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Abstract: Here we show how food and beverage manufacturers report more incisive sustainability
and product fulfilment outcomes for their business enterprises when innovative processing technolo-
gies are used. The reported steam infusion technology heats food materials within a Vaction Pump
device so that steam is directed into the food material within a much reduced volume, reducing the
use of steam and processing time. This study reports how such technological interventions will en-
able supply chain stakeholders to demonstrate responsible consumption by connecting assessments
for the reduction of greenhouse gas emissions with consumer-focused outcomes such as product
quality. The technology reported in this research not only improves operational agility by improving
processing speed, but also improves the responsiveness of factory production to changes in demand.
Heating procedures are systemic processes in the food industry that can be used to pasteurize,
achieve commercially viable shelf-life, and provide cleaning in place. The reported research defines
how these technologies can reduce the carbon footprint of products, improve quality attributes,
and lower operating costs across supply chains. They provide an important step in developing
distributed manufacturing in the food system because the technologies reported here are modular
and can be installed into existing operations. The specific technology can reduce energy consumption
by 17.3% compared to basic direct steam heating, with a reduction of 277.8 processing hours and
8.7 tonnes GHG emissions per kettle production line each year. Food and beverage manufacturers are
increasingly required to report across the sustainability, nutrition, and product quality outcomes of
their business enterprises more incisively so that supply chain stakeholders can demonstrate respon-
sible production and consumption. The steam infusion technologies assessed in this research enable
alignment to the UN Sustainable Development Goals, specifically SDG12, Responsible Production
and Consumption, using in situ data logging in factory trials for novel heating procedures used to
process foods.

Keywords: sustainability; consumers; steam infusion; food processing; steam infusion

1. Introduction

The merits of integrating efficient processing into food manufacturing operations are
fully realised when they result in the sustainable outputs of improved resource utilisation,
reduced food waste, and reduced greenhouse gas (GHG) emissions [1]. The research
reported in this article establishes how food engineering applications can be integrated
with sustainability reporting and consumer quality outcomes. While the change-agent
is the technology (the VactionTM Pump device, manufactured by Olympus Automation
Ltd. (OAL), Peterborough, UK), it is the connection to GHG emission, process time, and
product quality that become transformative and are the focus of this research. The domi-
nant direct energy consuming processes in food manufacturing factories are often heating
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operations, and innovative Steam Infusion cooking is tested here to highlight transforma-
tional changes across food manufacturing practices. The Steam Infusion technologies in
this study have been developed and tested with OAL (OAL, Peterborough, UK) in the UK
so that the improvements in manufacturing resilience in the food system made by using
this technology can be reported. The Steam Infusion technology and equipment developed
by OAL is patented and trademarked as the VactionTM Pump (see, Steam Infusion, see
https://steaminfusion.oalgroup.com/ (accessed on 21 April 2020), personal communi-
cation from OAL). An ideal benefit of advanced processing technologies is the potential
to integrate them into existing operations and develop a framework for reporting the
sustainability attributes associated with every product. This is of specific use in adopting
Industry 4.0 approaches, where there is a requirement to re-engineer existing processes
to provide safer and more efficient outcomes through distributed manufacturing frame-
works. Improving resource utilisation across supply chains is reliant on manufacturers
investing in processing research and development (R&D), and the capacity for individual
companies to do this varies [2]. It is typically determined by the ability of food companies
to relate technology to return on investment (ROI), which is assessed in terms of improved
production capacity, revenue generation, and increased brand value [3].

While each of these ROI attributes are well understood, the financial barriers to
investing in sustainable technologies are often only reduced during reactive situations de-
termined by crises that identify low resilience [4]. The current COVID-19 crisis has exposed
critical points where there is low resilience and has highlighted aspects of food supply
that confer greater resilience. One supply chain action identified as important to change is
the increased supply or flow of product in response to intensified changes in demand. If
production can be changed quickly so that it is responsive or resilient to changes in demand,
then the restriction of supply can be ameliorated at the system level. The importance of
COVID-19 has been identified at food system levels and technologies that can provide
safe and modularised solutions that will offer the greatest benefit to many manufacturers
because they can distribute controlling actions at critical points in supply chains [5]. The
sustainability attributes of food manufacturing have not been a priority in this reactive
space for many consumers because price and quality will still dominate purchase choice.
Direct cost and volume attributes also dominate the route from new product development
(NPD) and the scaling-up into production through to retailed manufactured product. This
is changing because the ability to connect consumer experience to sustainability values has
become a priority for many foods businesses. Sustainability credentials will strengthen
brand values systemically across supply chains, and the inference of improved product
leadership and safety in the food and beverage industries will strengthen ROI outcomes in
future.

Advanced processing technologies must provide methods of effectively delivering
sustainability attributes into production by reducing manufacturing time and energy con-
sumption per product. The financial cost of restructuring and integrating new processing
into existing operations will be dependent on the ability to utilise R&D capability in what
is a highly fragmented industry where food and beverage accounts for 13.3% of the total
EU-28 manufacturing sector with a turnover of EUR 945 billion. Over 93% of companies in
this industry have less than 250 employees and are classified as small and medium sized
enterprises (SMEs). The development of technologies that are system specific rather than
product specific means that they are integrated into existing plant and production lines,
which is of clear benefit to an industry where SME investment is critical to change. This
is the case for the Steam Infusion technologies demonstrated here, which reduce the heat
consumption of manufacturing operations, and they have been used for several product
categories including soups, sauces, and beverages. Industry 4.0 and Internet of Things (IOT)
technology will begin to provide the added value of data collection at these integration
points in processing, and this is demonstrated in the research reported here [6]. Advanced
processing through heating technologies such as Steam Infusion have the potential to
transform the food and beverage industry by reducing production downtime because they

https://steaminfusion.oalgroup.com/
https://steaminfusion.oalgroup.com/


Foods 2021, 10, 1763 3 of 13

increase the speed of batch processing or provide continuous flow processing. This results
in products reaching consumers in optimal quality through supply chains where there is
greater ability to ensure production meets demand. This has important implications for
meeting the Sustainable Development Goals (SDGs), and in the study presented here, it is
SDG 9 (Industry, Innovation, and Infrastructure) and 12 (Responsible Consumption and
Production) that are considered to be of the most importance [7].

Energy balance has an important impact on the preservation and packaging methods
used, and improved efficiencies at these control points do have an impact on sustainability
outcomes [8]. The integration of advanced processing heating technologies into these
value streams is important because they are known to be a significant part of the carbon
footprint for manufactured foods [9]. The systemic improvements of the Steam Infusion
technologies reported here are evident in manufacturing schedules and show that they
have the capacity to be effectively started and stopped or to have adjustments made to
respond to demand changes and be more responsive to the distribution systems that
deliver optimal product quality with less wastage [10]. This study considers such demand
responsive production because it will be associated with the improved nutritional value of
products, increased productivity, and reduced food waste through the whole food system
because the viable shelf life is optimised. The distribution of brand value in the business
ecosystem is critically important, and many SME’s supply branded products as ‘own label’
or ‘own brand’ for large named retailers so that brand value is effectively owned by the
retailers. This relationship determines many routes for NPD and innovation where market
agility is often determined by consumer trends identified by retailers who are focussed on
the next priority consumer issue. The integration of heating technologies into development
processes shows how agile technology is critical to providing responsive NPD and systemic
change. When faster rates of processing decrease the heating-intensity experienced by a
product through improved heat transfer, this provides exciting outcomes that are explored
in this research.

2. Materials and Methods
2.1. The Steam Infusion Process

The research reported was carried out at the National Centre for Food Manufacturing
in a food factory demonstrator at Holbeach, UK. Steam Infusion is a technology that has
been applied to novel methods of cooking liquid foods [11]. It injects culinary grade
or ‘clean’ steam, into a liquid food inside a chamber where heating occurs. The typical
chamber used in the food manufacturing sector for conventional cooking is called a kettle.
It is jacketed in that the cooking or cooling process is separated from the heating or cooling
liquids (e.g., steam or cooled water) by a steel walled container that holds a jacket of steam
in the case of heating (Figure 1). The heat transfer in this conventional kettle, cooking
occurs through a steel wall, and it is not in direct contact with the food materials. Typically,
the kettle includes an internal agitator that scrapes the heated or cooled jacketed surface to
reduce the build-up of an insulating layer, which in the case of steam heating, provides
potential for Maillard reactions, resulting in burn-on to occur. The agitator also mixes
the liquid food, which improves heat transfer, increasing heating efficiency. The Steam
Infusion process is a direct contact heating process whereby steam is directly injected
into the liquid food via the Vaction™ pump, which may be located within the kettle or
within the recirculation line allowing the steam to be supplied from and returned to the
kettle. There are no moving parts within the liquid food path, and it uniquely uses steam
to simultaneously heat, mix, and pump the product. By changing the controlled steam
pressure, the processing conditions are changed within the Vaction™ Pump to achieve
the required product characteristics (Figure 2). The heating is achieved by the following
process actions:

1. Liquid food material is recirculated through the Steam Infusion Vaction™ pump,
where steam is accelerated to a high velocity before entering into the liquid food
stream via an annular nozzle (Figure 2). This process is conducted repeatedly with
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controllable temperature changes (∆t) between 1 ◦C and 30 ◦C, which are dependent
on steam pressure. Through multiple cycles, an overall temperature gradient, typically
up to 95 ◦C within the atmospheric kettle, is achieved. The product can be held at
this temperature using an insulated covering so that the food materials are typically
pasteurised and are cooked through to the required texture/consistency. Steam
Infusion is designed to cook the liquid food extremely quickly and efficiently using
steam that is under pressure and is in direct contact with food materials instead of
through a heated jacketed kettle wall. It also provides options for using traditional
kettle cooking to provide a ‘jacket and Steam Infusion’ production process. The trials
for Steam Infusion were tested in this reported research using the steam infusion
technologies developed by OAL (reported on-line through personal communication
to W Martindale by OAL, Steam Infusion Test Centre, 2020). Profiling within the
steam chamber can accelerate the velocity of the steam to 1000 m s−1 (3280 feet s−1),
which is above the speed of sound. The steam passes into the mixing chamber through
an annular nozzle disrupting the liquid food flow to form small droplets, referred to
as the vapour phase. The momentum transfers from the steam to the food material
and creates a partial vacuum of −0.7 barg (−10.1 psig) within the unit.

2. As the steam condenses into the liquid food droplets, the pressure rises. This is
referred to as the condensation shockwave, and it generates a pumping effect. The
small droplets within the low-pressure vapour phase offer a significantly increased
product surface area for the steam to condense into, typically resulting in a near
instantaneous temperature gradient of 10–15 ◦C (50–59 ◦F).

3. The very short residence times and partial vacuum within the unit prevent exposure
to excessive temperatures. There are no hot contact surface areas/hot spots, and
therefore, the Steam Infusion process prevents Maillard reactions and the resulting
burn-on.

4. An unrestricted Vaction™ Pump pumps at a rate of 50,000 kg/h (55 US t/h) in water
at 20 ◦C (68 ◦F), and the turbulent mixing conditions in the low-pressure vapour area
enhance the transfer of flavours. The Vaction™ Pump has an uninhibited bore of
47 mm (1.85 in), enabling particulates to freely pass through the unit with no damage.

Foods 2021, 10, x FOR PEER REVIEW 6 of 14 
 

 

(3) The volatile compounds in the product trials processed batches of a curry sauce that 
contained water (27% w/v), onion (7% w/v), tomato (15% w/v), rapeseed oil (5% w/v), 
tomato purée (10% w/v), ground spices (15% w/v), which comprised paprika, corian-
der, mustard, fenugreek leaf, and coriander leaf. The recipe used contained a modi-
fied maize starch (3% w/v), sugar (3% w/v), garlic purée (7% w/v), salt (3% w/v), and 
yeast extract powder (5% w/v). 
Three trials report the energy balance, process time impact, and volatile analysis of 

typical steam jacketed kettle and Steam Infusion Vaction™ processing. This provides a 
platform for assessing the systemic impact of Steam Infusion Vaction™ Pump processing 
in the food and beverage industries. The steam jacketed kettle used for the trials also in-
corporated a Steam Infusion Vaction™ Pump to support the consistency of the compari-
sons made. The Steam Infusion Vaction™ Pump used generated steam from an oil fired 
boiler and used the GHG conversion factors provided by the UK Greenhouse Gas Con-
version Factors for Company Reporting (Defra 2019) [13]. 

 
Figure 1. A conventional steam jacketed kettle used to heat batches of food materials. The kettle 
chamber is typically 1.5 m in diameter with a 1.5 m depth. 

 
Figure 2. The OAL Steam Infusion Vaction™ pump mounted in a cooking kettle with a scraped 
surface agitator. Image provided by OAL. 

2.3. Analysis of Food Volatiles for Steam Infusion Cooking 
Batches of a curry sauce produced by conventional steam jacket cooking and by 

Steam Infusion cooking were compared for different food headspace volatile compound 
composition using solid phase microextraction (SPME)-gas chromatography (GC)-mass 

Figure 1. A conventional steam jacketed kettle used to heat batches of food materials. The kettle
chamber is typically 1.5 m in diameter with a 1.5 m depth.



Foods 2021, 10, 1763 5 of 13

Foods 2021, 10, x FOR PEER REVIEW 5 of 13 
 

 

volume with water. The soup was cooked using the Steam Infusion Vaction™ Pump 
and using a steam jacket vessel method separately to compare performance.  

(2) The processing time trial provided further temperature assessments and demonstra-
tions of the Steam Infusion Vaction™ Pump data collection for water and a chocolate 
custard product. These were used as typical examples to show the diversity of prod-
ucts that can be processed with respect to time required to reach 90 C. These are re-
ported to demonstrate both the data collection and the Steam Infusion Vaction™ 
Pump processing times achieved under trial conditions. 

(3) The volatile compounds in the product trials processed batches of a curry sauce that 
contained water (27% w/v), onion (7% w/v), tomato (15% w/v), rapeseed oil (5% w/v), 
tomato purée (10% w/v), ground spices (15% w/v), which comprised paprika, corian-
der, mustard, fenugreek leaf, and coriander leaf. The recipe used contained a modi-
fied maize starch (3% w/v), sugar (3% w/v), garlic purée (7% w/v), salt (3% w/v), and 
yeast extract powder (5% w/v). 
Three trials report the energy balance, process time impact, and volatile analysis of 

typical steam jacketed kettle and Steam Infusion Vaction™ processing. This provides a 
platform for assessing the systemic impact of Steam Infusion Vaction™ Pump processing 
in the food and beverage industries. The steam jacketed kettle used for the trials also in-
corporated a Steam Infusion Vaction™ Pump to support the consistency of the compari-
sons made. The Steam Infusion Vaction™ Pump used generated steam from an oil fired 
boiler and used the GHG conversion factors provided by the UK Greenhouse Gas Con-
version Factors for Company Reporting (Defra 2019) [13]. 

 
Figure 1. A conventional steam jacketed kettle used to heat batches of food materials. The kettle 
chamber is typically 1.5 m in diameter with a 1.5 m depth. 

 

Figure 2. The OAL Steam Infusion Vaction™ pump mounted in a cooking kettle with a scraped
surface agitator. Image provided by OAL.

2.2. Data Collection during Processing

A total of three process trials are reported in this research to determine the (1) pro-
cessing energy and GHG balance, (2) processing time, and (3) volatile compounds in the
food materials from typical steam jacket processing and Steam Infusion Vaction™ Pump
heating. The time periods for cooking and processing were recorded for food material to a
defined set temperature during each trial using a data logger for each cooking stage. Heat
transfer was calculated during the cooking processes using the published specific heat
capacities of the food materials so that an assessment for the efficiency of the steam infusion
process could be made. The specific heat capacity (SHC) of product was calculated using
published data for each ingredient and allocating these data to the recipe used, giving a
mean SHC value [12]. Energy conversion factors for GHG emissions were obtained from
the UK Government reported conversion factors (from the UK Department for Business
Energy and Industrial Strategy 2020). The batch trials were as follows:

(1) The processing energy and GHG balance trial processed batches of vegetable soup
that had the following ingredients (specific recipe amounts are protected due to
commercial sensitivity): butter, cream, milk, cabbage, mushroom, onion, potato,
spinach, and tomato. As guidance, recipe typical amounts for a vegetable soup will be
35–45% w/v vegetables, 5% w/v butter, 5% w/v cream, 10% w/v milk, and processed
to 100% volume with water. The soup was cooked using the Steam Infusion Vaction™
Pump and using a steam jacket vessel method separately to compare performance.

(2) The processing time trial provided further temperature assessments and demonstra-
tions of the Steam Infusion Vaction™ Pump data collection for water and a chocolate
custard product. These were used as typical examples to show the diversity of prod-
ucts that can be processed with respect to time required to reach 90 C. These are
reported to demonstrate both the data collection and the Steam Infusion Vaction™
Pump processing times achieved under trial conditions.

(3) The volatile compounds in the product trials processed batches of a curry sauce that
contained water (27% w/v), onion (7% w/v), tomato (15% w/v), rapeseed oil (5%
w/v), tomato purée (10% w/v), ground spices (15% w/v), which comprised paprika,
coriander, mustard, fenugreek leaf, and coriander leaf. The recipe used contained
a modified maize starch (3% w/v), sugar (3% w/v), garlic purée (7% w/v), salt (3%
w/v), and yeast extract powder (5% w/v).

Three trials report the energy balance, process time impact, and volatile analysis of
typical steam jacketed kettle and Steam Infusion Vaction™ processing. This provides a
platform for assessing the systemic impact of Steam Infusion Vaction™ Pump processing
in the food and beverage industries. The steam jacketed kettle used for the trials also incor-
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porated a Steam Infusion Vaction™ Pump to support the consistency of the comparisons
made. The Steam Infusion Vaction™ Pump used generated steam from an oil fired boiler
and used the GHG conversion factors provided by the UK Greenhouse Gas Conversion
Factors for Company Reporting (Defra 2019) [13].

2.3. Analysis of Food Volatiles for Steam Infusion Cooking

Batches of a curry sauce produced by conventional steam jacket cooking and by
Steam Infusion cooking were compared for different food headspace volatile compound
composition using solid phase microextraction (SPME)-gas chromatography (GC)-mass
spectrometry (MS) analysis (SPME GC-MS) analysis. The SPME GC-MS method sampled
3 g of each sauce and placed it in a 20 mL GC-MS headspace vial that was sealed with a
cap. The samples were taken in triplicate and incubated for 1 h at 30 ◦C to establish vapour
equilibrium and adsorption in the headspace with a Supelco DVB/CAR/PDMS SPME
fibre. The SPME fibre was then manually loaded into the injection port of a Shimadzu
GC-MS with the port temperature set at 270 ◦C and the injection port split ratio set at 25:1
with a Helium flow rate of 1 mL min−1. The gas chromatography used an Agilent J and
W DB-1MS UI GC column that separates analytes based on their boiling point. The oven
programme was 34 min in total duration with a 40 ◦C hold for 1 min, a ramp temperature
at 10 ◦C min−1 to 270 ◦C, and a holding at 270 ◦C for 10 min followed by automated rapid
cooling. The MS EI ion source temperature was 200 ◦C, the interface temperature was
270 ◦C, and the m/z scanning range was 35–500. The GC-MS procedure was repeated for
three samples, the mean area of the chromatograph peaks was reported, and the separated
volatile analytes were grouped into taste and aroma profiles according to published sources.

The volatile compounds were categorised as the most probable ingredient and flavour
component generated during the cooking process where compounds such as hexanals,
β-pinene and euglenol, which are in a variety of herb and spice derived materials, can
grouped according to chromatographic separation metrics in the Flavornet Database [14].
The Flavornet Database catalogues key odourants (KOs) that dominate natural products
and are characterised using over 900 studies of KO separations. The headspace analysis did
not provide information on non- or low-volatility compounds present in the body of the
liquid product that could be responsible for taste (sweet, sour, bitter, salty, and umami) or
flavour enhancing properties. A further consideration is that 30 ◦C is not the usual serving
temperature for many of the products tested, and it was chosen to reduce oversaturation of
the SPME fibre during the sampling time.

3. Results
3.1. The Energy and CO2e Balance for Steam Infusion Processes

The food product tested in this research was a vegetable soup that contained butter,
cream, milk, cabbage, mushroom, onion, potato, spinach, and tomato juice. This recipe has
a specific heat capacity of 3.9 kJ kg−1 K−1 at a starting temperature of 12 ◦C and a final
cooked temperature of 90 ◦C. The initial mass of the Steam Infusion cooked batch was
900 kg, and during the heating time of 14 min and 49 s, the addition of 104.4 kg of water
as steam (through the heating process) occurred. In a typical cook–chill food soup/sauce
manufacturing operation supplying retail and food service outlets, the number of batches
cooked each year by each kettle is estimated at 2500, and the steam pressure is 3 bar g−1 for
each batch in a conventional steam jacketed kettle cook. The number of conventional batch
cooks taking place between cleaning in place (CIP) cleans is three, and this can be increased
to six batches for Steam Infusion cooking processes (as Steam Infusion cooking avoids
“burn on” to the side of the kettle caused by traditional jacket heating methods). Typically,
each CIP cycle uses 500 litres of detergent/water, the amount of which is dependant on the
degree of fluid recovery, and the cleaning process takes about 40 min to complete.

The heat energy consumed by 1004.4 kg of a typical food material (production batch)
at the same point of use for Steam Infusion is 79.7 kWh and 96.4 kWh for conventional
steam jacket heating. The steam introduced by the Steam Infusion Vaction™ Pump means
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104.4 kg of water is added over the cooking time at a steam pressure of between 2 bar g−1

and 4.5 bar g−1 during each batch. Table 1 shows the expected efficiency improvements in
terms of costs and greenhouse gas emissions for the Steam Infusion batch cooking over a
period of one year using these operational data. The energy saving from each cooking and
CIP process was GBP 1.13 for each cooked batch, an annual saving of GBP 2828 yr−1.

Table 1. The efficiency of Steam Infusion cooking compared to conventional steam jacketed vessel
cooking.

Steam Infusion Operational Efficiency

Energy reduction at point of use compared to steam jacket vessel cooking (% reduction) 17.3
Production time saved by Steam Infusion cooking method related CIP reduction (cleaning
time hours reduced per year) 277.8

GHG reduction due to decreased energy use
(CO2e reduction per year) 8.7

3.2. The Operational Efficiencies of Steam Infusion

A conventional cooking process using a steam jacketed kettle will typically require
60 to 90 min to cook 400 kg of liquid soup and sauce food material and will hold at 90 ◦C.
While batches can be greater than 1000 kg, the assessments conducted in this research were
made for 400–500 kg batches. Using the Steam Infusion VactionTM Pump system reduces
the cooking time to 9–15 min, and this is dependent of the specific heat capacity of the food
materials. Figure 3A, shows the data log for the Steam Infusion heating of a 400 kg batch
of water with the associated steam flow and total steam used. Figure 3B shows the Steam
Infusion VactionTM Pump system data log for a 400 kg batch of chocolate sauce. The data
logger records the resources used and the temperature history during the manufacture of a
product batch. These data can be secured and used to confirm the provenance and quality
attributes of the manufactured products. The graphics are derived from in situ reporting
and the axes are for temperature (vertical) and processing time (horizontal). The water and
chocolate custard batches are shown to demonstrate the diversity of products that can be
processed. Energy saving is at the same point of use as per previous references. It does not
consider feedback resulting in increased energy consumption at the boiler and assumes
that the user is using condensate recovery systems where condensate traps are in effective
condition.

3.3. Analysis of Volatiles in Steam Infusion

Conventional steam jacket cooked and Steam Infusion cooked recipes were compared
for their headspace volatile compound composition using SPME GC-MS analysis. Figure 4
shows the cumulative peak area totals for a GC-MS analysis of curry sauce batches that
have been either steam jacket cooked or Steam Infusion cooked with all of the ingredients
added directly into the cooking vessel; in addition, a steam infusion cooked batch with the
spices added (entrained) from a hopper mid process when the batch product temperature
was at 60 ◦C during the cook is also included. Volatile compounds were grouped according
to general flavour/aroma notes to compare potential profile changes. Data are presented
by plotting volatile peak areas and grouping them to the most probable ingredient and
flavour component generated during the cooking process.
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Figure 4. The cumulative peak area totals for a GC-MS analysis of curry sauce batches that have
been cooked by either conventional steam jacket (“Batch Kettle”) or Steam Infusion with all of the
ingredients batched in the kettle; a Steam Infusion cook with the spices added (entrained) from a
hopper mid process at 60 ◦C batch temperature during the cook is also included.

4. Discussion

The Energy and CO2e Balance for Steam Infusion Processes: the operational efficien-
cies of Steam Infusion are demonstrated by the data shown in Table 1. Steam Infusion
cooking reduces energy use per batch cook by 17.3%, and in a typical food production
operation scenario, the additional reduction in the frequency of CIP related to use of Steam
Infusion means 277.8 h of production time can be gained each year. An important sus-
tainability metric reported for Steam Infusion is the energy reduction, and the faster rate
of production means that there is a GHG emission reduction of 8.7 CO2e annually. The
Vaction PumpTM heating energy at the point of use was 79.7 kWh with a steam addition
at 4.5 bar g−1 and 2 bar g−1 at point of use of 104.4 kg, recording a final heated mass of
1004.4 kg after 14 min 49 s. Steam jacket heating energy at the point of use was 96.4 kWh
with a steam addition at 3 bar g−1 at the point of use of 162.8 kg, recording a final heated
mass of 1004.4 kg and resulting in 277.8 additional processing hours over a typical year
production cycle. This resulted in an annual energy saving of 38.4 MWh, equivalent to
8.7 tonnes of GHG (CO2e) at 227 kg CO2e. MWh−1. This significantly increases site output
capacity and thereby extends the amount of time during business growth before the manu-
facturer has to make financially and environmentally costly extensions to the production
site or build an entirely new factory. Figure 3A,B, show how the processing times are re-
duced by using the Steam Infusion VactionTM Pump system. While the downtime and CIP
savings made using the technology are crucial to the immediate ROI, it is the emergence
of IOT within the Industry 4.0 system that offers opportunities for recording data during
processing that can be connected to quality outcomes and supply chain inventory. There are
already established mechanisms for determining the provenance of wine and oil products
using volatile and sensory analysis, and the use of specific processing technologies such
as Steam Infusion can provide a further means of establishing traceability for provenance
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and quality [15]. The issue of traceability is also going to be of importance in determining
the environmental impact of imported products. The data control methods for Industry
4.0 are the most incisive when they are established in the processing sector because this
is where ingredients are sourced, products are manufactured, and delivered. In many
respects, it is the data nerve centre of the food supply chain. This is likely to be made
possible through the embedding of IOT applications in the processing and manufacturing
arena. The demonstrations reported here do begin that process because ROI is proven, and
data collection is necessary for product time–temperature history.

Analysis of Volatiles in Steam Infusion Cooking: reduced thermal process time and
minimal exposure of a product to hot surfaces in the Steam Infusion cooked batches results
in improved retention and generation of flavour and aroma volatiles. Figure 4 shows that
these flavours are retained more in the Steam Infusion cooking process, and when the
flavouring ingredients are added during the cooking process (‘entrained’), flavours can be
further enhanced. The Steam Infusion process is also likely to be of benefit to the processing
of dairy based products that are sensitive to well-developed Maillard products and overall
thermal exposure, such simple white sauces (béchamel, parsley sauce) and custards. A
benefit of traditional steam injectors developed for use in jacketed kettles is that the use
of steam injection helps prevent burn-on to the jacket sides (when compared to cooking
via a jacket only method). Dairy based products are susceptible to casein precipitation
(protein denaturation) during increased temperature spikes in the cook, and therefore,
injectors reduce this because the heat is quickly distributed in the kettle, giving more
control of the heating process (personal communication to W Martindale OAL 2020, see
Figure 3A,B) [16]. These advanced processes are important because they improve the
consumer food experience, and this not only enhances brand value but also results in more
responsible consumption (SDG 9) because if a food is preferred, it has a reduced risk of
being wasted [8].

A limitation of traditional steam injectors is that of heat transfer rate. Operation at too
high a pressure may cause steam bubbles to pass through liquid food material that is being
heated and may simply break the surface of the fluid and escape to the atmosphere instead
of condensing into the bulk contents. Hence, some of the heat contained in the steam will
be lost to the atmosphere, and actual heat transfer to the food material will be reduced.
This loss can be controlled by the restriction of the operating steam pressure and the use
of multiple injection points, but this increases the complexity of the steam distribution
pipework and increases potential points of food material hold-up [17]. It is this aspect that
differentiates Steam Infusion processing from the traditional steam injector technology.
The steam condenses into the liquid within the Vaction™ Pump, which is aided by the
large surface area of the small disrupted liquid food material droplets, the low-pressure
vapour phase, rather than within the bulk contents of the kettle. This allows for processing
across a range of operating pressures, providing for the consistent control of the physical
characteristics of the liquid food material as well as effective heat transfer.

The Steam Infusion cooking process has been shown to provide advantages in milk
processing, where results show milder flavour profiles with more volatiles coming from
the ingredients [11]. The application of Steam Infusion to post process food materials
for antinutrient inactivation has also been successfully tested for soy products [18]. The
research reported in this study extends the potential of Steam Infusion flavour retention,
being applied to recipes with herbs, spices, fruits, and chocolate. Figure 4 shows data that
demonstrate that herb and spice volatiles are increased by Steam Infusion production. This
suggests less flavouring is required to achieve the same impact, and future investigations
will identify this and the impact of Steam Infusion associated with meat and dairy products,
where there is often a requirement to develop flavours. Changes to the carbon footprint are
dependent of energy supply to the factory, and the Steam Infusion Vaction™ Pump used
steam generated from an oil fired boiler and used the GHG conversion factors provided by
the UK Greenhouse Gas Conversion Factors for Company Reporting (Defra 2019). [13].
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Figure 4 shows the Steam Infusion cook with the spices added (entrained) from a
hopper mid process at 60 ◦C during the cook. These trials showed that by entraining
the spices and reducing the time that they were in the process increases the retention
of volatiles, raising the possibility that reformulation opportunities exist using Steam
Infusion technologies. This may result in salt and sugar reduction opportunities because
there is evidence that when flavouring ingredients are mixed uniformly, salt and sugar
reduction are possible [19]. The impact of starch gelatinisation in the Steam Infusion
process will be defined in future research reports. There is no difference between Steam
Infusion and conventional kettle cooking with respect to the stability of products and
syneresis (separation of starch, aqueous and oil phases), but there are indications that
starch gelatinisation is more efficient in Steam Infusion cooking, and this may allow for the
reduction of fat content in foods [17].

The sustainability outlook and step change opportunity for manufacturing: the metrics
used to measure both the nutrition and sustainability of foods have been used in this
investigation to demonstrate the further benefits of using Steam Infusion cooking [20].
Research shows the GHG emission per calorie or mass of protein associated with soup,
sauce, and preserved vegetable categories is greater than other food product categories [21].
The use of life cycle assessment (LCA) data such as the global warming potential are
routinely reported and tested for many food categories, where the methods used to do this
identify food categories in which there are specific barriers to producing food products
with increased sustainability attributes [22]. This is the case for soup, sauce, and preserved
vegetable categories that have high nutritional density but also have high GHG emissions
per calorie. These products are therefore an opportunity for GHG reduction interventions
such as the use of Steam Infusion cooking. The reduction in energy used to process these
categories using Steam Infusion provides GHG reduction and nutritionally favourable
outcomes. The innovative heating technology demonstrated in this study will reduce the
GHG emission footprint of these nutrient dense but low calorie or low protein product
categories and overcome the sustainability risks associated with them. The major risk is
that high nutritional density products will be viewed as high carbon footprint products by
consumers.

The Steam Infusion technologies used in these reported trials are modular, and they
can be used when demand is required so that production becomes responsive to con-
sumption trends. This results in efficiency improvements in factories, and the resulting
productivity increases are being demonstrated through the global implementation of Steam
Infusion (see, OAL 2020). These have the potential to influence NPD through responsive-
ness in the reformulation of products such as in the case of sugar and salt reduction. The
value of Steam Infusion in creating a modular and responsive food system is demonstrated
here, and the value of it to reformulation will be developed in future research reporting. The
faster consumer goods can be packed and distributed following heat treatment, the greater
proportion of the product shelf life can be used in the supply chain, and this consequently
reduces the risk of wasting products. The disruptive effect of these technologies in this
advanced processing arena is enhanced by their modulisation because they can be installed
and activated on existing conventional production lines, known as “retro-fitting”, in a very
short time. The technologies reported here enhance the value of ROI opportunities in the
food and beverage sector to deliver innovation and improved industrial infrastructure
(included in Sustainable Development Goal 9). They are immediately available to be used
by manufacturers, and this research quantifies their operational and related sustainability
impacts, providing new insights into how NPD strategies can be transformed. The de-
velopment of multi-ingredient products such as soups, sauces, and preserved vegetable
products becomes exceptionally important because they are at the core of popular ‘ready to
prepare’ or ‘ready to eat’ meal formats. As such, Steam Infusion is an excellent example of
advanced food processing technology that is systemically transforming the manufacturing,
retail, and consumption functions of food supply.
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5. Conclusions

Steam Infusion processing offers innovative processing solutions, and this research
demonstrates the potential for it to reduce the greenhouse gas emissions of production. This
is an important intervention if the food and beverage industry is to follow current route
maps for carbon-zero production that are not only reliant on off-setting greenhouse gas
emissions using mechanisms external to the business enterprise and manufacturer. Steam
Infusion has also been demonstrated to provide important quality outcomes including
the reduced risk of acrylamide forming compounds and the improved bioavailability of
nutrients (personal communication from C.B. OAL ). These outcomes are characterised
and reported by the OAL , and this research reports a reduction in energy used on a
single Vaction PumpTM production line of 17.3% and 277.8 production hours compared to
direct steam kettle heating production. In addition to providing greater operational agility
because of a reduction in production time, there is a reduction of 8.7 tonnes CO2e.
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