

NMSE around 0.13 (all PIs), 0.21 (all NRTI+NNRTIs), and 0.14 (all INIs). However, there were 

outliers with quite worse prediction errors. The most striking case, taking into account the PI 

context, is TPV. DRV had lower sample size and is, like TPV, a robust second-generation PI, but 

gave us much better performances. A previous review that analyzed several resistance 

prediction algorithms also found a suboptimal performance with TPV, while they obtained, in 

general, good results with DRV (Stürmer et al., 2011). TPV is the only nonpeptidomimetic PI 

and has a different mode of binding to protease. It is known to have a particular resistance 

profile, and also that it is unaffected by most multidrug-resistant variants and that protease 

needs to accumulate multiple mutations to become resistant (Ali et al., 2010). Indeed, TPV 

presented the lower Gini index (around 0.76) of all 21 drugs analyzed and was, thus, the one 

with the most “equal” distribution of position importances. 

Our approach to drug resistance prediction has several limitations that should be highlighted. 

First, our kernels could only handle sequences that differed by point mutations. Therefore, 

sequences with indels and nonsense mutations were removed off the dataset. Although they 

accounted for 5% of sequences, they are in no case irrelevant, as it is known that some 

changes in protein length are related to drug resistance. An example is the T69 insertion 

complex in reverse transcriptase, which induces cross-resistance to NRTIs (Iyidogan & 

Anderson, 2014). The ability to deal with gaps on data is an advantage of some strings kernels 

over the Overlap and Jaccard kernels we used. 

But the most important limitation in our kernels’ definition is probably that they do not 

leverage any intrinsic properties to the specific amino acid placed in a given position. Their 

only property is to be completely equal (or completely different) to the amino acid placed in 

that exact position in other viral sequences. However, the physicochemical properties of 

amino acids (e.g. charge, hydrophobicity, size), make them unequal in diverse degrees. For 

instance, the substitution of D for E is typically more conservative (as both are negatively-

charged and have similar volume) than D for W (see Figure 7.1). 
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Figure 7.1. A possible classification of the canonic amino acids according to their physicochemical 
properties. Taken from Esquivel et al. (2013). License: CC BY 3.0. 

A similar claim can be done when computing the importance of each protein position. 

Although it is clear that some positions are key in acquiring resistance (as seen in the 

dramatic improving of prediction for some drugs in Chapter 4), not all amino acid 

substitutions may be equally important. As said before, this is acknowledged by catalogs of 

resistance-associated positions, which always highlight the key alleles that decrease (or 

increase) the susceptibility to a drug. An example: it is well known that the K70R substitution 

confers cross-resistance to all NRTIs, while K70E confers resistance to TDF (Wensing et al., 

2019). In our version of the Stanford NRTI dataset we found, apart from R and E, a high 

frequency of the wild type allele K, plus 6 additional mutations: A, G, N, Q, S and T (all of them 

in frequencies 1%). It possible that they are irrelevant to drug resistance or that some of 

them may have a small impact. In any case, when weighting the kernels of Chapter 4, the 

importance (obtained via RF) was not given to the alleles R and E, but globally to position 70. 

The same problem reappears in Chapter 5. It is evident that substituting a given amino acid 

for another induces a spatial rearrangement in the neighborhood of that residue and, in some 

cases, in the whole protein. However, potential coordinate changes in mutated proteins were 

not looked upon. Furthermore, we did not assess additional data like physicochemical 

properties of amino acids, which –as suggested by studies like Khalid & Sezerman (2016)– 

may give a more nuanced view of protein structure. 

The exponential random walk kernel that we used in Chapter 5 did not result in an 

improvement of prediction performance. Yet, this kernel provides an excellent framework to 

https://creativecommons.org/licenses/by/3.0/
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include different types of data apart from sequences and inter-residue distances. Information 

about contact energies, volumes, physicochemical properties, etc. that individualize the 

amino acid residues can also be included with little effort. This can be achieved by including 

additional kernels for evaluating the nodes and/or edges in (5.4); see Borgwardt et al. (2005) 

for an example. That way, the aforementioned limitations of the present work can be 

overcome. We expect that a better grasp of the functional interactions between positions 

enhances the prediction of drug resistance, at least in protease, as it seems reasonable due to 

its particular mutational pattern. 

7.3 Synthesis of current microbiome analysis 

The advent of NGS technologies in the first decade of 21st century was a turning point in 

genomics. These technologies allowed, for the first time, to transcend the individual organism 

to give a whole view on the genes and genomes of a full microbial community (National 

Research Council (US), 2007).  Before NGS, individual microorganisms had to be isolated and 

cultured prior to be studied. However, most of the microbial diversity on earth is not 

cultivable, and therefore was invisible for these methodologies (Handelsman, 2004). 

Metagenomics and other ‘omics’ have provided great volumes of sequence data that 

highlight both the ubiquity of ecological niches for microorganisms (which include plant and 

animal hosts) and the complexity of interactions within the community and with their hosts. 

Today, it is widely acknowledged that microbiota (i.e. the set of all microorganisms of a given 

environment) plays a critical role in complex diseases like diabetes, asthma, allergies or 

inflammatory bowel disease (Berg et al., 2020). Thus, phenotype prediction from microbial 

data (e.g. metagenomics) has important implications in agriculture, livestock production and 

human health (Zhou & Gallins, 2019). For instance, human microbiome is becoming a key 

target of personalized medicine (Berg et al., 2020). Due to the inherent complexity of this 

goal, studies have started to apply supervised ML to predict host characteristics from 

microbial data (Zhou & Gallins, 2019). 

In Chapter 6 we propose using a kernel approach to handle microbiome analyses. A visual 

summary of the process is shown in Figure 7.2. In contrast to other ML methods, kernel 

methods start similarly to most traditional ecological analyses: computing a kernel matrix (in 

ecology, a distance or dissimilarity matrix is used instead). Furthermore, as shown in 

subsection 3.3.4, some ecological dissimilarities/distances can be turned into kernels. Thus, 

the kernel approach may result more familiar to ecologists than other ML methods. The main 

difference between community ecology analyses and the kernel approach is that, in the 

former, the dissimilarity matrix is used for unsupervised learning only (e.g. clustering, 
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visualization). Instead, in the latter, there exists a wide range of methods for supervised as 

well as unsupervised settings. In Chapter 6, this advantage is exploited to unify different kinds 

of microbiome analyses under the umbrella of the kernel framework. SVM were used as a 

representative of the former analysis and kPCA of the latter. That way, we do not simply 

“aggregate” methods in parallel: both share the same kernel matrix, and hence are bonded in 

some degree, though they have different purposes (prediction on one hand, data 

visualization and/or feature extraction on the other) and may emphasize different aspects of 

the dataset. 

 

Figure 7.2. Metagenomic analysis workflow when using the kernel framework. The pivotal position of 
the kernel matrix is clearly observed. In grey, several tasks not performed during the present work but 
that merit future research. 

The kernel framework is not only flexible in allowing a great range of different analyses, but 

also in the almost infinite ways it provides to approach data. This can be achieved at any time 

by changing the kernel functions used, while the rest of the process remains the same. This 

versatility is useful in an emerging field as microbiome analysis, where there is not a general 

agreement in subjects like which is the best normalization technique (Costea et al., 2014; 

McMurdie & Holmes, 2014; Paulson et al., 2013) or distance (Parks & Beiko, 2013). Some 

reports point that the best approach depends upon the specific problem and data at hand 

(Weiss et al., 2017). In Chapter 6 we propose four different kernels for microbiome data but, 

contrarily to chapters 4 and 5, the aim was not performing an exhaustive comparison to find 
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the best one, nor was it feasible with only three case studies. Instead, the goal was to give a 

few examples of kernels, each one of them having its own motivation and strengths. Two of 

them inherently take into account that data is compositional (thus, we called them 

“compositional kernels”), while the other two were obtained from widespread beta-diversity 

measures in community ecology. However, we acknowledge that there are limitations in our 

treatment of microbiome data, as we discuss next. 

NGS data is considered compositional because it consists of counts bounded by an 

uninformative sum, which in this case is the library size (i.e. the total reads per sample). We 

say that library size is uninformative because it does not contain information about the 

population. Instead, it is arbitrarily fixed by the sequencing process and it may vary by orders 

of magnitude across samples (McMurdie & Holmes, 2014). As the number of total reads is 

constrained, an increase in a taxon leads to an overall decrease of the rest (Gloor et al., 2017; 

McMurdie & Holmes, 2014). Thus, absolute counts are irrelevant, as they only account for the 

precision of the estimate, and difference between taxa is only meaningful in proportion. 

Expressing compositional data as log-ratios (e.g. clr-transformation) acknowledges this 

dependence and also enables mapping the data into real space. 

However, NGS data is extraordinarily sparse, and in that point it differs from compositional 

data in a strict sense. The proportion of zeroes in most OTU tables is around 90% (Weiss et 

al., 2017). In our case, the proportions were as high as 95% in the Soil dataset, 96% in the 

Smokers dataset, and 90% in the ASV table of the Pig dataset (which fell to 65% when 

aggregating by genera). Of course, it is not possible to know if a zero means true absence or 

abundance below the detection limit. How to deal with zeroes is an open topic of research in 

compositional analysis (Quinn et al., 2018; Weiss et al., 2017) as, by definition, log-ratios do 

not handle them well. That is a weakness of our compositional kernels (instead, zeroes pose 

no problems for the quantitative Jaccard kernel). We did not apply a very innovative 

approach to the subject: we added a pseudo-count to all elements of the dataset (Quinn et 

al., 2018) prior to computing the compositional kernels. There exist other replacement 

strategies involving pseudo-counts, but again, there is not a consensus on how choosing 

them. It is known, however, that pseudo-counts may alter slightly the ratios between taxa. A 

more sophisticate approach is replacing zeroes using a compositionally valid Dirichlet 

distribution, but this assumes that every pair of taxa has a negative correlation (Quinn et al., 

2018; Weiss et al., 2017). More research is needed to design compositional kernels that do 

not require pre-processing zeroes in NGS count data tables. 

In addition, the scope of our work was limited because the public datasets that we used in 

Chapter 6 only had information about taxonomic abundances. Thus, although we succeeded 



DISCUSSION AND FUTURE RESEARCH  157 

 
 

in analyzing three distinct datasets in structure (one single point dataset, a longitudinal 

dataset and a dataset with spatial-related samples) and in application (soil studies, human 

health and livestock production), we did not study functional data, nor we included 

information of the phylogenetic tree in the kernel computation (see Figure 7.2). Replacing the 

clr-transformation in (3.39) by the PhILR transformation (Silverman et al., 2017) may allow 

the generation of alternative compositional linear and RBF kernels that take into account 

phylogenetic data. However, some problems with the retrieval of microbial signatures may 

arise, as the ilr-transformation generates  features from  taxa, and does not allow for 

insights into the relationships between single features in the dataset (Gloor et al., 2017). 

Finally, regarding the spatial and temporal-structured datasets from Chapter 6, we obtained a 

great increase in prediction performance in the former when integrating the related samples 

using MKL. Instead, the integration via longitudinal kernels in the latter dataset (i.e. the Pig 

case study) resulted only in a slight improvement over the prediction using day 7. This is in 

contrast with results shown in the ‘kernInt’ vignette (Annexes), in which we apply a 

longitudinal kernel to the Berkeley Growth dataset (presented in subsection 1.3.2). There, the 

results are much better when using the fRBF kernel over all data (median accuracy = 0.95) 

than when using only data at age 18 (median accuracy around 0.85). Then, what are the 

reasons behind the results of the Pig dataset? One possibility is that the number of time 

points (only three, while the Berkeley Growth dataset has 31) is too low to have a good grasp 

of potential differences in microbial colonization between healthy and ill pigs. It is also 

possible that microbiota of piglets in days 0 and 3 post-birth is still too unstable, so maybe a 

sampling design that includes later points (e.g. second week of life) could be more 

informative. Also, it has to be stressed that we used general kernels for longitudinal data, but 

without fully address that we were dealing with a compositional time series. We share this 

limitation with other related works, e.g. Bodein et al. (2019). In our case, the abundance data 

was mapped out of the simplex with the clr-transformation, and only then we applied the fLin 

and fRBF kernels for discrete functions. Ideally, the time series function would model 

absolute frequencies, but compositional data only has information about relative frequencies. 

It seems that is not possible to successfully recover the original absolute counts from a 

compositional sample (Quinn et al., 2018). To our best knowledge, a specific compositional 

approach to longitudinal data does not exist yet. 





 

CHAPTER 8 

CONCLUSIONS 

 

 

 

I. Current treatment for HIV infection is chronic and, thus, the emergence of drug 

resistance is a serious concern. We used RF and SVM models to predict resistance to 

21 drugs from mutated protease, integrase and reverse transcriptase sequences. We 

propose specific kernels for HIV data that acknowledge the presence of amino acid 

mixtures and/or the categorical nature of the protein positions. Taking into account 

both characteristics (as done in this thesis with the Jaccard kernel) consistently results 

in the best option to predict drug resistance in HIV. 

II. Incorporating prior information of the importance of protein positions onto the kernel 

further improves prediction in reverse transcriptase and integrase, but not in 

protease. The amount of improvement grows with the inequality of the importance 

distribution, as measured by the Gini index. Thus, the effect of incorporating the 

position weights depends on the specific mutational pattern leading to drug 

resistance, which is different among the three viral proteins. 

III. Conversely, including information about distances between residues on the folded 

enzymes does not increase the predictive ability of the categorical kernels assessed, 

i.e. the Overlap and the Jaccard kernels. The inclusion of more diverse structural data 

(e.g. amino acid volumes and physicochemical properties, contact energies...) may be 

necessary to properly grasp the functional interactions between protein positions. 

IV. Our kernel framework successfully unifies the most important analyses in the 

microbiome field: phenotype prediction (SVM), data visualization (kPCA) and retrieval 
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of microbial signatures (i.e. taxa importances) from the SVM. This approach does not 

only give a holistic view of data, but also delivers good results in each learning area.  

V. The kernel framework allows diverse approaches to microbiome data by using 

different kernels; for instance, kernels derived from widely used beta-diversity 

measures, or the kernels for compositional data proposed in this thesis: the Aitchison-

RBF and the compositional linear kernels. Furthermore, this framework can handle 

spatial and temporal-structured microbiome study designs by using multiple kernel 

learning or specific kernels for time series, respectively. 
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Figure S1. NMSE distribution for ATV and DRV (protease inhibitors). Same legend as that of Figure 4.1. 
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Figure S2. NMSE distribution for IDV and LPV (protease inhibitors). Same legend as that of Figure 4.1. 

 

 

 

Figure S3. NMSE distribution for NFV and SQV (protease inhibitors). Same legend as that of Figure 4.1. 
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Figure S4. NMSE distribution for TPV (protease inhibitor) and 3TC (reverse transcriptase inhibitor). 
Same legend as that of Figure 4.1. 

 

 

  

Figure S5. NMSE distribution for ABC and AZT (reverse transcriptase inhibitors). Same legend as that of 
Figure 4.1. 
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Figure S6. NMSE distribution for D4T and TDF (reverse transcriptase inhibitors). Same legend as that of 
Figure 4.1. 

 

 

  

Figure S7. NMSE distribution for EFV and ETR (reverse transcriptase inhibitors). Same legend as that of 
Figure 4.1. 
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Figure S8. NMSE distribution for RPV (reverse transcriptase inhibitor) and DTG (integrase inhibitor). 
Same legend as that of Figure 4.1. 

 

 

 

Figure S9. NMSE distribution for RAL (integrase inhibitor). Same legend as that of Figure 4.1. 
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Figure S10. RF relative importance of each protein position, averaged over 40 replicates, for ATV 
(protease inhibitor). Asterisks mark the major drug-related positions reported in the literature. 

 

 

 

 

Figure S11. RF relative importance of each protein position, averaged over 40 replicates, for DRV 
(protease inhibitor). Asterisks mark the major drug-related positions reported in the literature. 
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Figure S12. RF relative importance of each protein position, averaged over 40 replicates, for IDV 
(protease inhibitor). Asterisks mark the major drug-related positions reported in the literature. 

 

 

 

 

Figure S13. RF relative importance of each protein position, averaged over 40 replicates, for LPV 
(protease inhibitor). Asterisks mark the major drug-related positions reported in the literature. 
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Figure S14. RF relative importance of each protein position, averaged over 40 replicates, for NFV 
(protease inhibitor). Asterisks mark the major drug-related positions reported in the literature. 

 

 

 

 

Figure S15. RF relative importance of each protein position, averaged over 40 replicates, for SQV 
(protease inhibitor). Asterisks mark the major drug-related positions reported in the literature. 
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Figure S16. RF relative importance of each protein position, averaged over 40 replicates, for TPV 
(protease inhibitor). Asterisks mark the major drug-related positions reported in the literature. 

 

 

 

 

Figure S17. RF relative importance of each protein position, averaged over 40 replicates, for 3TC 
(reverse transcriptase inhibitor). Asterisks mark the major drug-related positions reported in the 
literature. 
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Figure S18. RF relative importance of each protein position, averaged over 40 replicates, for ABC 
(reverse transcriptase inhibitor). Asterisks mark the major drug-related positions reported in the 
literature. 

 

 

 

 

Figure S19. RF relative importance of each protein position, averaged over 40 replicates, for AZT 
(reverse transcriptase inhibitor). Asterisks mark the major drug-related positions reported in the 
literature. 
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Figure S20. RF relative importance of each protein position, averaged over 40 replicates, D4T (reverse 
transcriptase inhibitor). Asterisks mark the major drug-related positions reported in the literature. 

 

 

 

 

Figure S21. RF relative importance of each protein position, averaged over 40 replicates, for DDI 
(reverse transcriptase inhibitor). Asterisks mark the major drug-related positions reported in the 
literature. 
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Figure S22. RF relative importance of each protein position, averaged over 40 replicates, for TDF 
(reverse transcriptase inhibitor). Asterisks mark the major drug-related positions reported in the 
literature. 

 

 

 

 

Figure S23. RF relative importance of each protein position, averaged over 40 replicates, for EFV 
(reverse transcriptase inhibitor). Asterisks mark the major drug-related positions reported in the 
literature. 
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Figure S24. RF relative importance of each protein position, averaged over 40 replicates, for ETR 
(reverse transcriptase inhibitor). Asterisks mark the major drug-related positions reported in the 
literature. 

 

 

 

 

Figure S25. RF relative importance of each protein position, averaged over 40 replicates, for RPV 
(reverse transcriptase inhibitor). Asterisks mark the major drug-related positions reported in the 
literature. 
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Figure S26. RF relative importance of each protein position, averaged over 40 replicates, for DTG 
(integrase inhibitor). Asterisks mark the major drug-related positions reported in the literature. 

 

 

 

 

Figure S27. RF relative importance of each protein position, averaged over 40 replicates, for RAL 
(integrase inhibitor). Asterisks mark the major drug-related positions reported in the literature. 
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Figure S28. The unweighted (A) and weighted (B) Jaccard kPCA for ATV (protease inhibitor). Gray dots 
represent sequences with missing resistance value. 

 

 

 

Figure S29. The unweighted (A) and weighted (B) Jaccard kPCA for DRV (protease inhibitor).  Gray dots 
represent sequences with missing resistance value. 
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Figure S30. The unweighted (A) and weighted (B) Jaccard kPCA for IDV (protease inhibitor).  Gray dots 
represent sequences with missing resistance value. 

 

 

 

Figure S31. The unweighted (A) and weighted (B) Jaccard kPCA for LPV (protease inhibitor).  Gray dots 
represent sequences with missing resistance value. 
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Figure S32. The unweighted (A) and weighted (B) Jaccard kPCA for NFV (protease inhibitor).  Gray dots 
represent sequences with missing resistance value. 

 

 

 

Figure S33. The unweighted (A) and weighted (B) Jaccard kPCA for SQV (protease inhibitor).  Gray dots 
represent sequences with missing resistance value. 

 



188   Kernel approaches for complex phenotype prediction 

 

 

Figure S34. The unweighted (A) and weighted (B) Jaccard kPCA for TPV (protease inhibitor).  Gray dots 
represent sequences with missing resistance value. 

 

 

 

Figure S35. The unweighted (A) and weighted (B) Jaccard kPCA for 3TC (reverse transcriptase 
inhibitor).  Gray dots represent sequences with missing resistance value. 
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Figure S36. The unweighted (A) and weighted (B) Jaccard kPCA for ABC (reverse transcriptase 
inhibitor).  Gray dots represent sequences with missing resistance value. 

 

 

 

Figure S37. The unweighted (A) and weighted (B) Jaccard kPCA for AZT (reverse transcriptase 
inhibitor).  Gray dots represent sequences with missing resistance value. 
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Figure S38. The unweighted (A) and weighted (B) Jaccard kPCA for D4T (reverse transcriptase 
inhibitor).  Gray dots represent sequences with missing resistance value. 

 

 

 

Figure S39. The unweighted (A) and weighted (B) Jaccard kPCA for DDI (reverse transcriptase 
inhibitor).  Gray dots represent sequences with missing resistance value. 

 



ANNEXES  191 

 
 

 

Figure S40. The unweighted (A) and weighted (B) Jaccard kPCA for TDF (reverse transcriptase 
inhibitor). Gray dots represent sequences with missing resistance value. 

 

 

 

Figure S41. The unweighted (A) and weighted (B) Jaccard kPCA for EFV (reverse transcriptase 
inhibitor).  Gray dots represent sequences with missing resistance value. 
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Figure S42. The unweighted (A) and weighted (B) Jaccard kPCA for ETR (reverse transcriptase 
inhibitor). Gray dots represent sequences with missing resistance value. 

 

 

 

Figure S43. The unweighted (A) and weighted (B) Jaccard kPCA for RPV (reverse transcriptase 
inhibitor).  Gray dots represent sequences with missing resistance value. 
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Figure S44. The unweighted (A) and weighted (B) Jaccard kPCA for DTG (integrase inhibitor).  Gray dots 
represent sequences with missing resistance value. 

 

 

 

Figure S45. The unweighted (A) and weighted (B) Jaccard kPCA for EVG (integrase inhibitor).  Gray dots 
represent sequences with missing resistance value. 
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Figure S46. The unweighted (A) and weighted (B) Jaccard kPCA for RAL (integrase inhibitor). Gray dots 
represent sequences with missing resistance value. 
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Table S1. Mean NMSE for all 21 analyzed drugs. wLIN, wRBF, wOV and wJAC stand for (individual) 
weighted Linear, RBF, Overlap and Jaccard models. sLIN, sRBF, sOV and sJAC correspond to their 
stacked counterparts.  

 wLIN sLIN wRBF sRBF wOV sOV wJAC sJAC 

ATV 0.136 0.136 0.146 0.149 0.137 0.137 0.132 0.132 

DRV 0.200 0.197 0.190 0.192 0.190 0.196 0.175 0.182 

FPV 0.155 0.162 0.156 0.165 0.150 0.158 0.141 0.148 

IDV 0.135 0.141 0.134 0.142 0.129 0.136 0.126 0.134 

LPV 0.108 0.112 0.110 0.118 0.105 0.113 0.098 0.102 
NFV 0.143 0.138 0.133 0.136 0.130 0.134 0.123 0.126 

SQV 0.151 0.146 0.145 0.148 0.142 0.146 0.130 0.133 

TPV 0.365 0.398 0.346 0.387 0.348 0.377 0.333 0.358 

3TC 0.146 0.134 0.112 0.182 0.108 0.163 0.075 0.091 

ABC 0.186 0.189 0.162 0.187 0.158 0.177 0.138 0.153 

AZT 0.222 0.229 0.206 0.218 0.201 0.217 0.181 0.194 

D4T 0.229 0.270 0.223 0.255 0.230 0.257 0.226 0.251 

DDI 0.256 0.279 0.250 0.281 0.247 0.276 0.237 0.267 

TDF 0.397 0.454 0.381 0.475 0.390 0.453 0.367 0.431 

EFV 0.181 0.168 0.157 0.161 0.154 0.165 0.122 0.126 
ETR 0.360 0.386 0.345 0.366 0.320 0.331 0.312 0.321 

NVP 0.269 0.165 0.164 0.155 0.144 0.155 0.110 0.112 

RPV 0.529 0.524 0.516 0.522 0.466 0.474 0.455 0.461 

DTG 0.759 0.779 0.677 0.726 0.686 0.729 0.654 0.679 

EVG 0.275 0.238 0.212 0.212 0.186 0.196 0.142 0.144 
RAL 0.165 0.153 0.139 0.141 0.140 0.154 0.105 0.110 

 

Table S2. NMSE standard error for all 21 analyzed drugs. Abbreviations as in Table S1. 

 wLIN sLIN wRBF sRBF wOV sOV wJAC sJAC 
ATV 0.013 0.016 0.014 0.017 0.014 0.014 0.014 0.015 

DRV 0.018 0.029 0.018 0.024 0.018 0.024 0.018 0.017 

FPV 0.011 0.012 0.010 0.013 0.009 0.010 0.009 0.009 

IDV 0.009 0.010 0.008 0.008 0.008 0.007 0.008 0.008 

LPV 0.010 0.013 0.013 0.016 0.011 0.012 0.009 0.011 

NFV 0.009 0.009 0.009 0.009 0.007 0.008 0.006 0.008 

SQV 0.009 0.012 0.008 0.011 0.008 0.009 0.008 0.008 

TPV 0.038 0.047 0.040 0.050 0.043 0.048 0.040 0.044 

3TC 0.022 0.026 0.021 0.038 0.020 0.043 0.013 0.016 

ABC 0.016 0.019 0.016 0.020 0.014 0.015 0.015 0.015 

AZT 0.017 0.022 0.017 0.021 0.018 0.021 0.012 0.016 

D4T 0.028 0.032 0.027 0.030 0.027 0.035 0.027 0.033 

DDI 0.023 0.029 0.023 0.034 0.022 0.022 0.020 0.025 

TDF 0.041 0.053 0.039 0.100 0.039 0.065 0.039 0.065 

EFV 0.016 0.017 0.013 0.017 0.014 0.017 0.012 0.013 

ETR 0.053 0.055 0.052 0.061 0.042 0.045 0.047 0.047 
NVP 0.023 0.021 0.019 0.020 0.017 0.017 0.011 0.012 

RPV 0.132 0.130 0.127 0.147 0.106 0.114 0.096 0.106 

DTG 0.159 0.175 0.129 0.166 0.128 0.130 0.136 0.166 

EVG 0.046 0.048 0.036 0.044 0.036 0.039 0.032 0.033 

RAL 0.040 0.040 0.033 0.035 0.037 0.041 0.029 0.032 
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Figure S47. NMSE distribution for DRV and IDV (protease inhibitors). Same legend as that of Figure 5.1. 

 

 

 

Figure S48. NMSE distribution for LPV and NFV (protease inhibitors). Same legend as that of Figure 5.1. 
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Figure S49. NMSE distribution for SQV and TPV (protease inhibitors). Same legend as that of Figure 5.1. 

 

 

  

Figure S50. NMSE distribution for 3TC and ABC (reverse transcriptase inhibitors). Same legend as that 
of Figure 5.1. 
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Figure S51. NMSE distribution for AZT and D4T  (reverse transcriptase inhibitors). Same legend as that 
of Figure 5.1. 

 

 

 

Figure S52. NMSE distribution for TDF and EFV (reverse transcriptase inhibitors). Same legend as that 
of Figure 5.1. 
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Figure S53. NMSE distribution for ETR and RPV (reverse transcriptase inhibitors). Same legend as that 
of Figure 5.1. 

 

 

 

Figure S54. The expJac kPCA for ATV (protease inhibitor). Gray dots represent sequences with missing 
resistance value. 
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Figure S55. The expJac kPCA for DRV (protease inhibitor).  Gray dots represent sequences with missing 
resistance value. 

 

Figure S56. The expJac kPCA for FPV (protease inhibitor). Gray dots represent sequences with missing 
resistance value. 
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Figure S57. The expJac kPCA for IDV (protease inhibitor).  Gray dots represent sequences with missing 
resistance value. 

 

 

Figure S58. The expJac kPCA for LPV (protease inhibitor).  Gray dots represent sequences with missing 
resistance value. 
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Figure S59. The expJac kPCA for NFV (protease inhibitor).  Gray dots represent sequences with missing 
resistance value. 

 

Figure S60. The expJac kPCA for SQV (protease inhibitor).  Gray dots represent sequences with missing 
resistance value. 
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Figure S61. The expJac kPCA for TPV (protease inhibitor).  Gray dots represent sequences with missing 
resistance value. 

 

Figure S62. The expJac kPCA for 3TC (reverse transcriptase inhibitor).  Gray dots represent sequences 
with missing resistance value. 
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Figure S63. The expJac kPCA for ABC (reverse transcriptase inhibitor).  Gray dots represent sequences 
with missing resistance value. 

 

Figure S64. The expJac kPCA for AZT (reverse transcriptase inhibitor).  Gray dots represent sequences 
with missing resistance value. 
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Figure S65. The expJac kPCA for D4T (reverse transcriptase inhibitor).  Gray dots represent sequences 
with missing resistance value. 

 

Figure S66. The expJac kPCA for DDI (reverse transcriptase inhibitor).  Gray dots represent sequences 
with missing resistance value. 
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Figure S67. The expJac kPCA for TDF (reverse transcriptase inhibitor). Gray dots represent sequences 
with missing resistance value. 

 

Figure S68. The expJac kPCA for EFV (reverse transcriptase inhibitor).  Gray dots represent sequences 
with missing resistance value. 
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Figure S69. The expJac kPCA for ETR (reverse transcriptase inhibitor).  Gray dots represent sequences 
with missing resistance value. 

 

Figure S70. The expJac kPCA for NVP (reverse transcriptase inhibitor).  Gray dots represent sequences 
with missing resistance value. 
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Figure S71. The expJac kPCA for RPV (reverse transcriptase inhibitor).  Gray dots represent sequences 
with missing resistance value. 
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Supplementary Figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S72. Soil kPCAs for the cRBF kernel, JSK and the Jaccard kernel. Legend as in Figure 6.1A. 
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Figure S73.  Morton et al. (2017) revisit Lauber et al. (2009) data. The Correspondence Analysis in 
panel a shows a clear U-shaped effect. Panel c demonstrates the band nature of the Soil dataset. 

 

 

Figure S74.  Original results by Lauber et al. (2009). Left: MDS plot derived from Unifrac distances with 
shape indicating soil pH. The arch pattern is visible but less steep than in figures 6.1A, S1 and S2 
because of the coarser taxonomic resolution in the original study (Morton et al., 2017). Right: soil pH 
correlation to number of phylotypes. 
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Figure S75. Original results of Charlson et al. (2010). Above: PCoA comparison of the taxonomic 

abundances. Colors denote body sites: oropharynx (red), nasopharynx (pink) and fecal (blue). Below:  
RF missclassification (1-Accuracy) versus misclassification of the random model (Guess). 
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Figure S76. Smoker/nonsmoker prediction accuracy of cLin, cRBF and JSK+SVM. Legend as in Figure 
6.2A. 

 

 

Figure S77. Top ten relevant taxa for the nasopharynx (A) and oropharynx (D) MKL models, and for the 
four body sampling sites separately (B, C, E, F). 
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Figure S78. cLin, cRBF and Jensen-Shannon kPCA. Legend as in Figure 6.2D. 

 

 

 

Figure S79. fRBF and cRBF kPCA for the ASV data. Legend as in Figure 6.4 A and B. 
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Figure S80.  Pig dataset: importance distribution at the Phyla, Family, Genera and Species level of the 
top 5% for cLin and RF (day 7) and fLin (global). 

 

Supplementary methods S0 – Pig Data obtention and preprocessing 

The experiment was conducted at Schothorst Feed Research B.V. facilities where management, 

environmental and housing factors were controlled for all animals throughout the whole study. Piglets 

sampling (swabs) was done in healthy piglets across three age strata: within 5 minutes after farrowing 

(i.e. day 0) and at days 3 and 7 post-farrowing. DNA from faecal samples was extracted at IRTA 

laboratory with the DNeasy PowerSoil Kit (QIAGEN). Extracted DNA was sent to the University of 

Illinois Keck Center for Fluidigm sample preparation and Illumina sequencing of 16S rRNA gene. 

Primers targeting the V3 – V4 region (F357 and -R805) were used to amplify a region of 552 base pairs 
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of the bacterial 16S rRNA gene and sequenced on one MiSeq flowcell for 251 cycles. Sequences 

corresponding to the V3-V4 region of the 16S rRNA gene were analysed using QIIME2 software (Bolyen 

et al. 2018). The workflow included a quality control step to remove sequences with Phred scores of < 

30, trim sequences based on expected amplicon length, remove chimera and merge paired reads. The 

cleaned 16S rRNA gene sequences were processed into Amplicon Sequences Variants (ASVs) and 

classified to the lowest possible taxonomic rank using QIIME2 (Bolyen et al 2018) against the 

GreenGenes Database release 2013-08 (DeSantis et al. 2006). Moreover, samples with less than 900 

reads were excluded and not considered in posteriors analysis. A total of 153 piglets and 3.29·106 

reads were retained for subsequent data analyses (Figure 2) after filtering out the low quality reads 

and samples with less the 900 reads. As expected, all negative control samples (42) were excluded in 

the quality control, which support the quality of DNA extraction and sequencing processes. Due to the 

low DNA concentration and the low bacterial biomass some samples from piglets microbiota at day 0 

did no pass the filtering process. In the final step of the quality control we also filtered out singletons 

and doubletons, to finally obtain a total of 3,577 ASVs.   

 

Kernel normalization 

Following Shawe-Taylor & Cristianini (2004) kernel matrices were normalized with the cosine 

transformation: 

̂ ̂( )
( )

√ ( ) ( )

 

We applied this normalization over the kernel for graphs matrices in Chapter 5 and the cLin kernel 

matrices of Chapter 6 (cRBF, qJac and JSK give values between [0,1]). The normalized version of a 

kernel uses the feature map ̂
| ( )|

. That was taken into account in Chapter 6 when computing 

the variable importances using (3.49). 

It can be proved that the proposed categorical kernels (4.7) of Chapter 4 are inherently standardized 

with the cosine transformation. For instance, if  is the Overlap (3.26) or Jaccard kernels (3.29):  

( )
∑

√ ∑ ∑

∑

√

∑

 

provided that the sum of weights is equal to 1. 
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Hyperparameters 

Hyperparameter optimization was done through grid search. Performance was measured by 10x10 

cross-validation for all HIV sequence data, and 5x5 cross-validation error for the Soil, Smoker and Pig 

datasets. 

For SVM, hyperparameters’ values assessed in the course of this work are in Table S3. 

For ANN (Chapter 4), we assessed two architectures: ANN1 and ANN3. In ANN1, only the architecture 

was optimized. The number of layers assesed was 1, 2 and 3, while the number of nodes per layer was 

2, 4, 6, 8 or 10. In ANN2, there were three fixed architectures: 30, 20-10 and 30-20-10. For each 

architecture we assessed hyperparameter  with possible values  and . The best 

performing combination of architecture and  was kept for building the final model. The maximum 

number of epochs was set to 1000. 

DT were used in the step 2 of the combiner algorithms of Chapter 4. The minimum number of 

observations in any terminal leaf was 3. Maximum complexity parameter (cp) was . Trees were 

pruned to a cp slightly greater than the optimum. 

The number of RF trees was 400 in HIV data (Chapter 4) and 1000 in the microbiome data (Chapter 6). 

Minimum number of observation in each terminal leaf was 5 for regression (HIV and Soil data) and 1 

for classification (Smoker and Pig data). Trees were grown to the maximum possible, as we did not set 

a cutoff for terminal leaves. The number of drawn candidate variables in each split was  for 

regression and √  for classification. 

 Table S3. SVM candidate hyperparameters’ values. 

 HIV (Chapters 4 & 5) Soil Smoker Pig 
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‘catkern’ vignette 

Elies Ramon 

2020-08-18 

 

Purpose 

The catkern package implements some useful kernel functions to handle categorical 
data. These functions were originally intended to analyze HIV sequence data, in the 
paper HIV drug resistance prediction with weighted categorical kernel functions by E. 
Ramon et al. 

Installation 

In R console: 

install.packages("devtools")   
devtools::install_bitbucket("elies_ramon/catkern") 

Package Overview 

Main features 
• Computes kernel matrices from categorical datasets 

• Plots the PCA of categorical datasets 

• Permits the presence of ambiguities (i.e. more than one category) in the variables 

• Allows for variable weighting 

• Delivers the variable importance 

• Can perform random sampling of ambiguities 

These functions were originally intended to analyze HIV sequence data. 

Functions provided 
• cmatrix() 

• kmatrix() 

• cplot() 

• rfweight() 

• mixSample() 

cmatrix() is the core function. Its input is a matrix or dataframe with categorical 
data, and its output a kernel matrix. Two kernel functions can be chosen: Overlap and 
Jaccard. The categorical variables can be weighted or not (thus giving equal 
importance to all of them). An external vector of weights can be provided as an 
argument; otherwise, weights will be authomatically computed from the Random 
Forest variable importances. 
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kmatrix() is analogous to cmatrix, but its available kernels are non categorical: the 
linear and RBF kernels. The input can be numeric or categorical; in the case of 
categorical input, a one hot encoding is performed. As in cmatrix, the variables can be 
weighted or not. An external vector of weights can be provided as an argument; 
otherwise, weights will be authomatically computed from the Random Forest variable 
importances. 

cplot() plots the kernel PCA of the data. If the target variable is provided, the points 
will be coloured, allowing the user to check if the individuals that are more similar in 
their response are also more similar according to the kernel. 

rfweight() delivers a vector of variable importances. This vector corresponds to the 
Increase in Node Impurity, a statistic of variable importance computed by the 
Random Forest method. If needed, a plot of the importances can delivered 
additionally. 

mixSample() takes a categorical dataset with ambiguities as input. If the dataset 
contains ambiguities/mixtures of categories at some point, the function samples one 
of the category at random. Its output is the sampled dataset. 

Example data 

This package contains three categorical datasets with ambiguities: PI, NRTI and 
NNRTI (source). These datasets contain the protease (PI) and reverse transcriptase 
(NRTI and NNRTI) sequences of HIV variants, and its corresponding resistance to 
several drugs. The sequences with insertions, deletions and truncations in the 
original dataset have been removed. The datasets are lazy loaded and can be used 
anytime typing PI, NRTI or NNRTI. 

Usage 

Sampling a dataset 

A dataset can have ambiguous or mixed categories in some positions; for example: 

library(catkern) 
Data <- na.omit(PI[,-c(1:2,4:9)]) 
print(Data[1:7,65:80]) 

P64 P65 P66 P67 P68 P69 P70 P71 P72 P73 P74 P75 P76 P77 P78 P79 

I E I C G H K A IV G T V L V G P 

L E IV C G H K V I S T V L V G P 

I E I C G H K T I G T V L V G P 

I E I C G H K V I S T V L V G P 

I E I C G H K A I G T V L I G P 

I E I C G Q K AV I G T V L I G P 

V E I C G H K I I T T V L V G AS 

To take one of the categories at random and obtain a “clean” dataset, do: 

https://hivdb.stanford.edu/pages/genopheno.dataset.html
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smplData <- mixSample(dataset = Data, y=1) 
print(smplData[1:7,65:80]) 

P64 P65 P66 P67 P68 P69 P70 P71 P72 P73 P74 P75 P76 P77 P78 P79 

I E I C G H K A V G T V L V G P 

L E V C G H K V I S T V L V G P 

I E I C G H K T I G T V L V G P 

I E I C G H K V I S T V L V G P 

I E I C G H K A I G T V L I G P 

I E I C G Q K V I G T V L I G P 

V E I C G H K I I T T V L V G A 

where the y argument are the columns that don’t have to be sampled (in this case, the 
target variable). 

Computing the variable importance 

We can compute a measure of variable importance as: 

    ## Convert the sampled dataset from character to factor 
    smplData[,-1] <-  lapply(smplData[,-1], as.factor)  
    weights <- rfweight(x = smplData[,-1], y = smplData[,1],plot=TRUE) 
    weights <- weights/sum(weights) ## If we want the relative importanc
es 

rfweight() returns a vector. If plot = TRUE, a simple plot of the importances will be 
delivered as well. 

Computing the kernel matrices 

There are four kernel functions to chose from: two specific for categorical data 
(Overlap and Jaccard) and two non categorical kernels (Linear and RBF). In the 
former, the appropriate catkern function is cmatrix(); in the latter is kmatrix(). In 
any case, the usage of the two is way similar. 

Categorical kernels: 

The simpler call to cmatrix() is: 

ovrMatrix <- cmatrix(data = smplData[,-1], kernel = "o") 

There are two mandatory arguments: data, the dataset, and kernel, which is the 
desired kernel (“o” for Overlap and “j” for Jaccard). The target variable must be 
absent from the dataset The output is a normalized kernel matrix, of dimensions n x n. 

The Jaccard kernel has an interesting property: as it is a kernel on sets, it can handle 
ambiguities/mixtures in the categories. This implies that we do not need to remove 
them from our dataset, so no information is lost. When there are not ambiguities, the 
Jaccard kernel is equivalent to Overlap kernel. 

jacMatrix <- cmatrix(data = Data[,-1], kernel = "j") 
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In the previous invocations to cmatrix(), all variables had the same weight when 
computing the kernel matrix. But if we know that some variables are more important 
than others to the problem at hand, we can weight them. This is done using the comp 
argument. The two possible scenarios are: 

· Known importances: If we already have a vector of variable importance, it can be 
passed as input to cmatrix(): 

wOvMatrix <- cmatrix(data = smplData[,-1], kernel = "o", comp = "w", coe
ff = as.vector(weights)) 

· Unknown importances: cmatrix() will call rfweight() to obtain the variable 
importances, and then will use them to weight the variables during the kernel 
computing. 

wOvMatrix2 <- cmatrix(data = smplData[,-1], kernel = "o", comp = "w", y 
= smplData$ATV) 

Finally, the last argument we can pass to the cmatrix() function is the g argument. 
When a value for g is provided, the Overlap and the Jaccard kernels computed are: 

k(x,y) = exp(γ kc(x,y)) / exp(γ) 

where kc(x,y) are either the Jaccard or Overlap kernels, and γ is a hyperparameter. 
This modified Overlap and Jaccard are non linear and analogous to the RBF kernel. 

gJacMatrix <- cmatrix(data = Example[,-1], kernel = "j", g = 1, y = data
$ATV) 

Non categorical kernels: 

kmatrix() usage is pretty similar to cmatrix(). Main differences are: 

• The kernel matrix is not computed by kmatrix() itself, but passed to the 
kernlab package. 

• The linear and RBF kernels are intended to operate in numeric data. If kmatrix() 
receives a categorical dataset, this dataset must contain factors. Then, kmatrix() 
will perform a one hot encoding (i.e. convert the categorical variables to dummy 
variables). 

• g argument is mandatory when RBF kernel is chosen. 

An example: 

rbfMatrix <- kmatrix(data = smplData[,-1], kernel = "r", g = 0.1, comp = 
"w", y = smplData$ATV) 

Prediction with the kernel matrices 

To use the kernel matrix for prediction, we strongly recommend using the R package 
kernlab. For example: 

library(kernlab) 
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## Training/test indexes 
n <- nrow(jacMatrix) 
trInd <- sort(sample(n,0.7*n,replace=FALSE)) # Training: 70% dataset`   
teInd <- (1:n)[-trInd] # Test indexes: 30% dataset`   
trCmatrix <- jacMatrix[trInd,trInd] # Training kernel matrix`   
teCmatrix <- jacMatrix[teInd,trInd] # Test kernel matrix`   
     
## Train a regression SVM with our kernel matrix: 
model <- ksvm(trCmatrix,y = Data$ATV[trInd],type="eps-svr",kernel="matri
x")  
     
## Predict 
teCmatrix <- teCmatrix[,SVindex(model),drop=FALSE] 
teCmatrix <- as.kernelMatrix(teCmatrix) 
predict(model,teCmatrix) 

Visualizing the kernel-PCA of the dataset 

The kernel matrix obtained either with cmatrix or kmatrix can be used to obtain a 
kernel-PCA plot. This can be useful to visualize our categorical data and to detect 
outliers. 

In case we have a target/response variable, we can pass it to the function (y 
argument). This information will be used to paint the dots, allowing us to check 
visually if the sequences that are considered more similar by our kernel function are 
also similar in regards to the response variable. 

cplot(jacMatrix) 
cplot(jacMatrix, y = Data$ATV, col = c("green","yellow","red")) 
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Also, we can paint with a different color the data with an unknown response value 
with na.col. This can be done either we are using a color spectrum or not: 

# A different drug of the same database, with more NAs. 
drv <- PI[complete.cases(PI[,-c(1:2,4:9)]),]$DRV  
cplot(jacMatrix, y = drv, col = "coral", na.col = "grey", legend = FALSE
) 
cplot(jacMatrix, y = drv, col = c("green","yellow","red"), na.col = "gre
y50") 
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The matrix containing the PCs, the eigenvalues and the projected data can be 
obtained using the kpca function of kernlab: 

jacMatrix <- as.kernelMatrix(jacMatrix) 
catPCA <- kpca(jacMatrix,  kernel = matrix) 
pcv(catPCA) ## All PCs  
eig(catPCA) ## Eigenvalues 
rotated(catPCA) ## Projection coordinates  

Appendix 

Package dependencies 

catkern strongly relies in three R packages: kernlab, to perform the kernel-PCA and 
to compute the linear and RBF kernel; ggplot2, to plot the kernel-PCAs, and 
randomForest, to compute the variable importances. 
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‘kernInt’ vignette 

Elies Ramon 

2020-08-18 

 

Purpose 

kernInt uses the kernel framework to unify supervised and unsupervised 
microbiome analyses, while paying special attention to spatial and temporal-related 
samples integration. 

Installation and loading 

In R console: 

if (!requireNamespace("devtools")) install.packages("devtools") 
devtools::install_github("elies-ramon/kernInt") 

If the metagenomeSeq package was not installed previously: 

if (!requireNamespace("BiocManager")) install.packages("BiocManager") 
BiocManager::install("metagenomeSeq") 

Once the package is installed, it can be loaded anytime typing: 

library(kernInt) 
#> Loading required package: kernlab 
#> Registered S3 method overwritten by 'GGally': 
#>   method from    
#>   +.gg   ggplot2 
#> sROC 0.1-2 loaded 

Package Overview 

Main features 
• Implementation of kernels for compositional data. 

• Kernels derived from classical ecology distances, as Jaccard and Jensen-Shannon, 
are also available. 

• Implementation of kernels specific for functional data. 

• A previously unpublished longitudinal pig gut microbiome dataset 

• Automatic training/test splitting of the input data, k-Cross Validation and SVM 
classification and regression. 

• Microbial signatures of the classification and regression models. 

• Outliers / Novelty detection via SVMs. 

• Integration of data from different sources via Multiple Kernel Learning (MKL) 
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Available kernels 
• Widely used kernels for real vectors: the linear (lin) and RBF (rbf) kernels. 

• Kernels for compositional data: the compositional linear clin and Aitchison-RBF 
crbf kernels. Both kernels can be implemented directly from the raw counts 
from tables. 

• Kernels derived from ecological distances: the Jaccard jac and Jensen-Shanon 
jsk kernels. Metagenomic data should be normalized before applying these 
kernels, for example by using CSS (cumulative sum scaling). 

• Kernels specific for functional data: the functional linear flin and functional 
RBF frbf kernels. They need functions (for instance, representing time series) 
as an input. 

Example data 

We offer three metagenomic datasets with the package: a single point soil dataset, a 
human health dataset with an spatial component, and a novel longitudinal dataset 
concerning pig production. Also, to better illustrate the longitudinal treatment of 
data, we include the classical Berkeley Growth Dataset. 

Soil data: Bacterial abundances (raw counts) in 88 soils from across North and South 
America. Metadata as soil pH, annual season precipitation and temperature, country, 
elevation, etc. is available. The dataset can be accessed typing soil: 

Smokers: Microorganism abundances of oro and nasopharynx in 29 smokers and 33 
nonsmokers. The dataset can be accessed typing smoker. 

Pig data: Previously unpublished longitudinal gut microbiome dataset of 153 piglets 
during their first week of life. The dataset can be accessed typing pig. 

Growth: Berkeley longitudinal height data of 54 girls and 39 boys (93 individuals in 
total) from ages 11 to 18. The dataset can be accessed typing growth. 

Usage - Standard case 

We refer data consisting in a sample of individuals (for example: human, animals, soil 
sites…) with no repeated measures as “the standard case”. The format of the input 
table must be with sample names as rows and taxon/OTUs as columns. The input of 
the ‘kernInt’ functions, thus, has class data.frame or matrix. We will use as 
example for this case the soil data. 

kernel PCA 

As the standard PCA, kernel PCA can be used to summarize, visualize and/or extract 
features of a dataset. Data can be projected in a linear or nonlinear way, depending on 
the kernel used. When the kernel is the standard linear (kernel=lin), kernel PCA is 
equivalent to standard PCA. 

The kernPCA() function have two mandatory arguments - data and kernel: 

kernPCA(data=soil$abund,kernel="clin") 

https://qiita.ucsd.edu/study/description/103
https://qiita.ucsd.edu/study/description/524
https://europepmc.org/article/med/13217130
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The rest of arguments customize the plot. For example, the dots can be coloured 
according to a desired variable, which can be continuous or discrete. Here we show a 
kernel PCA of soil samples in which each sample is coloured according to its pH: 

kernPCA(data=soil$abund,kernel="clin",  y=soil$metadata$ph,  
        col=c("aquamarine2","orange"),title = "Soil kernel PCA",legend = 
TRUE) 

 

The projected data can be retrieved setting plot=FALSE. 

Clustering 

A dendogram plot presenting a hierarchical clustering of data can be obtained with: 

soilData <- CSSnorm(data=soil$abund)  ### CSS normalization 
hklust(data=soilData,kernel="jac") 
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Additional arguments allow changing the agglomeration method, outlining clusters or 
customizing the plot: 

hklust(data=soilData,kernel="jac", title = "Soil data cluster dendogram"
,cut=3,colors=c("coral3","orchid3","darkolivegreen3")) 

 

 

The dendogram object can be retrieved setting plot=FALSE. 
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SVM regression 

SVM regression is performed with the regress() function. regress() performs 
automatic training/test splitting of the input data, k-cross validation if requested, and 
regression with optimal hyperparameters. To perform MKL, go to MKL section. 

The most basic call only needs three arguments: data (predictor variables; 
e.g. taxonomic abundances), y (target variable; e.g. a phenotype) and kernel. 

For example, if we want to predict the pH of soil (y) from the abundances (data) 
using the compositional linear kernel: 

modelreg <- regress(data=soil$abund, kernel="clin", y=soil$metadata$ph) 

If the user has a pre-computed kernel matrix at hand, it can be passed as input to 
data. kernel should then be turned to kernel="matrix". 

The SVM hyperparameters Cost (C) and Epsilon (E) can be specified, thus tuning how 
the model will adjust to the data. Roughly speaking, C is the cost of doing errors. In 
SVM regression models, differences between predicted and actual values smaller than 
E are not considered errors. Both increasing C and decreasing E increases the 
complexity of the model and the danger of overfitting. 

regress(data=soil$abund, kernel="clin", y=soil$metadata$ph, C=5, E=0.00) 

In addition, a generic kernel hyperparameter (H) can be specified. For example, if the 
chosen kernel is RBF, H will be interpreted as gamma: RBF(x,y) = exp(-gamma·||x-
y||^2) 

regress(data=soil$abund, y=soil$metadata$ph, kernel="crbf", C=5, H=0.1) 

k-Cross Validation can be performed to obtain the optimal hyperparameters. This is 
done providing an argument to k. Then, the best hyperparameter value (or the best 
combination of hyperparameter values) will be selected among the values provided 
by the user: 

regress(data=soil$abund, y=soil$metadata$ph, kernel="clin", C=c(1,5,10), 
E=c(0.001,0.1), k=5) 

Training/test splitting is controlled with the p argument and the rownames of data. 
If given a numeric value between 0 and 1, regress() will consider it the proportion 
of data instances for the test set, and will do a random splitting. Default is p=0.3. 
Otherwise, a vector containing the indexes or the names of the rows of the test set is 
also allowed. 

If the input data has repeated rownames, regress() will consider that the rows that 
share id are repeated measures coming from the same individual. The function will 
ensure that all repeated measures are used either to train or to test the model, but not 
for both, thus preserving the independence of the training and tets sets. However, 
users can enter the test partition, setting p to be a numeric (row indexes) or character 
(rownames) vector. The remainig data will be used as training. 

file:///Z:/home/syko/Escriptori/tesi%20text/annexes/kernInt-vignette.docx#mkl
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Output 

A list containing: 

• $nmse: Normalized mean squared error over the test data. This permits 
evaluating how good the model is at predicting. 

• $hyperparam: Hyperparameters’ values used to build the model and their cross-
validation error (if applicable). 

• $prediction: Predicted and true values (test set). Rownames correspond to the 
indexes in the original data. 

• $var.imp: The variable importance (e.g. microbial signature) if a linear or 
linear-like kernel is used. To present relative values of 

SVM classification 

SVM classification is performed via the classify() function. Both binary or 
multiclass classification (one-vs-one) are supported. One-class classification is 
available in the outliers() function. 

The usage of classify() is for the most part identical to that of regress(). For 
example, to predict if a certain soil came from forest, tropical, shrubland or grassland 
environment: 

modelclas <- classify(data=soil$abund ,y=soil$metadata[ ,"env_feature"],
kernel="clin") 

Probabilistic classification is available setting prob=TRUE: 

classify(data=soil$abund ,y=soil$metadata[ ,"env_feature"],kernel="clin,
prob=TRUE) 

The available hyperparameters are H and C (where C is the cost of missclassification). 
Also, classify() supports several methods to deal with imbalanced data: 

-Class weighting: 

classify(data=soil$abund ,y=soil$metadata[ ,"env_feature"],kernel="clin, 
classimb="weights",C=c(0.001,0.01),k=10)` 

-Undersampling: 

classify(data=soil$abund ,y=soil$metadata[ ,"env_feature"],kernel="clin, 
classimb="ubUnder",C=c(0.001,0.01),k=5) 

-Oversampling: 

classify(data=soil$abund ,y=soil$metadata[ ,"env_feature"],kernel="clin, 
classimb="ubOver",C=c(0.001,0.01),k=5) 

Output 

A list containing: 
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• $conf.matrix: Confusion matrix (true versus predicted) for the test data. This 
permits evaluating how good the model is at predicting. 

• $hyperparam: Hyperparameters’ values used to build the model and their cross-
validation error (if applicable). 

• $prediction: Predicted and true values (test set). Rownames correspond to the 
indexes in the original data. If prob=TRUE, the probability of each observation to 
belong to a given class. 

• $var.imp: The variable importance (e.g. microbial signature) if a linear or 
linear-like kernel is used. 

Variable importances 

Following Guyon et al. (2002), we can obtain the importance of a variable in a SVM 
model as: 

imp <- modelreg$var.imp^2 

Then, to generate a plot of the 10 most important features: 

imp <- imp/sum(imp) ## To give relative importances 
imp10 <- sort(imp,decreasing = TRUE)[1:10] 
par(mar=c(4,5,4,2)) 
barplot(sort(imp10),horiz = TRUE,las=2, 
main="Soil data top ten important taxa",xlab = "Relative Importance")   

 

## To know the taxonomic classification of the ten most important OTUs, 
do: 
soil$taxonomy[names(imp10),] 

https://link.springer.com/article/10.1023/A:1012487302797
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Outlier detection 

The outliers() function can be used either in a supervised or in an unsupervised 
way. 

In the latter approach, the most basic call to this function needs two arguments: data 
(predictor variables) and kernel (the kernel function used). Then, the function will 
return the data outliers: 

outliers(data=soil$abund ,kernel="clin") 

The nu hyperparameter (nu) and a gamma hyperparameter H can be entered: 

outliers(data=soil$abund,kernel="crbf",nu=0.2,H=0.05) 

If an argument for y is provided, outliers() functions as an one-class SVM. In that 
case, cross-validation will be performed if k has an argument. Also, p stands for the 
proportion (or indexes, or rownames) of data instances reserved for the test set. 

outliers(data=soil$abund,y=soil$metadata[ ,"env_feature"],kernel="clin",
nu=c(0.1,0.2),k=5) 

Usage - Multiple data sources 

The availability of multiple types of data for the same sample of individuals is 
becoming increasingly common. For instance, for several patients, we may have types 
as diverse as metagenomic data, metabolomics and blood analysis. Another example 
is when we have spatial-related samples, as in the smoker dataset. There, each 
individual is sampled in four body sites: left and right nasopharynx, and left and right 
oropharynx. Combining this different kind of data types can be tricky for most 
methods, but the kernel framework offers a straightforward solution: using specific 
kernels for each data source and then directly combining the kernel matrices. The 
process of obtaining an optimal convex combination is known as MKL (Multiple 
Kernel Learning). 

MKL 

MKL is available to classify(), regress() and outliers(). All features of these 
two functions are available when performing MKL. To do MKL, the data argument 
must be a list of length > 1. Each element of the list should be a data.frame or matrix, 
and rows should coincide. If kernel="matrix" data may be a three-dimensional 
array. kernel argument may contain only one kernel name (thus implying that the 
kernel is the same for all datasets) or a vector of kernel names. That way a different 
kernel will be applied to each data type. For example, if we have a list of metagenomic 
abundances, as in smoker$abund: 

css_data <- lapply(smoker$abund,CSSnorm) ## CSS normalization 
smoking <-  smoker$metadata$smoker[seq(from=1,to=62*4,by=4)] ## Target v
ariable 
classify(data=css_data, y=smoking, kernel="jac") 
 
## This is equivalent to: 
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jacc_kern <- sapply(smoker$abund,qJacc,simplify = "array") ## 3D Jaccard 
array  
classify(data=jacc_kern, y=smoking, kernel="matrix") 

The coeff argument is for the weight of each data type in the kernel combination. 
When absent, the mean across all kernel matrices is performed. 

classify(data=jacc_kern, y=smoking,coeff = c(0.1,0.2,0.4,0.3) , kernel="
matrix") 

The use of additional arguments as C, E, p… remains the same. Kernel(s)’ generic 
hyperparameter in the MKL usage, H must be NULL or, either, a list so each element is 
the hyperparameter applied of each kernel function: 

h <- list(nasL=0.001,nasR=0.1,oroL=0.01,oroR=0.01) 
classify(data=smoker$abund, y=smoking,coeff = c(0.1,0.2,0.4,0.3), C=10, 
H=h, kernel="crbf") 

In the case of k-Cross-Validation: 

h <- list(nasL=c(0.01,0.001),nasR=c(0.01,0.001),oroL=0.0001,oroR=0.0001) 
classify(data=smoker$abund, y=smoking,coeff = c(0.1,0.2,0.4,0.3), C=c(1,
10), H=h, kernel="crbf",k=5) 

Side functions for data fusion 

KInt() and fuseData() return a fused kernel matrix, but the former uses kernel 
matrices as input while the latter needs a list with the different data sources. 

KInt(jacc_kern) 

We can use different kernel functions for each type of data; for example, the Jaccard 
kernel for the first data type and the compostional linear kernel for the second: 

fuseData(DATA=css_data,kernel=c("jac","clin")) 

The former command consider the two sources equally important. If not, we can state 
the weights: 

fuseData(DATA=css_data,kernel=c("jac","lin"),coeff=c(0.9,0.1)) 

Usage - Longitudinal data 

In this case, we have repeated samples for the same individuals indexed by time. Take 
as an example the growth dataset, which follow the growth over time of several girls 
and boys from birth until they turn 18-years-old: 

library(ggplot2) 
#>  
#> Attaching package: 'ggplot2' 
#> The following object is masked from 'package:kernlab': 
#>  
#>     alpha 



234   Kernel approaches for complex phenotype prediction 

 

target <- rep("Girl",nrow(growth)) 
target[ grep("boy",rownames(growth))] <- "Boy" 
target <- as.factor(target) 
growplot <- data.frame(rownames(growth),growth,target=target) 
ggplot(growplot, aes(x = age, y = height, group=rownames.growth.,color = 
target)) +  
  geom_line()+ ggtitle("Growth spurt") + theme_bw()+ theme(legend.title 
= element_blank()) 

 

This kind of data is called longitudinal and is typically represented as functions. The 
coefficients of a simple polynomial fitting can be obtained with lsq() by least 
squares. For the growth dataset, we interpolate the growth curves with a polynomial 
of degree 2: 

growth2 <- growth 
colnames(growth2) <-  c("time", "height") 
growth_coeff <- lsq(data=growth2,degree=2) 

The kernel framework allows direct handling of complex data types as functions 
using specific kernels. ‘kernInt’ implements the functional linear (kernel=flin) and 
functional RBF (kernel=frbf) kernel. When used, a domain argument to evaluate 
the functions (e.g. a time interval) has to be provided. For instance, we use classify 
to predict from the growth curve if the individual was a girl or a boy: 

target <- rep("Girl",93) 
target[ grep("boy",rownames(growth_coeff$coef))] <- "Boy" 
target <- as.factor(target) 
cm <- array(0,dim=c(2,2,40)) 
for(i in 1:40) { 
  model <- classify(data=growth_coeff,kernel="frbf",C=c(1,5,10,50), H=0.
0001,domain=c(1,18), y=target,k=5) 
  cm[,,i] <- model$conf.matrix 
} 
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We may compare this approach to perform a nonlongitudinal prediction using only 
the last time point (age 18): 

cm2 <- array(0,dim=c(2,2,40)) 
for(i in 1:40) { 
  model <- classify(data=matrix(growth[which(growth[,1]==18),2]),kernel=
"rbf",C=c(1,5,10,50), H=0.001, y=target,k=5) 
  cm2[,,i] <- model$conf.matrix 
} 
 
 acc <- matrix(0,nrow=40,ncol=4) 
 colnames(acc) <- c("Acc.Long","Acc.18y","F1.Long","F1.18y") 
  for(i in 1:40)  { 
   acc[i,1] <- Acc(cm[,,i]) 
   acc[i,2] <- Acc(cm2[,,i]) 
   acc[i,3] <- F1(cm[,,i]) 
   acc[i,4] <- F1(cm2[,,i]) 
  } 
 boxplot(acc,main="Accuracy and F1") 

 

It can be observed that taking account all time points delivers a much better 
prediction performance that keeping a single time point, even if it is that of maximum 
separation between the two groups. 

Additional help 

A thourough, argument-by-argument documentation is available for each function 
with: 

help(regress) ## or the specific name of the function 
?regress 
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The documentation of the example datasets is available in an analogous way, typing: 

help(soil) ## or the specific name of the example dataset 
?soil 
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