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Abstract— We present and validate a method to detect
surface cracks with visual and tactile sensing. The proposed
algorithm localises cracks in remote environments through
videos/photos taken by an on-board robot camera. The identi-
fied areas of interest are then explored by a robot with a tactile
sensor. Faster R-CNN object detection is used for identifying
the location of potential cracks. Random forest classifier is
used for tactile identification of the cracks to confirm their
presences. Offline and online experiments to compare vision
only and combined vision and tactile based crack detection
are demonstrated. Two experiments are developed to test
the efficiency of the multi-modal approach: online accuracy
detection and time required to explore a surface and localise
a crack. Exploring a cracked surface using combined visual
and tactile modalities required four times less time than using
the tactile modality only. The accuracy of detection was also
improved with the combination of the two modalities. This
approach may be implemented also in extreme environments
since gamma radiation does not interfere with the sensing
mechanism of fibre optic-based sensors.

I. INTRODUCTION

Localising and recognising the presence of mechanical
fractures is an important task necessary in hazardous en-
vironments during waste decommissioning. It is especially
useful to avoid spillage from containers keeping chemical
and radioactive waste or to identify concrete fractures at
early stages, to prevent their growth which may lead to
larger macro-scale catastrophic failures. Crack detection and
localisation have been already investigated in the past and
multiple techniques exist which rely on visual analysis of the
analysed segment [1], eddy current measuring devices [2],
ultrasonic techniques [3] or X-ray scanning [4]Adhikari et
al. [5] proposed an automated model to detect and evaluate
cracks with a supervised neural network approach and 3D
visualisation model. The proposed method automatically
defines crack segments by subtracting branch points from
the crack skeleton. This approach avoids searching for crack
connectivity and is efficient in terms of time and cost.
Jahanshahi et al. [6] developed a contact-less remote sensing
crack detection and quantification method based on 3D
scene reconstruction. They utilised depth perception to detect
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cracks and quantify their width. This feature is especially
useful for incorporating mobile systems into structural in-
spection methods since it allows inaccessible regions to be
properly inspected for cracks. Nguyen et al. [7] proposed
a method to recognise concrete fractures from 2D images
implementing edge detection. Based on their symmetric and
line-like properties, cracks were distinguished from other
objects. The centre lines of the fractures were estimated and
fitted by cubic splines to detect the edge points which were
linked together to represent the fracture. Pereira et al. [8]
implemented an edge detection algorithm based on Sobel
filter to automatically localise fractures in civil construction
using Unmanned Aerial Vehicles. Improved crack detection
performance can be achieved with edge detection and im-
age segmentation methods applied in supervised and well-
structured environments when the crack has clear continuity
and its image has high contrast [1]. However, cracks are
usually found in noisy backgrounds which lead to poor
continuity, low contrast and impact the acquired imaging
quality. Recently, deep learning-based methods have been
developed to localise and classify cracks [9]. Chen et al. [10]
proposed a fusion deep learning framework called NB-
CNN (Naı̈ve Bayes - Convolutional Neural Network). It
analyses individual video frames for crack detection and
detects crack patches in each video frame. Zou et al. [11]
proposed DeepCrack, a deep convolutional neural network
for automatic crack detection. It recognises the line structures
by employing multi-scale deep convolutional features learned
at hierarchical convolutional stages. In contrast to the visual
modality, tactile and force sensing combined with proxim-
ity sensing can provide important information on material
properties such as shape, texture and hardness [12], [13].
The stiffness of objects has been investigated [14] imple-
menting a hybrid force and proximity finger-shaped sensor
achieving 87% classification accuracy on a set of household
objects. Liu et al. [15] developed a contact-sensing fingertip
sensor to estimate the direction and the magnitude of the
friction, normal forces and the local torque generated at the
surface of explored objects with limitation of exploration for
lightweight objects.

Proposed scenario. We consider a mechanical fracture
detection task performed by a remotely operated robotic ma-
nipulator equipped with a vision and tactile sensing system.
A possible remote inspection scenario may include a robot
entering a space to be inspected, and performing a visual scan
of the environment. The captured visual images are analysed
by the algorithm proposed in this work to identify the areas



Fig. 1. Algorithm of the proposed multi-modal approach combining both visual and tactile and proximity data for fracture detection and localisation.
The camera acquires a video of the scene. One frame is extracted from the video and object detection is applied for crack detection. The positions of the
detected cracks are sent to the manipulator which re-positions itself and starts exploration. The potential crack is confirmed or rejected as a flat surface.

TABLE I
FRACTURE DETECTION RESULTS OF THE TRAINED MODEL ON THE TEST DATASET

Model Training Testing Steps mAP (%) mAP 50IOU (%) AR@100 (%)

Faster R-CNN Inception V2 3500 1500 200’000 26.90 43.82 38.76
Faster R-CNN Inception V2 - Augmented 3500 1500 200’000 65.43 93.03 71.92

which are likely to contain mechanical fractures. Following
the identification of the area of interest, the coordinates of
the location of the region of interest in respect to the camera
are transformed to the robot’s coordinates and sent to it.
The robot moves closer to the area to be inspected and uses
the on-board manipulator equipped with tactile sensors to
physically explore the surface for further characterisation.
The overview of our approach is shown in Fig. 1. Improving
our previous work [16], [17], the proposed method presents
a multi-modal approach with both vision and force sensing
for crack localisation and recognition. A fibre optic sensor
has been implemented for data acquisition because of the
reduced dimensions (∼ 55mm), weight (∼ 200g), low cost,
the strong immunity to electromagnetic interference and the
improved environmental resistance. This approach may be
implemented also in different extreme environments (e.g.
in nuclear plants), since gamma radiation does not interfere
with the basic sensing mechanism of fibre optic-based sen-
sors [18]. Further, the nylon component of the implemented
sensor can be used in irradiated conditions with limitations
as [19] presented.

II. CRACK DETECTION METHOD AND SETUP

Fig. 1 presents the overview of the proposed crack detec-
tion method based on visual and tactile sensing modalities.
The experimental setup with the video camera and the tactile
sensor mounted at the end-effector of a desktop robotic
manipulator is shown in Fig. 2.

A. Vision-based Crack Detection

For the vision feedback part, a Logitech StreamCam is
used to scan the surface and localise possible fractures. We
adopt a Faster Region-based Convolutional Neural Network
(Faster R-CNN) [20] with Inception v2 architecture [21], pre-
trained on Common Objects in Context (COCO) dataset [22].
The model is trained on Windows OS with the TensorFlow
Object Detection API [23] with GeForce GTX 850M 4GB.
The dataset used to train and validate the model consists of a
subset of 3000 RGB images with 227x227 size, representing

Fig. 2. The experimental setup for the surface exploration multi-modal
approach with vision, force and proximity sensor.

fractures in concrete extracted from [24]. All the images
were manually labelled with LabelImg1, a graphical image
annotation tool. The images available in the implemented
dataset were similar to each other and did not have any
occlusions or other objects besides the crack. This is not
optimal when training an object detection model. Thus,
multiple data augmentation processes were implemented to
make the model more robust. First, the patches with crack
(one or two at a time) were randomly pasted in a randomly
chosen larger background image. To avoid the model to
only focus on the patch, a patch, without the crack, is
additionally extracted from the concrete image and pasted
in the background image. Since the images were missing
any level of occlusion, to each of the resulting and original
images, a random number of different screws (between 1
and 2) was added to random positions. Screws have been
chosen since they are part of a set of objects which may be
easily found in extreme and nuclear environments. Finally, a

1https://github.com/tzutalin/labelImg

https://github.com/tzutalin/labelImg


random set of data augmentation techniques were applied.
The complete set of augmentations consists of changing
the HSV (hue, saturation, lightness), horizontal flip, scale,
translate, rotate and shear. For each image, the script decided
on a random set of the previously described augmentation
and applied that to augment the image. The labels of the
original dataset were adopted accordingly to the various
modifications during the augmentation process. After the
augmentation steps, a total of (approx.) 24000 images were
created. Considering the limited GPU available, a total of
5000 images (3500 for training, 1500 for validation and
testing) were randomly chosen for training and validating
the model. Fig. 3 shows the workflow of the augmentation
process.

B. Crack Detection with Tactile Sensing

An integrated force and proximity finger-shaped sensor,
described in [14], is used for automatic crack detection.
The sensor employs three pairs of optical fibre cables (D1,
D2, D3) to measure the sensor’s body deformation of the
flexible middle part based on the changes in reflected light
intensity. The fourth pair of optical fibre cables (P) is used
to sense the proximity between external objects and the tip
of the finger. The sensor is attached to the end effector
of a Geomagic (old name Phantom Omni) desktop haptic
interface that was used as a robot-manipulator. The end-
effector was programmed to follow predefined tactile sensing
paths as described in [16], [17]. The Geomagic robot moved
the tactile sensor across the sample objects: the periodic
sliding has a magnitude of 1.6 cm and a frequency of
0.25 Hz. The average sliding velocity was 3.89 mm/s. The
initial position of the tactile sensors was not controlled and
varied from trial to trial at approximately 5-10 mm from the
crack edge. No normal force was applied by the sensor to
the sampled surfaces except the force caused by the sensor
weight (approx 200 g). The force and proximity data were
recorded and feature extraction was performed; the resulting
output was used as input for the classification algorithm.
Feature extraction (Mean Absolute Value and Root Mean
Square) was performed on each consequent 25 ms long time
window with an increment of 5 ms. A Random Forest (100
trees) classifier was implemented to determine the surface
pattern of the examined material. Considering the depen-
dency of the fibre optics to different colours of the explored
materials, the Random Forest classifier implemented in [16],
[17] had to be adapted. For this purpose, data were acquired
for each of the 3D printed surfaces (Ultimaker III 3D printer,
0.2 mm layer height, 0.4 mm nozzle diameter) shown in
[17]. In addition, since the proximity data is dependent on
the explored colour, two paper printed cracks were also
included in the acquisitions. These printed cracks were not
used for the online experiment described in section III-C. To
recognise the surface of the material, the classification labels
were set to: ’no crack’, ’crack’. Tactile and proximity signals
were recorded for 12 repeated continuous sliding movements.
This continuous recording was repeated five times. First,
raw, MAV and RMS data were classified using only the

proximity data (P) or the deformation signals (D1, D2, D3).
Then, combinations of the above-mentioned features were
conducted. A set of observations consisted of no-crack, crack
1mm, crack 2mm, crack 5mm, crack 8mm. Each set of
observations was trained on itself and tested against the
rest of the set one at a time for intersession investigation.
Each observation was split 70% for training test and 30%
for testing. In total, 20 results for each analysed feature
were obtained. The software to control the Geomagic has
been developed in C++ on an Ubuntu machine while the
classification software has been developed on Ubuntu with
Python 3.7.

III. DATA ANALYSIS AND RESULTS

The results are divided into crack detection through visual
inspection and classification of fractures via tactile (force
and proximity) data. We present the results of the offline
tests on the recorded data (vision and tactile data analysed
independently), and the performance comparison from the
online experiment with the robot in which visual and tactile
data are used cooperatively.

A. Testing Vision-based Crack Detection

We investigate the effect of using augmented images for
training a model for fracture detection by comparing the per-
formance of the trained model with a model trained without
using augmented images. Each model was trained on 3500
images for 200k iterations. As shown in Table I and Fig. 4
a), the model trained with augmented images outperforms
the baseline model with mean average precision (mAP) of
∼65.2%, mean average precision at 50% intersection over
union (mAP 50IOU) of 93.0% and recall with 100 detections
(AR@100) of 71.9%. It is worth noting that the performance
increase on mAP 50IOU are important as well as mAP
since the detected locations will be further inspected by the
tactile sensor. Fig. 5(a-b) shows examples of the comparison
between ground-truth and object detection results. We then
tested the model on the real scenario using the webcam on a
laser-cut surface with cracks from 0.5mm to 5mm. Fig. 5 c)
shows the results of the object detection model on a laser-
cut surface. The network can generally detect and localise
cracks while the performance decreases on fine cracks.

B. Testing Tactile based Crack Detection

For the data analysis of the acquired proximity and defor-
mation data, the automated preprocessing method described
in [17] has been implemented. Fig. 4(b) shows the results
for the above-described offline analysis. The Random Forest
classifier achieves the best classification accuracy of 89.56%
when implementing MAV or RMS features with force and
proximity data combined. For additional information on
preprocessing and analysis please refer to [16], [17].

C. Online Experiment with Robotic System

Crack detection performance. We compared the crack
detection score for vision-only and combined vision-tactile
approaches. The robot’s workspace was divided into two left



Fig. 3. Examples of images used for the crack localisation and detection. To note: the following figures have been resized and cropped to make them
more visible in the paper. a) Original images of the dataset; b) Original images added to various backgrounds. A random number of cracks and flat surfaces
included; c) a random number of screws added to the previous figures to create occlusion. d) Data augmentation applied to all the previous figures.

Fig. 4. Offline results for crack localisation and recognition. a) Object
detection analysis b) Classification accuracy for proximity and deformation
data. Each box extends from the lower to upper quartile values of the data,
with a line at the median.

(L) and right (R) areas. The camera and the proposed R-CNN
model were used to localise the area (L or R) with possible
cracks and send their positions to the robot manipulator’s
controller (via the UDP channel). Once the positions were
received, the robot started the exploration of each of the
cracks, followed by tactile data analysis using the random
forest classifier that recognised the crack or stated a false-
positive result from vision.

A total of 10 trials have been performed to test the system.
Fig. 6 a) shows two examples of the online multi-modal
trials. In the first row, the frames captured by the webcam. In
the second row, the object detection results on the previously
acquired frames. In the third row, the tactile results are

Fig. 5. Offline results of the object detection faster-RCNN Inception V2
model. In a) the manually labelled images. b) Object detection applied to
the images. c) Example of detection on the laser-cut crack table that will
later be used in the online experiments.

shown. Trial 4 shows an example of False Positive from the
vision algorithm which detects as crack a printed crack. This
is then rectified by the tactile sensor. During the trials, the
tactile classification failed once in case of 0.5 mm crack. This
could be due to the limited size of the crack which didn’t
create enough lateral deformations in the sensor. Making the
proximity sensor more robust to lighting conditions and re-
calibrating the sensor to be more sensitive to deformations
should solve this problem. From the vision part, there was a
false negative for a fracture with double occlusion. Manually
inspecting the online video with object detection captured
by the camera, showed correct recognition of the fracture
which was not found with the analysed frame. This might
be due to luminosity or other factors which may influence the
model. Using multiple frames on the vision side may make
the model more robust and more precise to fracture detection.
Fig. 7 (a) shows the correct scores for crack detection when
using only vision and the two modalities together. In the
10 trials, vision detected 14 cracks plus a false negative
during trial 10, for a total of 15. Of this, seven were false
positive (paper printed crack), one false negative (crack not
detected), seven correctly detected cracks. During the 10
trials, tactile received from the vision algorithm in total 14
possible cracks locations to inspect. The 15-th false negative



Fig. 6. Examples of online trails with multi-modal vision and tactile
features for crack exploration. A total of 10 trials were performed In the
first row, the frames captured by the webcam. In the second row, the object
detection results on the previously acquired frames. In the third row, the
tactile results are shown.

TABLE II
TIME REQUIRED TO EXPLORE A SURFACE WITH TACTILE (T) AND

TACTILE+VISUAL (T+V) MODIFICATION

Modality γ Ns Time ± st.dev, s

T 0.25 13 519.40 ± 24.90
T 0.50 7 278.61 ± 16.58
T 0.75 5 198.56 ± 8.06

T+V N/A N/A 31.85 ± 1.91

from vision was never detected. Of the total 14 cracks, the
tactile failed in one case when exploring the 0.5 mm fracture.
In summary, the model was able to correctly detect 92.85%
of the cracks when both visual and tactile modalities were
used, and the detection performance decreased to 46.66%
when only vision was used. Further experiments will include
different lighting conditions, dirty backgrounds and other
types of marks instead of paper printed cracks.

Task completion time. Detecting fractures, using only
tactile data would be time-consuming as the robot would
require to perform several surface scanning operations to
find and characterise a crack. Using a combination of tactile
and vision would reduce this time. For this purpose, an
experiment has been carried out to compare the time required
when exploring a surface using only tactile and when using
tactile and vision combined. For tactile exploration, several
scanning movements on the surface are required to localise
and detect a crack. The number of required scanning move-
ments can be estimated based on assumptions we have on the

Fig. 7. a) Percentage of correct fracture detection with only vision and
vision + tactile. b) Scanning example of Ns = 5 for the tactile exploration
only. c) Time required for fracture detection comparison with tactile and
tactile + vision modalities. Multiple analysis with different γ have been
performed. Mean and standard deviation are shown.

crack geometry (length, shape) and their spatial frequency.
We quantified these assumptions based on the dataset of the
crack implemented for object detection. Each of the images
was converted to binary mode (black and white pixels).
We assumed and verified that black pixels represented the
cracks. A subset of randomly selected 30 images was used to
calculate the number of black pixels for each of the images.
Then, the average number of black pixels was calculated.
Inspecting each of the image, the width of the crack was
calculated in pixels. With these two measurements, it was
possible to determine the approximate average length of a
crack in pixels, assuming that the crack is uniform and can
be represented with multiple lines. The above is summarised,
as follows:

Li =
Ai

w
, L =

∑Li

Nc
(1)

with the length, Li, of the ith-crack selected from the ith-
image; the area of black pixels, Ai, in the ith image (number
of black pixels describing the size of the crack); the average
width of the cracks, w; the estimated average length of the
cracks in pixels, L; the total number of cracks used in the
parameters estimation, Nc. The estimated cracks’ length was
then used to calculate the required number of tactile scans
required by the robot’s end-effector to detect a crack using
only tactile sensor, as follows

Ns =
h

γ ·L
+1 (2)

with the minimal number of scanning movements, Ns, re-
quired by the sensor to localise a crack; the height of
the image captured by the camera in pixels, h; a design
parameter, 0 < γ < 1, introduced to vary the length of the
crack as we used the estimated length. In other words, we
are calculating how many cracks of a given length can be
located in a single image aligned in one direction. The above
conservative estimation of the number of tactile scanning
cycles is based on several assumptions: 1) a crack can



be located anywhere in the workspace of the robot and
its location is unknown to the robot; 2) a crack can be
represented with a combination of simple line geometry;
3) the robot will continue to scan the surface even if the
crack was detected. The parameter γ can be adjusted to make
the estimation more or less conservative. An example of the
tactile scanning movement performed by the robot with Ns=5
is shown in Fig. 7b. The following parameter and estimation
values were used: A = 2961 black pixels on a average total
of 51529 pixels for image, w = 20 pixels, L = 148.06 pixels,
Nc = 30 images, h = 480 pixels. The parameter γ was set to
0.25, 0.5 and 0.75 in the testing trials.

Using the number of scans required to detect a crack with
tactile modality only we conducted an experiment to measure
the task completion time and compared it with combined
vision and tactile modality. Table II and Fig. 7c show the
results of the trials. Exploring a 200x100mm surface, with
only tactile, requires a minimum of 199.34 seconds (∼3
minutes). On the other hand, when using both vision and
tactile, that time is reduced to 31.87 seconds (∼ half a
minute). Since the object detection phase is the part requiring
more time during the multi-modal experiment, this time can
be additionally shortened by implementing a stronger GPU.

IV. CONCLUSION

In this paper, a multi-modal approach for crack detection
is presented. The proposed algorithm implements both visual
and tactile information to classify fractures. The method uses
object detection to localise fractures on surfaces which are
then analysed and confirmed based on fibre optical proxim-
ity signals which are recorded during physical interaction
between a custom-designed robotic finger and the remote
environment. Two experiments have been developed to test
the efficiency of the multi-modal approach: online accuracy
detection and time required to explore a surface and localise
a crack. A total of 10 trials have been implemented to
compare the accuracy of the multi-modal approach with
vision only method. When using the multi-modal fusion the
model was able to correctly detect 92.85% of the cracks.
Exploring a surface using only tactile required approximately
199 seconds which was reduced to 31 seconds when using
both vision and tactile together.
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