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Abstract. In this work, we present a comparative analysis of the tra-
jectories estimated from various Simultaneous Localization and Mapping
(SLAM) systems in a simulation environment for vineyards. Vineyard en-
vironment is challenging for SLAM methods, due to visual appearance
changes over time, uneven terrain, and repeated visual patterns. For this
reason, we created a simulation environment specifically for vineyards
to help studying SLAM systems in such a challenging environment. We
evaluated the following SLAM systems: LIO-SAM, StaticMapping, ORB-
SLAM2, and RTAB-MAP in four different scenarios. The mobile robot
used in this study equipped with 2D and 3D lidars, IMU, and RGB-D
camera (Kinect v2). The results show good and encouraging performance
of RTAB-MAP in such an environment.
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1 Introduction

Precision agriculture relies on collecting data from multiple sensors to help im-
proving farm management and crop yield. Better management of the farm re-
quires continuous monitoring of the plant health and soil condition, discovering
diseases at an early stage, reducing chemical treatment, and reducing the hu-
man effort in farm management and monitoring. To achieve these goals, one
solution would be to use a mobile robot to autonomously inspect the plants and
the crops. In that context, the mobile robot must have an accurate representa-
tion of the farm to accurately localize itself and navigate to the goals. For this
reason, many solutions have been proposed to overcome the localization prob-
lem in an outdoor environment. The most common solution is to use Real-Time
Kinematic Global Positioning Systems (RTK-GNSS) [1], however, this solution
is quite expensive and requires good coverage of base stations to guarantee ac-
curacy. Other solutions rely on consumer-grade GNSS with fusing the output
with different onboard sensors to enhance localization accuracy [2].

GNSS is not always available and the signal may not be reliable due to en-
vironmental conditions; loss of signal for the autonomous robot may lead to
catastrophic failures. Therefore, alternative solutions have been proposed based
on the Simultaneous Localization and Mapping (SLAM) concept [3], where robot



pose is estimated using sensory input, while at the same time building map of
the environment. Various SLAM systems have been developed in that regard
[4]. The selection of a suitable SLAM system depends on multiple factors, such
as type (indoor or outdoor) and scale of the environment. Another factor is the
sensors’ cost, for example, some systems rely on data from relatively expensive
3D lidars whilst others use data from cheap consumer-grade monocular cam-
eras. However, most of the developed solutions were targeting either the indoor
environments or outdoor urban environments [3]. Nevertheless, SLAM in agri-
cultural applications is still a growing field due to challenges related to harsh
environmental conditions, seasonal changes in appearance, and repeated visual
features in large open fields.

The main contributions of this paper are (i) Releasing to the public an open-
source realistic vineyard simulator, offering uneven terrain and five different
stages of plant growth1. (ii) Comparing and benchmarking 4 SLAM systems in
an environment with repeating structure and appearance. The algorithms chosen
for this study represent the sate-of-the-art visual and 3D-lidar systems including
LIO-SAM [5], StaticMapping [6], ORB-SLAM2 [7], and RTAB-MAP [4].

2 Related work

There has not been much work done in comparing various SLAM systems specif-
ically for the vineyard environment, nevertheless, there have been many research
papers dealing with analyzing and comparing SLAM methods for indoor static
environments. In this section, we review the most relevant papers in this area.

The authors in [8] evaluated the trajectory generated from different ROS-
based SLAM algorithms in a typical office indoor environment. The mobile robot
was equipped with a 2D laser scanner, a monocular and stereo camera. The eval-
uation was on a specifically acquired data-set. The authors used the estimated
trajectory from the best performing 2D lidar SLAM as the ground truth for
visual SLAM systems. The results were good and encouraging for RTAB stereo
with Root Mean Square Error (RMSE) of 0.163 m, and for ORB-SLAM monoc-
ular with RMSE of 0.166 m. The researchers in [9] use a precise laser tracker
for accurate ground truth to compare the three most common 2D SLAM algo-
rithms, gmapping2, hector slam3, and google cartographer4. The mobile robot
was equipped with a 2D laser scanner whilst the evaluation considered the ac-
curacy of map construction and trajectory generated. The results showed that
in this particular scenario, Google Cartographer is the most accurate algorithm
compared to others.

Part of the work in [4] is an evaluation of the trajectory performance be-
tween different sensor configuration of RTAB-MAP (stereo and lidar), LSD-
SLAM (stereo), ORB-SLAM2 (stereo) and SOFT-SLAM (stereo) in the outdoor

1 github.com/LCAS/bacchus lcas
2 wiki.ros.org/gmapping
3 wiki.ros.org/hector slam
4 google-cartographer-ros.readthedocs.io/en/latest/



KITTI dataset [10]. At this dataset, the authors stated both lidar and stereo con-
figuration have followed well the ground truth. However, in some sequences with
not a complex structure, stereo setup systems outperform the lidar configuration
of RTAB-MAP. Stereo RTAB with ORB feature detection has performed well
in 9 out of 11 sequences, but that configuration was computationally expensive
and was not able to meet real-time constraint on their hardware setup.

An Extended Information Filter (EIF) was used for mapping an agricultural
environment and localizing a mobile robot [11]. The system makes use of a 2D
laser scanner and monocular camera to detect olive tree stems. The tests were
done in a real agricultural environment. However, the authors stated that they
find some errors in identifying features and detecting loop closure. In [12] the
authors evaluated visual SLAM methods, such as ORB-SLAM2 and S-PTAM5,
against visual-inertial SLAM system as S-MSCKF6 on the Rosario dataset [13].
The result showed poor accuracy and robustness compared to an indoor or ur-
ban environment, where those algorithms are designed for. Another study [14]
comparing three visual SLAM algorithms in an orchard of fruit trees. The re-
sults showed that ORB-SLAM2 is the most accurate system with its loop closure
ability.

Based on the above literature, there is a lack of comparison between SLAM
methods in vineyards environment. Therefore, more research needs to be done
in that field.

3 SLAM Algorithms

The SLAM systems used in this work can be classified into two main categories:
visual SLAM and 3D lidar SLAM. This section briefly describes the four tested
algorithms, RTAB-MAP and ORB-SLAM2 under visual SLAM, LIO-SAM, and
StaticMapping under 3D lidar SLAM. Those systems have been chosen since they
are the state-of-the-art, and the most popular algorithms by the time writing this
paper. However, StaticMapping is not very popular yet. A brief list of sensors
employed by each system is shown in Table 1 including the front-end back-end
algorithms used by each method. The sensors that are used by each system in
our setup are marked as bold text in the table.

3.1 RTAB-Map

Real-Time Appearance Based Mapping (RTAB-Map) is a graph-based SLAM
approach [4] that supports input from RGB-D, Stereo, and lidar sensors. It
combines two main algorithms which are loop closure detector and graph opti-
mizer. The system uses the bag-of-words concept for loop closure detection by
determining if the new image comes from a previously visited location or a new
location; If the hypothesis of the new image is above a certain threshold, the

5 github.com/lrse/sptam
6 github.com/KumarRobotics/msckf vio



Table 1: The SLAM systems used for benchmarking together with supported
sensors, front end and back end algorithms.
System Sensors support Front-end Back-end

LIO-SAM
3D lidar + IMU,
GNSS (Optional)

ICP GTSAM

Static-
Mapping

3D lidar, IMU (Optional),
GNSS (Optional)

ICP GTSAM

ORB-
SLAM2

Monocular, RGB-D or
Stereo cameras

ORB features extraction.
PnP RANSAC for motion

estimation.
g2o

RTAB-
MAP

RGB-D or Stereo camera
(Mainsensors).

2D or 3D lidar (Optional
to enhance map build from

main input sensors)

Visual odom: GFTT/BRIEF
for feature detectoin,

NNDR for feature matching,
PnP RANSAC for motion

estimation.
lidar odom: ICP

GTSAM (default)
g2o,

TORO

new location will be added to the map as a new graph constraint. Then, in the
background, the map graph is optimized to reduce the drift error in the overall
map [15]. To achieve real-time performance for large scale environments, the
system has a memory manager that limits and control the number of locations
that are used for loop closure detection [4]. The system implements two standard
odometry methods, Frame-To-Map (F2M) and Frame-To-Frame (F2F) using 3D
visual features. In F2M, the system registers the new frame against upon local
map, while the F2F registers the new frame to the last key-frame. RTAB-MAP
can generate 2D and 3D occupancy grid map with dense point cloud, which is
very useful for robotics applications. Furthermore, there is a full integration of
this algorithm in Robot Operating System (ROS) as rtabmap ros7 package.

3.2 ORB-SLAM2

ORB-SLAM2 is a feature-based visual SLAM method that can create a sparse 3D
map, which can be used with monocular, stereo, and RGB-D cameras to compute
the camera trajectory. This algorithm has three main threads running in parallel,
which enable real-time performance. The first thread is for tracking the camera
pose in the new frames by finding feature matches in the local map. The second
thread for local map management and optimization by applying local Bundle
Adjustment (BA). The final thread is for loop closure detection and pose-graph
optimization; this process is mainly for correcting the accumulated drift [7]. The
system uses the bag-of-words DBoW2 concept [16] for place recognition, loop
closure, and localization. However, when mapping a large-scale environment, the
processing time of loop closure detection and graph optimization will increase
as the map grows. This leads to a significant delay when making loop closure

7 wiki.ros.org/rtabmap ros



corrections after being detected. This system does not generate an occupancy
grid map, which makes it difficult to use directly in real robotics applications
[4]. ORB-SLAM2 does not have full integration with ROS, it only subscribes to
the camera topics and there are no output topics. However, it offers a visualizer
for the trajectory and a sparse point cloud.

3.3 LIO-SAM

LIO-SAM is a factor graph tightly-coupled lidar inertial odometry via smoothing
and mapping system [5]. The main input sensors to the system are 3D lidar and 9-
axis IMU, but it can also use data from GNSS sensors for absolute measurement
and map correction. LIO-SAM estimates lidar motion during the scan by using
the raw IMU data. Then, for point cloud de-skewing, it assumes a nonlinear
motion model. The novelty of this algorithm is that it uses the idea of keyframes
and sliding windows from visual SLAM systems. In this way, the scan registration
is performed at the local window scale instead of the global map improving the
real-time performance significantly. On the other hand, the old scans are used
for pose optimization. The IMU data is critical for this system to work properly.
LIO-SAM is fully integrated into ROS. The generated output map and trajectory
could be saved on a disk after finishing the scan.

3.4 StaticMapping

StaticMapping is a 3D lidar SLAM algorithm with optional IMU, odometry and
GNSS inputs [6]. The back end of this algorithm uses M2DP [17] global descriptor
for loop closure detection, and iSAM2 [18] for smoothing and mapping. This is
an offline map-building algorithm from the recorded data.

4 Evaluation

This section describes our simulation environment, the different scenarios to test
the algorithms, and the metrics we used for evaluation. Finally, we present and
discuss the results.

4.1 Environment

We created a digital twin of an actual vineyard located at the University of
Lincoln Riseholme campus under ROS/Gazebo as shown in Figure 1. The virtual
environment offers realistic uneven terrain, plus multiple growth stages of the
vine plants and the crops. The vineyard has nine rows that are 18 m long with
a 3 m distance between the rows. The mobile robot used is Thorvald produced
by Saga Robotics8 equipped with the following sensors: two 2D Hokuyo laser
scanners, 3D lidar VLP-16 by Velodyne, ROS-IMU plugin and a Kinect V2
camera. A video of the environment can be seen in the link below9.
8 sagarobotics.com/
9 Field: youtu.be/L9ORZNyWdT0. Uneven terrain: youtu.be/L9ORZNyWdT0



(a) Real field (b) Simulation (c) Growth stages

Fig. 1: Digital twin of the vineyard environment.

4.2 Testing scenarios

We designed four different scenarios in which we evaluated the 4 different SLAM
methods we aim to compare.

– Scenario 0 (S0): Move in a straight line. That is mainly to evaluate the drift
of the generated trajectory. Trajectory length is 25 m.

– Scenario 1 (S1): Send the robot to inspect a row and get back from the same
row. Trajectory length is 48.6 m.

– Scenario 2 (S2): Send the robot to inspect a row and get back from the
adjacent row. Trajectory length is 54.6 m.

– Scenario 3 (S3): Inspect multiple rows. That is to simulate a real-life inspec-
tion scenario with multiple loop closures. Trajectory length is 101.2 m.

4.3 SLAM algorithms configurations

As mentioned earlier, the tested SLAM systems have some integration with ROS,
either partially like ORB-SLAM2, or fully as in LIO-SAM. The configuration
file for each algorithm has been modified to work with our setup. (a) For ORB-
SLAM2, we used the RGBD configuration and modify the camera parameters in
the setting file based on the used camera. (b) In RTAB-MAP, the configurations
are passed through the launch file. We used the rgbd sync node to synchronize
the RGB-D camera data before passing them to rtabmap ros node. A laser scan
data was passed to construct a 2D occupancy grid map. (c) StaticMapping is an
offline system, it can only construct the map from recorded data. The default
parameters were used and accumulate cloud num was set to 1. (d) For LIO-SAM
we used the default configurations but disabled the GNSS optimization.

4.4 Metrics

The output trajectory of a SLAM system can be evaluated by finding the ab-
solute distance between the estimated trajectory and the ground truth. The
Absolute Trajectory Error (ATE) is defined as the average deviation from the
ground truth trajectory[19].

ATErmse =

(
1

n

n∑
i=1

‖trans(Q−1
x SPi)‖2

) 1
2



, where i is the time sample or frame, SPi is the spatial translation at time
i, trans is the translation error, and Qx is the ground truth pose. To find the
statistical metrics of ATE, we used the open-source library evo10 to calculate the
following metrics: Maximum, Mean, Median, Root Mean Square Error (RMSE),
and Standard deviation (Std).

4.5 Results

The error metrics of the experiments are summarized in Table 2. Figure 2 shows
the output trajectories of the four algorithms compared to the ground truth. As
it can be observed from Table 2 RTAB achieves superior performance with the
lowest RMSE across all scenarios compared to other systems.

Table 2: ATE statistical metrics for various SLAM systems on 4 different sce-
narios
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MAX 1.65 1.55 1.62 0.20 1.32 1.85 1.42 0.08 0.83 0.79 1.34 0.20 0.77 2.64 8.95 0.12
MEAN 1.00 0.97 0.81 0.08 0.53 0.77 0.86 0.05 0.20 0.42 0.69 0.12 0.36 1.23 4.35 0.07

MEDIAN 1.11 1.03 0.81 0.05 0.40 0.29 1.04 0.05 0.18 0.40 0.78 0.12 0.34 0.98 3.91 0.06
RMSE 1.13 1.07 0.95 0.09 0.68 1.04 0.96 0.05 0.22 0.45 0.84 0.14 0.40 1.51 5.22 0.07
STD 0.53 0.46 0.50 0.05 0.43 0.70 0.42 0.01 0.10 0.17 0.47 0.06 0.19 0.88 2.90 0.03

In the first scenario S0, all SLAM methods except RTAB-MAP reported big
drift in the estimated trajectory, with a maximum value of 1.65 m from LIO-
SAM, while RTAB-MAP has the minimum drift with a maximum value of 0.20
m and RMSE of 0.09 m. For scenario S1, RTAB-MAP has the minimum drift
and smallest RMSE with 0.05 m, the performance of the remaining algorithms
were close. There is no loop closure in this scenario even though the robot got
back to the same place, which is due to the difference in the camera viewpoint. In
scenario S2, the second-best algorithm after RTAB-map is LIO-SAM, followed
by StaticMapping, and finally ORB-SLAM2 with the largest RMSE of 0.84 m.
The final scenario is the most interesting and realistic one, where the robot
traverses multiple rows before going back to its starting point. This scenario with
multiple loop closures represents a very interesting benchmark for the algorithms,
as represented in Figure 2. ORB-SLAM2 has failed to create a reliable map, we
think that might be due to the repeated visual appearance of the environment; on
the other hand, LIO-SAM and StaticMapping did not completely fail. However,

10 github.com/MichaelGrupp/evo



(a) S0 (b) S1

(c) S2 (d) S3

Fig. 2: Output trajectory from various SLAM systems in different test scenarios.

(a) LIO-SAM (b) StaticMapping (c) ORB-SLAM2 (d) RTAB-MAP

Fig. 3: Output maps and estimated trajectory from different SLAM system for
scenarios 3

the drift of the trajectory is too large to be used for robot navigation. This is
because, in a vineyard, the distance between two rows is usually between 2 to
3 meters, in which if the mobile robot fails to localize itself accurately it can
cause damage to the crops. The map generated for scenario 3 from the different
systems is shown in Figure 3.

Even though both ORB-SLAM2 and RTAB-MAP are using the bag-of-words
concept for loop closure detection, the pose-graph optimization is different. In
ORB-SLAM2, global bundle adjustment is used for the pose optimization process
after loop closure. So, since there are lots of visual features shared between the



keyframes due to similar appearance, this algorithm fails to estimate reliable tra-
jectory as represented in figure 2d and table 2. On the other hand, RTAB-MAP
is much more robust to false loop closures, since it checks the transformation
in the graph after the optimization process, if the translation variance was too
large, the loop closure is rejected. The lidar methods did not suffer from repeated
feature issue, due to the large field of view of the 3D lidar.

5 Conclusion

In this work, we compared four state-of-the-art visual and 3D lidar SLAM al-
gorithms in a challenging simulated vineyard environment with uneven terrain.
The main challenge for the visual SLAM system in such an environment is rep-
resented by a repeated pattern of appearance and less distinct features. This
may result in false loop closures. The state of the art ORB-SLAM2 failed when
the robot moved across multiple rows with multiple loop closures, we think this
may be due to an identical visual appearance between vineyard rows. RTAB
map is much more robust to invalid loop closure. The trajectory generated from
the RTAB-MAP algorithm was the most accurate in our test scenarios. The
estimated trajectories from LIO-SAM and StaticMapping suffer from big drift
but the trajectories shape is acceptable, we believe in real-world tests, this drift
could be fixed with the availability of GNSS signal. For future work, we will add
some unique features within vineyard rows to test the reliability of ORB-SLAM2.
Those unique features could be to have some variation in the plant models in-
stead of having them identical across all the rows. In addition, we would like to
test the localization ability within the generated maps from the SLAM systems.
Finally, we will test those methods in a real vineyard.
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