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On Z8-linear Hadamard codes: rank and
classification

Cristina Fernández-Córdoba, Carlos Vela and Mercè Villanueva

Abstract—The Z2s -additive codes are subgroups of Zn
2s , and

can be seen as a generalization of linear codes over Z2 and Z4.
A Z2s -linear Hadamard code is a binary Hadamard code which
is the Gray map image of a Z2s -additive code. It is known that
either the rank or the dimension of the kernel can be used to
give a complete classification for the Z4-linear Hadamard codes.
However, when s > 2, the dimension of the kernel of Z2s -
linear Hadamard codes of length 2t only provides a complete
classification for some values of t and s. In this paper, the rank
of these codes is computed for s = 3. Moreover, it is proved that
this invariant, along with the dimension of the kernel, provides
a complete classification, once t ≥ 3 is fixed. In this case, the
number of nonequivalent such codes is also established.

Keywords Rank, Kernel, Hadamard code, Z2s -additive
code, Gray map, classification.

I. INTRODUCTION

Let Z2s be the ring of integers modulo 2s with s ≥ 1. The
set of n-tuples over Z2s is denoted by Zn

2s . In this paper, the
elements of Zn

2s will also be called vectors over Z2s of length
n. A binary code of length n is a nonempty subset of Zn

2 , and
it is linear if it is a subspace of Zn

2 . A nonempty subset of Zn
2s

is a Z2s -additive code if it is a subgroup of Zn
2s . Note that,

when s = 1, a Z2s -additive code is a binary linear code and,
when s = 2, it is a quaternary linear code or a linear code
over Z4.

Let Sn be the symmetric group of permutations on the set
{1, . . . , n}. Two binary codes, C1 and C2, are said to be
equivalent if there is a vector a ∈ Zn

2 and a permutation of
coordinates π ∈ Sn such that C2 = {a + π(c) : c ∈ C1}.
Two Z2s -additive codes, C1 and C2, are said to be permutation
equivalent if they differ only by a permutation of coordinates,
that is, if there is a permutation of coordinates π such that
C2 = {π(c) : c ∈ C1}.

The Hamming weight of a binary vector u ∈ Zn
2 , denoted

by wtH(u), is the number of nonzero coordinates of u. The
Hamming distance of two binary vectors u, v ∈ Zn

2 , denoted
by dH(u, v), is the number of coordinates in which they differ.
Note that dH(u, v) = wtH(v− u). The minimum distance of
a binary code C is d(C) = min{dH(u, v) : u, v ∈ C,u 6= v}.
The Lee weight of an element i ∈ Z2s is wtL(i) = min{i, 2s−
i} and the Lee weight of a vector u = (u1, u2, . . . , un) ∈ Zn

2s

Manuscript received Month day, year; revised Month day, year.
The authors are with the Department of Information and Com-

munications Engineering, Universitat Autònoma de Barcelona, 08193-
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is wtL(u) =
∑n

j=1 wtL(uj) ∈ Z2s . The Lee distance of two
vectors u, v ∈ Zn

2s is dL(u, v) = wtL(v − u). The minimum
distance of a Z2s -additive code C is d(C) = min{dL(u, v) :
u, v ∈ C,u 6= v}.

In [15], a Gray map from Z4 to Z2
2 is defined as φ(0) =

(0, 0), φ(1) = (0, 1), φ(2) = (1, 1) and φ(3) = (1, 0). There
exist different generalizations of this Gray map, which go from
Z2s to Z2s−1

2 [6], [8], [9], [16]. The one given in [8] by Carlet
is the map φ : Z2s → Z2s−1

2 defined as follows:

φ(u) = (us−1, . . . , us−1) + (u0, . . . , us−2)Y, (1)

where u ∈ Z2s , [u0, u1, . . . , us−1]2 is the binary expansion of
u, that is u =

∑s−1
i=0 2iui (ui ∈ {0, 1}), and Y is a matrix of

size (s− 1)× 2s−1 which columns are the elements of Zs−1
2 .

Note that (us−1, . . . , us−1) and (u0, . . . , us−2)Y are binary
vectors of length 2s−1, and that the rows of Y form a basis
of a first order Reed-Muller code after adding the all-one row.
This generalization can be defined in terms of the elements of
a Hadamard code [16]. In this paper, we will focus on Carlet’s
Gray map φ, which is a particular case of the one presented
in [16] satisfying that

∑s−1
i=0 λiφ(2i) = φ(

∑s−1
i=0 λi2

i) (λi ∈
{0, 1}), as it was shown in [13] and will be recalled later.
Then, we define Φ : Zn

2s → Zn2s−1

2 as the component-wise
Gray map φ.

Let C be a Z2s -additive code of length n. We say that its
binary image C = Φ(C) is a Z2s -linear code of length 2s−1n.
Since C is a subgroup of Zn

2s , it is isomorphic to an abelian
structure Zt1

2s × Zt2
2s−1 × · · · × Zts−1

4 × Zts
2 , and we say that

C, or equivalently C = Φ(C), is of type (n; t1, . . . , ts). Note
that |C| = 2st12(s−1)t2 · · · 2ts . Unlike linear codes over finite
fields, linear codes over rings do not have a basis, but there
exists a generator matrix for these codes. If C is a Z2s -additive
code of type (n; t1, . . . , ts), then a generator matrix of C with
minimum number of rows has exactly t1 + · · ·+ ts rows.

Two structural properties of binary codes are the rank and
the dimension of the kernel. The rank of a binary code C
is simply the dimension of the linear span, 〈C〉, of C. The
kernel of a binary code C is defined as K(C) = {x ∈ Zn

2 :
x+C = C} [3]. If the all-zero vector belongs to C, then K(C)
is a linear subcode of C. Note also that if C is linear, then
K(C) = C = 〈C〉. We denote the rank of a binary code C
as rank(C) and the dimension of the kernel as ker(C). These
parameters can be used to distinguish between nonequivalent
binary codes, since equivalent ones have the same rank and
dimension of the kernel.

A binary code of length n, 2n codewords and minimum
distance n/2 is called a Hadamard code. Hadamard codes
can be constructed from Hadamard matrices [2], [19]. Note
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that linear Hadamard codes are in fact first order Reed-
Muller codes, or equivalently, the dual of extended Hamming
codes [19, Ch.13 §3]. The Z2s -additive codes that, under the
Gray map Φ, give a Hadamard code are called Z2s -additive
Hadamard codes and the corresponding binary images are
called Z2s -linear Hadamard codes.

The Z4-linear Hadamard codes of length 2t can be classified
by using either the rank or the dimension of the kernel [17],
[20]. Specifically, it is known that for a Z4-linear Hadamard
code C of type (2t−1; t1, t2), ker(C) = t1 + t2 + 1 if t1 > 2,
and ker(C) = 2t1 + t2 if t1 = 1 or 2, where t2 = t+ 1− 2t1.
For any integer t ≥ 3 and each t1 ∈ {1, . . . , b(t+1)/2c}, there
is a unique (up to equivalence) Z4-linear Hadamard code of
type (2t−1; t1, t + 1 − 2t1), and all these codes are pairwise
nonequivalent, except for t1 = 1 and t1 = 2, where the codes
are equivalent to the linear Hadamard code [17]. Therefore, the
number of nonequivalent Z4-linear Hadamard codes of length
2t is b t−1

2 c for all t ≥ 3, and it is 1 for t = 1 and t = 2.

Linear codes over Zps , which are a generalization of Z2s -
additive codes, were studied by Blake [4] and Shankar [21]
in 1975 and 1979, respectively. Nevertheless, the study of
codes over rings increased significantly after the publication
of some good properties of linear codes over Z4 and the
definition of the Gray map [15]. After that, Z2s -additive codes
and their images under the Gray map are deeply studied, for
example, in [8], [14], and [22]. In [16], Krotov studied Z2s -
linear Hadamard codes and their dual codes by using different
generalizations of the Gray map. Recently, in [1], considering
Carlet’s generalization of the Gray map, two-weight Z2s -linear
codes are studied. Note that Z2s -linear Hadamard codes are
in fact a particular case of these two-weight codes.

In [13], the dimension of the kernel of Z2s -linear Hadamard
codes is given. It is shown that the kernel do not classify
these codes, since there are nonequivalent codes having the
same dimension of the kernel. As a consequence, a partial
classification for these codes is established. In this paper, in
order to classify the Z8-linear Hadamard codes of length 2t,
for any t ≥ 3, we compute the rank of these codes. Moreover,
we prove that this invariant, along with the dimension of the
kernel, provides a complete classification, once we fix t ≥ 3.
Note that, unlike for s = 2, in the case s = 3, it is necessary
to use both invariants.

This correspondence is organized as follows. In Section
II, we describe the recursive construction of the Z2s -linear
Hadamard codes of type (n; t1, . . . , ts), introduced in [13].
In Section III, we give some known results and prove new
ones related to the Carlet’s generalized Gray map. In Section
IV, we compute the rank of the Z8-linear Hadamard codes in
terms of the parameters t1, t2 and t3, by finding a set of linear
independent vectors of the span. In Section V, we show that,
for s = 3, a complete classification can be given by using
both invariants: the rank and dimension of the kernel. Finally,
in Section VI, we give some conclusions and further research
on this topic.

II. RECURSIVE CONSTRUCTION OF Z2s -LINEAR
HADAMARD CODES

The description of generator matrices having minimum
number of rows for Z4-additive Hadamard codes, as long as
recursive constructions of these matrices, are given in [17]. In
[13], [16], these results are generalized for any s > 2. In this
section, we describe the recursive construction of the generator
matrices of the Z2s -additive Hadamard codes, introduced in
[13].

Let Ti = {j · 2i−1 : j ∈ {0, 1, . . . , 2s−i+1− 1}} for all i ∈
{1, . . . , s}. Note that T1 = {0, . . . , 2s−1}. Let t1, t2,. . . ,ts be
nonnegative integers with t1 ≥ 1. Consider the matrix At1,...,ts

whose columns are of the form zT , z ∈ {1}×T t1−1
1 ×T t2

2 ×
· · · × T ts

s .
Example 2.1: For s = 3, for example, we have the following

matrices:

A1,0,1 =

(
1 1
0 4

)
, A1,1,0 =

(
1 1 1 1
0 2 4 6

)
,

A2,0,0 =

(
1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7

)
,

A1,1,1 =

1 1 1 1 1 1 1 1
0 2 4 6 0 2 4 6
0 0 0 0 4 4 4 4

 ,

A2,0,1 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4

 ,

A2,1,0 =1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6

 .

Let 0,1,2, . . . ,2s − 1 be the vectors having the elements
0, 1, 2, . . . , 2s − 1 from Z2s repeated in each coordinate,
respectively. The order of a vector u over Z2s , denoted by
ord(u), is the smallest positive integer m such that mu = 0.

Any matrix At1,...,ts can be obtained by applying the follow-
ing recursive construction. We start with A1,0,...,0 = (1). Then,
if we have a matrix A = At1,...,ts , for any i ∈ {1, . . . , s}, we
may construct the matrix

Ai =

(
A A · · · A

0 · 2i−1 1 · 2i−1 · · · (2s−i+1 − 1) · 2i−1

)
.

(2)
Finally, permuting the rows of Ai, we obtain a matrix At′1,...,t

′
s ,

where t′j = tj for j 6= i and t′i = ti + 1. Note that any
permutation of columns of Ai gives also a matrix At′1,...,t

′
s .

Example 2.2: From the matrix A1,0,0 = (1), we obtain the
matrix A2,0,0; and from A2,0,0 we can construct A2,0,1, where
A2,0,0 and A2,0,1 are the matrices given in Example 2.1. Note
that we can also generate another matrix A2,0,1 as follows:
from A1,0,0 = (1) we obtain the matrix A1,0,1 given in
Example 2.1, and from A1,0,1 we can construct the matrix

A1 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

 .
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Then, after permuting the rows of A1, we have the matrix

A2,0,1 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4

 ,

which is different to the matrix A2,0,1 of Example 2.1. These
two matrices A2,0,1 generate permutation equivalent codes.

Along this paper, we consider that the matrices At1,t2,...,ts

are constructed recursively starting from A1,0,...,0 in the fol-
lowing way. First, we add t1 − 1 rows of order 2s, up to
obtain At1,0,...,0; then t2 rows of order 2s−1 up to generate
At1,t2,0,...,0; and so on, until we add ts rows of order 2 to
achieve At1,t2,...,ts .

Let Ht1,...,ts be the Z2s -additive code generated by the
matrix At1,...,ts , where t1, . . . , ts ≥ 0 with t1 ≥ 1. Let n =
2t−s+1, where t = (

∑s
i=1(s− i+ 1) · ti)−1. It is easy to see

that Ht1,...,ts is of length n and has |Ht1,...,ts | = 2sn = 2t+1

codewords. Note that this code is of type (n; t1, t2, . . . , ts).
Let Ht1,...,ts = Φ(Ht1,...,ts) be the corresponding Z2s -linear
code.

Theorem 2.1: [16] [13] Let t1, . . . , ts be nonnegative in-
tegers with t1 ≥ 1. The Z2s -linear code Ht1,...,ts of type
(n; t1, t2, . . . , ts) is a binary Hadamard code of length 2t, with
t = (

∑s
i=1(s− i+ 1) · ti)− 1 and n = 2t−s+1.

Let G be a generator matrix of a Z2s -additive code C of
length n. Then, (G · · · G) is a generator matrix of the r-fold
replication code of C, (C, . . . , C) = {(c, . . . , c) : c ∈ C}, of
length r · n.

Let Ht1,t2,t3 be a Z8-additive Hadamard code, which is
generated by At1,t2,t3 . Let wi be the ith row of At1,t2,t3 ,
1 ≤ i ≤ t1. If t2 = t3 = 0, we also denote wi by wt1

i . Note
that wt1

i ∈ Ht1,0,0 is the 8t1−`-fold replication of w`
i ∈ H`,0,0

for all 1 ≤ ` ≤ t1 and i ≤ `.
Remark 2.1: Let Ht1,0,0 be a Z8-additive Hadamard code

of type (n; t1, 0, 0). Let

W =

 wi1
...

wiq

 ,

where 2 ≤ i1 < · · · < iq ≤ t1. By construction, we have that
each one of the 8q elements of Zq

8 appears 8t1−1

8q = 8t1−q−1

times as a column of W . Therefore, there exist a permutation
of coordinates ρ ∈ Sn such that

ρ(W ) =

 w2

...
wq+1

 .

Note also that wi is the 8t1−q−1-fold replication of wq+1
i for

all 2 ≤ i ≤ q + 1.

III. PROPERTIES OF THE GENERALIZED GRAY MAP

In this section, we give some known results on the Carlet’s
generalized Gray map and we present new results, which will
be used in the next section to establish the rank of the Z8-
linear Hadamard codes.

Let ei be the vector that has 1 in the ith position
and 0 otherwise. Let u, v ∈ Z2s and [u0, u1, . . . , us−1]2,

[v0, v1, . . . , vs−1]2 be the binary expansions of u and v,
respectively. The operation “�” on Z2s is defined as u� v =∑s−1

i=0 2iuivi. Note that the binary expansion of u � v is
[u0v0, u1v1, . . . , us−1vs−1]2.

Proposition 3.1: [22] Let u, v ∈ Z2s . Then, φ(u) + φ(v) =
φ(u+ v − 2(u� v)).

Corollary 3.1: [8], [22] Let u ∈ Z2s . Then, φ(u) +
φ(2s−1) = φ(u+ 2s−1).

Lemma 3.1: [13] Let u ∈ {2s−2, . . . , 2s−1 − 1} ∪ {3 ·
2s−2, . . . , 2s − 1} ⊂ Z2s . Then, φ(u) + φ(2s−2) = φ(u +
2s−2 + 2s−1).

Proposition 3.2: [8] Let u, v ∈ Z2s . Then,
dH(φ(u), φ(v)) = wtH(φ(u− v)).

Corollary 3.2: [13] Let u, v ∈ Z2s . Then, dH(φ(u), φ(v +
2s−1)) + dH(φ(u), φ(v)) = 2s−1.

All the remaining results, given in this section, are only
proved for s = 3, that is, for Z8-linear Hadamard codes. In
this case, the generalized Gray map φ : Z8 → Z4

2 is defined
by

φ(0) = (0, 0, 0, 0) φ(4) = (1, 1, 1, 1)
φ(1) = (0, 1, 0, 1) φ(5) = (1, 0, 1, 0)
φ(2) = (0, 0, 1, 1) φ(6) = (1, 1, 0, 0)
φ(3) = (0, 1, 1, 0) φ(7) = (1, 0, 0, 1).

Lemma 3.2: Let q be a positive integer and [q0, q1, q2, . . .]2
its binary expansion. Then,

(
q−1

3

)
+ q0

(
q−1

2

)
+ (q0 + q1)(q −

1) + q0(q0 + q1) ≡ 1 mod 2.

Proof. If q ≡ 0 mod 4, then q0 = q1 = 0 and
(
q−1

3

)
≡

1 mod 2 since (q − 2)/2, q − 1 and q − 3 are odd numbers.
Similarly, if q ≡ 1 mod 4, then q0 = 1, q1 = 0 and

(
q−1

3

)
+(

q−1
2

)
+(q−1)+1 ≡ 0+0+0+1 ≡ 1 mod 2. If q ≡ 2 mod 4,

then q0 = 0, q1 = 1 and
(
q−1

3

)
+ (q − 1) ≡ 0 + 1 ≡ 1 mod 2.

Finally, if q ≡ 3 mod 4, then q1 = 1, q1 = 1 and
(
q−1

3

)
+(

q−1
2

)
≡ 0 + 1 ≡ 1 mod 2. �

Lemma 3.3: Let q be a positive integer and [q0, q1, q2, . . .]2
its binary expansion. Then,

(i) q − 4 ≡ q0 mod 2,
(ii)
(
q−4

2

)
≡ q1 mod 2,

(iii)
(
q−3

2

)
≡ q0 + q1 mod 2,

(iv)
(
q−2

3

)
≡ q0(q0 + q1) mod 2.

Proof. These congruences can be proved easily consider-
ing the different values of q modulo 4, as in the proof of
Lemma 3.2. �

Lemma 3.4: Let Ht1,0,0 be a Z8-additive Hadamard code
of type (n; t1, 0, 0). Let E ⊆ {1, . . . , t1}, q = |E| and
[q0, q1, q2, . . .]2 the binary expansion of q. Let wi be the ith
row of At1,0,0, i ∈ E. Then,

Φ(
∑
i∈E

wi) =
∑

i,j,k,p∈E
i<j<k<p

Φ(wi + wj + wk + wp)

+ q0(
∑

i,j,k∈E
i<j<k

Φ(wi + wj + wk))+

+ (q0 + q1)(
∑
i,j∈E
i<j

Φ(wi + wj)) + q0(q0 + q1)(
∑
i∈E

Φ(wi)).
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Proof. First, assume E ⊆ {2, . . . , t1}, and let q = |E|. By
Remark 2.1, without loss of generality, we can assume that
E = {2, . . . , q + 1}. Now, we prove this lemma by induction
on the integer q ≥ 1.

For q ≤ 5, it is easy to check that the result holds.
Note that, for q = 5, it is enough to check the result for
w6

2, . . . ,w
6
6. Suppose that it is true for |E| = q− 1. Consider∑q+1

i=2 wi =
∑q

i=2 wi + wq+1. Let y =
∑q

i=2 w
q
i . We have

that
∑q

i=2 wi = (y, . . . ,y) is the 8t1−q−2-fold replication
of y. Then,

∑q+1
i=2 wi is the 8t1−q−1-fold replication of

(y + 0,y + 1, . . . ,y + 7). The result holds if

Φ(

q∑
i=2

wq
i + k) =

∑
2≤i<j<k<p≤q

Φ(wq
i + wq

j + wq
k + wq

p)+∑
2≤i<j<k≤q

Φ(wq
i + wq

j + wq
k + k)+

q0

( ∑
2≤i<j<k≤q

Φ(wq
i + wq

j + wq
k)+∑

2≤i<j≤q

Φ(wq
i + wq

j + k)
)
+

(q0 + q1)
( ∑

2≤i<j≤q

Φ(wq
i + wq

j ) +

q∑
i=2

Φ(wq
i + k)

)
+

q0(q0 + q1)
( q∑
i=2

Φ(wq
i ) + Φ(k)

)
(3)

for all k ∈ {0, . . . , 7}.
Let π8 =

∏8t1−2−1
i=0 (8i+1, 8i+2, 8i+3, 8i+4, 8i+5, 8i+

6, 8i+7, 8i+8) ∈ Sn be a permutation of coordinates. Let πk
8

be the composition of π8, k times, i.e., πk
8 = π8◦

(k)· · · ◦π8. Note
that πk

8 (w2) = w2+k and πk
8 (wi) = wi for all i ∈ {3, . . . , q}.

Let π̃k
8 ∈ S4n be a permutation such that Φ ◦ πk

8 = π̃k
8 ◦ Φ.

Now, we have that Φ(
∑q

i=2 w
q
i +k) = Φ(πk

8 (
∑q

i=2 w
q
i )) =

π̃k
8 (Φ(

∑q
i=2 w

q
i )). By induction, taking into account that (q−

1)0 ≡ q0+1 mod 2 and (q−1)1 ≡ q0+q1+1 mod 2, and using
again the properties of πk

8 and the fact that Φ ◦ πk
8 = π̃k

8 ◦ Φ,
we have that

Φ(

q∑
i=2

wi + k) =
∑

3≤i<j<r<p≤q

Φ(wq
i + wq

j + wq
r + wq

p)+∑
3≤i<j<r≤q

Φ(wq
2 + wq

i + wq
j + wq

r + k)+

(q0 + 1)
∑

3≤i<j<r≤q

Φ(wq
i + wq

j + wq
r)+

(q0 + 1)
∑

3≤i<j≤q

Φ(wq
2 + wq

i + wq
j + k)+

q1

∑
3≤i<j≤q

Φ(wq
i + wq

j )+

q1

q∑
i=3

Φ(wq
2 + wq

i + k) + q1(q0 + 1)

q∑
i=3

Φ(wq
i )+

q1(q0 + 1)Φ(w2 + k). (4)

By applying again the induction hypothesis to Φ(wq
2 +

wq
i + wq

j + wq
r + k), and noting that for any z ∈

Zn
8 we have

∑
3≤i<j<r≤q

∑
x,y∈{i,j,r}, x<y Φ(z + wq

x +

wq
y) = (q − 4)

∑
3≤i<j≤q Φ(z + wq

i + wq
j ) and∑

3≤i<j<r≤q
∑

x∈{i,j,r} Φ(z+wq
x) =

(
q−3

2

)∑q
i=3 Φ(z+wq

i ),
we obtain that∑

3≤i<j<r≤q

Φ(wq
2 + wq

i + wq
j + wq

r + k) =∑
3≤i<j<r≤q

Φ(wq
2 + wq

i + wq
j + wq

r)+

(q − 4)
∑

3≤i<j≤q

Φ(wq
2 + wq

i + wq
j + k)+∑

3≤i<j<r≤q

Φ(wq
i + wq

j + wq
r + k)+∑

3≤i<j<r≤q

Φ(wq
i + wq

j + wq
r)+

(q − 4)
∑

3≤i<j≤q

Φ(wq
2 + wq

i + wq
j )+

(
q − 3

2

) q∑
i=3

Φ(wq
2 + wq

i + k)+

(q − 4)
∑

3≤i<j≤q

Φ(wq
i + wq

j + k)+

(q − 4)
∑

3≤i<j≤q

Φ(wq
i + wq

j ) +

(
q − 3

2

) q∑
i=3

Φ(wq
2 + wq

i )+

(
q − 3

2

) q∑
i=3

Φ(wq
i + k) +

(
q − 2

3

)
Φ(w2 + k)+

(
q − 3

2

) q∑
i=3

Φ(wq
i ) +

(
q − 2

3

)
Φ(w2) +

(
q − 2

3

)
Φ(k).

(5)

By replacing (5) into expression (4), and using items (i), (iii)
and (iv) of Lemma 3.3, we have that (3) holds.

Finally, consider 1 ∈ E. By Remark 2.1, we can assume
that E = {1, . . . , q}. Then, Φ(

∑
i∈E wi) = Φ(

∑q
i=2 wi +1),

and we can apply the same arguments as above. �
Lemma 3.5: Let Ht1,0,0 be a Z8-additive Hadamard code

of type (n; t1, 0, 0). Let q ∈ Z and [q0, q1, q2, . . .]2 its binary
expansion. Let wi be the ith row of At1,0,0. Then,

Φ(

q∑
i=1

si) =
∑

1≤i<j<k<p≤q

Φ(si + sj + sk + sp)+

q0(
∑

1≤i<j<k≤q

Φ(si + sj + sk))+

+ (q0 + q1)(
∑

1≤i<j≤q

Φ(si + sj)) + q0(q0 + q1)(

q∑
i=1

Φ(si)),

where si ∈ {w1,w2, . . . ,wt1} for all i ∈ {1, 2, . . . , q}.

Proof. We prove this lemma by induction on the integer
q ≥ 1. It is easy to check by computer that for q ≤ 5 the
result holds. Suppose that q ≥ 6 and the statement is true for
all positive integers until q − 1.

Let ri be the multiplicity of wi, i ∈ {1, . . . , t1}, that is,
the number of elements wi that appear in the multiset S =
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{s1, . . . , sq}. If there is an element wi with multiplicity ri ≥
4, then we may consider that sq = sq−1 = sq−2 = sq−3 = wi.
Note that the right-hand side of the equation of the statement
can be easily rewritten by replacing q by q − 4 and adding
Φ(4wj). Moreover, by Corollary 3.1, the left-hand side of the
equation is Φ(

∑q−4
i=1 si)+Φ(4wj). Therefore, we may assume

that ri ≤ 3 for all i ∈ {1, . . . , t1}.
Let W be the set containing the elements of S without

repetition. On the one hand, if w1 6∈ S, taking into account
the multiplicity of each element in W and Remark 2.1, we
may assume that W = {w2, . . . ,wd}, where r2 ≤ · · · ≤ rd
and s1 = · · · = sr2 = w2, . . . , sq−rd+1 = · · · = sq = wd.
On the other hand, if w1 ∈ S, we assume that q > r1 + r2.
Otherwise, if q = r1 + r2, since q ≥ 6 and r1, r2 ≤ 3, then
we have to show that the statement is true for Φ(w2 + w2 +
w2 + w1 + w1 + w1), which can be checked easily. Since
q > r1 + r2, we can order all elements s1, . . . , sq as above,
placing the r1 vectors w1 just before the rd vectors wd.

Consider
∑q

i=1 si =
∑q−(r1+rd)

i=1 si+
∑r1

i=1 w1+
∑rd

i=1 wd.
Let y =

∑q−(r1+rd)
i=1 sd−1

i . We have that
∑q−(r1+rd)

i=1 si =
(y, . . . ,y) is a fold replication of y. Then,

∑q
i=1 si is a fold

replication of

(y + r1w
d−1
1 + 0,y + r1w

d−1
1 + 1+

(rd )
· · · +1, . . . ,

y + r1w
d−1
1 + 7+

(rd )
· · · +7) =

(y + r11,y + (r1 + rd)1, . . . ,y + (r1 + 7rd)1).

The result holds if the statement is true for
Φ(
∑q−(r1+rd)

i=1 sd−1
i + (r1 + k · rd)1) for all k ∈ {0, . . . , 7}.

Moreover, as before, we may assume that (r1 + k · rd) < 4,
so we have to check that the statement is true for
Φ(
∑q−(r1+rd)

i=1 sd−1
i + r̄wd−1

1 ), where r̄ = (r1 +k ·rd) mod 4,
or equivalently for Φ(

∑q−(r1+rd)+r̄
i=1 sd−1

i ), where si = w1

for all i ∈ {q− (r1 + rd) + 1, . . . , q− (r1 + rd) + r̄} if r̄ ≥ 1.
If r1 +rd− r̄ > 0, we can apply the induction hypothesis to

obtain the result. Otherwise, let π8 =
∏8t1−2−1

i=0 (8i + 1, 8i +
2, 8i + 3, 8i + 4, 8i + 5, 8i + 6, 8i + 7, 8i + 8) ∈ Sn be
a permutation of coordinates. Note that π8(w2) = w2 + 1
and π8(wj) = wj for all j ∈ {3, . . . , d}. Let π̃8 ∈ S4n

be a permutation such that Φ ◦ π8 = π̃8 ◦ Φ. Therefore, we
have that Φ(

∑r2
i=1 w

d−1
2 +

∑q−(r1+rd)
i=r2+1 sd−1

i + (r̄ − r2)1 +

r21) = Φ(π8(
∑r2

i=1 w
d−1
2 +

∑q−(r1+rd)
i=r2+1 sd−1

i +(r̄−r2)1)) =

π̃8(Φ(
∑r2

i=1 w
d−1
2 +

∑q−(r1+rd)
i=r2+1 sd−1

i +(r̄−r2)1)). Note that
r̄ ≥ r1 + rd ≥ rd ≥ r2. Then, considering sd−1

i = w1 for all
i ∈ {q−(r1+rd)+1, . . . , q−(r1+rd)+(r̄−r2)} if r̄−r2 ≥ 1,
it is enough to show the statement for π̃8(Φ(

∑r2
i=1 w

d−1
2 +∑q−(r1+rd−r̄+r2)

i=r2+1 sd−1
i )) = π̃8(Φ(

∑q−r∗
i=1 sd−1

i )), where r∗ =
r1 + r2 + rd − r̄.

Now, in order to be able to apply the hypothesis induction
to Φ(

∑q−r∗
i=1 sd−1

i ), we have to verify that r∗ > 0. First, note
that if ri ∈ {0, 1} for all i ∈ {1, . . . , t1}, then the statement
is true by Proposition 3.4. Therefore, we can assume that for
some i ∈ {1, . . . , t1}, ri ≥ 2, so at least one of r1 or rd must
be greater than 1. We also have that r2, rd ∈ {1, 2, 3} and
r1 ∈ {0, 1, 2, 3}. On the one hand, if r1 = 0, we have that
rd ∈ {2, 3}. Then, if r̄ < 3, clearly r∗ > 0; and if r̄ = 3,
k · rd = 3 mod 4 which implies that rd = 3 and r∗ > 0. On

the other hand, if r1 > 0, rd ∈ {1, 2, 3} and r1 + r2 + rd > 3
which also gives that r∗ > 0.

In order to verify the statement, we consider
π̃8(Φ(

∑q−r∗
i=1 sd−1

i )) under different cases depending on
the value of r2 ∈ {1, 2, 3}. First, consider that r2 = 1, i.e.,
s1 = w2 and si 6= w2 for all i ∈ {2, 3, . . . , q}. Then, by using
the same arguments as in the proof of Lemma 3.4, we have
that the result holds. Next, consider that r2 = 2. By induction
hypothesis, taking into account that (q − 2)0 ≡ q0 mod 2 and
(q − 2)1 ≡ q1 + 1 mod 2, and using again the properties of
π8 and the fact that Φ ◦ π8 = π̃8 ◦ Φ, we have that

Φ(wd
2 + wd

2 +

q−2∑
i=3

sqi + 1 + 1) =∑
3≤i<j<k<p≤q−2

Φ(sdi + sdj + sdk + sdp)+∑
3≤i<j≤q−2

Φ(wd
2 + wd

2 + sdi + sdj + 1 + 1)+

q0

[ ∑
3≤i<j<k≤q−2

Φ(sdi + sdj + sdk)+

∑
3≤i≤q−2

Φ(wd
2 + wd

2 + sdi + 1 + 1)
]
+

(q0 + q1 + 1)
[ ∑
3≤i<j≤q−2

Φ(sdi + sdj ) + Φ(wd
2 + wd

2 + 1 + 1)
]
+

q0(q0 + q1 + 1)
∑

3≤i≤q−2

Φ(sdi ). (6)

By applying again the induction hypothesis to the terms of (6)
having more than four addends, that is, Φ(wd

2+wd
2+sdi +1+1)

and Φ(wd
2 + wd

2 + sdi + sdj + 1 + 1), we obtain that

∑
3≤i≤q−2

Φ(wd
2 + wd

2 + sdi + 1 + 1) =
∑

3≤i≤q−2

Φ(sdi )+∑
3≤i≤q−2

Φ(wd
2 + wd

2 + sdi ) +
∑

3≤i≤q−2

Φ(sdi + 1 + 1)+

(q − 4)
[
Φ(wd

2 + wd
2 + 1 + 1) + Φ(wd

2 + wd
2) + Φ(1 + 1)

]
(7)

and ∑
3≤i<j≤q−2

Φ(wd
2 + wd

2 + sdi + sdj + 1 + 1) =∑
3≤i<j≤q−2

Φ(sdi + sdj )+∑
3≤i<j≤q−2

Φ(wd
2 + wd

2 + sdi + sdj )+∑
3≤i<j≤q−2

Φ(sdi + sdj + 1 + 1)+(
q − 4

2

)[
Φ(wd

2 +wd
2 +1+1)+Φ(wd

2 +wd
2)+Φ(1+1)

]
.

(8)

By replacing (7) and (8) into expression (6), and using items
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(i) and (ii) of Lemma 3.3, we have that (6) is equal to∑
3≤i<j<k<p≤q−2

Φ(sdi + sdj + sdk + sdp)+∑
3≤i<j≤q−2

Φ(wd
2 + wd

2 + sdi + sdj )+∑
3≤i<j≤q−2

Φ(sdi + sdj + 1 + 1) + Φ(wd
2 + wd

2 + 1 + 1)+

q0

[ ∑
3≤i<j≤q−2

Φ(sdi + sdj ) +
∑

3≤i≤q−2

Φ(wd
2 + wd

2 + sdi )+

∑
3≤i≤q−2

Φ(sdi + 1 + 1)
]
+

(q0 +q1)
[ ∑

3≤i<j≤q−2

Φ(sdi +sdj )+Φ(wd
2 +wd

2)+Φ(1+1)
]
+

q0(q0 + q1)
∑

3≤i≤q−2

Φ(sdi ).

Note that all the terms that are missing in order to obtain the
result appear repeated in pairs, so they sum to zero. The case
with r2 = 3 can also be proved by using similar arguments.
Therefore, the result holds. �

Lemma 3.6: Let Ht1,0,0 be a Z8-additive Hadamard code of
type (n; t1, 0, 0). Let wi be the ith row of At1,0,0, 1 ≤ i ≤ t1.
Then, given i, j, k ∈ {1, . . . , t1},

Φ(2wi + wj + wk) + Φ(wi + 2wj + wk) =

Φ(wi) + Φ(wj) + Φ(2wi) + Φ(2wj) + Φ(wi + wk)+

Φ(wj + wk) + +Φ(2wi + wk) + Φ(2wj + wk)+

Φ(2wj + wi) + Φ(2wi + wj). (9)

Proof. Suppose that 2 ≤ i < j < k. By Remark 2.1, it
is enough to see that (9) holds for w2,w3,w4. In fact, it
is enough to show that it is true for w3

2,w
3
3,k for all k ∈

{0, 1, . . . , 7}. Let A be the right-hand side of (9).
On the one hand, if wk = k, we need to show that

Φ(2w3
2 + w3

3 + k) + Φ(w3
2 + 2w3

3 + k) =

Φ(w3
2) + Φ(w3

3) + Φ(2w3
2) + Φ(2w3

3) + Φ(w3
2 + k)+

Φ(w3
3 +k) + +Φ(2w3

2 +k) + Φ(2w3
3 +k) + Φ(2w3

3 +w3
2)+

Φ(2w3
2 + w3

3) (10)

for all k ∈ {0, 1, . . . , 7}. Let A1 be the right-hand side of
(10). First, for k = 0, it is easy to see that (10) holds. Note
that, by Proposition 3.1, Φ(2wi + 1) = Φ(2wi) + Φ(1) for
all 1 ≤ i ≤ t1. For k = 1, A1 = Φ(w3

2) + Φ(w3
3) + Φ(w3

2 +
1) + Φ(w3

3 + 1) + Φ(2w3
3 + w3

2) + Φ(2w3
2 + w3

3). By the
same proposition, we also have that Φ(wi) + Φ(wi + 2wj) =
Φ(2wj) + Φ(−2(wi � 2wj)) for all i, j ∈ {2, 3}. Thus,

A1 = Φ(2w3
2) + Φ(2w3

3) + Φ(w3
2 + 1) + Φ(w3

3 + 1)+

Φ(−2(2w3
3 �w3

2)) + Φ(−2(2w3
2 �w3

3)).

Again, by Proposition 3.1, Φ(2wi) + Φ(wj + 1) = Φ(2wi +

wj + 1) + Φ(−2(2wi � (wj + 1))) for all i, j ∈ {2, 3}, so

A1 = Φ(2w3
2 + w3

3 + 1) + Φ(w3
2 + 2w3

3 + 1)+

Φ(−2(2w3
3 �w3

2)) + Φ(−2(2w3
2 �w3

3))+

+ Φ(−2(2w3
3 � (w3

2 + 1))) + Φ(−2(2w3
2 � (w3

3 + 1))).

Let x = (0, 0, 4, 4, 0, 0, 4, 4), y = (0, 4, 4, 0, 0, 4, 4, 0), and
z = (0, 4, 0, 4, 0, 4, 0, 4). It is easy to check that

−2(2w3
3 �w3

2) = (0,x,0,x,0,x,0,x)
−2(2w3

3 � (w3
2 + 1)) = (0,y,0,y,0,y,0,y)

−2(2w3
2 �w3

3) = (0,0, z, z,0,0, z, z)
−2(2w3

2 � (w3
3 + 1)) = (0, z, z,0,0, z, z,0).

(11)

The sum of the four vectors in (11) is a zero vector, since
x + y + z = 0, so A1 = Φ(2w3

2 + w3
3 + 1) + Φ(w3

2 +
2w3

3 + 1) and (10) holds. For k = 2, it is easy to see that the
result holds by Lemma 3.5. For k = 3, it follows also from
Lemma 3.5, the previous result for k = 1, and the fact that
Φ(2wi + 1) = Φ(2wi) + Φ(1) for all 1 ≤ i ≤ t1. Finally,
for the rest of the cases, if wk = k+ 4, k ∈ {0, 1, 2, 3}, then
Φ(2w2 + w3 + k + 4) + Φ(w2 + 2w3 + k + 4) = Φ(2w2 +
w3 + k) + Φ(w2 + 2w3 + k) and the result holds since wk

appears 4 times in A.
On the other hand, if wi = k (or wj = k), we need to

show that

Φ(2k + w3
2 + w3

3) + Φ(k + 2w3
2 + w3

3) =

Φ(k) + Φ(w3
2) + Φ(2k) + Φ(2w3

2) + Φ(k + w3
3)+

Φ(w3
2 +w3

3)++Φ(2k+w3
3)+Φ(2w3

2 +w3
3)+Φ(2w3

2 +k)+

Φ(2k + w3
2) (12)

for all k ∈ {0, 1, . . . , 7}. Let A2 be the right-hand side of
(12). First, for k = 0, it is easy to see that (12) holds. For
k = 1, by applying Proposition 3.1 to Φ(w3

2 + w3
3) + Φ(2)

and Φ(w3
3 + 1) + Φ(2w3

2), we have that

A2 = Φ(2 + w3
2 + w3

3) + Φ(1 + 2w3
2 + w3

3)

+ Φ(−2((w3
2 + w3

3)� 2)) + Φ(−2((w3
3 + 1)� 2w3

2))+

Φ(1) + Φ(w3
2) + Φ(2 + w3

3) + Φ(2w3
2 + w3

3)+

Φ(2w3
2 + 1) + Φ(2 + w3

2).

Again, applying Proposition 3.1 to the terms Φ(2 + w3
3),

Φ(2w3
2 +w3

3), Φ(2w3
2 + 1) and Φ(2+w3

2) of A2, we obtain
that

A2 = Φ(2 + w3
2 + w3

3) + Φ(1 + 2w3
2 + w3

3)

+ Φ(−2((w3
2 + w3

3)� 2)) + Φ(−2((w3
3 + 1)� 2w3

2))

+ Φ(−2(2�w3
3)) + Φ(−2(2w3

2�w3
3)) + Φ(−2(2�w3

2)).

It is easy to check that

Φ(−2((w3
2 + w3

3)� 2)) =

(x,y,x + 4,y + 4,x,y,x + 4,y + 4)

Φ(−2((w3
3 + 1)� 2w3

2)) = (0, z, z,0,0, z, z,0)

Φ(−2(2w3
2 �w3

3)) = (0,0, z, z,0,0, z, z)

Φ(−2(2�w3
3)) = (0,0,4,4,0,0,4,4)

Φ(−2(2�w3
2)) = (x,x,x,x,x,x,x,x).

(13)
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The sum of the five vectors in (13) is a zero vector, since
x+y+z = 0, so A2 = Φ(2+w3

2 +w3
3) + Φ(1+ 2w3

2 +w3
3)

and (12) holds. For k ∈ {2, 3}, it is easy to see that the result
holds by Lemma 3.5. Finally, if wi = k + 4, k ∈ {0, 1, 2, 3},
then Φ(2k+8+w2 +w3)+Φ(k+4+2w2 +w3) = Φ(4)+
Φ(2k+w2 +w3) + Φ(k+ 2w2 +w3) and the result follows
since wi appears 3 times in A.

Now, suppose that some of the elements i, j, k are equal.
If i = j = k or i = j, then (9) holds trivially. If i = k (or
j = k), then it is enough to show that

Φ(3k + w2
2) + Φ(2k + 2w2

2) = Φ(k) + Φ(w2
2)+

Φ(2w2
2) + Φ(3k) + Φ(k + w2

2) + Φ(2k + w2
2) (14)

for all k ∈ {0, 1, . . . , 7}. Let A3 be the right-hand side of
(14). First, for k = 0, it is easy to see that (14) holds. For
k = 1, note that, by Proposition 3.1, Φ(2) = Φ(3) + Φ(1)
and Φ(w2)+Φ(2)+Φ(w2 +2) = Φ(−2(w2�2)). Therefore,

A3 = Φ(2w2
2) + Φ(w2

2 + 1) + Φ(−2(w2
2 � 2)) =

Φ(2w2
2) + Φ(2) + Φ(w2

2 + 1) + Φ(2) + Φ(−2(w2
2 � 2)).

Again, by Proposition 3.1, we have that

A3 = Φ(2w2
2 + 2) + Φ(w2

2 + 3) + Φ(−2(w2
2 � 2))+

Φ(−2(2w2
2 � 2)) + Φ(−2((w2

2 + 1)� 2)).

It is easy to check that the sum of the three last
terms is (0, 0, 4, 4, 0, 0, 4, 4) + (0, 4, 0, 4, 0, 4, 0, 4) +
(0, 4, 4, 0, 0, 4, 4, 0) = 0. In a similar way, it holds for k = 3.
The rest of the cases, k ∈ {2, 4, 5, 6, 7}, can also be checked
easily, so (14) holds.

Now, we consider that, at least one of i, j, k is equal to 1.
If i = j = k = 1, or i = j = 1, then the result is trivial. If
i = k = 1 (or j = k = 1), the result is equivalent to prove
(14) with k = 1. Finally, if k = 1, it is equivalent to (10) with
k = 1, and if i = 1 (or j = 1), it is equivalent to (12) with
k = 1. Therefore, the result holds. �

Lemma 3.7: Let Ht1,0,0 be a Z8-additive Hadamard code of
type (n; t1, 0, 0). Let wi be the ith row of At1,0,0, 1 ≤ i ≤ t1.
Then, given i, j, k ∈ {1, . . . , t1},

Φ(wi+wj +1) = Φ(2wi)+Φ(2wj)+Φ(1)+Φ(wi+1)+

+Φ(wj +1)+Φ(wi+wj)+Φ(2wi+wj)+Φ(wi+2wj),

Φ(wi + wj + wk + 1) = Φ(wi + 1) + Φ(wi + wj)+

Φ(wi + 2wj) + +Φ(2wi + wj) + Φ(wj + 1) + Φ(wk)+

Φ(2wk) + Φ(wk + 1) + +Φ(2wi + wk)+

Φ(2wj + wk) + Φ(wi + wj + 2wk) + Φ(wi + wj + wk).

Proof. First, if 2 ≤ i < j < k, by Remark 2.1, the above
equations can be showed to be true by checking that they hold
for w3

2,w
3
3,k for all k ∈ {0, 1, . . . , 7}. It is also easy to see

that they hold if some of the elements i, j, k are equal, or at
least one of them is equal to 1. �

Lemma 3.8: Let Ht1,t2,t3 be a Z8-additive Hadamard code
of type (n; t1, t2, t3). Let w be a row of At1,0,0. Then,

Φ(3w) = Φ(3) + Φ(w) + Φ(w + 1) + Φ(w + 2).

Proof. Let A = Φ(3) + Φ(w) + Φ(w+1) + Φ(w+2). By
Proposition 3.1, we have that Φ(w+1)+Φ(w+2) = Φ(2w+
3−2((w+1)�(w+2))). It easy to check that ord(−2((w+
1) � (w + 2))) = 2, so A = Φ(3) + Φ(w) + Φ(2w + 3) +
Φ(−2((w+ 1)� (w+ 2))). Now, by applying Lemma 3.5 to
the term Φ(2w + 3) and using that Φ(1) + Φ(2) = Φ(3), we
obtain that A = Φ(3)+Φ(w)+Φ(−2((w+1)� (w+2)))+
Φ(2w + 2) + Φ(2w + 1) + Φ(2w). By Proposition 3.1, we
have that Φ(2w) + Φ(w) = Φ(3w) + Φ(−2(w � 2w)), thus

A = Φ(3) + Φ(3w) + Φ(2w + 2) + Φ(2w + 1)+

Φ(−2(w � 2w)) + Φ(−2((w + 1)� (w + 2))).

It easy to check that Φ(−2(w�2w))+Φ(−2((w+1)�(w+
2))) = Φ(4w). Finally, since Φ(−2((2w+1)� (2w+2))) =
0, we have that Φ(2w + 2) + Φ(2w + 1) = Φ(4w + 3) =
Φ(4w) + Φ(3). Therefore, A = Φ(3w) and the result holds.
�

Lemma 3.9: Let w, v ∈ Z2s such that ord(v) = 2i with
i < s. Then, 2i−1((w + v) � 2s−i) = 2i−1(w � 2s−i) +
2i−1(v � 2s−i).

Proof. The binary expansion of v and w + v are
[0, . . . , 0, 1, vs−i+1, . . . , vs−1]2 and [w0, . . . , ws−i + 1, (w +
v)s−i+1, . . . , (w + v)s−1]2, respectively. Then, we have that
the binary expansion of w � 2s−i, v � 2s−i and (w + v) �
2s−i are [0, . . . , ws−i, 0, . . . , 0]2, [0, . . . , 0, 1, 0, . . . , 0]2 and
[0, . . . , 0, ws−i +1, 0, . . . , 0]2, respectively. Note that, by mul-
tiplying by 2i−1, the binary expansions are [0, . . . , 0, ws−i]2,
[0, . . . , 0, 1]2 and [0, . . . , 0, ws−i+1]2, respectively. Therefore,
2i−1(w� 2s−i) + 2i−1(v� 2s−i) = 2i−1((w+ v)� 2s−i). �

In order to simplify the notation in the following results,
we define µ(w) = −2(w � 2) for any w ∈ Zn

8 . Note that
ord(µ(w)) = 2 if w 6= 0.

Lemma 3.10: Let w,v ∈ Zn
8 such that ord(v) < 8. Then,

µ(w + v) = µ(w) + µ(v).

Proof. We may assume that v 6= 0. If ord(v) = 4, then
2((w + v) � 2) = 2(w � 2) + 2(v � 2) by Lemma 3.9, so
the result follows. Finally, if ord(v) = 2, then the result also
holds since v � 2 = 0 and (w + v)� 2 = w � 2. �

Lemma 3.11: Let Ht1,0,0 be a Z8-additive Hadamard code
of type (n; t1, 0, 0). Let wi be the ith row of At1,0,0, 1 ≤ i ≤
t1. Then,

µ(wi + wj + wk) = µ(wi + wj) + µ(wi + wk)+

µ(wj + wk) + µ(wi) + µ(wj) + µ(wk) (15)

for all 1 ≤ i < j < k ≤ t1. Furthermore, for all 2 ≤ i < j ≤
t1 and k ∈ Z8,

µ(k + wi + wj) = µ(k + wi) + µ(k + wj)+

µ(wi + wj) + µ(k) + µ(wi) + µ(wj).

Proof. First, consider the Z8-additive Hadamard code
H4,0,0. In this case, it is easy to check that µ(w4

i +w4
j +w4

k) =
µ(w4

i +w4
j )+µ(w4

i +w4
k)+µ(w4

j +w4
k)+µ(w4

i )+µ(w4
j )+

µ(w4
k) for all 1 ≤ i < j < k ≤ 4. Then, the result follows

by Remark 2.1 and the fact that w1, . . . ,w4 ∈ Ht1,0,0 are an
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8t1−4-fold replication of w4
1, . . . ,w

4
4 ∈ H4,0,0, respectively.

By using the same argument, the second equation also holds.
�

Lemma 3.12: Let Ht1,0,0 be a Z8-additive Hadamard code
of type (n; t1, 0, 0). Let wi be the ith row of At1,0,0 for 1 ≤
i ≤ t1. Let E ⊆ {1, . . . , t1}. Then,

µ(
∑
i∈E

wi) =
∑
i,j∈E
i<j

µ(wi + wj) + (|E| mod 2)
∑
i∈E

µ(wi).

Proof. Assume E ⊆ {2, . . . , t1}, and let q = |E|. By
Remark 2.1, without loss of generality, we can assume that
E = {2, . . . , q + 1}. Now, we prove this lemma by induction
on the integer q ≥ 1.

For q = 1 the result holds. Let q ≥ 2 and suppose that it
is true for q− 1. Consider

∑q+1
i=2 wi =

∑q
i=2 wi +wq+1. Let

y =
∑q

i=2 w
q
i . We have that

∑q
i=2 wi = (y, . . . ,y) is the

8t1−q−2-fold replication of y. Then,
∑q+1

i=2 wi is the 8t1−q−1-
fold replication of (y+0,y + 1, . . . ,y + 7). The result holds
if

µ(

q∑
i=2

wi + wq+1) =

∑
2≤i<j≤q+1

µ(wi + wj) + (q mod 2)

q+1∑
i=2

µ(wi).

That is, for all k ∈ {0, . . . , 7}, we have to prove that

µ(y + k) = µ(

q∑
i=2

wq
i + k) =

∑
2≤i<j≤q

µ(wq
i + wq

j )+

q∑
i=2

µ(wq
i + k) + (q mod 2)(µ(k) +

q∑
i=2

µ(wq
i )). (16)

Note that, by the induction hypothesis, the statement holds for∑q
i=2 wi = (y, . . . ,y) and hence,

µ(y) =
∑

2≤i<j≤q

µ(wq
i + wq

j ) + ((q − 1) mod 2)

q∑
i=2

µ(wq
i ).

(17)
Let π8 =

∏8t1−2−1
i=0 (8i+1, 8i+2, 8i+3, 8i+4, 8i+5, 8i+

6, 8i + 7, 8i + 8) ∈ Sn be a permutation of coordinates. Let
πk

8 be the composition of π8, k times, i.e., πk
8 = π8◦

(k)· · ·
◦π8. Note that πk

8 (w2) = w2 + k and πk
8 (wi) = wi for

all i ∈ {1, 3, . . . , q}. Moreover, it is also easy to see that
πk

8 ◦ µ = µ ◦ πk
8 .

Now, we have that µ(y + k) = πk
8 (µ(y)). By apply-

ing (17), µ(y + k) =
∑

2≤i<j≤q π
k
8 (µ(wq

i + wq
j )) + ((q −

1) mod 2)
∑q

i=2 π
k
8 (µ(wq

i )). By using the properties of πk
8 ,

we have that

µ(y + k) =
∑

3≤i<j≤q

µ(wq
i + wq

j ) +

q∑
i=3

µ(wq
i + wq

2 + k)+

((q − 1) mod 2)(

q∑
i=3

µ(wq
i ) + µ(wq

2 + k)).

By Lemma 3.11, we have that µ(wq
i +wq

2 +k) = µ(wq
2 +k)+

µ(wq
i +k)+µ(wq

2 +wq
i )+µ(wq

2)+µ(wq
i )+µ(k). Therefore,

µ(y + k) =
∑

2≤i<j≤q µ(wq
i + wq

j ) +
∑q

i=2 µ(wq
i + k) +

(q mod 2)(µ(k) +
∑q

i=2 µ(wq
i )) and (16) holds. �

Corollary 3.3: LetHt1,t2,t3 be a Z8-additive Hadamard code
of type (n; t1, t2, t3). Let wi be the ith row of At1,t2,t3 , 1 ≤
i ≤ t1. Let E ⊆ {1, . . . , t1}. Then,

µ(
∑
i∈E

wi) =
∑
i,j∈E
i<j

µ(wi + wj) + (|E| mod 2)
∑
i∈E

µ(wi).

Proof. Note that Ht1,t2,t3 contains the 22t2+t3 -fold repli-
cation code of Ht1,0,0. Therefore, the result follows from
Lemma 3.12. �

IV. RANK OF Z8-LINEAR HADAMARD CODES

The rank of a Z4-linear Hadamard code of type
(2t−1; t1, t2), where t + 1 = 2t1 + t2, is 2t1 + t2 +

(
t1−1

2

)
if t1 > 2, and 2t1 + t2 if t1 = 1 or 2 [20]. In this section,
we establish the rank of a Z8-linear Hadamard code of type
(2t−2; t1, t2, t3), where t+ 1 = 3t1 + 2t2 + t3, in terms of the
parameters t1, t2 and t3 by finding a set of linear independent
vectors that generate the span of the code.

Proposition 4.1: Let t1, t2, . . . , ts be nonnegative integers
with t1 ≥ 1.

Then, rank(Φ(Ht1,...,ts)) = ts + rank(Φ(Ht1,...,ts−1,0)).

Proof. Let H′ = Ht1,...,ts and H = Ht1,...,ts−1,ts−1. We
prove this result by induction on the integer ts ≥ 0. First, for
ts = 0, the result holds trivially.

Let ts ≥ 1 and suppose that the result is true for ts − 1.
By the recursive construction (2), H′ can be seen as the union
of two cosets, that is, H′ = C0 ∪ C1, where C0 = (H,H)
and C1 = (H,H) + (0,2s−1). By Corollary 3.1, we have
that Φ((H,H) + (0,2s−1)) = Φ((H,H)) + Φ((0,2s−1)), so
rank(Φ(H′)) = 1 + rank(Φ(H)). By the induction hypothesis,
rank(Φ(H′)) = 1 + ts − 1 + rank(Φ(Ht1,...,ts−1,0)) = ts +
rank(Φ(Ht1,...,ts−1,0)). �

Example 4.1: Let B1,1,0 = {Φ(bi) : 1 ≤ i ≤ 5} be a basis
of 〈Φ(H1,1,0)〉. For example, we can consider the one given in
Example 4.2. Then, by the proof of Proposition 4.1, a basis of
〈Φ(H1,1,1)〉 is B1,1,1 = {Φ(bi,bi) : 1 ≤ i ≤ 5} ∪ {Φ(0,4)};
and a basis of 〈Φ(H1,1,2)〉 is B1,1,2 = {Φ(bi,bi,bi,bi) :
1 ≤ i ≤ 5} ∪ {Φ(0,4,0,4),Φ(0,0,4,4)}. Since the rank
of Φ(H1,1,0) is 5, we have that rank(Φ(H1,1,1)) = 6 and
rank(Φ(H1,1,2)) = 7.

Proposition 4.2: Let t1 and t2 be nonnegative integers with
t1 ≥ 1. Then, rank(Φ(Ht1,t2+1,0)) = rank(Φ(Ht1,t2,0)) +
2t1 + t2 +

(
t1−1

2

)
.

Proof. By (2), the generator matrix of H′ = Ht1,t2+1,0 is

At1,t2+1,0 =

(
A A A A
0 2 4 6

)
,

where A = At1,t2,0 is the generator matrix of H = Ht1,t2,0.
Note that H′ can be seen as the union of four cosets of the
4-fold replication code of H, (H,H,H,H), which are

C0 : (H, H, H, H)
C1 : (H, H, H, H) + (0, 2, 4, 6)
C2 : (H, H, H, H) + (0, 4, 0, 4)
C3 : (H, H, H, H) + (0, 6, 4, 2).
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We have that rank(Φ(C0)) = rank(Φ(H)) = r. Let
{Φ(g1), . . . ,Φ(gr)} be a basis of 〈H〉. Then, a basis of
〈Φ(C0)〉 is {Φ(g′1), . . . ,Φ(g′r)}, where g′i = (gi,gi,gi,gi)
for all i ∈ {1, . . . , r}. By Corollary 3.1, we have that
〈Φ(C0 ∪ C2)〉 = 〈Φ(g′1), . . . , Φ(g′r),Φ((0,4,0,4))〉. Note
that, if u′ ∈ C3, then u′ = (u,u + 6,u + 4,u + 2) = (u,u +
2,u+4,u+6)+(0,4,0,4) with u ∈ H. Thus, it is easy to see
that 〈Φ(H′)〉 = 〈Φ(C0∪C1∪C2∪C3)〉 = 〈Φ(C0∪C1∪C2)〉,
again by Corollary 3.1.

Let u′ = (u,u,u,u) ∈ C0 and v′ = (0,2,4,6), so
u ∈ H. By Proposition 3.1, we know that Φ(u′) + Φ(v′) =
Φ(u′+v′−2(u′�v′)). Since −2(u′�v′) is a vector of order
2, we have that Φ(u′ + v′) = Φ(u′) + Φ(v′) + Φ(−2(u′ �
v′)) by Corollary 3.1. Let M ′ = {−2(u′ � v′) : u′ ∈
C0} = {(0, µ(u), 0, µ(u)) : u ∈ H}. Then, 〈Φ(H′)〉 =
〈Φ(g′1), . . . ,Φ(g′r),Φ((0,4,0,4)),Φ(v′),Φ(M ′)〉. Note that,
if u = 2 ∈ H, then u′ = 2 ∈ C0 and
−2(u′ � v′) = (0,4,0,4) ∈ M ′. Thus, 〈Φ(H′)〉 =
〈Φ(g′1), . . . ,Φ(g′r),Φ(v′),Φ(M ′)〉. It is easy to see that Φ(v′)
and the elements of {Φ(g′1), . . . ,Φ(g′r)} and Φ(M ′) are
linearly independent, because of the form of every g′i, i ∈
{1, . . . , r}, and the elements of M ′. Therefore, rank(Φ(H′)) =
r+ 1 + dim(〈Φ(M ′)〉). Since M ′ = {(0, µ(u),0, µ(u)) : u ∈
H}, dim(〈Φ(M ′)〉) = dim(〈Φ(M)〉), where M = {µ(u) :
u ∈ H}.

Let B2 = {w1, . . . ,wt1 ,v1, . . . ,vt2 , 2w1, . . . , 2wt1 ,
2v1, . . . , 2vt2 , 4w1, . . . , 4wt1} be a 2-basis of H and recall
that ord(wi) = 8 and ord(vj) = 4 for all i ∈ {1, . . . , t1}
and j ∈ {1, . . . , t2}. Let u ∈ H. We know that u =∑3t1+2t2

i=1 λibi, where bi ∈ B2 is the ith element of B2 and
λi ∈ {0, 1}. By Lemma 3.10 and the fact that µ(2vj) =
µ(4wi) = 0 for all i ∈ {1, . . . , t1} and j ∈ {1, . . . , t2},
we have that µ(u) = µ(

∑t1
i=1 λibi) +

∑2t1+t2
i=t1+1 µ(λibi). Let

E = {1 ≤ i ≤ t1 : λi 6= 0}. Since bi = wi for all
i ∈ {1, . . . , t1}, by Corollary 3.3,

µ(

t1∑
i=1

λibi) =∑
i,j∈E
i<j

µ(wi + wj) + (|E| mod 2)
∑
i∈E

µ(wi).

Moreover, since w1 = 1, we have that µ(w1) = 0 and
it is easy to check that µ(w1 + wi) = µ(wi) + µ(2wi) =
µ(bi) + µ(bt1+t2+i) for all i ∈ {2, . . . , t1}. Therefore,

µ(u) =
∑

i,j∈E\{1}
i<j

µ(bi + bj) +

2t1+t2∑
i=2

µ(λ′ibi)

for some λ′i ∈ {0, 1}. Let M1 = {µ(bi + bj) : 2 ≤ i <
j ≤ t1} and M2 = {µ(bi) : 2 ≤ i ≤ 2t1 + t2}. Recall that
ord(µ(w)) = 2 for all w 6= 0, so we can apply Corollary 3.1.
Then, dim(〈Φ(M)〉) = dim(〈Φ(M1),Φ(M2)〉). Since the
elements in Φ(M1) ∪ Φ(M2) are linearly independent, we
have that rank(Φ(H′)) = r + 1 + 2t1 + t2 − 1 +

(
t1−1

2

)
=

r + 2t1 + t2 +
(
t1−1

2

)
. �

Example 4.2: Let B1,0,0 = {Φ(1),Φ(2),Φ(4)}
be a basis of 〈Φ(H1,0,0)〉. Then, by the proof of

Proposition 4.2, a basis of 〈Φ(H1,1,0)〉 is B1,1,0 =
{Φ(1, 1, 1, 1),Φ(2, 2, 2, 2),Φ(4, 4, 4, 4),Φ(0, 2, 4, 6)} ∪
{Φ(0,mi, 0,mi) : mi ∈ M1 ∪ M2}, where M1 = ∅ and
M2 = {µ(2)} = {4}. Similarly, from B1,1,0, we obtain that
a basis of 〈Φ(H1,2,0)〉 is

B1,2,0 = {Φ(1),Φ(2),Φ(4),Φ(0, 2, 4, 6, 0, 2, 4, 6),

Φ(0, 4, 0, 4, 0, 4, 0, 4)}
∪ {Φ(0, 0, 0, 0,mi, 0, 0, 0, 0,mi) : mi ∈M1 ∪M2},

where M1 = ∅ and M2 = {µ(0, 2, 4, 6), µ(2, 2, 2, 2)} =
{(0, 4, 0, 4), (4, 4, 4, 4)}. Since the rank of Φ(H1,0,0) is 3, we
have that rank(Φ(H1,1,0)) = 5 and rank(Φ(H1,2,0)) = 6.

Proposition 4.3: Let t1 be a positive integer. Then,
rank(Φ(Ht1+1,0,0)) = rank(Φ(Ht1,0,0))+4t1 +2

(
t1−1

2

)
+1+(

t1−1
3

)
.

Proof. By (2), the generator matrix of H′ = Ht1+1,0,0 is

At1+1,0,0 =

(
A A A A A A A A
0 1 2 3 4 5 6 7

)
,

where A = At1,0,0 is the generator matrix of H = Ht1,0,0.
Note that H′ can be seen as the union of eight cosets of the 8-
fold replication code of H, (H,H,H,H,H,H,H,H), which
are

C0 : (H,H,H,H,H,H,H,H)

C1 : (H,H,H,H,H,H,H,H) + (0,1,2,3,4,5,6,7)

C2 : (H,H,H,H,H,H,H,H) + (0,2,4,6,0,2,4,6)

C3 : (H,H,H,H,H,H,H,H) + (0,3,6,1,4,7,2,5)

C4 : (H,H,H,H,H,H,H,H) + (0,4,0,4,0,4,0,4)

C5 : (H,H,H,H,H,H,H,H) + (0,5,2,7,4,1,6,3)

C6 : (H,H,H,H,H,H,H,H) + (0,6,4,2,0,6,4,2)

C7 : (H,H,H,H,H,H,H,H) + (0,7,6,5,4,3,2,1) .

Note that rank(Φ(C0)) = rank(Φ(H)) = r. Let
{Φ(g1), . . . ,Φ(gr)} be a basis of 〈H〉. Then, a ba-
sis of 〈Φ(C0)〉 is {Φ(g′1), . . . ,Φ(g′r)}, where g′i =
(gi,gi,gi,gi,gi, gi,gi,gi) for all i ∈ {1, . . . , r}. Let w′ =
(0,1,2,3,4,5,6,7). By the proof of Proposition 4.2, we
have that 〈Φ(C0 ∪ C2 ∪ C4 ∪ C6)〉 = 〈Φ(C0 ∪ C2 ∪ C4)〉 =
〈Φ(g′1), . . . ,Φ(g′r),Φ(2w′),Φ(M ′)〉, where M ′ is defined as
in the mentioned proof using 2w′ = (0,2,4,6,0,2,4,6)
instead of v′ = (0,2,4,6).

Note that, if u′ ∈ C5, then u′ = (u,u + 5,u + 2,u +
7,u + 4,u + 1,u + 6,u + 3) = (u,u,u,u,u,u,u,u) + w′ +
(0,4,0,4,0,4,0,4) with u ∈ H. Similarly, if u′ ∈ C7, then
u′ = (u,u + 7,u + 6,u + 5,u + 4,u + 3,u + 2,u + 1) =
(u,u,u,u,u,u,u,u)+3w′+(0,4,0,4,0,4,0,4) with u ∈ H.
Thus, it is easy to see that 〈Φ(C0 ∪C1 ∪C2 ∪C3 ∪C4 ∪C5 ∪
C7)〉 = 〈Φ(C0 ∪C1 ∪C2 ∪C3 ∪C4)〉, by Corollary 3.1. Now,
we will find a basis for 〈Φ(C0 ∪C1 ∪C2 ∪C4)〉 by extending
the given basis for 〈Φ(C0 ∪C2 ∪C4)〉. After that, we will see
that 〈Φ(C3)〉 is linearly dependent of 〈Φ(C0∪C1∪C2∪C4)〉.

Let B2 = {w1,w2, . . . ,wt1 , 2w1, . . . , 2wt1 , 4w1, . . . ,
4wt1} be a 2-basis of H and recall that ord(wi) = 8 for all
i ∈ {1, . . . , t1}. Let u ∈ H. We know that u =

∑3t1
i=1 λibi,

where bi ∈ B2 is the ith element of B2 and λi ∈ {0, 1}. Let
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E = {1 ≤ i ≤ 3t1 : λi 6= 0}, E1 = {1 ≤ i ≤ t1 : i ∈
E} ∪ {1 ≤ i ≤ t1 : t1 + i ∈ E} ∪ {1 ≤ i ≤ t1 : t1 + i ∈ E}
as a multiset, and E4 = {1 ≤ i ≤ t1 : 2t1 + i ∈ E}. Let u′ =
(u,u,u,u,u,u,u,u) and w′i = (wi,wi,wi,wi,wi,wi,wi,wi)
for all i ∈ {1, . . . , t1}. Let si be the ith element of the
ordered multiset {w′i : i ∈ E1}. Now, we consider the
element u′ + w′ ∈ C1. By Corollary 3.1, Φ(u′ + w′) =
Φ(
∑

i∈E1
w′i + w′) +

∑
i∈E4

Φ(4w′i).
Therefore, by Lemma 3.5, we have that

Φ(u′ + w′) =
∑
i∈E4

Φ(4w′i)+∑
i<j<k<p<q

Φ(si + sj + sk + sp)+∑
i<j<k<q

Φ(si + sj + sk + w′)

+ q0

( ∑
i<j<k<q

Φ(si + sj + sk) +
∑

i<j<q

Φ(si + sj + w′)
)

+ (q0 + q1)
( ∑
i<j<q

Φ(si + sj) +
∑
i<q

Φ(si + w′)
)

+ q0(q0 + q1)
(∑
i<q

Φ(si) + Φ(w′)
)
,

where q = |E1| + 1 and [q0, q1, . . .]2 is the binary expansion
of q. We know that

∑
i∈E4

Φ(4w′i), Φ(si + sj + sk + sp),
Φ(si + sj + sk), Φ(si + sj), and Φ(si) belong to 〈Φ(C0)〉.

We will see that Φ(u′ + w′)−
∑

i∈E4
Φ(4w′i) ∈ 〈Φ(C0 ∪

C2) ∪ L1 ∪ L2 ∪ L3 ∪ {Φ(w′)}〉, where L1 = {Φ(w′i + w′) :
1 ≤ i ≤ t1} ∪ {Φ(2w′i + w′) : 1 ≤ i ≤ t1}, L2 = {Φ(w′i +
w′j + w′) : 2 ≤ i < j ≤ t1}, and L3 = {Φ(w′i + w′j +
w′k + w′) : 2 ≤ i < j < k ≤ t1}. First, it is clear that
Φ(si + w′) ∈ L1. Now, we consider the terms of the form
A = Φ(si + sj + w′). If A = Φ(2w′i + w′), then A ∈ L1; if
A = Φ(1 + w′i + w′) with 2 ≤ i ≤ t1, then A ∈ 〈Φ(C0 ∪
C2)∪L1〉 by Lemma 3.7; and if A = Φ(w′i +w′j +w′) with
2 ≤ i < j ≤ t1, then A ∈ L2. Next, we consider the terms of
the form B = Φ(si+sj +sk+w′). If B = Φ(2w′i+w′+w′k),
then B ∈ 〈Φ(C0 ∪ C2) ∪ L1 ∪ {Φ(w′)}〉 by using Lemma
3.6 and taking Φ(w′i + 2w′ + w′k) ∈ Φ(C2) as the other
addend in the left-hand side of the equation of the lemma.
If B = Φ(1 + w′i + w′j + w′) with 2 ≤ i < j ≤ t1, then
B ∈ 〈Φ(C0∪C2)∪L1∪L2∪{Φ(w′)}〉 by Lemma 3.7. Finally,
if B = Φ(w′i + w′j + w′k + w′) with 2 ≤ i < j < k ≤ t1,
then B ∈ L3.

The elements of L1, L2 and L3 are linearly independent
from each other. Therefore, the elements of L1 ∪ L2 ∪ L3 ∪
{Φ(w′)} are linearly independent and rank(〈L1 ∪ L2 ∪ L3 ∪
{Φ(w)}〉) = 2t1 +

(
t1−1

2

)
+
(
t1−1

3

)
+ 1. It is also easy to

see that they are linearly independent from the elements in
〈Φ(C0 ∪ C2 ∪ C4)〉, so rank(〈Φ(C0 ∪ C1 ∪ C2 ∪ C4)〉) =
r + 4t1 + 2

(
t1−1

2

)
+ 1 +

(
t1−1

3

)
by Proposition 4.2.

Finally, we will show that 〈Φ(C0 ∪C1 ∪C2 ∪C3 ∪C4)〉 =
〈Φ(C0∪C1∪C2∪C4)〉. We consider the element u′+ 3w′ ∈
C3. Again, by Corollary 3.1, Φ(u′ + 3w′) = Φ(

∑
i∈E1

w′i +
3w′) +

∑
i∈E4

Φ(4w′i). Therefore, by Lemma 3.5, we have

that

Φ(u′ + 3w′) =
∑
i∈E4

Φ(4w′i)+∑
i<j<k<p≤q−3

Φ(si + sj + sk + sp)+∑
i<j<k≤q−3

Φ(si + sj + sk + w′)

+
∑

i<j≤q−3

Φ(si +sj +w′+w′)+
∑

i≤q−3

Φ(si +w′+w′+w′)

+ q0

( ∑
i<j<k≤q−3

Φ(si + sj + sk) +
∑

i<j≤q−3

Φ(si + sj + w′)

+
∑

i≤q−3

Φ(si + w′ + w′) + Φ(w′ + w′ + w′)
)

+ (q0 + q1)
( ∑
i<j≤q−3

Φ(si + sj) +∑
i≤q−3

Φ(si + w′) + Φ(w′ + w′)
)

+ q0(q0 + q1)
( ∑
i≤q−3

Φ(si) + Φ(w′)
)
,

where q = |E1|+ 3. All the addends belong to 〈Φ(C0 ∪C1 ∪
C2 ∪C4)〉, except the ones of the form Φ(w′+w′+w′) and
Φ(si +w′+w′+w′). First, we have that Φ(3w′) ∈ 〈Φ(C0 ∪
C1 ∪C2 ∪C4)〉 by Lemma 3.8. Finally, by using Lemma 3.6
with Φ(si + 2w′ + w′) and Φ(2si + w′ + w′) ∈ Φ(C2), we
have that Φ(si + w′ + w′ + w′) ∈ 〈Φ(C0 ∪ C1 ∪ C2 ∪ C4)〉.
Therefore, the result holds. �

Example 4.3: Let B1,0,0 = {Φ(1),Φ(2),Φ(4)}
be a basis of 〈Φ(H1,0,0)〉. Then, by the proof
of Proposition 4.3 and the basis of 〈Φ(H1,1,0)〉,
B1,1,0 = {Φ(1, 1, 1, 1),Φ(2, 2, 2, 2),Φ(4, 4, 4, 4),
Φ(0, 2, 4, 6), Φ(0, 4, 0, 4)}, obtained in Example 4.2, we
have that a basis of 〈Φ(H2,0,0)〉 is

B2,0,0 = {Φ(1),Φ(2),Φ(4),Φ(0, 2, 4, 6, 0, 2, 4, 6),

Φ(0, 4, 0, 4, 0, 4, 0, 4),Φ(w′)} ∪ L1 ∪ L2 ∪ L3,

where w′ = (0, 1, 2, 3, 4, 5, 6, 7), L1 = {Φ(1 + w′),Φ(2 +
w′)} = {Φ(1, 2, 3, 4, 5, 6, 7, 0),Φ(2, 3, 4, 5, 6, 7, 0, 1)}, and
L2 = L3 = ∅. Since the rank of Φ(H1,0,0) is 3, we have
that rank(Φ(H2,0,0)) = 8.

Lemma 4.1: Let t, k ∈ N. Then,
t∑

i=1

(
i

k

)
=

(t+ 1− k)
(
t+1
k

)
+ (k − 1)

(
1
k

)
k + 1

.

Proof. Straightforward by induction on the integer t. �
Corollary 4.1: Let t1 be a positive integer. Then,

rank(Φ(Ht1,0,0)) =
t41
24
− t31

12
+

35t21
24

+
7t1
12

+ 1.

Proof. We know that rank(Φ(H1,0,0)) = 3. By applying
Proposition 4.3 recursively, we have that

rank(Φ(Ht1,0,0)) = 3 + 4

t1−1∑
i=1

i+ 2

t1−2∑
i=1

(
i

2

)
+
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(t1 − 1) +

t1−2∑
i=1

(
i

3

)
.

Finally, by Lemma 4.1, it is easy to see that the result holds.
�

Corollary 4.2: Let t1 and t2 be nonnegative integers with
t1 ≥ 1. Then,

rank(Φ(Ht1,t2,0)) = rank(Φ(Ht1,0,0)) +
t2
2

(t21 + t1 + t2 + 1).

Proof. By applying Proposition 4.2 recursively, it is easy to
see that

rank(Φ(Ht1,t2,0)) = rank(Φ(Ht1,0,0))+

t2

(
2t1 +

(
t1 − 1

2

)
+
t2 − 1

2

)
.

Since t2(2t1 +
(
t1−1

2

)
+ t2−1

2 ) = t2
2 (t21 +t1 +t2 +1), the result

follows. �
Theorem 4.1: Let H = Ht1,t2,t3 be a Z8-additive Hadamard

code. Then,
rank(Φ(H)) =

t41
24
− t31

12
+

35t21
24

+
7t1
12

+
t2
2

(t21 + t1 + t2 + 1) + t3 + 1.

Proof. Straightforward from Proposition 4.1 and Corollar-
ies 4.1 and 4.2. �

V. CLASSIFICATION OF Z8-LINEAR HADAMARD CODES

The classification of the Z4-linear Hadamard codes of length
2t, for any t ≥ 3, can be established by using either the rank
or the dimension of the kernel [17], [20]. In [13], it is shown
that, in general, for s > 2, the dimension of the kernel is
not enough to establish a complete classification of the Z2s -
linear Hadamard codes of length 2t, for any t ≥ 3. In this
section, we show that for s = 3, a complete classification can
be given by using both invariants: the dimension of the kernel
and the rank, computed in [13] and in the previous section,
respectively.

First, recall that the dimension of the kernel for Z8-linear
Hadamard codes is given by the following result:

Proposition 5.1: [13] Let H = Ht1,t2,t3 be a Z8-additive
Hadamard code. If Φ(H) is nonlinear, then ker(Φ(H)) = t1 +
t2 + t3 + σt1 , where σt1 = 1 if t1 ≥ 2 and σt1 = 2 if t1 = 1.

In [13], it is also shown that, in order to obtain a com-
plete classification of nonlinear Z2s -linear Hadamard codes of
length 2t, it is enough to focus on t ≥ 5, since all Z2s -linear
Hadamard codes of length 2t are linear for t < 5. It is also
mentioned in [13] that, at least for any 3 ≤ t ≤ 11, these codes
can be fully classified by using only the values of the rank (see
Table I). Then, this pointed out that, maybe, it was possible
to obtain a complete classification for any t ≥ 5 by using just
this invariant. However, the following example shows us that
both invariants, the rank and the dimension of the kernel, are
necessary in some cases.

Example 5.1: Consider the Z8-linear Hadamard codes of
length 217 = 131072, (t = 17), H2,6,0 and H4,1,4. By
Theorem 4.1, we have that rank(H2,6,0) = rank(H4,1,4) = 47.

However, since ker(H2,6,0) = 9 and ker(H4,1,4) = 10 by
Proposition 5.1, they are not equivalent even though they have
the same rank. The rest of 23 nonlinear such codes of length
217 have a different rank, so we have that there are exactly 26
nonequivalent Z8-linear Hadamard codes of length 217.

Although we cannot completely classify the Z8-linear
Hadamard codes by using only the rank, the following result
shows that if two such codes have the same dimension of the
kernel, then their values of the rank are different.

Theorem 5.1: Let 5 ≤ t ∈ Z. Then, for every pair, Ht1,t2,t3

and Ht′1,t
′
2,t
′
3 , of nonlinear Z8-linear Hadamard codes of length

2t with (n; t1, t2, t3) 6= (n; t′1, t
′
2, t
′
3) and ker(Ht1,t2,t3) =

ker(Ht′1,t
′
2,t
′
3), we have that rank(Ht1,t2,t3) 6= rank(Ht′1,t

′
2,t
′
3).

Proof. Let k = ker(Ht1,t2,t3) = ker(Ht′1,t
′
2,t
′
3). By Propo-

sition 5.1, we have that k = t1 + t2 + t3 + σt1 . Moreover,

t1 + t2 + t3 + σt1 = k
3t1 + 2t2 + t3 = t+ 1

}
⇐⇒{

t2 = σt1 − k + t+ 1− 2t1
t3 = t1 + 2k − 2σt1 − t− 1.

(18)

By replacing the formulas in (18) into the expression of the
rank, given by Theorem 4.1, we have that

rank(Ht1,t2,t3) = rank(t1, t, k) =

t41
24
− t31

12
+

35t21
24

+
7t1
12

+

+
1

2
(σt1−k+t+1−2t1)(t21 +t1 +σt1−k+t+1−2t1 +1)+

t1 + 2k − 2σt1 − t− 1 + 1,

which is equal to

rank(t1, t, k) =
t41
24
− 13

12
t31 + (

71

24
+

1

2
(t− k + σt1))t21−

−(
11

12
+

3

2
(t−k+σt1))t1+

1

2
((t−k+σt1)2+t+k−σt1 +2).

Now, we suppose that rank(Ht1,t2,t3) = rank(Ht′1,t
′
2,t
′
3) for

(n; t1, t2, t3) 6= (n; t′1, t
′
2, t
′
3) or, equivalently, rank(t1, t, k) =

rank(t′1, t, k) for t1 6= t′1. Without loss of generality, we can
assume that t′1 < t1. Note that if t′1 = t1, then t2 = t′2 and
t3 = t′3, so both codes are equal.

First, we consider that 2 ≤ t′1 < t1. In this case, we have
to see that rank(t1, t, k)− rank(t′1, t, k) 6= 0. Since t1, t′1 ≥ 2,
σt1 = σt′1 = 1 and we have that

rank(t1, t, k)− rank(t′1, t, k) =

t41
24
− 13

12
t31 + (

71

24
+

1

2
(t−k+ 1))t21− (

11

12
+

3

2
(t−k+ 1))t1+

− t
′4
1

24
+

13

12
t′31 −(

71

24
+

1

2
(t−k+1))t′21 +(

11

12
+

3

2
(t−k+1))t′1.
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By using the identity x2 − y2 = (x+ y)(x− y), we have that

rank(t1, t, k)− rank(t′1, t, k) =

1

24

[
(t1 + t′1)(t21 + t′21 )− 26(t21 + t1t

′
1 + t′21 )+

(t1 + t′1)(83 + 12(t− k))− 58− 36(t− k)
]

=

1

24

[
(t1 + t′1)(t21 + t′21 + 83)− 26(t21 + t1t

′
1 + t′21 )− 58+

12(t− k)(t1 + t′1 − 3)
]
, (19)

which can be written as rank(t1, t, k) − rank(t′1, t, k) =
f(t1, t

′
1) + (t − k)g(t1, t

′
1), where f(t1, t

′
1) = 1/24

[
(t1 +

t′1)(t21 + t′21 + 83)− 26(t21 + t1t
′
1 + t′21 )− 58

]
and g(t1, t

′
1) =

1/2(t1 + t′1− 3). Note that (t− k)g(t1, t
′
1) ≥ 0 for all integer

pairs (t1, t
′
1) ∈ D, where D = {(t1, t′1) : 2 ≤ t′1 < t1}. It is

easy to see that f(t1, t
′
1) > 0 for all t′1 ≥ 26, since we can

rewrite this expression in the following form:

t21(t1+t′1)+t′21 (t1+t′1)+83(t1+t′1) > 26t21+26t′1(t1+t′1)−58,
(20)

and we can observe that t21(t1 + t′1) > 26t21, t′21 (t1 + t′1) ≥
26t′1(t1 + t′1) and 83(t1 + t′1) > −58.

Similarly, f(t1, t
′
1) > 0 for all t1 ≥ 26, considering the left-

hand side of (20) as 26t1(t1 + t′1) + 26t′21 − 58. Therefore, if
there exists a pair of integers (t1, t

′
1) such that rank(t1, t, k)−

rank(t′1, t, k) = 0, this pair has to be in R = {(t1, t′1) : 2 ≤
t′1 < t1, t

′
1 < 26, t1 < 26} ⊂ D. There are 1 + 2 + · · ·+ 23 =

276 pairs (t1, t
′
1) ∈ R, and it can be checked that any of them

is a solution of the equation.
Finally, we consider that 1 = t′1 < t1. In this case, we have

to prove that rank(t1, t, k) − rank(t′1, t, k) 6= 0. Then, since
t1 ≥ 2 and t′1 = 1, σt1 = 1, σt′1 = 2, and we obtain that

rank(t1, t, k)− rank(1, t, k) =

t41
24
− 13

12
t31 + (

71

24
+

1

2
(t−k+ 1))t21− (

11

12
+

3

2
(t−k+ 1))t1+

1

2
((t− k + 1)2 + t+ k + 1)− 1

24
+

13

12
− 71

24
−

1

2
(t−k+ 2) +

11

12
+

3

2
(t−k+ 2)− 1

2
((t−k+ 2)2 + t+k).

By simplifying, we have that

rank(t1, t, k)− rank(1, t, k) =

1

24

[
t41 − 26t31 + 83t21 − 58t1 + 12(t− k)(t21 − 3t1)

]
.

Let f(t1, t, k) = rank(t1, t, k) − rank(1, t, k). We know that
t− k = 2t1 + t2− 2 ≥ 2t1− 2. Since 12(t− k)(t21− 3t1) ≥ 0

for t1 ≥ 3, we have that f(t1, t, k) ≥ g(t1) =
1

24
[t41− 26t31 +

83t21−58t1 +12(2t1−2)(t21−3t1)] =
1

24
[t1(t31−2t21−13t1 +

14)]. By computing the zeros of the polynomial g(t1) and
analyzing its behavior, we have that f(t1, t, k) ≥ g(t1) > 0
for t1 ≥ 5. Therefore, we just need to compute f(t1, t, k)
when t1 ∈ {2, 3, 4}. For these cases, we have that

f(2, t, k) =1− (t− k) = 0⇔ t− k = 1

f(3, t, k) =− 2

f(4, t, k) =2(t− k)− 13 = 0⇔ t− k = 13/2.

Note that if t1 = 2, then t − k = t2 + 2 ≥ 2, so t − k 6= 1.
Therefore, for t1 ∈ {2, 3, 4}, f(t1, t, k) 6= 0 and the result
holds. �

Recall that it is already known that there are b t−1
2 c

nonequivalent Z4-linear Hadamard codes of length 2t, t ≥ 3
[17]. Now, we establish how many nonequivalent Z8-linear
Hadamard codes of length 2t there are, once the length 2t

if fixed, for t ≥ 5. In [13], some upper and lower bounds
are given for certain values of t. By Theorems 4.1 and 5.1,
we know that if Ht1,t2,t3 and Ht′1,t

′
2,t
′
3 are nonlinear Z8-

linear Hadamard codes of the same length with (t1, t2, t3) 6=
(t′1, t

′
2, t
′
3), then their corresponding pairs, (r, k), where r is

the rank and k is the dimension of the kernel, are different.
Then, we have the following result:

Theorem 5.2: Let At,3 be the number of nonequivalent Z8-
linear Hadamard codes of length 2t. Then, for any t ≥ 5,

At,3 =
⌊ t+ 1

3

⌋
+

b(t+1)/3c∑
i=1

⌊ t+ 1− 3i

2

⌋
− 1.

Proof. In [13, Theorem 5.3], an upper bound is given for the
amount of different nonequivalent Z2s -linear Hadamard codes
for any t ≥ 3 and 2 ≤ s ≤ t − 1. In particular, when s = 3,
we have the following bound:

At,3 ≤
|{(t1, t2, t3) ∈ N3 : t = 3t1 + 2t2 + t3 − 1, t1 ≥ 1}| − 1.

By Theorems 4.1 and 5.1, we know that this bound is tight.
Therefore, we just have to see that

|{(t1, t2, t3) ∈ N3 : t = 3t1 + 2t2 + t3 − 1, t1 ≥ 1}| =⌊ t+ 1

3

⌋
+

b(t+1)/3c∑
i=1

⌊ t+ 1− 3i

2

⌋
.

This means that we need to compute the amount of different
solutions, (t1, t2, t3), of the equation t = 3t1 + 2t2 + t3 − 1
with t1 ≥ 1.

It is easy to see that 1 ≤ t1 ≤
⌊ t+ 1

3

⌋
. Once the

value of t1 is fixed, we can see that t2 is bounded by

0 ≤ t2 ≤
⌊ t+ 1− 3t1

2

⌋
. Note that, once t1 and t2 are fixed,

there is a unique value for t3. Then, the amount of different
solutions of t = 3t1 +2t2 + t3−1 with t1 ≥ 1, or equivalently
|{(t1, t2, t3) ∈ N3 : t = 3t1 + 2t2 + t3 − 1, t1 ≥ 1}|, is

b(t+1)/3c∑
i=1

(⌊ t+ 1− 3i

2

⌋
+ 1
)

=

⌊ t+ 1

3

⌋
+

b(t+1)/3c∑
i=1

⌊ t+ 1− 3i

2

⌋
,
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so the result holds. �
Example 5.2: Table I shows all possible values of (t1, t2, t3)

for which there exists a nonlinear Z8-linear code Ht1,t2,t3 of
length 2t for 5 ≤ t ≤ 11, together with the values of (r, k),
where r is the rank and k the dimension of the kernel. Since
for these values of t the rank gives a complete classification,
the value of At,3 obtained from Theorem 5.2 coincides with
the number of different (t1, t2, t3) in the second column of
the table, increased by one to add also the Z8-linear code that
is linear.

(t1, t2, t3) (r, k) At,3

t = 5 (2, 0, 0) (8,3) 2

t = 6
(1, 2, 0) (8,5)

3
(2, 0, 1) (9,4)

t = 7
(1, 2, 1) (9,6)

4(2, 0, 2) (10,5)
(2, 1, 0) (12,4)

t = 8

(1, 2, 2) (10,7)

6
(1, 3, 0) (12,6)
(2, 0, 3) (11,6)
(2, 1, 1) (13,5)
(3, 0, 0) (17,4)

t = 9

(1, 2, 3) (11,8)

7

(1, 3, 1) (13,7)
(2, 0, 4) (12,7)
(2, 1, 2) (14,6)
(2, 2, 0) (17,5)
(3, 0, 1) (18,5)

t = 10

(1, 2, 4) (12,9)

9

(1, 3, 2) (14,8)
(1, 4, 0) (17,7)
(2, 0, 5) (13,8)
(2, 1, 3) (15,7)
(2, 2, 1) (18,6)
(3, 0, 2) (19,6)
(3, 1, 0) (24,5)

t = 11

(1, 2, 5) (13,10)

11

(1, 3, 3) (15,9)
(1, 4, 1) (18,8)
(2, 0, 6) (14,9)
(2, 1, 4) (16,8)
(2, 2, 2) (19,7)
(2, 3, 0) (23,6)
(3, 0, 3) (20,7)
(3, 1, 1) (25,6)
(4, 0, 0) (32,5)

Table I
TYPE, RANK AND DIMENSION OF THE KERNEL FOR ALL NONLINEAR
Z8-LINEAR HADAMARD CODES OF LENGTH 2t FOR 5 ≤ t ≤ 11.

VI. CONCLUSIONS

The Z4-linear Hadamard codes can be classified by using
just one of the invariants, the rank or the dimension of the
kernel [17], [20]. In general, for Z2s -linear Hadamard codes
of length 2t, the kernel and its dimension were studied in [13],
where it was also proved that this invariant is not enough
to obtain a full classification of these codes, once s and t
are fixed. In this paper, we focus on s = 3. We study the
rank of the Z8-linear Hadamard codes of length 2t, and also
give an explicit construction of the linear independent vectors
that generate the span. Through Example 5.1, we observe
that the rank, by itself, is not enough to obtain a complete
classification. However, we prove that it is really possible by
using both of them, the rank and dimension of the kernel. We
also provide the amount of nonequivalent Z8-linear Hadamard

codes of length 2t for a given t. It would be interesting to
generalize these results to any s ≥ 4, or prove that it is
necessary to consider other invariants to classify such codes.
Another further research on this topic would be to fix only the
parameter t and find the number of nonequivalent Z2s -linear
Hadamard codes having the same length 2t. In this sense, it
is already proved that there are Z4-linear codes which are
equivalent to a Z8-linear Hadamard code [13].
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Universitat Autònoma de Barcelona where currently is an Associate Professor.
Her research interests include subjects related to combinatorics, coding theory
and graph theory.

Carlos Vela was born in Sevilla, Spain, in November 1992. He received the
B.Sc. degree in Mathematics and the M.Sc. degree in Computer Science and
AI from the Universidad de Sevilla, Spain, in 2014 and 2015, respectively,
and the Ph.D. degree in Computer Science from the Universitat Autònoma de
Barcelona, Spain, in 2018. He worked at the Information and Communications
Engineering Department of the Universitat Autònoma de Barcelona while
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Mercè Villanueva was born in Roses, Catalonia, in January 1972. She
received the B.Sc. degree in Mathematics in 1994 from the Autonomous
University of Barcelona, the M.Sc. degree in Computer Science in 1996,
and the Ph.D. degree in Science (Computer Science Section) in 2001 from
the same university. In 1994 she joined the Department of Information and
Communications Engineering, at the Autonomous University of Barcelona, as
an Assistant Professor, and was promoted to Associate Professor in 2002. Her
research interests include subjects related to combinatorics, algebra, coding
theory, and graph theory.


