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Abstract: A detailed workflow to analyze the physicochemical characteristics of mammalian matrix
metalloproteinase (MMP-9) protein species obtained from protein aggregates (inclusion bodies—IBs)
was followed. MMP-9 was recombinantly produced in the prokaryotic microbial cell factories Clearcoli
(an engineered form of Escherichia coli) and Lactococcus lactis, mainly forming part of IBs and partially
recovered under non-denaturing conditions. After the purification by affinity chromatography of
solubilized MMP-9, four protein peaks were obtained. However, so far, the different conformational
protein species forming part of IBs have not been isolated and characterized. Therefore, with the aim
to link the physicochemical characteristics of the isolated peaks with their biological activity, we set
up a methodological approach that included dynamic light scattering (DLS), circular dichroism (CD),
and spectrofluorometric analysis confirming the separation of subpopulations of conformers with
specific characteristics. In protein purification procedures, the detailed analysis of the individual
physicochemical properties and the biological activity of protein peaks separated by chromatographic
techniques is a reliable source of information to select the best-fitted protein populations.

Keywords: inclusion bodies; affinity chromatography; dynamic light scattering; the center of spectral
mass; circular dichroism; protein conformers

1. Introduction

Recombinant proteins are obtained from a wide collection of microbial expression
systems [1,2]. However, in some instances, the recombinant protein ends up accumulated in
the insoluble cell fraction [3,4]. These protein aggregates or nanoclusters (NCs), known as
inclusion bodies (IBs) in prokaryotic expression systems, are complex structures stabilized
by protein–protein cross β-sheet interactions forming a protease-resistant scaffold, which
coexist with internalized native and native-like conformers of the protein of interest [5–7].
The complete denaturation of the aggregates and the subsequent refolding of the released
protein species has been a widely used protocol for the isolation of soluble proteins using
IBs as the protein source [8,9]. However, this approach often results in variable efficiency
in the recovery of correctly folded proteins and, the biological activity may be highly
compromised [10]. In the last decades, the detection of biological activity in these protein
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NCs fueled the development of alternative soluble protein purification procedures from
IBs using non-denaturing conditions [11,12]. Taking into account the porous nature of
these aggregates, the native and native-like species of the protein of interest may be
separated from the scaffold structure by controlled release of soluble conformers through
incubation with buffers containing mild detergents at low concentrations [13]. The resulting
protein solution, enriched with the protein of interest in a soluble format, can be then
easily separated from the aggregated remnants of IBs by centrifugation [11,13,14]. In
addition, it might contain a wide range of folding intermediates with a dissimilar specific
activity. In order to demonstrate the presence of this spectrum of protein species in
the protein aggregates and with the aim to select protein subpopulations with the best
conformational quality, we selected matrix metalloproteinase 9 (MMP-9) as a paradigm
of difficult-to-produce eukaryotic protein in prokaryotic expression systems [15]. Matrix
metalloproteinases (MMPs) constitute a family of zinc-dependent enzymes involved in
the degradation and remodeling of the extracellular matrix. In addition, MMP-9 seems
to play important roles in tissue reorganization in physiological processes, including
embryogenesis, neovascularization and in the course of the restructuring of synaptic
connections [16,17].

In this study, two endotoxin-free prokaryotic expression systems, Clearcoli® BL21(DE3)
and Lactococcus lactis were transformed with an expression vector containing a His-tagged
version of the bovine MMP-9 gene to compare for the ability of the corresponding protein
folding machinery to cope with the product of the overexpressed gene. MMP-9 was pro-
duced mostly in the form of IBs in both expression systems, and mild detergent treatment
was performed to release entrapped protein, as reported [18]. The results showed that
in both cases, four different peaks were obtained after affinity chromatography analy-
sis indicating the presence of several subpopulations of conformers with variable ability
to interact and coordinate to the Ni2+ of the resin. The specific activity of the resulting
protein peaks appeared to be related to higher helical content in the structure. In addi-
tion, the results linked the presence of more compact conformations to higher thermal
stability. We expect that this type of analysis will be useful for understanding the confor-
mational complexity of IB proteins and selecting the best-fitted population of native-like
containing conformers from a complex mixture of protein species released from IBs under
non-denaturing conditions.

2. Results and Discussion
2.1. Protein Production of Soluble MMP-9 in IBs

Mammalian MMP-9 is an aggregation-prone protein when recombinantly produced
in prokaryotic expression systems, such as E. coli and L. lactis, being necessary to purify the
soluble version from IBs [19]. Thus, the soluble form of prone-to-aggregate proteins, such
as MMP-9, can only be obtained from bacterial IBs by using denaturing or non-denaturing
procedures [11,13,20–23]. Recovering protein species in an active state by refolding pro-
tocols from denatured proteins is time-consuming and results in variable performance
efficiency. For these reasons and based on the discovery of bioactive protein conformations
as an important IB component, the application of non-denaturing solubilization protocols
has become a promising alternative [12,13,21]. However, the heterogeneous nature of the
protein forms released from IBs has not been studied. Herein, we have analyzed the differ-
ent active conformers derived from the protein pool obtained after solubilizing MMP-9
protein from IBs of two generally recognized as safe (GRAS) microorganisms (Clearcoli and
L. lactis). In both cases, the protein was primarily detected in the insoluble cell fraction as
expected (data not shown). In the case of Clearcoli, the expression of the recombinant gene
had a clear negative effect on the overall fitness of the cultures since the final OD550 of the
cultures remained at the same level or slightly higher than the initial pre-induction values
(Appendix A, Table S1).
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2.2. Solubilization of Recombinant MMP-9 from IBs

Solubilization of MMP-9 from IBs of L. lactis and Clearcoli is shown in Figure 1a.
Despite the release of the recombinant protein during the processing of the IB samples (see
lanes Pellet (the content of IBs after resolubilization), SN1 (soluble cell fraction), SN2 (first
washing of IBs), and SN3 (second washing of IBs)), a significant amount of the protein was
detected in the soluble fraction in SN4 (solubilized proteins from IBs) after incubation with
solubilization buffer (containing 0.2% N-lauroylsarcosine) of both L. lactis and Clearcoli
IBs. During the solubilization step, the anionic detergent interacts with MMP-9 through
its hydrophobic tail. Detergents might form micelles when achieving the critical micelle
concentration (CMC), inducing the denaturation of the protein. However, the CMC of
N-lauroylsarcosine is 14.6 mmol/L (ref Bagheri 2019), which was not reached in the tested
conditions at 6.8 mmol/L (0.2%). Some protein bands of an apparent molecular weight
similar to MMP-9 were detected in the SN2, SN3 and Pellet samples in Clearcoli. However,
in Western blot analysis, those protein bands were not identified as MMP-9. Although the
efficiency of protein solubilization from IBs was variable [13] in the expression systems
evaluated here, a substantial proportion of MMP-9 protein in IBs was released, allowing
further purification.

2.3. Purification of Recombinant MMP-9 by Affinity Chromatography

Affinity chromatography of the solubilized MMP-9 from L. lactis and Clearcoli gen-
erated four protein peaks containing MMP-9 (Figure 1b). The identity of MMP-9 was
observed in each of the protein peaks (Figure 1a, lower panels). It has been described that
recombinant MMP-9 forms mixtures of monomers with higher oligomeric species [24], and
positive protein bands of high molecular weight were observed at least in the protein sam-
ples purified from L. lactis, indicative of the presence of oligomers. The low total amount
of purified protein from Clearcoli was not enough to reveal the presence of oligomers
under the tested experimental conditions. The presence of different protein peaks in the
pool of solubilized protein indicates the coexistence of several protein conformers with
dissimilar affinities for the Ni2+-loaded resin. The variable affinity of the protein forms for
the columns may be due to local conformational changes of the His-tag or to the presence
of protein conformers with dissimilar occupancy of the seven Zn2+-binding sites in the
protein (UniProt P52176; Figure S2). The empty binding sites may interact with the coordi-
nated Ni2+ displayed on the resin [25]. On the other hand, we have detected more than
one elution peak in IMAC chromatography by using similar IB solubilization protocols
in other families of proteins apart from metalloproteinases, suggesting that the presence
of active folding intermediates in the solubilization mixture from IBs is not exclusive for
metal-containing proteins (Figure S3). However, we cannot rule out the possibility that in
the case of MMP-9, the distinct level of occupancy of the metal-binding sites may affect the
distribution of conformational populations. In addition, we can consider the possibility
that each protein peak was stabilized by a unique interaction with the detergent. In any
case, irrespectively of the final yield of protein recovery in each of the peaks (compare the
peak height for the two expression systems and the final yield in Figures 1b and 2a, respec-
tively), a multi-peak elution profile was obtained for both expression systems (Figure 1b).
However, the purity between the equally numbered protein peaks was not homogeneous.
In fact, peak 1 obtained from Clearcoli included a great proportion of contaminant proteins
and was discarded for further analysis (Figure 1a). Another case to mention was peak 3 of
Clearcoli (62. 5% purity), which was still included in protein characterization experiments as
the contaminant protein bands were also detected in protein peak 2 of Clearcoli, considering
then a similar interference between protein samples. In addition, equivalent peaks from
each expression system eluted at different imidazole concentrations (Figure 1b insets),
indicating that they may correspond to distinguishable protein conformational populations
between both expression systems [26]. Several attempts were made to purify the low
quantity of recombinant protein accumulated in the soluble cell fraction to obtain a quality
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control reference. However, this protein version was difficult to purify and had a great
tendency to aggregate under the tested experimental conditions.
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Figure 1. Detection of protein bands from inclusion bodies (IBs) produced in L. lactis (left) and
Clearcoli (right) obtained during solubilization procedure. For each expression system, SDS–PAGE
(above) and Western blot analyses (below) are shown (a). Immobilized metal affinity chromatography
(IMAC) chromatograms for purifications of solubilized MMP-9 samples produced by L. lactis (left)
and Clearcoli (right). Blue lines depict the absorbance signal (mAU) along the elution process and
green lines the elution buffer (EB) gradient progress. The corresponding concentration of imidazole
(mmol/L) is indicated for each eluted peak in the inset (b). SN1: soluble cell fraction of the cell lysate;
SN2: soluble protein content after the first wash of the insoluble cell fraction; SN3: soluble protein
content after second wash; pellet: pellet after solubilization of IBs with N-lauroylsarcosine; SN4:
proteins solubilized from IBs after N-lauroylsarcosine treatment; FT: Flow-through; W: wash; P1-P4:
protein peaks. M: molecular weight marker in kDa.

2.4. Activity of the MMP-9 Protein Peaks of L. Lactis and Clearcoli Obtained from IBs

The highest activity of L. lactis protein peaks corresponded to peak 1, although no sig-
nificant differences were detected between peaks 1 and 2. Moreover, significant differences
were obtained between peaks 1 and peaks 3 and 4 (p = 0.0002) (Figure 2b). On the other
hand, Clearcoli protein peak 2 was the only one showing activity in this expression system
(p = 0.0002). In any case, the activity of each of the L. lactis protein peaks was significantly
higher than that of any of the protein peaks obtained from Clearcoli. This observation
supports the potential of this expression system as a promising alternative to E. coli for the
production of recombinant proteins [27]. These results clearly stressed that the selection of
this prokaryotic expression system has a clear impact on the final quality of the produced
recombinant protein.
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Figure 2. Table summarizing the yields for each peak, as mg of protein per peak per culture L (mg/L),
and their purity in % for each expression system. a Peak 4 of Clearcoli was purified in enough amount
to be quantified only once out of the 3 separate production experiments performed. Therefore, no
SEM is shown (a). Specific activity for the MMP-9 in each peak solubilized from IBs produced by L.
lactis and Clearcoli. Relative fluorescence units (rfu) refer to the fluorescence emitted by dye-quenched
gelatin along its degradation kinetics due to MMP-9 activity. Specific activity is expressed as rfu per
minute per MMP-9 mg (rfu/min/mg). Means and standard error of the mean (SEM) are depicted
for each MMP-9 peak (n = 4). Different letters (a to d) depict differences between protein peaks
(p = 0.002) (b).

2.5. Physicochemical MMP-9 Properties

In the biopharmaceutical industry, the biophysical characterization of therapeutic
proteins follows a rigorous and standardized process [28]. In addition, some specific
physicochemical methods are being established in protein structure studies [29]. However,
in many research laboratories, access to specialized equipment and trained personnel is
not common. In this case, the detection of more than one positive protein peak during the
purification process is not evaluated under the parameters of conformational quality. In
that sense, we selected some available methodological approaches to analyze the putative
correlation between protein conformational quality and biological activity in the different
protein peaks obtained during the purification process of MMP-9.

Interestingly, we detected a correlation between the affinity of the protein subpopula-
tions towards the Ni2+ (i.e., higher peak number in Figure 1b) and the size of the protein
species revealed by DLS (Figure 3a,b and Table 1), that is irrespective of the bacterial strain.
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Figure 3. Volume weighted distribution determined by dynamic light scattering (DLS) of MMP-9
peaks from, Clearcoli (a) and L. lactis (b). Far UV-circular dichroism (CD) spectra of MMP-9 peaks
from Clearcoli (c) and L. lactis (d). Experimental spectra (dotted lines) and fitted spectra (solid lines).
(See Materials and Methods Section 3.8).

Table 1. DLS, CSM and unfolding temperature of isolated elution protein peaks obtained from L.
lactis and Clearcoli IBs after solubilization. Values represent mean and SEM. Not determined (n.d.).
Polydispersity index (pdi).

Peak 1 Peak 2 Peak 3 Peak 4

Hydrodynamic diameter (nm)

Clearcoli
n.d. 21 ± 9 18.2 1 ± 5.3 n.d.

(pdi = 0.6) (pdi = 0.47)

L. lactis
6.5 ± 2.1 8.04 ± 3.2 15.7 ± 4.1 18.2 ± 4.1

(pdi = 0.7) (pdi = 0.5) (pdi = 0.7) (pdi = 0.7)

Center of spectral mass (CSM, nm)

Clearcoli n.d. 357 ± 0.5 361 ± 9 n.d.
L. lactis 354.82 ± 0.1 354.89 ± 0.07 354.75 ± 0.2 354.92 ± 0.3

Unfolding temperature (Tm, ◦C)

Clearcoli n.d. 69.54 ± 8.2 n.d. n.d.
L. lactis 60.6 ± 1.1 54.8 ± 0.7 52.4 ± 3.3 56.4 ± 2.5

1 This value corresponds to the smaller peak shown in Figure 3. The second peak (around 50 nm) displayed a
very broad size distribution.

In L. lactis, the protein size moves from 6–8 nm to approximately 20 nm or more,
suggesting an oligomerization event. In fact, according to the Wilkins equation [30], the
hydrodynamic diameter of recombinant protein MMP-9 in native corresponds to 5.2 nm,
which is close to the size detected for peak 1 in L. lactis (Table 1). However, the enzyme
functionality was also detected in samples of slightly higher hydrodynamic diameter (as
peak 2 from L. lactis). On the other hand, the hydrodynamic diameter calculated with
the same equation for the unfolded protein is 12.4 nm. Surprisingly, protein samples
with similar hydrodynamic diameters displayed enzymatic activity (protein peaks 3 and 4
of L. lactis and peak 2 of Clearcoli). Therefore, the higher dimensions of protein peaks
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could be explained by the presence of higher proportions of disordered structures (Table 2)
rather than a full unfolding process, at least in the case of protein peaks 3 and 4 of L.
lactis. In addition, as the size of the protein increases, the presence of alpha structure
seems to fade away (Figure 3d, Table 2), suggesting a link between oligomerization and the
secondary structure of the protein. In this context, MMP-9 from peaks 1 and 2 for L. lactis
and peak 2 for Clearcoli exhibited a higher percentage of α-helix structure (a particularly
noticeable minimum at around 208 nm (L. lactis) or at 210 and 222 nm (Clearcoli) that tends
to disappear in peaks 3 and 4 (Table 2). Moreover, MMP-9 from peak 3 (Clearcoli), which
contains more than one peak in the DLS analysis, revealed a β-sheet protein spectrum, as
an incipient minimum around 216 nm was observed (Figure 3a and Table 2). Such protein
conformational change concomitant with the oligomerization process has been previously
described during the controlled protein assembly as regular size protein nanoparticles [31].
However, it cannot be ruled out that the increase in the size of the proteins might be due to
the presence of disordered structures (Table 2).

Table 2. Secondary structure contents of the MMP-9 protein obtained by deconvoluting far-UV
CD spectra.

Peak 1 Peak 2 Peak 3 Peak 4

Clearcoli

Alpha helix n.d. 0.242 0.132 n.d.
Beta sheet n.d. 0.273 0.336 n.d.

Turns n.d. 0.217 0.213 n.d.
Disordered n.d. 0.266 0.319 n.d.

NRMSD n.d. 0.095 0.057 n.d.

L. lactis

Alpha helix 0.091 0.125 0.06 0.039
Beta sheet 0.389 0.377 0.349 0.409

Turns 0.197 0.198 0.197 0.196
Disordered 0.323 0.3 0.394 0.356

NRMSD 0.491 0.411 0.176 0.498
NRMSD: normalized root means square deviation.

Another important parameter for the enzymatic activity of MMP-9 is the presence
of metal ions. Therefore, in order to assess the Zn2+ occupancy in the protein conformers
present in the protein peaks, inductively coupled plasma mass spectrometry (ICP-MS) was
performed (Appendix A and Figure S4) as previously described [32]. Overall, the Zn2+

occupancy in all protein samples was below the expected molar ratio for this recombinant
protein with 7 putative binding sites (Figure S2A). Surprisingly, the amount of Zn2+ was
much lower for the protein samples obtained in L. lactis (Figure S4A), which corresponds
to the expression system where the maximum specific activity of MMP-9 was achieved
(L. lactis protein peak 1 and 2, see Figure 2b). In addition, in Clearcoli, protein peak 2, which
displayed the highest specific activity (Figure 2b), contained the lowest amount of Zn2+

(Figure S4A). Even though the presence of metal ions is relevant for the biological activity
of enzymes, in controlled experimental conditions, it has been described a negative impact
on the specific activity relative to the metal ion concentration [33]. In the results presented
here, most of the protein samples presented less than 7 Zn2+ ions per protein molecule,
except for protein peak 3 from Clearcoli (Figure S4A). Moreover, data obtained for Ni2+

showed a similar trend, detecting much more signal in Clearcoli than in L. lactis, and with
a concomitant increase in the amount of this cation while increasing the number of the
protein peak (Figure S4B). However, when the total amount of metal ions was calculated,
a clear proportional relationship between cation levels and protein peak number was
observed (Figure S4C,D). One possible explanation of the detection of enzymatic activity
on protein peaks with low content of metal cations would be the direct relationship between
the presence of metal ions and the oligomerization state of protein samples [34,35]. In fact,
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DLS results indicated an increase in size for protein peaks with lower enzymatic activity
(Figure 3).

Another structural parameter, namely CSM, was obtained from the intrinsic fluores-
cence (IF) spectra. This value is related to the tertiary structure of the protein, and its
increase indicates the hydration of the whole structure that, in many cases, accompanies
protein unfolding. Figure 4 and Table 1 show the CSM values from each protein peak and
from both bacterial hosts. Neither the supramolecular structure (DLS) nor the secondary
structure (CD) allowed us to appreciate the differences between the peak-corresponding
proteins produced in each expression system. However, at 25 ◦C, CSM values from L. lactis
were around 354 nm with modest variability, while the ones from Clearcoli exhibit higher
CSM values (Table 1 and Figure 4), which was probably related to the loss of the tertiary
structure. Moreover, it is important to highlight the high variability in the CSM values
observed when MMP-9 was obtained from Clearcoli.
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In Figure 4, we show the CSM thermal profile of each MMP-9 peak (raw data exempli-
fied in Supplementary Material Figure S4) and the statistical estimation of the Tm values
recorded in Table 1. As we discuss below, the highest structure-function quality and, at the
same time, lower variability on the estimation were observed in samples from peak 2. In
the case of Clearcoli, the sample from peak 2 was the only one that showed reliable data.

In biophysical terms, the native state of proteins is described as that of minimum
energy with a limited number of conformational structures (or low conformational en-
tropy) [36]. However, in many cases, the unfolded to native form transition occurs by a
multistep folding process with the generation of conformation intermediates [37,38]. In this
sense, the structure variability detected in different positive MMP-9 protein peaks after IB
solubilization is in accordance with the presence of folding intermediates entrapped in the
IBs irrespectively of the expression system. In addition, after the detailed physicochemical
analysis of the individual protein peaks, we can conclude that the second protein peak
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contained the protein in its best conformational state and presents the lowest variability
regardless of the bacterial producing system. According to this analysis, the MMP-9 protein
species from peak 2 produced in L. lactis contained the most structured and functional
protein conformers.

3. Materials and Methods
3.1. Bacteria Strains and Plasmids

The Lactococcus lactis subsp. cremoris NZ9000 mutant (clpP−, htrA−, EmR) strain,
provided by INRA (France; patent n. EP1141337B1) was transformed with a pNZ8148
plasmid with chloramphenicol resistance gene (CmR) (MoBiTech GmbH, Goettingen, Ger-
many) previously cloned with the DNA insert encoding for a bovine MMP-9 fragment
(Phe107-Pro449, NCBI, NM_174744.2) [15].

The same DNA fragment encoding for the bovine Phe107-Pro449 MMP-9 was cloned
(NcoI/HindIII restriction sites) into a pETDuet plasmid (Novagen, Madison, WI, USA)
bearing the ampicillin resistance gene (AmR) and transformed in Clearcoli® BL21(DE3)
(Lucigen, Middleton, WI, USA) by electroporation (Appendix A).

The DNA fragment in both expression vectors was C-terminally fused to a 6His-
tag and codon-optimized for L. lactis (GeneArt, Thermo Fisher, Waltham, MA, USA;
Figure S1) [15].

3.2. Bacteria Strains and Plasmids

Batch cultures of L. lactis were grown at 30 ◦C in static cultures with M17 broth con-
taining 0.5% glucose, 5 µg/mL chloramphenicol (Cm) and 2.5 µg/mL erythromycin (Em).
Inductions of re-inoculated cultures were done with 12.5 ng/mL nisin at 0.4–0.6 OD600 for
3 h to get the recombinant protein expression.

Batch cultures of Clearcoli were grown at 37 ◦C in a shaker at 250 rpm with lysogeny
broth (LB; 10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl) and 100 µg/mL ampicillin.
Inductions of re-inoculated cultures were done at 1 mmol/L IPTG when cell suspensions
reached 0.6–0.8 OD550. The cultures were then incubated at 30 ◦C and 250 rpm for 3 h
(for protein production). Bacteria were harvested by centrifugation at 6000× g for 30 min
at 4 ◦C.

3.3. Protein Purification

Soluble MMP-9 was obtained by protein solubilization from IBs as described [11]. For
each solubilization process, five samples were generated: SN1 (i.e., supernatant 1, soluble
cell fraction of the lysate), SN2 and SN3 from washes of the insoluble cell fraction after cell
lysis, SN4 and the cell pellet obtained after solubilization with mild detergent incubation.
The MMP-9 protein contained in SN4 was purified by affinity chromatography in an ÄKTA
Pure fast protein liquid chromatography (FPLC) system (GE Healthcare, Chicago IL, USA)
(Appendix A).

3.4. Protein Detection, Yield and Purity

The different protein fractions collected after the purification process were analyzed
by SDS–PAGE and Western blot analyses. Briefly, a small aliquot of each fraction was
independently mixed (1:1) with Lemmli buffer. Then, the different samples were boiled at
90 ◦C for 10 min and subsequently charged in a polyacrylamide gel. Samples containing
aggregated protein (pellets) were boiled for 40 min. The electrophoresis was run in a buffer
containing 0.1% of sodium dodecyl sulfate (SDS).

Positive protein bands were detected by Western blot. The conditions used were
anti-his-tag monoclonal primary antibody (Santa Cruz Biotechnologies, Inc., Santa Cruz
Biotechnologies, Inc., Dallas, TX, USA; scv-57598) used at 1:1000 dilution, and 6xhis mon-
oclonal antibody (Takara Bio Inc., Kusatsu, Japan; 631212) used at 1:6000 dilution for L.
lactis and Clearcoli, respectively, and goat anti-mouse secondary antibody at 1:5000 dilution
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(Bio-Rad Laboratories Inc., Hercules, CA, USA; 170–6516). The images were acquired with
the ChemiDoc™ touch imaging system (Bio-Rad Laboratories Inc., Hercules, CA, USA).

Soluble MMP-9 in each peak was quantified by NanoDrop (Thermo Fisher Scientific,
Waltham, MA, USA) using the MMP-9 parameters (ε: 70,080 mol/L−1 cm−1; ProtParam-
ExPASy) and yield for each peak was obtained. The purity of MMP-9 peaks was analyzed
by Coomassie blue or TGX (Bio-Rad Laboratories Inc., Hercules, CA, USA) staining using
ImageLab software version 6.1.0 (Bio-Rad Laboratories Inc., Hercules, CA, USA). Briefly,
measurements of the volume of the protein bands in each lane were considered as 100%
of the protein content in the sample, and the volume of the protein band corresponding
to MMP-9 was used to calculate the percentage it represents in the total protein bands in
the lane.

3.5. MMP-9 Activity Determination by DQgelatinTM Degradation Kinetics

MMP-9 activity for each eluted peak from both L. lactis and Clearcoli® BL21(DE3)
productions was quantified by dye-quenched gelatin (DQgelatin™, Thermo Fisher Scien-
tific, Waltham, MA, USA) degradation kinetics (Appendix A). Specific activity for MMP-9
peaks was extracted for each sample by obtaining the initial velocity from the kinetics data
(relative fluorescence units per minute, rfu/min) and correcting it by the MMP-9 mg in the
wells (rfu/min/mg).

3.6. Dynamic Light Scattering (DLS)s

The volume size distribution of MMP-9 from each chromatographic peak was deter-
mined at 0.15 mg/mL in 20 mmol/L Tris-HCl pH 8 and 5% glycerol by DLS at 633 nm
(Zetasizer Nano ZS, Malvern Instruments Limited, Malvern, UK). Samples were main-
tained at 25 ◦C. According to the Stokes–Einstein equation, the DLS algorithm calculates
the hydrodynamic radius or hydrodynamic diameter from the diffusion coefficient of the
particles [39].

3.7. Determination of Intrinsic Fluorescence

Fluorescence spectra were recorded in a Cary Eclipse spectrofluorometer (Agilent Tech-
nologies, Mulgrave, Australia). A quartz cell with 10 mm path length and a thermostated
holder was used. The excitation and emission slits were set at 5 nm. Excitation wavelength
(λex) was set at 295 nm. Emission spectra (λem) were acquired within a range from 310 to
450 nm. The protein concentration was around 0.2 mg/mL in 20 mmol/L Tris-HCl pH 8
and 5% glycerol. Spectrum from each peak and of each bacterial strain was performed in
triplicate. In order to evaluate the conformational difference between the proteins of each
peak, we decided to calculate the center of spectral mass (CSM) for comparisons. CSM is a
weighted average of the fluorescence spectrum peak. In addition, it is related to solvent
exposure of the Trp. The maximum red-shift in the CSM of the tryptophan is compatible
with a large solvent [20,40,41] and consequently a highly unfolded conformation.

The CSM was calculated for each of the fluorescence emission spectrum [42] according
to Equation (1), where Ii is the fluorescence intensity measure at the wavelength λi.

λ =
∑ λi Ii

∑ Ii
(1)

We also performed thermal unfolding analyses by measuring Trp fluorescence as a
function of the temperature. For this approach, the heating rate was set at 1 ◦C/min.

3.8. Circular Dichroism (CD)

Measurements were made with a Jasco J-715 spectropolarimeter (JASCO, Oklahoma
City, OK, USA) with a thermostated device by a Peltier system spectropolarimeter using
a 1 mm path length quartz cell. Each spectrum was an average of six scans. The protein
concentration was around 0.1–0.2 mg/mL in 20 mmol/L Tris-HCl pH 8 and 5% glycerol.
Scan speed was set at 50 nm/min with a 1 s response time, and measurements were
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carried out in the 200–240 nm region. Each final spectrum was obtained from two or
three replicas. The ellipticity values were transformed in “mean residue ellipticity” as
previously described [31]. The relative secondary structure contents of the protein from
each peak was obtained by deconvoluting its far-UV CD spectrum by using the CONTIN-
LL algorithm [43,44] run on the DichroWeb server [45].

3.9. Statistical Analysis

Data for the determination of MMP-9 activity by DQgelatin™ degradation kinetics
were analyzed using a mixed-effects model, using SAS 9.4 (SAS Institute Inc., Cary, NC,
USA). Replicates (n = 12 for peaks 2 and 3 obtained in Clearcoli; n = 9 for all peaks in
L. lactis, and for peak 1 in Clearcoli; n = 4 for peak 4 in Clearcoli) were included as a
random effect; strain, peak and their interaction were included as fixed effects. Differences
between multiple means were further established using Tukey’s test. Data were previously
transformed to a natural logarithm to achieve a normal distribution when needed. Results
are expressed as means and standard error of nontransformed data.

The values of melting temperature (Tm) were determined by fitting the experimental
data from the CSM versus temperature plot to a sigmoidal equation of four parameters by
a computer-aided nonlinear regression analysis by the least-squares method.

In order to evaluate the variability of CSM values within the thermal profile, we
showed the 95% prediction interval. This region illustrates the standard deviation of
experimental data with respect to the estimated value.

4. Conclusions

Many recombinant proteins used for biopharmaceutical and industrial purposes are
obtained from IBs. Despite the development of different protocols for the recovery of
functional proteins from these aggregates, there is an unmet need for analytical methods
to evaluate the conformational and functional status of the proteins released from IBs. In
this study, the physicochemical analysis of MMP-9 protein peaks rescued from IBs of two
endotoxin-free prokaryotic expression systems revealed the presence of different pools of
protein conformers with specific structural characteristics. The oligomeric status of these
protein forms, together with the content in alpha helices and the corresponding thermal
stability, had an impact on the specific activity of the protein pools. This type of analysis can
provide comprehensive views of the conformational heterogeneous nature of the folding
intermediates released from IBs as well as allow for the rational selection of the best-fitted
populations of protein forms.
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7/22/6/3020/s1, Figure S1: L. lactis codon-optimized DNA encoding sequence of the cloned Bovine
MMP-9 fragment, Figure S2: Amino acid sequence of the recombinant Bovine MMP-9 protein from
Phe107 to Pro449 (NCBI, NM_174744.2). Figure S3: Purification of GW-H1-IFNγ in E. coli BL21(DE3)
by IMAC, Figure S4: ICP-MS quantification of metal ions (Zn2+ and Ni2+) in purified recombinant
MMP-9 protein samples [46], Table S1: Impact on bacterial culture growth of MMP-9 gene expression
in L. lactis and Clearcoli [47].
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Appendix A

Appendix A.1. Bacterial Strains and Plasmids

Electroporation of Clearcoli was performed using Gene Pulser from Bio-Rad fitted with
2500 V, 200 Ω and 25 µF in a pre-cooled 2 cm electroporation cuvette. Then, the samples
were supplemented with 900 µL of LB medium and incubated for two h at 37 ◦C. After
this, 100 µL of the incubated mixture was plated and incubated overnight at 37 ◦C.

Appendix A.2. Protein Purification

Briefly, for L. lactis, each 500 mL of the bacterial pellet was suspended in 30 mL PBS
containing protease inhibitors (EDTA-free Complete cocktail, Roche, Basel, Switzerland)
and was subjected to 4 rounds of cell disruption by French Press at 1500 psi. After cell
disruption, lysozyme was added to a final concentration of 0.05 mg/mL and lysates were
incubated at 37 ◦C for 2 h and 250 rpm before washes. In the case of Clearcoli, cell pellets
were resuspended in 20 mmol/L Tris-HCl pH 8 at 60 mL/g dry weight containing protease
inhibitors (EDTA-free Complete cocktail, Roche) and were subjected to 3 rounds of cell
disruption by French Press at 1200 psi. Cell lysates were centrifuged at 15,000× g for 30
min at 4 ◦C obtaining supernatant 1 (SN1) and pellet. Pellets were washed twice in Milli-Q
water and centrifuged at 10,000× g for 30 min at 4 ◦C (generating samples SN2 in the first
wash and SN3 in the second). All supernatants and pellets were stored at −80 ◦C and
saved for further quality control analysis. Pellets were suspended in solubilization buffer
(40 mmol/L Tris pH 8 with 0.2% N-lauroylsarcosine) at a ratio of 40 mL per g of pellet and
were incubated in agitation (roller mixer) for 40 h (L. lactis) and 24 h (Clearcoli) at RT. The
protein solution was centrifuged at 15,000× g and at 4 ◦C for 45 min, and the supernatant
(SN4) containing the solubilized MMP-9 was filtered and purified by immobilized metal
affinity chromatography (IMAC) using 1 mL-HiTrap chelating columns (GE Healthcare)
in an ÄKTA purifier FPLC system (GE Healthcare). Binding and elution buffers both
contained 0.2% N-lauroylsarcosine as well as 20 mmol/L Tris pH 8 and 500 mmol/L NaCl.
In addition, binding and elution buffers were prepared with 20 mmol/L and 500 mmol/L
imidazole or 10 mmol/L and 500 mmol/L imidazole for L. lactis and Clearcoli, respectively.
The MMP-9 peaks were split by holding the elution buffer gradient at each increase in
the absorbance signal in the chromatogram. The eluted peaks were dialyzed separately
O/N against 20 mmol/L Tris-HCl pH 8 and 5% glycerol at 4 ◦C with gentle agitation,

http://www.nanbiosis.es/unit/u1-protein-production-platform-ppp/
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centrifuged at 15,000× g for 15 min at 4 ◦C to remove possible precipitated protein and
quantified. Aliquots were stored at −80 ◦C.

Appendix A.3. MMP-9 Activity Determination by DQgelatinTM Degradation Kinetics

Briefly, for all MMP-9 peaks, 1 µg MMP-9 was plated in a transparent flat-bottom
black 96-well plate in triplicate, at a final volume of 150 µL in assay buffer (5 mmol/L
CaCl2, 50 mmol/L Tris pH 7.6, 150 mmol/L NaCl, 0.01% Tween20). Immediately after
adding 0.25 µg of DQgelatin™ per well, the plate was bottom-read every two minutes
for 2 h in a fluorescence microplate reader (Victor III multilabel counter, PerkinElmer) at
495/515 nm (excitation/emission wavelengths).

Appendix A.4. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Analysis

Zn2+ and Ni2+ metal ions present in MMP-9 protein samples were analyzed on an ICP-
MS Agilent 7500ce instrument (Santa Clara, CA, USA). Briefly, 100 µL of MMP-9 protein
samples in 20 mmol/L Tris-HCl pH 8 and 5% glycerol were dispensed into individual
polypropylene tubes in technical duplicates. Protein samples were incubated with 100 µL of
HNO3 at 80 ◦C for 30 min. The digested solutions were diluted up to a final volume of 2 mL
with deionized water. The samples were analyzed by conventional ICP-MS for the detection
of the metal elements Zn2+ and Ni2+. Sample analysis and operation of the ICP-MS were
done according to CCiTUB (www.ccit.ub.edu) in-house standard operating procedures.
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