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Abstract—Using AI for agriculture requires the fast trans-
mission and processing of large volumes of data. Cost-effective
high speed processing may not be possible on-board agricultural
vehicles, and suitably fast transmission may not be possible with
older generation wireless communications. In response, the work
presented here investigates the use of 5G wireless technology to
support the deployment of AI in this context.
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I. INTRODUCTION

The agricultural workforce in the UK is both ageing and
shrinking in numbers threatening food security of the UK. One
response is increased automation, employing robotics and AI
to lighten the load on UK farmers [2]. This has the advantage
of increasing sustainability, since it allows for more precise
targeting of fertilizers, herbicides and pesticides.

For example, herbicide is used to control weeds in fields
with young crops. The herbicides are selective, so do not
damage the crop, but kill the weeds. Currently, entire fields
are sprayed to ensure all weeds are treated. This is waste-
ful, spraying areas that do not contain weeds. Advances in
computer vision mean sprayers can be equipped to only spray
where there are weeds to kill. Such an approach is estimated
to save up to 90% [6] of the herbicide currently used.

Applications of AI in agriculture, which include the use
of robots for fruit harvesting and yield estimation as well as
weed and pest control, use cameras as their primary sensors.
State-of-the-art methods for processing these images are based
on deep learning. They therefore have heavy computational
demands which may not be met by the relevant vehicles,
either because of the power required, or because it is not
cost-effective to equip every vehicle with a suitable computer.
As a result, the computation may be delivered better through
edge or cloud computing. However, this creates a further
demand: that of transmitting the data from farm vehicles to
the processing. For a field sprayer with a standard 24 meter
boom, a spray nozzle per meter and HD cameras associated
to each nozzle to scan the ground below it, this can involve
transfer rates approaching 1 GBit/s which are beyond WiFi
and 4G wireless links.
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In the remainder of this paper we present pilot results from
work to demonstrate how 5G wireless can handle such a load.

II. NETWORKING EXPERIMENTS AND RESULTS

As an experimental platform, we are using a Leo Rover
robot (illustrated in figure 1) equipped with a Raspberry Pi
4 and two 5G-SA (stand-alone) enabled mobile phones. The
experiments were split into two parts, to evaluate WiFi and
5G network performance. The WiFi network used the 2.4GHz
band and the 5G network used the N78 band, which was
provided by the 5G mobile phones located on top of the
robot platform. In the experiment setup, the Rover (under
human control) followed a fixed path while streaming a video
of a sequence of images (at a resolution of 1920x1080 and
running at 30 frames-per-second) using a wireless connection.
The video stream was compressed over the network (H.264)
and the throughput was on average 7.64Mbps for WiFi and
6.86Mbps for 5G. The throughput for 5G is 10% better than for
WiFi. Due to the H.264 traits, the more unstable the connection
the worse the compression algorithm performs [5].

Fig. 1: The Leo Rover setup for 5G. The item in the orange
circle is a 5G mobile phone enabled with 5G-SA connectivity.

During the trials, the WiFi station was at a distance of ≈10
meters from the robot, and the 5G antenna was on the roof of
a building at a distance of ≈130 meters. For both connections,
we evaluated the latency; latency is the time taken for data to
travel to the destination and get back to the sender device.
To do so, we measured, in milliseconds (ms), the difference
between the time when a data packet was sent and the time
when the sender got the packet acknowledgement. Figure 2
shows the latency results of the WiFi and 5G networks. The
average latency for 5G is ≈18ms and WiFi is ≈227ms, which
is over 12 times greater. The lower latency average and the
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Fig. 2: Latency plot. Note the different y-axis scales between
the top (WiFi) and bottom (5G) plots. The maximum latency
for 5G is two orders of magnitude lower (better) than for WiFi.

smaller standard deviation for 5G over WiFi indicates that 5G
communications are more stable and consistent.

III. VISION RESULTS

As an example task, we are considering spraying for weeds,
as described above. From a machine vision perspective, this
means running an object detector on image data from the
vehicle. However, fast and accurate detectors require GPUs
with high specifications, which, in most of the times, cannot
be mounted on autonomous systems because high-end GPUs
require a lot of energy and need to remain steady. As discussed
above, a potential solution is to place the necessary GPU on
a remote server at risk of the transmission medium being too
slow or unreliable and limiting the vehicle’s mobility. How-
ever, our experiments suggest that a robot can communicate
with a GPU processor without significant issues with latency,
and hence reliability, if we are using 5G.

Another potential issue is the speed with which the object
detector can operate. We evaluated this using an object detector
to identify weeds within a sugar beet crop. The object detector
was YOLO5l, which is a one-stage object detector based
on a YOLOv4 [1] architecture with a backbone based on
CSPNet [7], a PA-NET neck [4], mosaic data augmentation,
and auto learning bounding box anchors. The size of the model
on the GPU is 3.9GB We trained this detector using the dataset
provided in [3], which contains pictures of sugar beets and
field bindweed with their corresponding ground truth bounding
boxes (fig 3.a). The dataset split was 70% for training, 10% for
validation, and 20% for testing. The detector was trained over
300 epochs using a batch size of 16, an SGD optimiser with a
learning rate of 0.0001 and a momentum of 0.95, and a image
resizing strategy where the shortest image side is converted to
640 pixels and the longest size is resized to keep the original
image ratio. The resulting trained model couldn’t run on the
robot’s Raspberry Pi 4, because the Pi’s RAM does not meet
the memory requirements of the model (3.3GB). However, the
model can run suitably quickly on a GPU. Based on the speed
with which a single image frame is processed, this model

(a) Ground truth data (b) Prediction example

Fig. 3: Sugar beet images with (a) ground truth bounding boxes
and (b) predicted bounding boxes. Note that since this work
was too early in the season for sugar beet to be growing,
our initial experiments involved a simulated field made up of
photographs from [3].

locates sugar beets and weeds at a speed of 104 fps (frames
per second) on a GTX1050 Ti and 196 fps on a RTX2080 Ti.

We tested the trained model over wireless connections using
the setup in section II, where the images contained sugar beets
and weeds, and the remote device receiving the video stream
had a GeForce GTX1050 Ti to operate the detection model.
During the WiFi and 5G trials, the detector identified items
on the video frames at a speed of 50 fps. Fig. 3.b shows an
example of the bounding boxes inferred by the detector. These
results confirm that, with high-end GPUs, vision systems need
not be a bottleneck in the detection of items in a video stream
as long as the data transmission is fast enough.

IV. CONCLUSIONS AND FUTURE WORK

Robot communication over 5G networks is faster and more
reliable than WiFi communications. Using 5G, we provided a
successful example of how the vision that is critical for agri-
robotics can be carried out on a remote computer.

Future experiments will test whether 5G networks can han-
dle more information (larger images, depth information) from
a single camera and information from multiples sources (more
cameras and more robots roaming the fields). A particular
challenge is scaling up to the number of cameras required
on a commerical sprayer.
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