
Neural Task Success Classifiers for Robotic
Manipulation from Few Real Demonstrations

Abdalkarim Mohtasib
School of Computer Science

University of Lincoln
Lincoln, UK

amohtasib@lincoln.ac.uk

Amir Ghalamzan E.
Lincoln Institute for Agri-Food

Technology
University of Lincoln

Lincoln, UK

Nicola Bellotto
School of Computer Science

University of Lincoln
Lincoln, UK

Heriberto Cuayáhuitl
School of Computer Science

University of Lincoln
Lincoln, UK

Abstract—Robots learning a new manipulation task from a
small amount of demonstrations are increasingly demanded in
different workspaces. A classifier model assessing the quality of
actions can predict the successful completion of a task, which
can be used by intelligent agents for action-selection. This paper
presents a novel classifier that learns to classify task completion
only from a few demonstrations. We carry out a comprehensive
comparison of different neural classifiers, e.g. fully connected-
based, fully convolutional-based, sequence2sequence-based, and
domain adaptation-based classification. We also present a new
dataset including five robot manipulation tasks, which is publicly
available. We compared the performances of our novel classifier
and the existing models using our dataset and the MIME
dataset. The results suggest domain adaptation and timing-based
features improve success prediction. Our novel model, i.e. fully
convolutional neural network with domain adaptation and timing
features, achieves an average classification accuracy of 97.3%
and 95.5% across tasks in both datasets whereas state-of-the-art
classifiers without domain adaptation and timing-features only
achieve 82.4% and 90.3%, respectively.

Index Terms—Deep Learning, Reward Learning, Task Success,
Task Timing, Domain Adaptation, Robot Skill Learning

I. INTRODUCTION

Large amounts of tasks are carried out in our daily lives, in
large variation either due to the way they are done or to the
environments where they are executed, and robots are expected
to learn some of these tasks to be able to assist humans. In
order for this to happen, robots should be able to learn tasks
in an autonomous fashion as opposed to hard-coding all robot
skills. Humans are able to learn new skills rather rapidly and,
in many cases (not always because some tasks are difficult to
master), using only a few examples. Arguably, robots should
be endowed with similar or even better learning abilities to be
able to acquire new tasks quickly and efficiently. Being able
to identify the task goal and to measure task success is the
first key aspect for robots to acquire new tasks autonomously.

Reward functions in robot learning play a major role in
measuring task success in order to numerically reward the
behaviour of robots [1]. The use of onboard robot sensors
only—without relying on any other external sensors—makes
the problem of measuring the success of tasks even harder. In
this context, this paper focuses on training success classifiers
(also referred to as ’goal classifiers’) for measuring the levels

of success in robotic manipulation tasks from only a few
(as opposed to many) human demonstrations. The idea of
training a success classifier in a new task using only a
few demonstrations with high accuracy is still a challenging
research problem. In this work, we study such a problem via
the scenario illustrated in Fig. 1.

Our main contribution in this paper is a comprehensive
comparison of different neural architectures for task success
classification, based on feedforward neural networks, fully
convolutional neural networks, sequence2sequence classifiers,
domain adaptation, and a novel combination of them. This
study was carried out using a newly proposed dataset of
human-robot demonstrations in the Kitchen domain as well
as an existing dataset of demonstrations [2] using a variety
of manipulation tasks including stacking, placing, opening,
closing, rolling, pushing, pulling, and rotating objects.

II. RELATED WORK

The topic of reward learning for trainable robots has been
studied in several ways in the academic literature. [3]–[6] have
studied how to solve this problem using Active Learning,
which involves querying the expert user for labelling some
trajectories or environment states. Similar approaches have
combined the use of active learning together with Inverse
Reinforcement Learning (IRL) [3], [4], where IRL is used
to estimate and optimise a reward function by learning from
demonstration in Markov Decision Processes (MDPs) [7].
Meta-Learning has also been used by robots that learn to
acquire new tasks via knowledge transfer from a large set of
pre-learned tasks [8], [9] to a new task. While meta-learning
approaches have achieved promising results in learning the
goals of new tasks from few demonstrations, they unfortu-
nately require a very large number of training examples to train
the meta-learner. Furthermore, the ‘goal classifier’ approach
has been adopted by different researchers [10]–[12]. It uses an
image-based classifier to predict whether an environment state
(an image of the task at time t) represents a success or non-
success of the executed task. Those goal classifiers usually
require a substantial number of training examples, as well
as an extensive effort from human demonstrators to be able

Fig. 1: Illustration of the targeted robot learning scenario

to successfully train task success predictors—this means that
their effective and efficient training must be studied further.

Previous works are limited by relying on engineered reward
functions [13], [14] and by using additional sensors (i.e. in
addition to the onboard sensors) to estimate task success
[15]–[17]. Other previous works have investigated the idea
of learning the reward function from demonstration data [3],
[18]–[25] mainly by using Inverse Reinforcement Learning—
but they are unfortunately very data intensive. Other research
projects have used active learning to query the expert for
labelling uncertain states [10] or execution trajectories [5]
to learn the task rewards—but their practical deployment to
end users is unclear. Our work differs from previous ones
in automatically inducing reward functions from raw data, in
studying data-efficient methods for their practical application,
and in the use of onboard sensors only (a 2D camera in our
case) without any external sensors in the environment.

The main related works to ours that have used task success
classifiers are mostly based on Convolutional Neural Networks
(CNNs) [8], [10]–[12], [26]–[30], but they have not exploited
sequential and timing aspects of robotic manipulation tasks for
inducing their decisions. This paper investigates the effects of
using timing information in manipulation tasks and sequential
behaviour in an attempt to improve the performance of task
success classifiers. In addition, domain adaptation techniques
[8], [10]–[12], [26]–[30] have not been applied to reward
learning. Domain adaptation refers to the case where what
has been learnt in one domain (demonstrations in our case) is
exploited to improve generalisation in another domain (unseen
conditions in our case) [31]. This paper investigates the effects
of using domain adaptation techniques to improve the perfor-
mance of reward predictors casted as success classifiers. Thus,
the context of this paper is to develop trainable reward models
(as opposed to hard-coded) that can be used to accurately
measure task success in robotic manipulation tasks. Future
works can use such models as a part of numerical rewards
required for robot learning systems. The code, models, and
data produced as part of this paper are publicly available on

GitHub1.

III. RESEARCH METHODS

A. Problem Definition

We consider a success classifier g = f(s), where s is the
environment state (an image or sequence of images from the
robot’s onboard 2D camera), and g ∈ [0, 1] is the probability
of having achieved the task in state s. This classifier can
be used as a reward function for robot learning systems.
The aim is to train f(s) for a new manipulation task Mn

from N demonstrations by updating the parameters of g
to minimize

∑
L(f(si), yi), where L is the classification

loss (cross entropy loss and mean square error in our case).
We define Dn = {d1, d2, · · · , dN} as the demonstrations
dataset for the new task Mn, and each demonstration is
defined as a set of states s and their labels y as follows:
di = {(s1, y1) , (s2, y2) , · · · , (sj , yj)}i. The label y is 0 if the
state s represents a Non-success in the task being executed,
and 1 if the state s represents a Success in the task being
executed. The research question that our study aims to answer
is: Can a task success classifier be trained effectively from a
very small number of demonstrations (e.g. five)?

B. Datasets

Our proposed dataset of human-robot demonstrations was
collected using the Pepper Robot2. In this dataset, a human
demonstrator performed kinesthetically the manipulation tasks
for the robot by grabbing the robot hands and performing
tasks in the Kitchen domain. During the task demonstrations,
color images from the robot’s 2D camera (size 320×240×3)
were recorded. When a demonstration task is completed, the
demonstrator touched a tactile sensor on the robot head to
signal task success. In this way and for practical purposes,
any data collected before the tactile sensor was touched is
labelled as Non-success, and any data collected after that is
labelled as Success. The robot collects data at a sampling rate

1https://Mohtasib.github.io/RewardLearning/
2https://www.softbankrobotics.com/emea/en/pepper

https://Mohtasib.github.io/RewardLearning/
https://www.softbankrobotics.com/emea/en/pepper

TABLE I: Example training and test images in the Kitchen and MIME datasets, Ki and Mj , respectively

Dataset Task Training Examples Test Examples

Kitchen

K1

K2

K3

K4

K5

MIME

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

TABLE II: Training and test examples in the Kitchen dataset,
per task, containing Non-Success (NS) and Success (S) images

Description Training Test
NS / S NS / S

K1 Grasp & lift a box 1281 / 194 74 / 85
K2 Pick up a sausage & place it in a cooker 946 / 148 138 / 86
K3 Pick up a ketchup & place it on a tray 1533 / 199 232 / 67
K4 Pick up a ketchup & place it in a sink 1093 / 264 162 / 123
K5 Pick up a carrot & place it on a plate 1338 / 257 311 / 69

of 10 samples/sec. Example images captured using the Pepper
robot’s 2D camera for grasping, lifting, picking up and placing
kitchen objects are illustrated in Fig. 1.

While demonstration data of five different robotic manipula-
tion tasks were collected (see list of tasks in Table II), each of

TABLE III: Summary of tasks in the MIME dataset

Description Training Test
M1 Stack 888 / 103 828 / 96
M2 Place objects in box 1718 / 360 1576 / 283
M3 Open bottles 1755 / 133 1594 / 135
M4 Push (Single hand) 323 / 60 301 / 80
M5 Rotate 808 / 135 778 / 130
M6 Close Book 604 / 177 555 / 168
M7 Pull (Two hands) 1538 / 145 1515 / 151
M8 Push (Two hands) 1816 / 384 1879 / 333
M9 Roll 489 / 100 377 / 130
M10 Pull (Single hand) 544 / 94 466 / 83

these demonstrations was carried out at a different speed and
with objects positions initialised randomly. The randomisation

Fig. 2: CNN-based neural architectures for task success classification

was limited to the workspace of the robot’s arms and to the
view of the robot’s camera (see Ki examples in Table I).

The MIME (Multiple Interactions Made Easy) dataset has
been used for learning from demonstrations in multiple tasks
[2]. It consists of kinesthetic trajectories and videos of human
demonstrations collected using the Baxter robot (https://en.
wikipedia.org/wiki/Baxter (robot)), i.e. human demonstrations
and their corresponding robot demonstrations. To collect this
dataset, a set of human demonstrators were trained to handle
the robot before performing the demonstration task. Every
human demonstrator provided multiple demonstrations for
each task using different objects –filtering out incorrect cases.
The dataset contains in total 8260 demonstrations for 20 tasks,
from which we extracted 10 demonstrations (5 for training and
5 for testing) for the 10 Mj tasks shown in Table I. These 10
tasks and their demonstrations have been selected randomly.

C. Model Architectures

The following neural architectures are studied in this paper.
• Fully Connected Neural Net (NASNet): This baseline

is NASNet-based [32] with pre-trained weights on Im-
ageNet [33]. It has the best classification performance
compared to the other models implemented in the Keras
API [34]. In our model, features extracted from NASNet
are passed to a Feed-Forward Network consisting of six
fully-connected layers as illustrated in Fig. 3.

Fig. 3: NASNet-based neural architecture

• Fully Convolutional Neural Net (FCN): This second
baseline is very similar to the CNN-based models that
have been used in literature as success classifiers [8],
[10], [11], [26]–[30]. This network is the core of other
architectures implemented in this paper. The inputs to
FCN are (160 × 160 × 3) resized images from the robot’s
2D camera, followed by six main convolutional blocks
and one convolutional layer, see Fig. 2.

• Time-Based Fully Convolutional Neural Net (T-FCN):
This architecture extends FCN with two paths and fea-
tures (shared in between): one is the classification path,
the other is a timing path that predicts the proportion of
task completion (a regressor), see Fig. 2. The task com-
pletion proportion for each image is calculated according

https://en.wikipedia.org/wiki/Baxter_(robot)
https://en.wikipedia.org/wiki/Baxter_(robot)

Fig. 4: Encoder-Decoder neural architecture

to yT = t
(j−1) , where t is a given time step and j is the

total number of time steps in the demonstration at hand.
This neural architecture is novel as the timing features
have never been used in this manner before. We are not
interested in predicting the task completion proportion,
but this branch will help to learn more features about the
task during the model training.

• Attention-Based Encoder-Decoder (Attention-RNN):
This architecture is an attention-based encoder-decoder
using LSTM-based recurrent neural nets with Bahdanau
attention [35]. While the encoder neural net generates
features out of a history of images (10 in our case), the
decoder predicts the sequence of labels. The inputs to
the encoder are features extracted using the FCN model
from input images. The inputs to the decoder are one
hot encodings of the classification labels (see Fig. 4).

• Transformer Network (Transformer): This architecture
[36] has achieved state-of-the-art results in a number of
applications, especially in natural language processing
[37]–[39]. Similarly to Attention-RNN, it uses the FCN
model for embedding input images and it also uses a
history of 10 images. The decoder predicts the sequence
of labels based on the multi-head attention layers and the
features produced by our FCN model (see Fig. 5).

• Domain-Adversarial Neural Network (DANN): This ar-
chitecture extends our FCN network by adding domain
adaptation using the so-called Domain-Adversarial Train-
ing of Neural Networks (DANN) [40], [41]. The main
component of its domain discriminator path is a Gradient
Reversal Layer (GRL), which reverses the gradient sign
during backpropagation (see Fig. 2).

• Adversarial-Discriminative Domain Adaptation (ADDA):
This is similar to DANN, the only difference is in the
domain adaptation method. Here we used Adversarial
Discriminative Domain Adaptation (ADDA) [42], which

Fig. 5: Transformer neural architecture

uses adversarial weights instead of GRL.

• Timing-Based and Domain-Based Fully Convolutional
Net (T-FCN-ADDA): This architecture is similar to our
T-FCN architecture, but it uses three paths instead of
two: classification, timing, and domain. It is a novel
neural architecture that combines the T-FCN and ADDA
architectures above (see Fig. 2). Similar to the T-FCN
model, we are only interested in predicting the success
probability using the classification path, but the timing
and domain paths will help to learn more features about
the task in hand.

IV. EVALUATION

A. Experimental Setting

For each manipulation task, we split the demonstration data
(images and classification labels) into a training set (80%)
and a validation set (20%), while the unseen conditions data
is used as a test set. In terms of loss functions, we used cross-
entropy as a loss function for the success classifiers and the
domain discriminator, and the mean square error for the timing
predictor3. This is due to the fact that the success predictors
and domain discriminators are classification tasks, and the
timing predictor is a regression task. All of the following
experiments and tests were carried out for all fifteen tasks
listed in Tables I, II, and III. Our experiments4 focus on
assessing the performance of success classification according
to the following metrics: Classification Accuracy, Precision,
Recall, F1-score, Area Under the Curve (AUC), Training Time,
and Test Time. The latter two metrics refer to average times
(in seconds) per image.

B. Experimental Results: Overview

The performance of our architectures—shown in Table IV—
is analysed in three groups. First, we compare NASNet vs.

3Summary of hyperparameters: batch size=16, epochs=100, optimiz-
ers=adam, and learning rate=0.001.

4PC specs: CPU: Intel i7-4770 @ 3.40GHz. RAM: 16GB. GPU: NVIDIA
GeForce GTX 750 Ti 2GB.

TABLE IV: Average performance results of our baseline and proposed neural architectures for task success classification
applied to the Kitchen and MIME datasets (notation: ACC=Average Classification Accuracy, AUC=Area Under the Curve)

Kitchen Dataset MIME Dataset
Architecture Training Test ACC Precision Recall F1 AUC ACC Precision Recall F1 AUC

Time Time Score Score
NASNet 0.8044 0.8013 0.6190 0.1670 0.1612 0.1634 0.4192 0.8809 0.6186 0.6627 0.6165 0.7173

FCN 0.1373 0.0283 0.8240 0.9128 0.5244 0.6268 0.7586 0.9032 0.6211 0.8277 0.6917 0.7981
T-FCN 0.1921 0.0564 0.9131 0.9194 0.7716 0.8058 0.8636 0.8683 0.7694 0.8612 0.7660 0.8346

Attention-RNN 0.2133 0.0724 0.8380 0.8642 0.6570 0.6948 0.8776 0.8555 0.6870 0.6800 0.6278 0.7701
Transformer 0.2102 0.0681 0.8570 0.9130 0.5694 0.6338 0.7796 0.8576 0.6845 0.7443 0.6453 0.8084

DANN 1.9470 0.3250 0.9176 0.9052 0.7954 0.8334 0.8914 0.9410 0.8893 0.7438 0.7841 0.8372
ADDA 0.2082 0.0455 0.9577 0.9202 0.8980 0.9152 0.9300 0.9409 0.8668 0.7490 0.7612 0.8307

T-FCN-ADDA 0.2209 0.0564 0.9733 0.9950 0.9052 0.9452 0.9642 0.9552 0.9429 0.8042 0.8397 0.9070

Fig. 6: Performance results for different amounts of demonstrations, from 1 to 10

FCN to observe their performance when trained using the
data of five demonstrations and tested on unseen conditions
with unseen distractor objects and different backgrounds. We
also compare vanilla FCN vs. T-FCN to study the effects
of using timing features. Second, we compare Attention-
RNN vs. Transformer to study the sequential aspect of the
manipulation tasks, and contrast their performance against the
previous group. Third, we investigate and compare two domain
adaptation methods (DANN and ADDA) for mapping from
the source domain (training) to the target domain (test=unseen
conditions). In addition, we study the performance of T-FCN-
ADDA—a combined model that uses both the timing and do-
main adaptation aspects on top of FCN learnt representations.

a) Fully-Connected and Fully-Convolutional Classifiers:
Table IV shows that T-FCN outperforms NASNet and FCN
across most of the metrics. The difference in performance
according to F1-Score is more stark than the other metrics
(ACC and AUC). It can also be noted that NASNet is
computationally more expensive, not only during training but
also at test time. Assuming the classification of one million
images, while FCN would require 7.9 hours, T-FCN would
require 15.7 hours, and NASNet would require 225.6 hours.
Thus, T-FCN is not only the most accurate in this group, but
it is also substantially faster at training and prediction times
than NASNet—even when it is a slower predictor than FCN.

b) Seq-to-Seq Classifiers: Table IV shows that Trans-
former outperforms Attention-RNN according to ACC, but
not according to F1-Score and AUC. Given that our dataset
is imbalanced, we could rely on F1-Scores instead of ACC;
but we found that we can rely on ACC. We found strong
correlations between ACC and F1, ACC and AUC, and F1 and

AUC, obtaining Pearson correlation coefficients of 0.79, 0.64,
and 0.91, respectively. The fact that both classifiers in this
group are outperformed by the best classifier of the first group
(T-FCN) (across all metrics), suggests that further research
on this type of architectures is needed to integrate sequential
aspects into the top success classifier.

c) Domain Adaptation Classifiers: Table IV shows that
the use of domain adaptation techniques (DANN and ADDA)
helps to achieve better results than the architectures in the
previous groups. Although ADDA outperforms DANN across
most metrics, the combination of T-FCN and ADDA (i.e. T-
FCN-ADDA) achieves the best classification results. While
T-FCN and ADDA achieve average F1-scores of (80.6%,
76.6%) and (91.5%, 76.1%) across tasks for both datasets
(respectively), T-FCN-ADDA achieves an average F1-scores
of (94.5%, 84%) in both datasets. Regarding prediction times,
T-FCN-ADDA is comparable to T-FCN—the third fastest in
our neural architectures, just after vanilla FCN and ADDA.
This is due to the fact that the domain discriminator is not
used at test time.

C. Experimental Results: Analysis

A natural question to ask is “How many demonstrations
are needed to train task success classifiers?’. We analysed
the answer to this question and found that there is a small
improvement in performance when increasing the number of
demos used for training from 5 to 10 demos (see Fig. 6). This
suggests that the slightly small improvement in performance
is not worth the double efforts from human demonstrators.
This result justifies our selection regarding the use of 5
demonstrations to train our models.

Task FCN T-FCN ADDA T-FCN-ADDA
TPR TNR TPR TNR TPR TNR TPR TNR

K1 0.903 0.823 0.892 0.906 0.971 0.933 0.911 0.975
K2 0.817 0.933 1.000 0.835 1.000 0.945 1.000 1.000
K3 0.832 0.808 0.840 0.800 0.927 0.907 0.967 1.000
K4 0.633 1.000 0.988 0.992 1.000 0.984 1.000 1.000
K5 0.899 1.000 0.907 1.000 0.951 0.946 0.942 1.000
M1 1.000 0.345 0.934 0.905 0.908 0.684 0.956 0.967
M2 0.999 0.940 0.991 0.985 0.997 0.969 0.984 1.000
M3 0.999 0.609 0.996 0.977 1.000 0.985 0.999 0.985
M4 1.000 0.825 1.000 0.571 1.000 0.800 1.000 0.870
M5 0.998 0.508 0.938 0.599 0.999 0.956 0.966 0.912
M6 0.938 1.000 0.898 1.000 0.967 0.829 0.987 0.964
M7 0.995 0.593 1.000 0.645 0.995 0.911 0.996 0.960
M8 0.978 0.809 0.995 0.861 0.996 0.985 0.998 0.988
M9 0.744 0.000 0.000 0.256 0.779 0.889 0.781 1.000

M10 0.979 0.357 0.968 0.490 0.896 0.667 0.940 0.783

Avg. 0.914 0.703 0.890 0.788 0.959 0.893 0.962 0.960
Std. 0.112 0.296 0.251 0.226 0.061 0.104 0.057 0.062

TABLE V: Performance of our T-FCN-ADDA classifier
and three baselines. Notation: TPR=TP Rate, TNR=FP Rate,
TPR=TP/(TP+FN), TNR=TN/(TN+FP), TP=True Positives,
TN=True Negatives, FP=False Positives, FN=False Negatives

From Table V it can be noted that the true positive rates
(TPR, or recall) and false positive rates (TNR) are higher for
T-FCN-ADDA than its counterparts. This is clearly the case
on average for all tasks in both datasets, but also the case on
most individual tasks. These results show evidence that our
top classifier (proposed) is more reliable than the baselines.

To illustrate the performance of our task success classifiers,
Figs. 7 and 8 show the predicted success probabilities for
example demonstrations of our top classifier (T-FCN-ADDA)
and three baseline classifiers (FCN, T-FCN, and ADDA). A
visual inspection shows that our top classifier is closer to the
ground truth than the baselines in both datasets.

V. CONCLUDING REMARKS

This paper studies the problem of reward learning for
robotic manipulation via neural task success classifiers, where
the aim is to find out whether it is possible to train accurate
task success classifiers from few demonstrations. Our study is
a step in the direction of autonomous robot skill acquisition,
where a human demonstrator shows a humanoid robot how
to carry out a novel task. Our experiments are focused on
predicting (probabilistically) whether the robot has achieved its
task or not. We carry out a comprehensive comparison of three
types of neural architectures: (i) fully-connected and fully-
convolutional neural nets, (ii) sequence-to-sequence learning,
and (iii) domain adaptation learning.

Our experiments use two datasets containing images on
different tasks and with varied backgrounds and distractor
objects. Experimental results reveal that 5 human demonstra-
tions is a good compromise between effort and performance.
They also show that T-FCN is the best architecture from the
first group; Transformer is the best from the second group
according to classification accuracy; Attention-RNN is the
best according to F1-score; and T-FCN-ADDA is the best
architecture not only from the third group but from the three
groups of classifiers. T-FCN-ADDA is a novel solution that

Fig. 7: Illustration of predicted probabilities generated by T-
FCN-ADDA and three baselines on the Kitchen dataset.

combines the best architecture from group one and the best
domain adaptation classifier. It achieves high performance
across all tasks in the Kitchen and MIME datasets with
average classification accuracies of 97.3% and 95.5% in those
datasets, while vanilla FCN models only reach 82.4% and
90.3%, respectively.

Future works include investigating reward learning in more
complex tasks than those attempted here, training robots to
carry out manipulation tasks using the proposed classifiers,
and studying their application to other robot platforms.

REFERENCES

[1] Jens Kober, J. Andrew Bagnell, and Jan Peters, “Reinforcement learning
in robotics: A survey,” I. J. Robotics Res., vol. 32, no. 11, 2013.

[2] Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, and Abhinav Gupta,
“Multiple interactions made easy (MIME): large scale demonstrations
data for imitation,” in CoRL. 2018, vol. 87, PMLR.

[3] Manuel Lopes, Francisco Melo, and Luis Montesano, “Active learning
for reward estimation in inverse reinforcement learning,” in ECML-
KDD, 2009.

[4] Yuchen Cui and Scott Niekum, “Active reward learning from critiques,”
in ICRA, 2018.

[5] Christian Daniel, Malte Viering, Jan Metz, Oliver Kroemer, and Jan
Peters, “Active reward learning.,” in RSS, 2014.

[6] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia,
“Active preference-based learning of reward functions.,” in RSS, 2017.

[7] Andrew Y Ng, Stuart J Russell, et al., “Algorithms for inverse
reinforcement learning.,” in ICML, 2000, vol. 1.

[8] Annie Xie, Avi Singh, Sergey Levine, and Chelsea Finn, “Few-shot goal
inference for visuomotor learning and planning,” in CoRL, 2018.

[9] Stephen James, Michael Bloesch, and Andrew J. Davison, “Task-
embedded control networks for few-shot imitation learning,” in CoRL,
2018, vol. 87.

[10] Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey
Levine, “End-to-end robotic reinforcement learning without reward
engineering,” in RSS, 2019.

Fig. 8: Illustration of predicted probabilities generated by T-FCN-ADDA and three baselines on the MIME dataset.

[11] Mel Vecerik, Oleg Sushkov, David Barker, Thomas Rothörl, Todd
Hester, and Jon Scholz, “A practical approach to insertion with variable
socket position using deep reinforcement learning,” in ICRA, 2019.

[12] Lerrel Pinto and Abhinav Gupta, “Supersizing self-supervision: Learning
to grasp from 50k tries and 700 robot hours,” in ICRA, 2016.

[13] Matej Večerı́k, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier
Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe,
and Martin Riedmiller, “Leveraging demonstrations for deep reinforce-
ment learning on robotics problems with sparse rewards,” CoRR, 2017.

[14] Stephen James and Edward Johns, “3d simulation for robot arm control
with deep q-learning,” CoRR, 2016.

[15] Ali Yahya, Adrian Li, Mrinal Kalakrishnan, Yevgen Chebotar, and
Sergey Levine, “Collective robot reinforcement learning with distributed
asynchronous guided policy search,” in IROS, 2017.

[16] Akihiko Yamaguchi, Christopher G Atkeson, and Tsukasa Ogasawara,
“Pouring skills with planning and learning modeled from human demon-
strations,” Intl. Journal of Humanoid Robotics, vol. 12, no. 03, 2015.

[17] Connor Schenck and Dieter Fox, “Visual closed-loop control for pouring
liquids,” in ICRA, 2017.

[18] Pieter Abbeel and Andrew Y Ng, “Apprenticeship learning via inverse
reinforcement learning,” in ICML, 2004.

[19] Chelsea Finn, Sergey Levine, and Pieter Abbeel, “Guided cost learning:
Deep inverse optimal control via policy optimization,” in ICML, 2016.

[20] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K
Dey, “Maximum entropy inverse reinforcement learning.,” in AAAI,
2008, vol. 8.

[21] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich, “Maxi-
mum margin planning,” in ICML, 2006.

[22] Ashley D Edwards, Perceptual Goal Specifications for Reinforcement
Learning, Ph.D. thesis, Georgia Institute of Technology, 2017.

[23] Umar Syed, Michael Bowling, and Robert E Schapire, “Apprenticeship
learning using linear programming,” in ICML, 2008.

[24] Daniel S. Brown, Yuchen Cui, and Scott Niekum, “Risk-aware active
inverse reinforcement learning,” in CoRL, 2018.

[25] Robert Cohn, Edmund Durfee, and Satinder Singh, “Comparing action-
query strategies in semi-autonomous agents,” in AAAI, 2011.

[26] Hsiao-Yu Tung, Adam W Harley, Liang-Kang Huang, and Katerina
Fragkiadaki, “Reward learning from narrated demonstrations,” in CVPR,
2018.

[27] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre
Quillen, “Learning hand-eye coordination for robotic grasping with deep
learning and large-scale data collection,” IJRR, vol. 37, no. 4-5, 2018.

[28] Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine,
“Variational inverse control with events: A general framework for data-
driven reward definition,” in NIPS, 2018.

[29] Ashley D Edwards, Srijan Sood, and Charles L Isbell Jr, “Cross-domain
perceptual reward functions,” arXiv preprint arXiv:1705.09045, 2017.

[30] Pierre Sermanet, Kelvin Xu, and Sergey Levine, “Unsupervised percep-
tual rewards for imitation learning,” arXiv preprint arXiv:1612.06699,
2016.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning,
MIT press, 2016.

[32] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le,
“Learning transferable architectures for scalable image recognition,” in
CVPR, 2018.

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[34] François Chollet et al., “Keras,” https://keras.io, 2015.
[35] Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philemon Brakel,

and Yoshua Bengio, “End-to-end attention-based large vocabulary
speech recognition,” in CASSP, 2016.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin, “Attention
is all you need,” in NIPS, 2017.

[37] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova,
“Bert: Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018.

[38] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever, “Language models are unsupervised multitask learners,”
OpenAI blog, 2019.

[39] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, and
et al, “Language models are few-shot learners,” in NeurIPS, 2020.

[40] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain,
Hugo Larochelle, François Laviolette, Mario Marchand, and Victor
Lempitsky, “Domain-adversarial training of neural networks,” JMLR,
vol. 17, no. 1, 2016.

[41] Yaroslav Ganin and Victor Lempitsky, “Unsupervised domain adaptation
by backpropagation,” in ICML, 2015.

[42] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell, “Adver-
sarial discriminative domain adaptation,” in CVPR, 2017.

https://keras.io

	INTRODUCTION
	Related Work
	Research Methods
	Problem Definition
	Datasets
	Model Architectures

	Evaluation
	Experimental Setting
	Experimental Results: Overview
	Experimental Results: Analysis

	Concluding Remarks
	References

