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Abstract

Deep learning has been successful for many computer vi-
sion tasks due to the availability of shared and centralised
large-scale training data. However, increasing awareness of
privacy concerns poses new challenges to deep learning, es-
pecially for human subject related recognition such as person
re-identification (Re-ID). In this work, we solve the Re-ID
problem by decentralised learning from non-shared private
training data distributed at multiple user sites of independent
multi-domain label spaces. We propose a novel paradigm
called Federated Person Re-Identification (FedReID) to con-
struct a generalisable global model (a central server) by si-
multaneously learning with multiple privacy-preserved local
models (local clients). Specifically, each local client receives
global model updates from the server and trains a local model
using its local data independent from all the other clients.
Then, the central server aggregates transferrable local model
updates to construct a generalisable global feature embedding
model without accessing local data so to preserve local pri-
vacy. This client-server collaborative learning process is iter-
atively performed under privacy control, enabling FedReID
to realise decentralised learning without sharing distributed
data nor collecting any centralised data. Extensive experi-
ments on ten Re-ID benchmarks show that FedReID achieves
compelling generalisation performance beyond any locally
trained models without using shared training data, whilst in-
herently protects the privacy of each local client. This is
uniquely advantageous over contemporary Re-ID methods.

Introduction
In recent years, deep neural network learning has achieved
incredible success in many computer vision tasks. However,
it relies heavily upon the assumption that a large volume of
data can be collected from source domains and stored on a
centralised database for model training. Despite the current
significant focus on centralised data centres to facilitate big
data machine learning drawing from shared data collections,
the world is moving increasingly towards localised and pri-
vate distributed data analysis at-the-edge. This differs inher-
ently from the current assumption of ever-increasing avail-
ability of centralised data and poses new challenges to deep
learning, especially for human subject related recognition
such as person re-identification (Gong et al. 2014).
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Figure 1: An illustration of FedReID decentralised learning.
A client refers to a user site with private local training data,
while a server refers to a centralised global model without
any training data. Each client uses private local data to train
a local model, while a server aggregates local model updates
to construct a global model without accessing local training
data. This client-server collaborative learning is iterative to
yield a global feature representation for out-of-the-box de-
ployment with privacy protection.

Person re-identification (Re-ID) on urban streets at city-
wide scales is useful in smart city design (e.g. population
flow management) and for public safety (e.g. find a miss-
ing person) (Liu, Chang, and Shen 2020; Dong, Gong, and
Zhu 2019; Wu, Zhu, and Gong 2020, 2019b). Existing Re-
ID methods follow either supervised learning by collecting
large-scale datasets for model training (Chen et al. 2020;
Liu, Chang, and Shen 2020) or unsupervised learning by
assembling both labelled source domain data for model ini-
tialisation and unlabelled target domain data for model fine-
tuning (Wang and Zhang 2020; Yang et al. 2019b). Al-
though these methods have achieved promising results, they
are based on a centralised learning paradigm, which is in-
herently flawed when source datasets cannot be shared in a
centralised training protocol due to privacy protection. This
requires a new Re-ID paradigm for learning a generalisable
global model with distributed collections of non-shared data
from independent multi-domain label spaces.

In this work, we propose a fundamentally novel paradigm
called Federated Person Re-Identification (FedReID) for de-



centralised model learning from distributed non-sharing data
of independent label spaces. We construct a generalisable
global Re-ID model (a centralised server) by distributed col-
laborative learning of multiple local models (localised and
private clients) without sharing local training data nor col-
lecting any centralised data. As illustrated in Fig. 1, different
cities around the world can play the roles of localised clients.
Each client receives global model updates from the central
server and trains a local model using its own set of private
non-shared data. Then, the central server aggregates local
model updates to construct a generalisable model without
accessing local data. This client-server collaborative learn-
ing process is iteratively performed, enabling FedReID to
learn a generalisable global model from decentralised data
with privacy protection. For deployment, the generalisable
global Re-ID model from the server can be deployed directly
without using additional centralised data for fine-tuning.

Our contributions are: (1) For the first time, we intro-
duce decentralised model learning from distributed non-
sharing data of independent multi-domain labels for per-
son Re-ID. This study can potentially benefit other com-
puter vision tasks that require decentralised model learning
on distributed non-sharing data with privacy protection. (2)
We propose a new paradigm called Federated Person Re-
Identification (FedReID). Our approach explores the prin-
ciple of federated learning (Konečnỳ et al. 2016), but is
uniquely designed for decentralised Re-ID by reformulat-
ing the iterative client-server collaboration mechanism. In
each local client, in addition to a local client model which
consists of a feature embedding network for visual feature
extraction and a mapping network for classification, we fur-
ther use a local expert to regularise the training process of
the local client model. (3) Extensive experiments on 10 Re-
ID benchmarks show that FedReID can both protect local
data privacy and achieve compelling generalisation perfor-
mance, which is uniquely advantageous over contemporary
Re-ID methods that assume shared centralised training data
without privacy protection.

Related Work
Person Re-Identification. Learning generic feature repre-
sentations is attractive for real-world Re-ID applications.
Conventional supervised Re-ID (Chen et al. 2020; Wu, Zhu,
and Gong 2019a) relies heavily on centralised labelled data
in target domains, whilst cross-domain unsupervised Re-
ID (Wang and Zhang 2020; Yang et al. 2019b) relies on the
availability of centralised labelled data from source domains
for model initialisation and unlabelled data from target do-
mains for model fine-tuning, so they are both impractical
for out-of-the-box deployments. More importantly, the cen-
tralised learning paradigm may not be feasible in practice
when training data cannot be shared to a centralised training
process due to privacy restrictions. Recently, domain gen-
eralised Re-ID is proposed to learn a generic feature em-
bedding model. In (Song et al. 2019), Song et al. follow a
meta-learning pipeline to optimise a domain-invariant map-
ping network. In (Jin et al. 2020), a style normalisation mod-
ule is introduced to filter out style variations. In (Xiao et al.
2016), domain guided dropout is used for domain-specific

knowledge selection. However, these methods still require
a centralised training process by assembling a large pool of
data from multi-domain datasets. Different from all existing
Re-ID methods, our FedReID has a fundamentally new de-
centralised learning paradigm for optimising a generalised
Re-ID model through collaborative learning by communi-
cating knowledge among the central server model and the
local client models. Each client learns independently on dis-
tributed local private data, while the server uses local model
updates to construct a global model without accessing lo-
cal data nor collecting any centralised data, so FedReID em-
braces inherently privacy protection.
Federated Learning. Federated learning (Konečnỳ et al.
2016; McMahan et al. 2017; Yang et al. 2019a; Ji et al. 2019)
is a recently proposed machine learning technique that al-
lows local users to collaboratively train a centralised model
without sharing local data. Conventional federated learning
aims at learning a shared model with decentralised data for
the same class label space and reducing communication cost.
For example, in (McMahan et al. 2017), McMahan et al. in-
troduced Federated Stochastic Gradient Descent (FedSGD)
and Federated Average (FedAVG) to iteratively aggregate
a shared model by averaging local updates. Our FedReID
shares the merit of federated learning but requires a funda-
mentally different formulation to facilitate the generalisation
of a global model for Re-ID. In person Re-ID, each local
domain is independent (non-overlapping) from the other do-
mains with totally different person populations (ID space)
from different locations/cities, resulting in discrepancies in
ID space and context. Thus, we need to learn simultaneously
the non-sharing local knowledge in each local client and the
latently shared generalisable knowledge in the central server.
To this end, in FedReID, each client consists of a feature em-
bedding network for visual feature extraction and a mapping
network for classification which is decoupled from the cen-
tral aggregation process, while the server constructs a gen-
eralisable global feature embedding model using updates of
local models. Besides, in each local client, we additionally
use a local expert to regularise the training process of the lo-
cal client model to improve the generalisation performance.
Distributed Deep Learning. FedReID differs significantly
from distributed deep learning (McClelland and Rumelhart
1989; Dean et al. 2012; Iandola et al. 2016). Distributed
deep learning aims at training very large scale deep net-
works (over billions of parameters) using massive hardware
involving tens of thousands of CPU/GPU cores with paral-
lel distributed computation (either model parallelism or data
parallelism), with shared large training data. In contrast, Fe-
dReID considers the problem of optimising a generalisable
global model by asynchronous knowledge aggregation from
multi-domain locally learned models without centrally shar-
ing training data.
Private Deep Learning. Private deep learning (Papernot
et al. 2017; Wang et al. 2019) aims at constructing privacy-
preserving models and preventing the model from inverse
attack (Fredrikson, Jha, and Ristenpart 2015; Papernot et al.
2018). A popular solution (Wang et al. 2019) is to use knowl-
edge distillation to transfer private knowledge from multiple
teacher ensembles or a cumbersome teacher model to a pub-
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Figure 2: An overview of the proposed Federated Person Re-Identification (FedReID).

lic student model with restricted distillation on training data.
In contrast, FedReID does not use any centralised training
data (labelled or unlabelled) for model aggregation. Privacy
is implemented intrinsically in FedReID by decentralised
model training through iterative client-server collaborative
learning by asynchronous knowledge aggregation, without
central (server) data sharing in model updates.

Methodology
Overview. In this work, we investigate decentralised person
Re-ID, a new problem to Re-ID which aims at optimising
a generalised model via decentralised learning from inde-
pendent multi-domain label spaces without assembling local
private data. Suppose there are N private datasets captured
from different locations that cannot be shared for model
training due to privacy protection, i.e. there are N localised
clients. As shown in Fig. 2(a), each client updates a local
model with tmax steps separately using its own private data
and uploads the model updates to a centralised server. The
central server aggregates local model updates to construct
a global model and transmits global model updates to each
client. This client-server collaborative learning process is it-
eratively processed, enabling FedReID to learn from decen-
tralised data with privacy protection.

As shown in Fig. 2(b), in each client, there are a local
client model and a local expert which are trained together to
improve the performance of each client. Specifically, in the
i-th client (i∈N), suppose there are Ji person images of Zi

identities (Zi ≤ Ji) in a local dataset Xi = {xi,j}Ji
j=1, we

construct a feature embedding network φ(ωf
i,t,k) to extract

feature representations Vi = {vi,j}Ji
j=1 of person images:

v = φ(ωf
i,t,k;x) (1)

where ωf
i,t,k are model parameters the i-th feature embed-

ding network at the t-th local step at the k-th global commu-
nication epoch. And then, we employ a mapping network
δ(ωc

i,t,k) for classification:

d = δ(ωc
i,t,k; v) (2)

where d is the outputted logit, ωc
i,t,k are model parameters

of the i-th mapping network at the t-th local step at the k-th
global epoch. Meanwhile, we use an additional local expert
({φ(ωEf

i,t,k), δ(ω
Ec
i,t,k)}) which is learned with local knowl-

edge of each client and helps the updated local client model
to learn richer knowledge 1. Thus, the optimisation objective
Li of the i-th client is formulated as:

Li = LC + LE + LR (3)

whereLC is the identity classification loss of the local client,
LE is the identity classification loss of the local expert, and
LR is the local expert regularisation from the local expert to
the local client model.

As shown in Fig. 2(c), the central server does not use any
centralised data for model optimisation. Instead, it selects
and aggregates model updates from local clients to construct
a server model σ(θk) without accessing local private data,
where θk are model parameters of the server model at the
k-th global epoch.

In deployment, the global feature embedding in the cen-
tral server is directly used for Re-ID matching with a generic
distance metric (e.g. L2 distance).

1Since the local expert will not be used for the bidirectional
client-server knowledge communication, we use “local model” to
refer to a local client model which is used for the client-server col-
laboration and use “local expert” to refer to the additional local
expert in each client.



Client-Server Iterative Updates. An intuitive idea for im-
plementing decentralised learning from multiple user sites
is to average multiple trained local models in the parameter
space to generate a global model. However, this could lead
to an arbitrarily bad model (Goodfellow, Vinyals, and Saxe
2015). Recent research in federated learning (Konečnỳ et al.
2016; McMahan et al. 2017) shows that local client models
and a central server model can be iteratively updated for dis-
tributed model learning. Suppose the i-th client is optimised
using SGD with a learning rate η, then its model parameters
ωi,t+1,k at the (t+ 1)-th local step are updated as:

ωi,t+1,k = ωi,t,k − ηOGi,t+1,k (4)

where OGi,t+1,k is the set of gradient updates of the i-th
client at the (t + 1)-th local step at the k-th global epoch.
After tmax steps for local model updates in the clients, the
server randomly selects S-fraction (S ∈ [0.0, 1.0]) local
clients NS (here NS is the set of selected clients) for the
server model parameters θk aggregation:

θk+1 =
1

dS ·Ne
∑

m∈NS

ωm,tmax,k (5)

where 1 ≤ dS · Ne ≤ N , ωm,tmax,k are model parameters
of the m-th client at the tmax-th local step of the k-th global
epoch. Then, in turn, each client receives θk to update the
local client model:

ωi,0,k+1 = θk+1 (6)

where ωi,0,k+1 are the model parameters of the i-th client at
the initial (t=0) step of the k-th global epoch. In this way, the
local clients and the server are iteratively updated for kmax

global epochs, and finally we can obtain a global model in
the central server for deployment.
FedReID Client-Server Collaboration. In conventional
federated learning, all model parameters in the selected
client models (including feature embedding layers and clas-
sification layers) are used to update the centralised server
model (Eq. (5)). However, in decentralised Re-ID, aggregat-
ing all model parameters might lead to performance degra-
dation in both local and global models, because each local
dataset is usually captured in different locations where the
person ID space and context are non-overlapping. To opti-
mise a centralised model across different domains, we re-
formulate federated learning to simultaneously consider the
non-sharing local knowledge in each client and the latently
shared generalisable knowledge in the central server.

Specifically, we decouple ωc
i,t,k (the mapping network)

from the aggregation in Eqs. (5) and (6) to preserve local
classification knowledge in each client, and aggregate ωf

i,t,k

(feature embedding network) to construct a generalisable
feature embedding model for deployment. Starting the fea-
ture embedding network of each local client model from the
same initialisation, we can accumulate updates of multiple
local feature embedding networks to find wider optima in
the parameter space of a global model. Thus, in each local
client, Eq. (6) is reformulated as:

{ωf
i,0,k+1, ω

c
i,0,k+1} = {θ

f
k+1, ω

c
i,tmax,k} (7)

Since local data in different clients are from different do-
mains, ωc

i,t,k in each client corresponds to classification
knowledge for different domains. Thus, in the central server,
ωc
i,t,k does not need to be averaged. Besides, since the fea-

ture embedding network of each local client starts from
the same initialisation (Eq. (7)), accumulating local updates
of feature embedding networks corresponds to aggregating
model parameters in the feature embedding space. There-
fore, the aggregation process in Eq.(5) can be formulated as:

θfk+1 = θfk −
η

dS ·Ne
∑

m∈NS

tmax∑
t=1

OGfm,t,k

=
1

dS ·Ne
∑

m∈NS

(θfk − η
tmax∑
t=1

OGfm,t,k)

=
1

dS ·Ne
∑

m∈NS

ωf
m,tmax,k

(8)

where θfk are model parameters of the feature embedding
network of the central server model, OGfm,t,k is the set of
gradient updates of the m-th local feature embedding net-
work at the t-th local step at the k-th global epoch.
Optimisation Objective. In FedReID, the central server
does not use any centralised data for model fine-tuning, so its
optimisation process is the selection and aggregation process
as formulated in Eq. (8). In each local client, as shown in
Fig. 2(b) and Eq. (7), the local client model receives global
model updates from a central model. Then, we use a cross-
entropy loss to learn classification knowledge:

LC = −
Zi∑
z=1

yzlog
exp(dz)∑Zi

b=1 exp(db)
(9)

where yz is the ground-truth label and dz is the logit over a
class z. To further improve generalisation of the local client
model, we use a local expert to help the local client model
to learn richer knowledge via knowledge distillation (Hin-
ton, Vinyals, and Dean 2015), which also potentially facil-
itates the aggregation in the global model. Specifically, the
local expert with model parameters {ωEf

i,0,k+1, ω
Ec
i,0,k+1} is

initialised with Eq. (10) and also optimised with a cross-
entropy loss with Eq. (11):

{ωEf
i,0,k+1, ω

Ec
i,0,k+1} = {ω

f
i,tmax,k

, ωc
i,tmax,k} (10)

LE = −
Zi∑
z=1

yzlog
exp(d′z)∑Zi

b=1 exp(d
′
b)

(11)

where d′ is the logit computed by Eqs. (1) and (2) with
model parameters of the local expert. As shown in Fig. 2(b),
Eqs. (7) and (10), the difference between the local client
model and the local expert is that the former receives a
global model for starting feature embedding network with
the same initialisation among clients, while the latter utilises
the latest local feature embedding network as an initialisa-
tion. Since the local expert is only learned with local data
without receiving external updates, it performs better than



the global model on the local domain but worse than the
global model on the other domains (likely overfit locally).
Thus, we use it as a regularisation to help the updated lo-
cal client model to learn richer knowledge on a specific lo-
cal domain. We feed the same batch to the two models but
with separately random data augmentation and compute soft
probability distributions for the local client model (P) and
the local expert (Q) as:

Pz =
exp(dz/T )∑Zi

b=1 exp(db/T )
,Qz =

exp(d′z/T )∑Zi

b=1 exp(d
′
b/T )

(12)

where T is a temperature (Hinton, Vinyals, and Dean 2015).
The local expert regularisationLR is therefore defined as the
KL-divergence between P and Q:

LR = T 2
Zi∑
z=1

Qz·log
Qz

Pz
(13)

In summary, each local client is optimised with Eq. (3) using
local private data independent from the other clients.
Privacy Protection. In FedReID, local sensitive data are
inherently protected by the decentralised learning pro-
cess. To further protect sensitive data from inverse at-
tack (Fredrikson, Jha, and Ristenpart 2015), we use the
white noise (Geyer, Klein, and Nabi 2017) to hide the con-
tributions of each client in Eq. (8):

θfk+1 =
1

dS·Ne
∑

m∈NS

ωf
m,tmax,k

+ βN (0, 1) (14)

where N (0, 1) is the white noise matrices with mean 0
and variance 1. β ∈ [0, 1] is a scale factor to control the
balance between privacy-preserving and Re-ID accuracy.
When β=0, the white noise is removed from the aggrega-
tion. Moreover, in the client-server collaboration, we can
also hide the collaboration information in Eq. (7) as:

{ωf
i,0,k+1, ω

c
i,0,k+1} = {θ

f
k+1+βN (0, 1), ωc

i,tmax,k} (15)

Experiments
Datasets. We used four large-scale Re-ID datasets
(DukeMTMC-ReID (Zheng, Zheng, and Yang 2017),
Market-1501 (Zheng et al. 2015), CUHK03 (Li et al. 2014;
Zhong et al. 2017) and MSMT17 (Wei et al. 2018)) as non-
shared local datasets in four client sites. Each of the four
local clients did not share its training data with other clients
nor the server. This is significantly different from existing
domain generalised Re-ID, where FedReID is trained with
decentralised data, while existing methods are trained with
centralised data. The FedReID model was then evaluated on
five smaller Re-ID datasets (VIPeR (Gray and Tao 2008),
iLIDS (Zheng, Gong, and Xiang 2009), 3DPeS (Baltieri,
Vezzani, and Cucchiara 2011), CAVIAR (Cheng et al. 2011)
and GRID (Loy, Liu, and Gong 2013)), plus a large-scale
Re-ID dataset (CUHK-SYSU person search (Xiao et al.
2017)) as new unseen target domains for out-of-the-box de-
ployment tests. For CUHK-SYSU, we used ground-truth
person bounding box annotations for Re-ID test (not per-
son search), of which there are 2900 query persons and each

Types Datasets Tr. id Tr. img Te. id Te. img

Local
Client
Train

Duke 702 16522 - -
Market 751 12936 - -

CUHK03 767 7365 - -
MSMT17 1041 30248 - -

New
Domain

Test

VIPeR - - 316 632
iLIDS - - 60 120
3DPeS - - 96 192

CAVIAR - - 36 72
GRID - - 125 1025

Cuhk-Sysu - - 2900 8347

Table 1: The Re-ID dataset statistics. ’Tr.’: Train; ’Te.’: Test;
’id’: number of identities; ’img’: number of images.

person contains at least one image in the gallery (both query
and gallery sets are fixed removing distractors in the vari-
able gallery sets). On smaller Re-ID datasets, we did ran-
dom half splits to generate 10 training/testing splits. In each
split, we randomly selected one image of each test identity
as the query while the others as the gallery for evaluation.
The dataset statistics are summarised in Table 1. Besides, we
used CIFAR-10 (Krizhevsky and Hinton 2009) for federated
formulation generalisation analysis on image classification.
Evaluation Metrics. We used Rank-1 (R1) accuracy and
mean Average Precision (mAP) for Re-ID performance eval-
uation. Note that FedReID is designed to learn a generalised
model from distributed datasets with privacy protection.
Implementation Details. In our design, the feature embed-
ding network is ResNet-50 (He et al. 2016) (pretrained on
ImageNet), while the mapping network consists of two fully
connected layers, in which the first fully connected layer
follows by a batch normalization layer, a ReLU layer and
Dropout. In practice, both global and local models used a
multi-head architecture in which each mapping network in
each head was corresponding to one client. By default, we
set the number of local clients N=4, client fraction S=1.0 ,
and privacy control parameter β=0. These hyperparameters
can be determined by different application requirements. We
empirically set batch size to 32, maximum global communi-
cation epochs kmax=100, maximum local steps tmax=1, and
temperature T=3. We used SGD as the optimiser with Nes-
terov momentum 0.9 and weight decay 5e-4. The learning
rates were set to 0.01 for embedding networks and 0.1 for
mapping networks, which decayed by 0.1 every 40 epochs.
Our models were implemented with Python(3.6) and Py-
Torch(0.4), and trained on TESLA V100 GPU (32GB).

Federated Formulation Generalisation Analysis
To analyse the generalisation of our FedReID, we com-
pared FedReID with FedSGD (McMahan et al. 2017), Fe-
dAVG (McMahan et al. 2017), and FedATT (Ji et al. 2019).
When adapting FedSGD, FedAVG and FedATT for Re-ID,
we set the last classification layer with the maximal iden-
tity number among local datasets. When adapting FedReID
for CIFAR-10, we aggregate all layers (including classifiers,
i.e. using Eqs. (5) and (6)) in the client-server collabora-
tion because all local data are from the same domain. On



Methods CIFAR-10 VIPeR iLIDS
FedSGD 90.72±0.04 41.0 65.2

FedAVG (S=0.5) 93.04±0.19 41.5 65.3
FedAVG (S=1.0) 93.21±0.08 41.0 65.2
FedATT (S=0.5) 92.86±0.12 38.3 65.3
FedATT (S=1.0) 92.97±0.21 40.2 61.3
FedReID (S=0.5) 93.14±0.14 45.3 68.3
FedReID (S=1.0) 93.31±0.11 46.2 69.7

Baseline (Centralised joint) 93.58±0.14 44.6 65.5

Table 2: Evaluating generalisation of federated formula-
tions. Top-1/R1 accuracies are reported. FedSGD means set-
ting S=1.0 and tmax=1.
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Figure 3: Evaluating the privacy control parameter β on
VIPeR. ‘Single’: use β in Eq. (14), ‘Double’: use β in both
Eqs. (14) and (15), ‘Random-Guess’: initialise the model
with ImageNet pretrained parameters without training.

CIFAR-10, we employed ResNet-32 for experiments and
set tmax=5. As shown in Table 2, FedReID achieves better
generalisation than the other federated variants. When train-
ing and testing on the same domain for image classification
(CIFAR-10), FedReID performs closely to the centralised
joint-training, but FedReID only accesses to local model up-
dates with privacy protection whilst joint-training assembles
together all local data without privacy concerns. When test-
ing out-of-the-box on unseen new domains for decentralised
Re-ID (VIPeR and iLIDS), FedReID performs even better
than joint-training, which can be attributed to: (1) FedReID
accumulate multiple local model updates to find wider op-
tima in the parameter space of a global model; (2) With
the client-server collaboration, FedReID learns softer dis-
tribution knowledge. Therefore, FedReID might get better
generalisation for an unseen new Re-ID domain while joint-
training is the upper bound for testing on a source client.

Privacy Protection Analysis

The inherent defensive ability of FedReID is given by de-
centralised learning and model aggregation. Besides, β in
Eqs. (14) and (15) can further control privacy protection.
From Fig. 3, we can see that: (1) R1 accuracy of Fe-
dReID gradually decreases when β increases, but FedReID
achieves significantly better accuracy than the Random-
Guess; (2) Single β protection performs slightly better than
double protection, but the double one protects more informa-
tion; (3) When β=0.0005, R1 accuracy of FedReID remains
close to the overfitting local supervised method, which indi-
cates the compromise of accuracy and privacy.

Settings Methods VIPeR iLIDS

Individuals

Client (Duke) 25.0 56.2
Client (Market) 26.1 48.0

Client (CUHK03) 21.6 41.0
Client (MSMT) 27.3 60.5

Ensembles Feat-Concatenation 29.4 56.2
Parameter-Average 19.9 41.8

Decentralised FedReID 46.2 69.7
Centralised Baseline (Joint) 44.6 65.5

Table 3: Comparison with individual clients and ensembles.
R1 accuracies are reported.

Settings Methods VI. iL. 3D. CA. GR.

w/o privacy
(Cross-domain

fine-tune)

TJAIDL 38.5 - - - -
DSTML 8.6 33.4 32.5 28.2 -
UMDL 31.5 49.3 - 41.6 -
PAUL 45.2 - - - -

w/o privacy
(Centralised
generalised)

SyRI 43.0 56.5 - - -
SSDAL 43.5 - - - 22.4
MLDG† 23.5 53.8 - - 15.8
CrossGrad† 20.9 49.7 - - 9.0
DIMN 51.2 70.2 - - 29.3

w/ privacy
(Decentralised) FedReID 46.2 69.7 67.0 45.6 24.2

Table 4: Generalised Re-ID performance evaluation on
VIPeR, iLIDS, 3DPeS, CAVIAR and GRID. R1 accuracies
are reported. †: Re-ID domain generalisation results.

Comparison with Individuals and Ensembles
We separately trained the baseline model on four localised
datasets as the individuals and used feature concatenation
and model parameter average as the ensembles. As shown in
Table 3: (1) FedReID significantly outperforms the individ-
uals and the ensembles, which shows that the collaboration
between the localised clients and the centralised server facil-
itates holistic optimisation, enabling FedReID to construct a
better generalisable model with privacy protection; (2) Com-
pared with the centralised joint-training baseline, FedReID
achieves competitive R1 accuracies, demonstrating its effec-
tiveness; (3) Averaging multiple trained local models in the
parameter space leads to an arbitrarily bad model.

Generalised Re-ID Performance Evaluation
FedReID is uniquely designed for protecting local client
privacy by learning a generalisable model without cen-
tralised sharing of training data, whilst no existing Re-ID
methods explicitly integrate privacy protection requirements
into their designs. To further show the generalisation of
FedReID, we employed out-of-the-box evaluation on non-
client unseen domains without training data for fine-tuning.
Results on Smaller Benchmarks. We compared FedReID
with: (1) four unsupervised cross-domain fine-tuning meth-
ods (TJAIDL (Wang et al. 2018), DSTML (Hu, Lu, and
Tan 2015), UMDL (Peng et al. 2016), PAUL (Yang et al.
2019b)), and (2) five unsupervised generalisation methods
(SyRI (Bak, Carr, and Lalonde 2018), SSDAL (Su et al.
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Figure 4: Ablation study on (a) client number, (b) client fraction, (c) local steps and (d) expert regularisation.

Methods mAP R1 R5 R10
DSIFT?+Euclidean 41.1 45.9 - -

BoW?+Cosine 62.5 67.2 - -
DLDP? 74.0 76.7 - -

FedReID 80.4 83.4 90.3 92.4
Baseline (Centralised joint) 74.7 77.4 87.2 90.1

Table 5: Evaluation on CUHK-SYSU person search subset
for Re-ID. ?: Reported results using ground-truth person im-
ages and a gallery size of 100 images per query.

Methods Market Duke
R1 mAP R1 mAP

Baseline(local sup.) 88.3 71.4 77.3 58.9
FedReID(direct w/o fine-tuning) 80.2 60.1 68.0 52.1
FedReID(sup. w/ local data&dis.) 90.3 76.2 77.4 60.7
DPR(unsup. multi-domain dis.) 61.5 33.5 48.4 29.4
DPR(semi-sup. multi-domain dis.) 63.7 35.4 57.4 36.7

Table 6: Source labelled client tests. On a larger benchmark
MSMT17, FedReID (direct) yields 48.4% R1, FedReID (su-
pervised) 64.6% R1, and Baseline 61.7% R1, respectively.
sup.: supervised, unsup.: unsupervised, dis.: distillation.

2016), MLDG (Li et al. 2018), CrossGrad (Shankar et al.
2018), DIMN (Song et al. 2019)). As shown in Table 4, Fe-
dReID performs competitively against contemporary meth-
ods, which shows the effectiveness of the generalised global
model for out-of-the-box deployment with privacy protec-
tion. For example, FedReID achieves 46.5% R1 on VIPeR
and 69.7% R1 on iLIDS, which are the second-best and
close to DIMN (Song et al. 2019) which assembles all train-
ing data together without data privacy protection. Note that,
FedReID is also compatible with other techniques for better
generalisation, such as style normalisation (Jin et al. 2020).
Results on Large Benchmark. To further evaluate Fe-
dReID on a large-scale target domain, we used the Re-ID
subset of CUHK-SYSU person search dataset, which has
distinctively different scene context to most other Re-ID
datasets above. As shown in Table 5, FedReID achieves
competitive performance compared with some unsupervised
Re-ID methods (DSIFT (Zhao, Ouyang, and Wang 2013),
BoW (Zheng et al. 2015) and DLDP (Schumann, Gong, and
Schuchert 2017)) and the centralised join-training baseline,
which shows the generalisation of the global model of Fe-
dReID for deployment on large-scale Re-ID.

Further Analysis and Discussion
Source Client Tests. As shown in Table 6, although Fe-
dReID (direct) only aggregates local model updates w/o
accessing local data, it still achieves competitive perfor-
mance, especially when compared with DPR (Wu et al.
2019) which uses local unlabelled data (unsupervised or
semi-supervised). We also tested FedReID (supervised) by
using local data for model training and a global model as the
expert for distillation, which improves FedReID (direct) and
outperforms Baseline (local supervised). Here, the improve-
ment in R1 on Duke is small because Duke contains many
ambiguous hard negatives and knowledge distillation helps
to learn softer distribution for retrieving more positives but
is not so helpful for distinguishing hard negatives.
Client Number N . Fig. 4(a) compares central server ag-
gregation with different numbers of local clients, where
N=1, 2 and 4 denote Market, Market+Duke and Market
+Duke+Cuhk03+Msmt as clients, respectively. We can see
that that collaboration of multi-domain clients is good for
learning more generalisable knowledge in the central server.
Client Fraction S. Fig. 4(b) compares FedReID with dif-
ferent client fractions S. We can see that updating with an
arbitrary client (S=0.25) is inferior to aggregating multi-
ple clients, whilst aggregating all clients (S=1.0) performs
slightly better than aggregating randomly selected clients
(S=0.5), but random selection protects more data privacy.
Client Local Step tmax. Fig. 4(c) compares FedReID with
different client local steps which potentially promote com-
munication efficiency. Overall, the performance of FedReID
gradually decreases when tmax increases due to the accu-
mulation of biases in each local client.
Local Expert Regularisation. Fig. 4(d) shows the evalua-
tion on the regularisation of local experts. With the expert
regularisation, FedReID gets better generalisation overall,
which shows that the expert regularisation provides richer
knowledge to facilitate the improvement of FedReID.

Conclusion
In this work, we introduced decentralised learning from
independent multi-domain label spaces for person Re-ID
and proposed a new paradigm called Federated Person Re-
Identification (FedReID). We trained multiple local models
at different clients using non-shared private local data and
aggregated local model updates to construct a global model
in a central server. This iterative client-server collaborative
learning helps to build a generalisable model for deploy-
ment. Extensive experiments on ten Re-ID datasets show the
unique advantage of FedReID over contemporary methods.
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