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Abstract
Alzheimer’s Disease (AD) is a form of Dementia that man-
ifests in cognitive decline including memory, language, and
changes in behavior. Speech data has proven valuable for in-
ferring cognitive status, used in many health assessment tasks,
and can be easily elicited in natural settings. Much work fo-
cuses on analysis using linguistic features; here, we focus on
non-linguistic features and their use in distinguishing AD pa-
tients from similar-age Non-AD patients with other health con-
ditions in the Carolinas Conversation Collection (CCC) dataset.
We used two types of features: patterns of interaction including
pausing behaviour and floor control, and acoustic features in-
cluding pitch, amplitude, energy, and cepstral coefficients. Fu-
sion of the two kinds of features, combined with feature selec-
tion, obtains very promising classification results: classification
accuracy of 90% using standard models such as support vector
machines and logistic regression. We also obtain promising re-
sults using interactional features alone (87% accuracy), which
can be easily extracted from natural conversations in daily life
and thus have the potential for future implementation as a non-
invasive method for AD diagnosis and monitoring.
Index Terms: Alzheimer’s disease, speech processing, acoustic
features, Interactional patterns, computational paralinguistics

1. Introduction
Alzheimer’s Disease (AD), the most prevalent form of Demen-
tia, is an irreversible brain disorder associated with a gradual
decline in cognitive functions of adults. Currently, it affects
more than 5 million people in America every year. Its highest
incidence is among adults due to age as a risk factor: one in
every six individuals over the age of 80 is likely to develop AD
and the number of cases over the age of 60 is doubling every
45 years [1]. Early recognition of cognitive decline could be
helpful in managing pre-stage AD thus allowing better quality
of life for elderly patients and their caregivers [2].

The most prominent associations with AD are disparity in
language production, speech comprehension, impaired reason-
ing, and memory functions, resulting in reduced vocabulary,
verbal fluency, and difficulty performing daily tasks related to
semantic information [3]. This suggests that speech and natural
language processing (NLP) methods could be suitable for use
in the early recognition of impaired cognition and AD.

Currently, standard AD diagnosis methods include clini-
cal assessments complemented with family history, neuropsy-
chological tests (including the Mini-Mental State Examina-
tion (MMSE) [4] and many others), self-report questionnaires,

MRI [5] and Positron Emission Tomography (PET) [6]. These
methods are effective but are variously costly, invasive, time-
consuming and/or stressful, require validation by neurologists,
and must be performed in clinical settings. There is therefore
a demand for extensible, less invasive methods that can reduce
the burden on the health system and be reliably applied for AD
diagnosis in more natural and less controlled environments.

The use of spontaneous speech to derive pathologically ap-
propriate biomarkers for AD detection has therefore become a
focus of research. Much of this work to date has focused on
the properties of individual language, using various kinds of
linguistic and acoustic features separately. Linguistic variables
are used to describe the quantitative and qualitative aspects of
language production, for example via the decline in lexical-
semantic abilities, word comprehension, verbal fluency, and
syntactic processing for particular kinds of tasks such as picture
description [7, 8]. AD-related changes can also affect acoustic
features of speech, suggesting that speech analysis could pro-
vide measures of early disease progression [9]. Several studies
have used language-independent acoustic features only, achiev-
ing comparable accuracy to linguistic approaches [10, 11]; AD
patients can show patterns of frequent hesitation, longer pauses,
lower articulation and speech rates, and lower floor control ratio
[12]. Other acoustic features including prosodic, energy-based,
spectral, and spectral aspects (jitter, shimmer, harmonics-to-
noise ratio, Mel-frequency cepstral coefficients (MFCCs) can
also correlate with AD [13]. Some work has taken a multimodal
approach to AD classification: Campbell et al. [14] examined
two fusion strategies with linguistic features and acoustic fea-
tures, achieving 75% accuracy. Shah et al. [2] used a weighted
majority-vote ensemble algorithm for classification and chose
the best performing language model with the three best per-
forming acoustic models, giving final prediction accuracy of
83%.

Some other work focuses less on the individual and more
on the properties of their interaction with others. Conversation
Analysis (CA) studies show that dialogue with dementia has
characteristic features that would be missed if analyzing only
individual speech [15, 16], but these studies are generally quali-
tative and/or small-scale. Some computational work on demen-
tia is starting to fill this gap, focusing on interaction patterns
such as turn-taking behavior, disfluency, repair, repetition, and
topic management. Luz et al. [17] use dialogue interaction fea-
tures from the speech in a predictive model, with an impressive
accuracy of 86%. Mirheidari et al. [18] go a step further, com-
bining CA-inspired interaction features including turn-taking
behavior with some acoustic and language features, to achieve



a classification accuracy of 90%. Garcia et al. [19] develop a
protocol based on dialogue conversations to investigate early
behavioral signs of AD. This use of interaction cues has the po-
tential to be more versatile in AD prediction and monitoring in
more daily life settings than individual language tasks [20, 21].
However, work so far either looks only at interaction rather than
combining it with other modalities (e.g. [17]) or relies on partic-
ular interactional settings such as interviews with chosen topics
or question types (e.g. [18]). In this study, we address these is-
sues, using a combination of dialogue interaction and acoustic
features, and by analysing semi-structured interviews obtained
in more natural settings. Our main contributions are:

• Evaluation of 31 dialogue interaction features extracted
from the audio and transcripts of natural conversations.

• Analysis of various voicing, spectral, and energy-based
aspects of speech, using feature selection techniques to
reveal the most informative features.

• Analysis of different combinations of these features with
feature selection and fusion strategies, showing that
these can help distinguish between AD patients and Non-
AD patients, achieving an overall accuracy of 87% with
interactional features, and 90% with combining these
with acoustic features.

2. Methodology
Our approach is to build a model based on interaction cues
from dialogue conversations, combined with acoustic features,
to predict whether an individual has AD or not. It consists of
four main parts: feature engineering, feature selection, learning
algorithms, and multimodal fusion strategy.

2.1. Feature Engineering

2.1.1. Interactional Features

Different temporal and interactional aspects of dialogue conver-
sations are employed, grounded in Levinson’s theory of prag-
matics [22]. These include short pauses (SP), long pauses (LP),
gaps (GA), and lapses (LA). SPs and LPs are silences within
one individual’s speech, with SPs less than 1.5 seconds and LPs
greater than 1.5 seconds. Both SPs and LPs may occur either at
a transition relevance place (TRP) or not, but no speaker change
occurs; TRPs are places at which it would be appropriate for the
turn at talk to pass from one speaker to another. A gap (GA) is
silence at a speaker change (i.e. turn boundary, with speaker
change from interviewer to patient I-P or vice versa P-I). A
lapse (LA) is a longer delay in communication between two in-
dividuals, at a TRP, and after which one participant (usually
interviewer in this case) initiates a new topic (Figure 1).

Figure 1: A Lapse (LA) followed by new topic initiation.

Further to these, we distinguish attributable silences (ASs):
silences during which a speaker change is strongly expected, to
provide a response to the previous turn, but does not occur. In
our dataset, this is usually when the interviewer (I) has asked a

Table 1: Interactional feature set

Interaction features:
Num AS, Dur AS, Num LA, Dur LA, Num GA,
Dur GA, turn switches per minute, num overlaps,
Num GA(I-P), Dur GA(I-P), Num GA(P-
I), Dur GA(P-I), Num LA(I-I), Dur LA(I-I),
Num LA(P-I), Dur LA(P-I).

Patient (P) features:
Num SP, Dur SP, Num LP, Dur LP, turn length,
floor control ratio (FCR), standardized pause rate
(SPR), transformed phonation rate (TPR), and
speech rate.

Interviewer (I) features:
Num SP, Dur SP, Num LP, Dur LP, turn length,
and speech rate.

question, but no response is forthcoming from the patient P; a
silence ensues, after which I takes the conversation floor again.
Figure 2 shows an example, with the lack of response from P
leading to an AS of 4.1 seconds following a question ‘What
other animals were there?’.

Other features encode general characteristics of the interac-
tion. We include the number of overlaps: the number of seg-
ments spoken simultaneously by both speakers, with the intu-
ition that these may be attributed to speech initiation difficul-
ties. We also include turn length (number of words per turn),
floor control ratio (amount of time during which P speaks, rel-
ative to the total speech time of the conversation), standardized
pause rate (ratio of total words spoken by P to the total pauses
(including SP & LP)), phonation rate (total time spoken by P
to total spoken time including SP and LP by P), and speech
rate (number of words per minute). The annotation protocol for
these interactional features is described in [23] for AD classifi-
cation: 31 features in total are extracted based on this protocol
from audio and transcript data as shown in Table 1.

Figure 2: An Attributable Silence (AS) after an interviewer (I)
question, followed by reformulation of the question by I.

Features such as speech rate, SPR, TPR, turn lengths are
used previously for Dementia analysis in the literature however,
their combination with our defined interactional features such
as LA, AS, overlaps, SP, LP, GA, and acoustic feature is unique.

2.1.2. Acoustic features

OpenSMILE v2.1 [24] was used to extract acoustic features
from the audio recordings, for a total of 30 dialogue conversa-
tions. OpenSMILE is open-source software that has been previ-
ously used for AD classification using audio features [9, 25]. A
set of 64 audio features was extracted and higher-order statistics
(mean, standard deviation) were computed. Using the utterance
timing information provided in the transcripts, we extracted the



participant’s utterances (either P or I) and calculated average
values of the features per utterance basis. A standard zero mean
and variance normalization was applied to each feature. The
detail of acoustic features is given in Table 2.

Table 2: Acoustic feature set

Type Feature names

Frequency
related

Fundamental frequency (f0), jitter, voicing
probability

Energy,
amplitude
related

RMS energy, log RMS energy, shimmer, loud-
ness, Harmonic to noise ratio (HNR)

Spectral
parameters

4 Mel-frequency Cepstral coefficients (MFCCs)
[1-4], delta MFCCs [1-4], delta-delta MFCCs
[1-4]

2.2. Feature Selection

Feature selection (FS) reduces the dimensionality of the feature
set by choosing a subset of relevant features. We used the re-
cursive feature elimination (RFE) method, an iterative process
that removes a specific number of features, and examines the
effect on classification accuracy [26]. Those features making
the least contribution are removed recursively until the desired
number of features are left. We also utilized a pipeline with grid
search to find the optimal value of a subset of features from both
acoustic and interactional features.

2.3. Learning algorithms

Due to the low number of samples, compared to the dimen-
sionality of the feature space, we use traditional machine learn-
ing classifiers rather than more complex neural networks, as the
former has the potential to provide a rational trade-off between
classification performance and run-time complexity and the risk
of overfitting [27]. In this study, three traditional ML classifiers
were used: Logistic Regression (LR), Support Vector Machines
(SVM) and Random Forests (RF). We tested LR with a range
of regularization parameters (0.1,10,100); SVM with RBF and
polynomial kernels, cost C (0.1,100) and gamma (0.001,0.1);
and RF with 60 trees of maximum depth of 5. The same hyper-
parameters were used for all experiments.

2.4. Fusion strategy

Two different fusion strategies were employed in this study. In
the early fusion (EF) method, the values of each feature for
both acoustic and interactional features are normalized using
the standard scalar feature of scikit-learn [28] and then concate-
nated directly. The late fusion (LF) or decision-level strategy
utilized the same normalization for each feature set, but with
predictions made individually for each feature set. The predic-
tion scores of each classifier are then combined using a standard
soft voting ensemble method [29]: soft voting computes the av-
erage probability for each class over each component classifier
and eventually bases the final prediction on maximum average
probability. Among our classifiers, LR and RF provide predic-
tion probabilities directly, while the SVM outputs were trans-
formed into prediction probabilities using Praat scaling [27].

3. Experiments
Dataset The Carolinas Conversation Collection (CCC) [30]
consists of audios and transcripts of conversations between
health care professionals and patients with chronic diseases in-
cluding AD. These are semi-structured interviews recorded in

community centers and are a useful resource to explore inter-
action aspects of communication. Online access to the CCC
was obtained after gaining ethical approval from our own insti-
tution and from the CCC administrators/hosts (Medical Univer-
sity of South Carolina, MUSC), and complying with MUSC’s
requirements for data handling and storage. For this study we
selected dialogues for 30 patients: 15 diagnosed with AD (11
female, 4 male) and 15 non-AD patients (4 male, 11 females)
with other chronic diseases such as diabetes, heart attack, bro-
ken leg, etc but not AD. Although the full CCC dataset contains
200 conversations with the non-AD group of patients and 400
conversations for the AD group, however, not all dialogues are
available.1 Dialogues of 38 AD patients were available and we
randomly choose 15 dialogues of AD for this study. The total
duration of interviews is 152 minutes for the Non-AD group and
179.7 minutes for the AD group.

Implementation metrics We set up our experiments to in-
vestigate which acoustic features and dialogue interaction fea-
tures are most effective for predicting AD. Due to the fairly
small dataset, we used leave-one-(patient)-out cross validation
(LOOCV) to get a better estimation of generalization accuracy.
The dataset is balanced in terms of classes; we choose precision,
recall, F1-score, and accuracy as evaluation metrics.

Baseline Models We compared the performance of our model
with Luz et al. [17]’s work on the same CCC corpus with dia-
logue interaction features. Luz et al.’s dataset is slightly big-
ger than ours (38 dialogues vs. 30). Although the features set
are not directly comparable, they utilized only interactional as-
pects of conversation including dialogue duration, average turn
duration, normalized duration, average number of words, and
average words per minute from the spontaneous speech.

4. Results and Discussion
Effects of feature selection We performed RFE separately on
both acoustic and interactional features, securing good classifi-
cation results with 15 top interactional features and 42 acoustic
features. Table 3 shows the ranked features from both feature
sets, together with their Pearson’s correlation (r) with the diag-
nosis class; due to space limitations, we only show the top 10
features.2 The most significant acoustic feature was LogHNR,
known to be important in acoustic analysis for the diagnosis
of pathological voices; loudness, raw fundamental frequency,
variation in jitter, intensity, and LogHNR all positively corre-
late with AD and have been reported as useful features in litera-
ture for Dementia [31, 9]. Among interactional features, lapses
are positively correlated with AD, indicating that patients find
trouble continuing topics, resulting in delays with interviewers
initiating a new topic. Attributable silence (AS) duration is also
positively correlated with AD, showing that AD patients ex-
hibit more silences in response to questions; this fits with the
findings of CA studies in the literature that this form of silence
serves as a dispreferred response in communication [22, 32].
Turn lengths seem to negatively correlate with AD: AD patients
produce less number of words in their turns with longer turn du-
ration (5.91 vs 4.01 seconds), and consequently, produce more
silences within the turns as compared to Non-AD. Standardized
phonation time (SPT) and transformed phonation rate (TPR)

1See https://carolinaconversations.musc.edu/
2Detail can be found here: https://osf.io/3fd8x/?view_

only=8d864851fbd74be5b53c0ef86335a25a



also show significant differences between the two groups, con-
firming findings in the literature [12].

Table 3: Top-ranked features for distinguishing patients with
AD from Non-AD patients. The third and fifth columns show
Pearson’s correlations with the AD class.

Rank Acoustic r Interactional r

1 LogHNR SD 0.60 dur LA (I-I) 0.32
2 Voicing Final mean 0.58 P TPR -0.26
3 loudness SD 0.56 P SPT -0.54
4 mfcc[2] mean -0.54 P turn length -0.33
5 mfcc de de[3] mean 0.49 dur AS (I P) 0.41
6 mfcc de de[3] SD -0.45 dur LA 0.43
7 jitterDDP SD 0.45 dur LA (P )) 0.30
8 F0 raw mean 0.44 I turn length -0.40
9 intensity SD 0.44 dur GA(P I) 0.38
10 LOgHNR mean 0.42 Num GA 0.49

Classification Results Table 4 then shows our results for the
AD/Non-AD classification task. We show results for both fea-
ture sets individually and using the EF and LF fusion strategies;
as a baseline, we compare against Luz et al. [17]’s method that
utilized only interactional features. Combining interactional
and acoustic features with the EF strategy seems to do best, and
gives performance for all classifiers that improve over the base-
line, and over the use of the individual feature sets. Using fea-
ture selection (FS) to select the 15 top-ranked interactional fea-
tures and 42 top-ranked acoustic features increases performance
further, giving an accuracy of 0.90 with both LR and SVM, and
0.87 with RF with the EF strategy. Contrary to our expectations,
the LF method gives similar performance to EF when using fea-
ture selection, although it shows a significant drop in accuracy
when using all features, with all three classifiers. Due to lower
performance with this late fusion strategy, we only considered
early fusion in our error analysis. The overall findings confirm
our expectation that adding interactional features improves the
results in comparison to more conventional acoustic features
found in the literature. For each type of classifier, the perfor-
mance improves when both features are combined. We note,
though, that as we use a relatively small set of dialogues, it is
unclear how well results will generalize.

Error analysis The results in Table 5 show that the EF strat-
egy with top-ranked acoustic and interactional features obtains
the highest precision and recall for both AD and non-AD classes
with LR and SVM, with F1 scores of 0.90 for AD and 0.89 for
Non-AD. Combining interactional and acoustic features partic-
ularly improves recall (0.93) of the AD class: acoustic features
alone (with SVM) give recall 0.67 for the AD class, increas-
ing to 0.73 with top-ranked features, while interactional features
alone give 0.80 with all features and 0.87 with the top 15 fea-
tures. Depending on the application the model is used for, false
negatives or false positives for AD detection will be more or less
desirable, but as it stands combining the most relevant features
considerably reduces the false negatives of diagnosis whilst still
marginally reducing the false positives.

5. Conclusion
This study investigating alternative means of AD diagnosis us-
ing features that may be easily computed upon daily conver-
sations, without relying on specific neuropsychological assess-

Table 4: Multiple classifiers with different feature sets and fu-
sion strategies, with all and top-ranked features with FS.

Classifier Features Acc. [all] Acc. [FS] # features

Baseline Luz et al. [17]
LR Interactional 0.75 - -
SVM Interactional 0.83 - -
RF Interactional 0.81 - -

Our Models

LR

Acoustic 0.70 0.73 42
Interactional 0.80 0.83 15
Both (EF) 0.87 0.90 (42,15)
Both (LF) 0.77 0.90 (42,15)

SVM

Acoustic 0.73 0.77 42
Interactional 0.83 0.87 15
Both (EF) 0.73 0.90 (42,15)
Both (LF) 0.77 0.89 (42,15)

RF

Acoustic 0.80 0.83 42
Interactional 0.73 0.73 15
Both (EF) 0.83 0.87 (42,15)
Both (LF) 0.73 0.87 (42,15)

Table 5: Comparison of results for the AD classification, shown
as precision, recall, F1, and accuracy per class.

Model No. Class Prec. Rec. F1 Acc.
SVM All Non-AD 0.71 0.80 0.75 0.73Acoustic AD 0.77 0.67 0.71

SVM 42 Non-AD 0.75 0.80 0.77 0.77Acoustic AD 0.79 0.73 0.76

SVM All Non-AD 0.81 0.87 0.84 0.83Interactional AD 0.86 0.80 0.83

SVM 15 Non-AD 0.87 0.87 0.87 0.87Interactional AD 0.87 0.87 0.87

SVM (42,15) Non-AD 0.93 0.87 0.89 0.90Both (EF) AD 0.88 0.93 0.90

LR (42,15) Non-AD 0.93 0.87 0.89 0.90Both (EF) AD 0.88 0.93 0.90

ments, would improve not only the diagnosis but also the mon-
itoring of the disease. In this respect, using only these inter-
actional type of features, the study achieves an accuracy of
87%, while combining interactional features with conventional
acoustic features with early fusion improves the results with an
accuracy of 90%. These results are in line with the current state
of the art that uses alternative features based on fixed tasks such
as picture description focusing on language characteristics of
individuals and harder to derive from natural settings.

In future work, we intend to add more conversations from
the CCC corpus, to address the issue of small sample size and
investigate generalisability. In particular, we will automate the
feature extraction process for interactional features keeping the
context in consideration. We will also look into more interac-
tion of communication in terms of the relevance of responses,
dialogue act tagging to identify clarification requests, signal of
non-understanding, several types of questions, and answers oc-
curring in natural dialogues.
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