
Faster FPT Algorithms for Deletion to Pairs of
Graph Classes

Ashwin Jacob1, Diptapriyo Majumdar2, and Venkatesh Raman1

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
{ajacob,vraman}@imsc.res.in

2 Royal Holloway, University of London, Egham, United Kingdom
diptapriyo.majumdar@rhul.ac.uk

Abstract. Let Π be a hereditary graph class. The problem of deletion
to Π, takes as input a graph G and asks for a minimum number (or
a fixed integer k) of vertices to be deleted from G so that the result-
ing graph belongs to Π. This is a well-studied problem in paradigms
including approximation and parameterized complexity. This problem,
for example, generalizes vertex cover, feedback vertex set, clus-
ter vertex deletion, perfect deletion to name a few. The study of
this problem in parameterized complexity has resulted in several power-
ful algorithmic techniques including iterative compression and important
separators.
Recently, the study of a natural extension of the problem was initiated
where we are given a finite set of hereditary graph classes, and the goal
is to determine whether k vertices can be deleted from a given graph,
so that the connected components of the resulting graph belong to one
of the given hereditary graph classes. The problem has been shown to
be FPT as long as the deletion problem to each of the given hereditary
graph classes is fixed-parameter tractable, and the property of being in
any of the graph classes can be expressible in the counting monodic
second order (CMSO) logic. While this was shown using some black
box theorems, faster algorithms were shown when each of the hereditary
graph classes has a finite forbidden set.
In this paper, we do a deep dive on pairs of specific graph classes (Π1, Π2)
in which we would like the connected components of the resulting graph
to belong to, and design simpler and more efficient FPT algorithms. We
design two general algorithms for pairs of graph classes (possibly having
infinite forbidden sets) satisfying certain conditions on their forbidden
sets. These algorithms cover a number of pairs of popular graph classes.
Our algorithms make non-trivial use of the branching technique and as
black box, FPT algorithms for deletion to individual graph classes.

1 Introduction

Graph modification problems are the class of problems in which the input in-
stance is a graph, and the goal is to check if the input can be transformed into
a graph of a specified graph class by using some specific number of “allowed”

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/477976286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Jacob et al.

graph operations. Depending on the allowed operations, vertex or edge deletion
problems, edge editing or contraction problems have been extensively studied in
various algorithmic paradigms.

In the last two decades, graph modification problems, specifically vertex dele-
tion problems have been extensively studied in the field of parameterized com-
plexity. Examples of vertex deletion problems include Vertex Cover, Clus-
ter Vertex Deletion, Feedback Vertex Set and Chordal deletion
set. We know from the classical result by Lewis and Yannakakis [8] that the
problem of whether removing a set of at most k vertices results in a graph satis-
fying a hereditary property π is NP-complete for every non-trivial property π. It
is well-known that any hereditary graph class3 can be described by a forbidden
set of graphs, finite or infinite, that contains all minimal forbidden graphs in the
class. It is also well-known [1] that if a hereditary graph class has a finite forbid-
den set, then deletion to the graph class has a simple fixed-parameter tractable
(FPT) algorithm using a hitting set based approach.

Recently Jacob et al. [4], building on the work of Ganian et al. [3] for con-
straint satisfaction problems, introduced a natural extension of vertex deletion
problems to deletion to scattered graph classes. Here we want to delete vertices
from a given graph to put the connected components of the resulting graph to
one of a few given graph classes. A scattered graph class (Π1, . . . ,Πd) consists of
graphs whose connected components are in one of the graph classes Π1, . . . ,Πd.
The vertex deletion problem to this class cannot be solved by a hitting set based
approach, even if the forbidden graphs for these classes are finite. For example,
the solution could possibly be disjoint from the forbidden subgraphs present, as
long as it separates them so that the forbidden subgraphs of the d classes don’t
belong to the same component.

Jacob et al. [4] proved that the vertex deletion problem for the scattered
graph class (Π1, . . . ,Πd) is FPT when the vertex deletion problem to each of
the individual graph classes is FPT and for each graph class, the property that
a graph belongs to the graph class is expressible by Counting Monadic Second
Order logic. Unfortunately the running of the algorithm incurs a gargantuan
constant factor (a function of k) overhead. The authors also proved that if the
forbidden families corresponding to all the graph classes Π1, . . . ,Πd are finite,
then the problem is FPT with running time 2poly(k)nO(1). The technique involves
iterative compression and important separators.

Since the algorithms in [4] incur a huge running time and use sophisticated
techniques, it is interesting to see whether we can get simpler and faster algo-
rithms for some special cases of the problem. In this paper we do a deep dive on
the vertex deletion problems to a pair of graph classes when at least one of the
graph classes has an infinite forbidden family.

Our Problems, Results and Techniques: We look at specific variants of the
following problem.

3 A hereditary graph class is a class of graphs that is closed under induced subgraphs

Deletion to Pairs of Graph Classes 3

Π1 or Π2 Deletion Parameter: k
Input: An undirected graph G = (V,E), two hereditary graph classes Π1

and Π2 defined by forbidden graphs F1 and F2 respectively.
Question: Is there a set S ⊆ V (G) of size at most k such that every con-
nected component of G− S is in Π1 or in Π2?

The authors in [5] studied one such specific case where Π1 is the class of
forests (having infinite forbidden set of all cycles) and Π2 is the class of cluster
graphs, to which they gave an O∗(4k)4 algorithm. Here, we describe two general
algorithms covering pairs of a variety of graph classes. While the specific condi-
tions, on the pairs of classes to be satisfied by these algorithms, are somewhat
technical and are explained in the appropriate sections, we give a high level
description here.

We first make the reasonable assumption that the vertex deletion problems to
the graph class Π1 and to Π2 have FPT algorithms. As we want every connected
component of the graph after removing the solution vertices to be in Π1 or
in Π2, any pair of forbidden subgraphs H1 ∈ F1 and H2 ∈ F2 cannot both
be in a connected component of G. Let us look at such a component C with
J1, J2 ⊆ V (C) such that G[Ji] is isomorphic to Hi for i ∈ {1, 2} and look at a
path P between the sets J1 and J2. We know that the solution has to hit the
set J1 ∪ J2 ∪ P .

The first generalization comes up from our observation that for certain pairs
of graph classes, if we focus on a pair of forbidden subgraphs H1 ∈ F1 and
H2 ∈ F2 that are “closest” to each other, then there is always a solution that
does not intersect the shortest path P between them. This helps us to branch
on the vertex sets of these forbidden graphs. However, note that the forbidden
graphs may have unbounded sizes. We come up with a notion of forbidden pair
(Definition 2 in Section 2) and show that there are pairs of graph classes that
have finite number of forbidden pairs even if each of them has infinite forbidden
sets. For some of them, we are able to bound the branching step to obtain the
FPT algorithm. This problem variant covers a number of pairs of graph classes
including (Interval, Trees) and (Chordal, Bipartite Permutation). We observe
that this class of algorithms also yield good approximation algorithms for the
deletion problem.

In the second general algorithm, we assume that F1 is finite and has a path
Pi for a constant i, and the family of graphs of F2 that is present in the graph
class Π1 obtained after a pruning step (details in Section 4) is finite. Note that
this restricts the length of P to i. Under these assumptions, we come up with
a finite family of graphs to branch on and we complete the algorithm (at the
leaf level of the branching algorithms) with the FPT algorithm for the deletion
to each of the individual graph classes. The variant satisfying these conditions
covers a number of pairs of graph classes including when Π1 is the class of all
cliques, and Π2 is the class of planar or bounded treewidth graphs.

4 O∗ notation suppresses polynomial factors

4 Jacob et al.

The running time of all the algorithms that we come up in this paper are
substantially better than those in [4].

2 Forbidden Characterization for Π1 or Π2 Deletion

We use Π(1,2) to denote the class of graphs whose connected components are in
the graph classes Π1 or Π2. The following characterization for Π(1,2) is easy to
see.

Lemma 1. (?) A graph G is in the graph class Π(1,2) if and only if no connected
component C of G contains H1 and H2 as induced graphs in C, where (H1, H2) ∈
F1 ×F2.

We now define the notion of super-pruned family which gives us a minimal
family of graphs which are forbidden in the graph class Π(1,2).

We say that family of graphs is minimal if no element of it is an induced
subgraph of some other element of the family.

Definition 1 (Super-Pruned Family).
An element of super-pruned family sp(G1,G2) of two minimal families of

graphs G1 and G2 is a graph that (i) belongs to one of the two families and (ii)
has an element of the other family as induced subgraph.

The family sp(G1,G2) can be obtained from an enumeration of all pairs in
G1×G2 and adding the supergraph if one of the graph is induced subgraph of the
other. The family obtained is made minimal by removing the elements that are
induced subgraphs of some other elements.

For example, let (Π1,Π2) be (Interval, Trees), with the forbidden families
F1 = {net, sun, long claw, whipping top, † -AW, ‡-AW} ∪ {Ci : i ≥ 4} (See
Figure 2 in [2]) and F2 as the set of all cycles. Note that all graphs Ci with
i ≥ 4 are in sp(F1,F2) as they occur in both F1 and F2. The remaining pairs of
F1 ×F2 contain triangles from F2. If the graph from F1 is a net, sun, whipping
top, †-AW or ‡-AW, it contains triangle as an induced subgraph. Hence these
graphs are also in the family sp(F1,F2).

We now show that graphs in sp(F1,F2) are forbidden in the graph class
Π(1,2).

Lemma 2. (?)5 If a graph G is in the graph class Π(1,2), then no connected
component of G contains a graph in sp(F1,F2) as induced subgraphs.

The family sp(F1,F2) does not cover all the pairs in F1×F2. We now define
the following to capture the remaining pairs.

Definition 2 (Forbidden Pair). A forbidden pair of F1 and F2 is a pair
(H1, H2) ∈ F1 ×F2 such that both H1 /∈ sp(F1,F2) and H2 /∈ sp(F1,F2).

5 Proofs of Theorems and Lemmas marked ? are moved to the full version due to lack
of space.

Deletion to Pairs of Graph Classes 5

For example, if Π1 is the class of interval graphs and Π2 is the class of forests,
we have already shown that sp(F1,F2) contains all the graphs in F1 except long-
claw. The only remaining pair is (long-claw, triangle) which is a forbidden pair.

Now we characterize Π(1,2) based on the super-pruned family and a family
of forbidden pairs associated to F1 and F2. This is used in the algorithms in
Section 3.

Lemma 3. (?) The following statements are equivalent.

– Each connected component of G is in Π1 or Π2.

– The graph G does not contain graphs in the super-pruned family sp(F1,F2)
as induced subgraphs. Furthermore, for each forbidden pair (H1, H2) of F1

and F2, the graphs H1 and H2 both cannot appear as induced subgraphs in
a connected component of G.

We now define a useful notion of forbidden sets for the graph class Π(1,2),
and the notion of closest forbidden pairs.

Definition 3. We call a minimal vertex subset Q ⊆ V (G) as a forbidden set
corresponding to the graph class Π(1,2) if G[Q] is isomorphic to a graph in
sp(F1,F2) or G[Q] is connected and contains both H1 and H2 as induced sub-
graphs for some forbidden pair (H1, H2) of Π(1,2).

Definition 4. We say that a forbidden pair (H1, H2) is a closest forbidden pair
in a graph G if there exists subsets J1, J2 ⊆ V (G) such that G[J1] is isomorphic
to H1, G[J2] is isomorphic to H2 and the distance between J1 and J2 in G
is the smallest among all such pairs J1, J2 corresponding to all forbidden pairs
of F1 and F2. We call the pair of vertex subsets (J1, J2) as the vertex subsets
corresponding to the closest forbidden pair.

3 Π1 or Π2 Deletion with a constant number of
forbidden pairs

We start with the following reduction rule for Π1 or Π2 Deletion whose
correctness easily follows.

Reduction Rule 1 If a connected component C of G is in Π1 or in Π2, then
delete C from G. The new instance is (G− V (C), k).

In this section we assume that the forbidden pair family (as defined in Sec-
tion 2) for Π1 and Π2 is finite. Before we define the further conditions, we
give an algorithm for an example pair of graph classes that satisfy our problem
conditions.

6 Jacob et al.

3.1 Interval or Trees

We define the problem.

Interval-or-Tree Deletion Parameter: k
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there S ⊆ V (G) of size at most k such that every connected
component of G− S is either an interval graph, or a tree?

We have the following forbidden subgraph characterization of interval graphs.

Lemma 4. ([7]) A graph is an interval graph if and only if it does not contain
net, sun, hole, whipping top, long-claw, †-AW, or ‡-AW as its induced subgraphs.
See Figure 2 in [2] for an illustration of the forbidden subgraphs for interval
graph.

Let G1 be the family of graphs in sp(F1,F2) of size at most 10. We now
define the following branching rule where we branch on all induced subgraphs of
G isomorphic to a member in G1. The correctness follows as G1 is a finite family
of finite-sized graphs.

Branching Rule 1 Suppose that (G, k) be the input instance and there exist
a forbidden set Q ⊆ V (G) such that G[Q] is isomorphic to a member in G1.
Then, for each v ∈ V (Q), we delete v from G and decrease k by 1. The resulting
instance is (G− v, k − 1).

From here on we assume that Branching Rule 1 is not applicable for G and
so it is G1-free.

We now focus on connected components of G which contain both long-claw
and triangle as induced subgraphs. We describe a branching rule corresponding
to the closest forbidden pair.

Branching Rule 2 Let (J∗, T ∗) be the vertex subsets of a closest long-claw,
triangle pair in a connected component of G, where J∗ is a long-claw, and T ∗ is
a triangle. Then for each v ∈ J∗ ∪ T ∗, delete v and decrease k by 1, resulting in
the instance (G− v, k − 1).

We now prove that Branching Rule 2 is sound. Let P ∗ = {u = x0, x1, . . . , xd−1, xd =
v} be a shortest path of length dG(J∗, T ∗) = d that witnesses a path from u ∈ J∗
to v ∈ T ∗.

A caterpillar graph is a tree in which all the vertices are within distance 1 of a
central path. In the graph G, let C be the connected component of G−(J∗∪T ∗)
containing the internal vertices of P ∗. We have the following lemma.

Lemma 5. (?) The graph C is a caterpillar with the central path being P ∗.
Furthermore, the only vertices of C adjacent to J∗ ∪ T ∗ are x1 and xd−1 which
are only adjacent to x0 and xd respectively.

We now use Lemma 5 to prove that Branching Rule 2 is sound.

Deletion to Pairs of Graph Classes 7

Lemma 6. (?) Branching Rule 2 is sound.

From here on, assume that (G, k) is an instance for which Reduction Rule 1,
Branching Rule 1, and Branching Rule 2 are not applicable. The following results
are now easy to see.

Lemma 7. (?) Let C be a connected component of G that has no triangle, but
has a long-claw as induced subgraph. If G[C] has no feedback vertex set of size
k, then (G, k) is a no-instance. Otherwise, let X be a minimum feedback vertex
set of G[C]. Then (G, k) is a yes-instance if and only if (G− V (C), k − |X|) is
a yes-instance.

Lemma 8. (?) Let C be a connected component of G that has no long-claw, but
has a triangle as induced subgraph. If G[C] has no interval vertex deletion set
of size k, then (G, k) is a no-instance. Otherwise, let X be a minimum interval
vertex deletion set of G[C]. Then (G, k) is a yes-instance if and only if (G −
V (C), k − |X|) is a yes-instance.

We are ready to prove our main theorem statement of this section.

Theorem 1. (?) Interval-or-Tree Deletion can be solved in O∗(10k)-
time.

We can also give an approximation algorithm for Interval-or-Tree Dele-
tion.

Theorem 2. (?) Interval-or-Tree Deletion has a 10-approximation al-
gorithm.

3.2 Algorithm for Special Infinite-(Π1,Π2)-Deletion

Now, we show that the algorithm idea of the last section is applicable for a larger
number of pairs of graph classes by identifying the properties that enabled the
algorithm. We now define the variant of Π1 or Π2 Deletion satisfying the
following properties.

1. The vertex deletion problems for the graph classes Π1 and Π2 are FPT with
algorithms to respective classes being A1 and A2.

2. The number of forbidden pairs of F1 and F2 is a constant.
3. All graphs in F1 and F2 are connected.
4. Let (H1, H2) be a closest forbidden pair in the graph G with (J1, J2) being

the vertex subsets corresponding to the pair and P being a shortest path
between J1 and J2. There is a subfamily G1 ⊆ sp(F1,F2) such that
– G1 is a finite family of finite-sized (independent of the size of G) graphs

and
– in the graph G that is G1-free, if a forbidden set Q intersects the internal

vertices of P , then V (P) ⊆ Q where V (P) is the vertex set of the path
P .

8 Jacob et al.

Special Infinite-(Π1, Π2)-Deletion Parameter: k
Input: An undirected graph G = (V,E), graph classes Π1, Π2 with forbid-
den families F1 and F2 such that conditions 1 - 4 are satisfied and an integer
k.
Question: Is there a vertex set S of size at most k such that every connected
component of G− S is either in Π1 or in Π2?

Towards an FPT algorithm for Special Infinite-(Π1, Π2)-Deletion, We
define the following branching rule whose soundness is easy to see.

Branching Rule 3 Let (G, k) be the input instance and let Q ⊆ V (G) such
that G[Q] is isomorphic to a graph in G1. Then, for each v ∈ V (Q), delete v
from G and decrease k by 1. The resulting instance is (G− v, k − 1).

From here on we assume that Branching Rule 3 is not applicable for G and
so G is G1-free.

We now focus on connected components of G which contain forbidden pairs.
For i ∈ {1, 2}, let F i

p denote the family of graphsHi where (H1, H2) is a forbidden
pair.

We have the following branching rule.

Branching Rule 4 Let (J∗, T ∗) be the vertex subsets of a closest forbidden pair
(H1, H2) of F1 and F2. Then for each v ∈ J∗ ∪ T ∗, we delete v and decrease k
by 1, resulting in the instance (G− v, k − 1).

The soundness of the above branching rule comes from condition 4 where
we assume that if a forbidden set Q intersects the internal vertices of a shortest
path P between J∗ and T ∗, then V (P) ⊆ Q.

Lemma 9. (?) Branching Rule 4 is sound.

From here on, assume that (G, k) is an instance for which Reduction Rule 1,
Branching Rule 3, and Branching Rule 4 are not applicable. Note that any
component of G is now free of forbidden pairs. Hence it is F1

p -free or F2
p -free.

The following results are now easy to see.

Lemma 10. (?) Let C be a connected component of G that is F1
p -free. If G[C]

has no Π1-deletion vertex set of size k, then (G, k) is a no-instance. Otherwise,
let X be a minimum Π1-deletion vertex set of G[C]. Then (G, k) is a yes-instance
if and only if (G− V (C), k − |X|) is a yes-instance.

The proof of the following lemma is similar to that of Lemma 10.

Lemma 11. Let C be a connected component of G that is F2
p -free. If G[C] has

no Π2-deletion vertex set of size k, then (G, k) is a no-instance. Otherwise, let
X be a minimum Π2-deletion vertex set of G[C]. Then (G, k) is a yes-instance
if and only if (G− V (C), k − |X|) is a yes-instance.

Deletion to Pairs of Graph Classes 9

We are ready to prove our main theorem statement of this section. Let f(k) =
max{f1(k), f2(k)} where O∗(fi(k)) is the running time for the algorithmAi. Also
let c the maximum among the size of graphs in G1 and max(H1,H2)(|H1|+ |H2|)
where (H1, H2) is a forbidden pair.

Theorem 3. (?) Special Infinite-(Π1, Π2)-Deletion can be solved in
O∗(max{f(k), ck})-time.

We now give an approximation algorithm for Special Infinite-(Π1, Π2)-
Deletion when for i ∈ {1, 2}, Πi Vertex Deletion has an approximation
algorithm with approximation factor ci.

Theorem 4. (?) Special Infinite-(Π1, Π2)-Deletion has a d-approximation
algorithm where d = max(c, c1, c2).

The problem Special Infinite-(Π1, Π2)-Deletion applies for a number of
pairs of graphs of Π1 or Π2 Deletion. We list a few below.

Corollary 1. (?)

– Proper Interval-or-Tree Deletion can be solved in O∗(7k)-time and
has a 7-approximation algorithm.

– Chordal-or-Bipartite Permutation Deletion can be solved in O∗(kO(k))-
time and has a log2(|OPT |)-approximation algorithm where OPT denotes
the optimal solution.

4 Π1 or Π2 Deletion when F2 is infinite and Pi is
forbidden in Π1

Here, we give an algorithm for another variant of Π1 or Π2 Deletion where
Π1 has a finite forbidden set with Pi a path of length i, for a constant i, being
one of them. To explain the further conditions necessary for the pair of classes to
be satisfied, we define the following notion of sub-pruned family which is similar
to the super-pruned family defined before.

Definition 5 (Sub-Pruned Family). We define a family Fp associated with
F1 ×F2 as follows.

A graph H is in Fp if there exists a graph G such that (a) H is an induced
subgraph of G and (H,G) or (G,H) is in F1 ×F2 and (b) there is no graph G′

such that G′ is an induced subgraph of H and (G′, H) or (H,G′) is in F1 ×F2.
Fp can be obtained from an enumeration of all pairs (H1, H2) ∈ F1 × F2,

and for each such pair, adding H1 to Fp and removing H2 from Fp (if it already
exists) whenever H1 is an induced subgraph of H2, and adding H2 to Fp and
removing H1 from Fp (if it already exists) if H2 is an induced subgraph of H1.
The resulting family Fp is called the sub-pruned family of F1 × F2 denoted by
SubPrune(F1 ×F2).

10 Jacob et al.

Example Let (Π1,Π2) be (Interval, Trees). Note that all graphs Ci with i ≥ 4
are in SubPrune(F1×F2) as they occur in both F1 and F2. The remaining pairs
contain triangles from F2. If the graph from F1 is a net, sun, whipping top,
†-AW or ‡-AW, it contains triangle as subgraphs. Hence triangle is also added
to the family SubPrune(F1 ×F2).

A key difference in the definitions of super-pruned family and sub-pruned
family is that for the latter, we do not assume that the associated families are
minimal. If for some H ∈ F for a family F of graphs, we have that H is an
induced subgraph of some other element of F , we call the graph H an irrelevant
graph. In the following lemma, we prove that applying the sub-pruning operation
to F × F helps us to remove the irrelevant graphs from F if F is not minimal.

Lemma 12. (?) If F is a forbidden family for Π, then SubPrune(F × F) is a
forbidden family for Π.

We now define the variant of Π1 or Π2 Deletion that we look at in this
section. Let F ′ = Π1 ∩ F2. We assume that

1. F1 is finite.
2. Pi, for some constant i, is forbidden in Π1 where Pi is the path on i vertices.
3. there is an FPT algorithm A for Π2-vertex deletion problem and
4. SubPrune(F ′ ×F ′) is known to be finite.

Special Mixed-(Π1, Π2)-Deletion Parameter: k
Input: An undirected graph G = (V,E), two graph classes Π1 and Π2

defined by forbidden graphs F1 and F2 respectively. Furthermore, conditions
1-4 above are satisfied.
Question: Is there S ⊆ V (G) of size at most k such that every connected
component of G− S is either in Π1 or in Π2?

Before we develop the algorithm for this general version of scattered ver-
tex deletion, we explain the algorithm for a specific example pair in the next
subsection.

4.1 Clique or Planar graphs

Clique or Planar Vertex Deletion Parameter: k
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there S ⊆ V (G) of size at most k such that every connected
component of G− S is a clique or a planar graph?

We first show that the problem is indeed an example of Special Mixed-
(Π1, Π2)-Deletion problem. We have F1 = {2K1} which is finite. Since P3

is forbidden in cliques, condition 2 is satisfied. The condition 3 is satisfied as
there is an FPT algorithm with O∗(kO(k)) running time for Planar Vertex
Deletion [6].

Finally we have F ′ = F2∩Π1 = {K5,K6, . . . , } as planar graphs are K5-free.
We have SubPrune(F ′ ×F ′) = {K5} which being finite satisfies condition 4.

Deletion to Pairs of Graph Classes 11

Let F ′h be the family of graphs that contain P3 and K5 as induced subgraphs.
We define the family Fh = SubPrune(F ′h ×F ′h).

Lemma 13. The family Fh is of finite size with graphs of size at most 8.

Proof. Let H be a graph in Fh. Let J1 and J2 be vertex subsets of H such that
H[J1] is isomorphic to P3 and H[J2] is isomorphic to K5. First, we observe that
dH(J1, J2) ≤ 1. Suppose not. Then there is a path P between J1 and J2 of length
at least 2. Let J3 be the last three vertices of P . Note that G[J3] is isomorphic
to P3 as well. Then H[J2 ∪ J3] ∈ Fh is also a graph that contains P3 and K5 as
induced subgraphs. This contradicts that H ∈ Fh as it will be removed from Fh

for the pair (H,H[J2 ∪ J3]). Furthermore, note that H[J1 ∪ J2] is a connected
graph which has P3 and K5 as induced subgraphs. Hence H = H[J1 ∪ J2] as
otherwise it will be removed from Fh for the pair (H,H[J1 ∪ J2]). This proves
the lemma as |J1 ∪ J2| ≤ 8. ut

We now describe the algorithm. The following branching rule and its sound-
ness is easy to see.

Branching Rule 5 Suppose the graph G of the input instance (G, k) has a
graph Ĥ ∈ Fh as its induced subgraph. Then for each v ∈ V (Ĥ), we delete v and
decrease k by 1, resulting in the instance (G− v, k − 1).

The following lemma is easy to see.

Lemma 14. (?) Let G be a graph such that Branching Rule 5 is not applicable.
Let C be a component of G which contains K5 as an induced subgraph. Then C
is a clique.

Since Reduction Rule 1 removes components of G that are cliques, we have
the following corollary.

Corollary 2. If Reduction Rule 1 and Branching Rule 5 are not applicable, then
no connected component of the graph G has K5 as induced subgraph.

The following lemma allows us to apply the algorithm for Planar Vertex
Deletion in the remaining components of G to solve the problem.

Lemma 15. (?) Let (G, k) be the resulting instance after applying the reduction
rules. If G has no planar vertex deletion set of size k, then (G, k) is a no-instance.
Otherwise, let X be a minimum sized set such that G−X is planar. Then X is
also a solution (G, k).

The main theorem now follows.

Theorem 5. (?) Clique or Planar Vertex Deletion has a O∗(kO(k))
time FPT algorithm.

12 Jacob et al.

4.2 Algorithm for Special Mixed-(Π1,Π2)-Deletion

We now give the algorithm of Special Mixed-(Π1, Π2)-Deletion. The ideas
here can be seen as generalizations of the algorithm for Clique or Planar
Vertex Deletion.

Let F ′h denote the family of graphs H that satisfies the following.

– there exists a pair (H1, H2) ∈ F1 × SubPrune(F ′ × F ′) such that both H1

and H2 occur as induced subgraphs of H.

– Let Q1, Q2 ⊆ V (H) such that H[Q1] is isomorphic to H1 and H[Q2] is
isomorphic to H2. Then dH(Q1, Q2) ≤ i.

We define Fh = SubPrune(F ′h ×F ′h).

We give algorithm Special Mixed-(Π1, Π2)-Deletion} by branching over
graphs in Fh and later applying algorithm A for vertex deletion to graph class
Π2. The details are moved to the full version of the paper.

Theorem 6. (?) Special Mixed-(Π1, Π2)-Deletion has an FPT algorithm
with running time (d1 + i + d2)kf(k)poly(n) where d1 = max{|F | : F ∈ F1},
d2 = max{|H| : H ∈ Fh} and supposing algorithm A takes O∗(f(k)) time.

The problem Special Mixed-(Π1, Π2)-Deletion applies for a number of
pairs of graphs ofΠ1 or Π2 Deletion. We list a few below. Note that the second
algorithm in the list covers a number of graph classes for Π2. For example Π2

can be the class of all planar graphs, or the class of all graphs with treewidth t.

Corollary 3. (?) Π1 or Π2 Deletion is FPT for the following pairs (Π1, Π2)
of graph classes.

1. Π1 is the class of cliques and Π2 is the class of cactus graphs. The FPT
algorithm has running time O∗(26k).

2. Π1 is the class of cliques and Π2 is the class of graphs that has an FPT algo-
rithm with O∗(f(k)) running time for its deletion problem and its forbidden
family F2 contains the graph Kt for some constant t. The FPT algorithm
has running time O∗((t+ 1)kf(k)).

3. Π1 is the class of split graphs and Π2 is the class of bipartite graphs. The
FPT algorithm has running time O∗(13k).

5 Conclusion

We gave faster algorithms for some vertex deletion problems to pairs of scattered
graph classes with infinite forbidden families. The existence of a polynomial
kernel for all the problems studied are open. It is even open when all the scattered
graph classes have finite forbidden families.

Deletion to Pairs of Graph Classes 13

References

1. Cai, L.: Fixed-Parameter Tractability of Graph Modification Problems for Heredi-
tary Properties. Inf. Process. Lett. 58(4), 171–176 (1996)

2. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Transactions
on Algorithms (TALG) 11(3), 1–35 (2015)

3. Ganian, R., Ramanujan, M.S., Szeider, S.: Discovering archipelagos of tractability
for constraint satisfaction and counting. ACM Trans. Algorithms 13(2), 29:1–29:32
(2017)

4. Jacob, A., de Kroon, J.J., Majumdar, D., Raman, V.: Parameterized complexity of
deletion to scattered graph classes. arXiv preprint arXiv:2105.04660 (2021)

5. Jacob, A., Majumdar, D., Raman, V.: Parameterized complexity of deletion to scat-
tered graph classes. In: 15th International Symposium on Parameterized and Exact
Computation (IPEC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

6. Jansen, B.M., Lokshtanov, D., Saurabh, S.: A near-optimal planarization algorithm.
In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms. pp. 1802–1811. SIAM (2014)

7. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals
on the real line. Fundamenta Mathematicae 51(1), 45–64 (1962)

8. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is np-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

	Faster FPT Algorithms for Deletion to Pairs of Graph Classes

