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SUMMARY

Gene-editing techniques are currently revolutionizing biology, allowing far greater precision than previous

mutagenic and transgenic approaches. They are becoming applicable to a wide range of plant species and

biological processes. Gene editing can rapidly improve a range of crop traits, including disease resistance,

abiotic stress tolerance, yield, nutritional quality and additional consumer traits. Unlike transgenic

approaches, however, it is not facile to forensically detect gene-editing events at the molecular level, as no

foreign DNA exists in the elite line. These limitations in molecular detection approaches are likely to focus

more attention on the products generated from the technology than on the process in itself. Rapid advances

in sequencing and genome assembly increasingly facilitate genome sequencing as a means of characterizing

new varieties generated by gene-editing techniques. Nevertheless, subtle edits such as single base changes

or small deletions may be difficult to distinguish from normal variation within a genotype. Given these

emerging scenarios, downstream ‘omics’ technologies reflective of edited affects, such as metabolomics,

need to be used in a more prominent manner to fully assess compositional changes in novel foodstuffs. To

achieve this goal, metabolomics or ‘non-targeted metabolite analysis’ needs to make significant advances

to deliver greater representation across the metabolome. With the emergence of new edited crop varieties,

we advocate: (i) concerted efforts in the advancement of ‘omics’ technologies, such as metabolomics, and

(ii) an effort to redress the use of the technology in the regulatory assessment for metabolically engineered

biotech crops.
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INTRODUCTION

The last decade has been characterized by the adoption of

genome-editing systems following the revolutionary dis-

covery of transcriptional activator-like effector (TALE) pro-

teins, which are more suitable for the precise engineering

of targeted DNA sequences (Stella and Montoya, 2016) and

the subsequent widespread adoption of the clustered regu-

larly interspaced short palindromic repeats (CRISPR)-asso-

ciated protein (Cas) system (Puchta and Fauser, 2014;

Scheben et al., 2017; Yin et al., 2017). We refer the reader

to the plethora of excellent reviews on plant gene editing

(Kim and Kim, 2014; Baltes and Voytas, 2015; Bortesi et al.,

2016; Wright et al., 2016; Pacher and Puchta, 2017; Zhu

et al., 2017; Knott and Doudna, 2018; Langner et al., 2018)

for details of the underlying molecular mechanisms and

the manifold applications. Here we outline the opportuni-

ties that these techniques afford as well as review recent

additions to the repertoire of applications. We then discuss

prevailing legal and political viewpoints regarding the

introduction of gene-edited crops into agricultural produc-

tion, before proposing a bi-functional role of metabolomics

technologies in the regulatory assessment of gene-edited

crops. For context, we first provide a brief review of current

metabolomics techniques and their prior use in the evalua-

tion of transgenic plants. We argue that metabolomics rep-

resents an efficient means to discriminate gene-edited and

non-edited control plants, and is an important tool for

assessing both intended and unanticipated metabolic out-

comes, which could suggest the need for further character-

ization. Finally, we provide a perspective that we anticipate

will aid in establishing a road map for metabolomics-based

identification and safety assessment of gene-edited plants,

taking into account potential environmental effects and

interactions with the metabolome. Whether achieved via

gene editing, induced or natural mutation, or from avail-

able genetic diversity, the critical question remains: if a

biochemical step or component of a physiological process

is altered, what is the final outcome in chemical composi-

tion of the product and how will the scientific community

detect, quantify and communicate these changes?

THE ADVENT AND ADOPTION OF GENOME EDITING IN

PLANTS

Genome editing was initially achieved using meganucle-

ases with target sites of up to 18 bp in length; however,

the fact that the double-stranded breaks produced by these

enzymes were determined by the natural specificities of

the enzymes made them difficult to work with (Rosen

et al., 2006). As a consequence, designer nucleases with

specificity characteristics, such as zinc-finger nucleases

and transcription activator-like effector nucleases were

developed and overcame this problem (Kim and Kim,

2014; Zhu et al., 2017). The most recent technology is

based on a form of bacterial adaptive immunity, in which

previously encountered invasive DNA sequences are com-

mitted to molecular memory and targeted in future chal-

lenges by expressing CRISPRs representing DNA

fragments captured from invading pathogens. The resul-

tant CRISPR RNAs act as guides for CRISPR-associated

(Cas) nucleases that attack the pathogens upon subsequent

infection (Knott and Doudna, 2018; Langner et al., 2018).

Researchers have exploited this process by constructing

synthetic guide RNAs that direct the Cas nuclease to geno-

mic targets. The benefits and applications of genome edit-

ing include its greater precision without the presence of

foreign DNA in the edited genome. Although the technique

has been much reviewed in recent years (Baltes and Voy-

tas, 2015; Puchta, 2017; Scheben et al., 2017; Komor et al.,

2017a; Kumlehn et al., 2018; Scheben and Edwards, 2018),

it is imperative to realise that our understanding of both its

scope and the mechanisms by which it can operate are

rapidly evolving. For example, targeting precision has

recently been improved in plants and other organisms by a

range of means, including the use of different CRISPR-as-

sociated nucleases (Komor et al., 2017b; Kim et al., 2019;

Raitskin et al., 2019), in addition to now achieving editing

without the need for double-stranded DNA breaks (Gau-

delli et al., 2017). Enhanced precision should reduce so-

called ‘off-target’ effects, whereby genes other than that

targeted gene are edited. The lack of a need for double-

stranded DNA breaks bypasses the need for homologous

recombination, greatly increasing the efficiency of editing

(Gaudelli et al., 2017). Other technological developments

of note include a microRNA-inducible CRISPR-Cas9 plat-

form that can act as a microRNA sensor and cell type-

specific tool for genome regulation (Wang et al., 2019),

one-step genome editing during haploid induction (Kelliher

et al., 2019), and the development of strategies for gene

replacements and insertions by intron targeting (Li et al.,

2016). Moreover, gene editing has been demonstrated to

have highly versatile applications, including its use in gen-

erating fertile transplastomic Arabidopsis plants (Ruf et al.,

2019), in the novel domestication of crops (Lemmon et al.,

2018; Li et al., 2018; Zsogon et al., 2018) and in the re-eval-

uation of a classical ripening mutation in Solanum lycoper-

sicum (tomato; Ito et al., 2017). Its potential for agriculture

is both astounding and expanding. In summary, already at

this early stage (Fernie and Yan, 2019), gene editing can be

used to: activate or suspend the function of a gene (Qi

et al., 2013); create multiple different alleles of a gene

(Rodriguez-Leal et al., 2017); edit any base (Gaudelli et al.,

2017); repair deletions (Dahan-Meir et al., 2018); add genes

that do not exist in the original genome (Park et al., 2014);

and delete any sequence, including large chromosomal

fragments or even entire chromosomes (Xiao et al., 2013).

CRISPR has successfully been used in many important

crop species including, but not limited to, the cereals
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Hordeum vulgare (barley; Lawrenson et al., 2015), Oryza

sativa (rice; Shan et al., 2013; Li, et al., 2016), Triticum aes-

tivum (wheat; Shan et al., 2013; Zhang et al., 2016) and Zea

mays (maize; Shi et al., 2017), as well as Brassica oleracea

(Lawrenson et al., 2015), Citrus (Peng et al., 2017), Cucumis

sativus (cucumber; Chandrasekaran et al., 2016), Glycine

max (soybean; Demorest et al., 2016), Solanum lycoper-

sicum (tomato; Cermak et al., 2015), and Solanum tubero-

sum (potato; Clasen et al., 2016; Ye et al., 2018), with

applications in novel species published on a monthly, if

not weekly, basis. In terms of agricultural application, it is

essential to realise that that the Cas9 enzyme is, in effect, a

biological mutagen, a fact that needs to be conveyed more

clearly to politicians as well as to the general public.

In 2018 the European Court of Justice (ECJ) ruled that

gene-edited crops should be subjected to the same strin-

gent regulations as those presently in place for genetically

modified (GM) organisms (Bobek, 2018). Although a set-

back for practitioners in the field, who felt that the absence

of foreign DNA in the crop would alleviate the need for

lengthy regulation processes, the ruling has accentuated

the need for the detailed characterization of novel foods

and has potentially shifted the focus from detection to a

greater need for product characterization, more akin to cur-

rent US regulation. For example, most countries who have

not taken the same stance as Europe and want to empower

the potential of the technology will be developing and

releasing a plethora of new alleles into the supply chain.

Considering the potential similarity to existing alleles and

the limitations of genome sequencing in assessing gene-

editing events, how will these changes be detected?

Advanced metabolomics could have a role in rapidly deter-

mining global changes to the metabolome and how these

changes relate to the chemical composition of existing

benchmarked varieties/foodstuffs. In addition, classical

mutagenesis remains the only technological exception to

the regulatory procedures surrounding GM technologies.

This criterion is based on a safe history of use. Therefore,

it is important to actively engage in discovery and feasibil-

ity studies using gene-editing techniques to ensure a

wealth of robust scientific data is generated to support

these emerging technologies.

METABOLOMICS

The first papers on metabolomics in plants – the compre-

hensive description of the small molecule complement of

the cell – were published over 20 years ago (Katona et al.,

1999; Fiehn et al., 2000; Roberts, 2000; Roessner et al., 2001;

Aharoni et al., 2002; Le Gall et al., 2003; Weckwerth, 2003;

Deferenez et al., 2004; Saito and Matsuda, 2010); however,

current methodologies only cover a small percentage of the

200 000–1 000 000 metabolites anticipated in the plant king-

dom (Dixon and Strack, 2003; Rai et al., 2017). Three

methodologies are commonly used for plant metabolomics:

nuclear magnetic resonance (NMR), gas chromatography

mass spectrometry (GC-MS) and liquid chromatography

mass spectrometry (LC-MS) (Obata and Fernie, 2012), with

LC-MS providing the most comprehensive outcomes

(Alseekh and Fernie, 2018). Twin improvements afforded by

ultra-performance LC (UPLC) and high-resolution mass

spectrometry rendered this technique even more powerful

with regards to resolution, sensitivity and throughput (Fer-

nie and Tohge, 2017). Indeed, data on over 1000 metabolites

are accessible using either direct infusion or coupled UPLC

high-resolution MS (Aharoni et al., 2002; Kind and Fiehn,

2007; Giavalisco et al., 2011). High-resolution MS provided

a massive boon to metabolomics in providing sufficient

mass accuracy to allow the determination of the exact

chemical composition, but not the unambiguous structure

assignment of each analyte. Multiple rounds of MS can aid

in structural assignment via the identification and assembly

of the resultant metabolite fragments, whereas metabolite

purification can allow metabolite absolute structure identifi-

cation via NMR (see for example Tohge et al., 2016). The

generation of large libraries of spectra based on authentic

chemical standards (Shahaf et al., 2016), isotope labeling

(Giavalisco et al., 2011; Nakabayashi and Saito, 2017; Feld-

berg et al., 2018), MS imaging (Sturtevant et al., 2016; Dong

et al., 2016) and the development of a large range of bioin-

formatics tools (Perez de Souza et al., 2017), including

molecular networking approaches (Kang et al., 2019; Perez

de Souza et al., 2019), is additionally aiding in filling gaps in

the coverage of metabolomics techniques. Enhanced capac-

ity for metabolite identification is important to help biologi-

cally interpret any changes observed, but in the context of

metabolomics screening for the occurrence of editing

events, annotation is actually not necessary. This is in con-

trast to environmental safety issues, as mentioned by Hall

and de Maagd (2014), where our current limited ability for

metabolite annotation still restricts our assessment of the

overall biological relevance of any observed changes,

whether predicted or not.

Metabolic profiling has seen great utility within systems-

biology approaches aimed at providing a more compre-

hensive understanding of plant responses to environmen-

tal and genetic perturbations (Roessner et al., 2001; Fernie

et al., 2004; Saito and Matsuda, 2010; Weckwerth, 2003).

Additionally, metabolic profiling has been used in multiple

studies aimed at the safety assessment of GM crops (Kui-

per et al., 2001; Christ et al., 2018): e.g. to demonstrate the

substantial similarity between conventional potatoes and

potatoes engineered to produce fructans (Catchpole et al.,

2005), with similar results obtained from metabolomics on

field-grown transgenic barley in comparison with wild-type

barley (Kogel et al., 2010). Other studies have demon-

strated considerable metabolic consequences of genetic

alterations in potato (Shepherd et al., 2015) and wheat

(Baker et al., 2006), however. Moreover, a recent study
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using metabolomics revealed that even the commonly

used bialaphos resistance gene (BAR) for transgene selec-

tion has effects on amino acid levels in a range of species

as a result of enzyme promiscuity (Christ et al., 2017).

A further study looking at substantial equivalence in toma-

toes revealed that the majority of the transgenics exhibited

only small changes in metabolomics yet displayed repro-

ducible transformation-related metabolic signatures. This

study is thus illustrative of the challenge also present for

metabolomics analysis of gene-edited or indeed even con-

ventionally mutated plants (Garcia et al., 2016), in that

metabolic changes are likely to be present following

genetic perturbation. In the case of gene-edited plants, we

believe that this is an opportunity rather than a problem, in

that the metabolic changes represent a possible route for

the identification of gene-edited individuals. This will

clearly depend on the gene-editing event having detectable

metabolic consequences. Although an estimated 25–30%
of plant genes directly encode metabolically-associated

proteins, considerable cumulative evidence from a broad

number of studies suggests that the modified expression

of most genes will have metabolic consequences (Fernie

et al., 2004; Lu et al., 2008). The simplest route for identify-

ing genetic perturbations in the case of metabolism-associ-

ated genes would be the identification of alterations in the

levels of the products and substrates of the reaction that

the proteins they encode catalyze. Following cross-over

theory, the deficiency of an enzyme would result in the

accumulation of its substrate(s) and depletion of its pro-

duct(s), whereas the upregulation of an enzyme activity

would result in the opposite changes (Newsholme and

Start, 1973). This theory only holds true for a simple linear

metabolic pathway, which is relatively rare in the case of

plant metabolism, however. As mentioned for the exam-

ples above, pleiotropic changes in metabolism and

changes propagated throughout the metabolic network

appear to be relatively common. As such, the combination

of multivariate statistics and high-resolution metabolomics

are likely to prove instrumental as a means of discriminat-

ing gene-edited plants from their wild-type controls as well

as from spontaneous mutants or early generations of phys-

ically or chemically induced mutants, which are likely to

contain multiple mutations. Considering the sensitivity and

comprehensiveness of the technology for detecting meta-

bolic differences, it is important to emphasize that all meta-

bolic comparisons must be made under correct and fully

controlled environmental conditions, in order to permit the

proper robust comparison of samples where only the

genetic component can be causal to any differences

observed.

PERSPECTIVE

In recent years funding bodies have promoted multidisci-

plinary and interdisciplinary research that involves input from

the disciplines of engineering, natural sciences, social

sciences and humanities, in such a manner that no single dis-

cipline predominates. Co-design has now become a term and

practice that appears concurrently on some of the most cut-

ting-edge scientific proposals, in an attempt to deliver better

societal perception, transparency and acceptance of new

technologies (Steen et al., 2011). It is also important and nec-

essary to have robust scientific data taken over a prolonged

period of study to ensure that a truly informed judgement

can be made, however. For example, despite the lack of

consumer acceptance, it is impressive that the vast body of

multidisciplinary outputs have been able to establish first-

generation transgenic crops as a safe technology. Given this

endorsement of scientific robustness and approaches, is it

not sensible to treat the emerging technologies of gene edit-

ing in crop plants with the same rigor as previously carried

out with transgenic technologies? In fact, we can learn from

previous successful approaches. The precision of gene edit-

ing also poses new challenges to detect new edited alleles in

germplasm across the supply chain. With this in mind, meta-

bolomics or even ‘next-generation metabolomics’ (e.g. with

greater annotation of metabolites with high confidence) has a

key role to play in the new paradigm of gene-edited crops,

especially if there is a shift to product characterization rather

than the production process.

Perhaps one of the first questions that must be asked is:

can we rapidly detect a change in the metabolome? An

untargeted metabolite analysis component of a hierarchical

workflow clearly has utility in this respect. Subsequently,

there is a requirement to identify the indirect biochemical

changes globally and the precise reaction/process affected.

In comparison to genomics, it is clear that metabolomics

has not proceeded with the same rapidity. In part because

of the intrinsic diverse and dynamic chemical nature of the

metabolome. Despite these limitations, the importance of

the metabolome in representing the outputs of cellular pro-

cesses and the chemical composition of foodstuffs, there is

a genuine necessity to improve our ability to determine

metabolome composition. How could this be achieved in a

generic biological context? Clearly metabolite identification

via species-specific quantitative data and chromatographic

annotation needs addressing. In addition, pre-purification

on the basis of polarity and the development of spatial

metabolomics would help to overcome the issue of

dynamic range and incorporate more biological texture to

the data. Likewise, advanced tools for the better integration

of multi-omic data sets would be beneficial. The fact that

genome-wide association study populations are rapidly

identifying the genetic architecture of known metabolites

suggests that this approach will gain utility in identifying

unknown metabolites in the future. In conclusion, the

emerging technologies associated with gene editing in

crops will be revolutionary to both fundamental and

applied science. The advances only highlight the need for
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the concurrent development of approaches to analyse,

characterize and detect changes across biochemical sys-

tems in an unbiased manner, however.
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