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Abstract. The (k, a)-generalised Fourier transform is the unitary operator defined

using the a-deformed Dunkl harmonic oscillator. The main aim of this paper is to

prove Lp-Lq boundedness of (k, a)-generalised Fourier multipliers. To show the bounded-

ness we first establish Paley inequality and Hausdorff-Young-Paley inequality for (k, a)-

generalised Fourier transform. We also demonstrate applications of obtained results to

study the well-posedness of nonlinear partial differential equations.

1. Introduction and Basics on (k, a)-generalised Fourier transform

In his seminal paper [28], Hörmander initiated the study of boundedness of the transla-

tion invariant operators on RN . The translation invariant operators on RN can be charac-

terised using the classical Euclidean Fourier transform on RN and therefore they are also

known as Fourier multipliers. The boundedness of Fourier multipliers is useful to solve

problems in the area of mathematical analysis, in particular, in PDEs. Hörmander [28] es-

tablished the Lp- boundedness and Lp-Lq boundedness of Fourier multipliers on RN . After

that, Lp-boundedness of Fourier multipliers has been investigated by several researchers

in many different setting, we cite here [28, 5, 16, 37, 12, 13, 23, 38, 41, 27, 24] to mention

a few of them. In particular, Lp-boundedness of multipliers was established in [38] for

the one dimensional Dunkl transform and very recently in [24] in the multidimensional

setting. Recently, the researchers have turned their attention to establish the bounded-

ness of Lp-Lq multipliers for the range 1 < p ≤ 2 ≤ q < ∞, see [1, 3, 4, 14, 15, 18, 34].

Precisely, the second author and his collaborators started investigating the Hörmander Lp-

Lq Fourier multipliers theorem and its different consequences for locally compact groups

and on homogeneous manifolds. Such analysis includes the Hardy-Littlewood inequality,
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spectral multipliers theorems and applications to PDEs [1, 3, 2, 34]. In [15], similar re-

sults have been proved for the eigenfunction expansions of anharmonic oscillators and

extended to the more general setting of bi-orthogonal expansions in [14]. Ben Säıd et

al. [7, 8] introduced (k, a)-generalised Fourier transform. It generalises many important

integral transforms including Fourier transform and Dunkl transform on the Euclidean

spaces RN [9, 8]. Recently, there is a growing interest to develop the analysis related to the

(k, a)-generalised Fourier transform. Notably, the uncertainty principles and Pitt inequal-

ities [25, 30], maximal function and translation operator [10], wavelets multipliers [35] and

Hardy inequality [40] were explored by many researchers. In this paper, we establish Lp-Lq

boundedness of (k, a)-Fourier multipliers using the (k, a)-generalised Fourier transform.

The proof of the main result hinges upon the Paley inequality and Hausdorff-Young-Palay

inequality for (k, a)-generalised Fourier transform obtained by using the Hausdorff-Young

inequality established in [30, 25].

To describe our main result let us recall the classical Hörmander Fourier multipliers

theorem settled in [28]: For 1 < p ≤ 2 ≤ q < ∞, the Fourier multiplier Tm : S(RN) →

S ′(RN) associated with symbol m : RN → C defined by F(Tmf)(ξ) = m(ξ)F(f)(ξ) for

ξ ∈ RN , has a bounded extension from Lp(RN) to Lq(RN) provided that the symbol m

satisfies the condition

|{ξ ∈ RN : |m(ξ)| ≥ s}| ≤ 1

sb
for all s > 0, (1)

where 1
b

= 1
p
− 1

q
, and F denotes the Euclidean Fourier transform of f defined as

F(f)(ξ) := (2π)−
N
2

∫
RN
f(x) e−i〈x,ξ〉 dx, ξ ∈ RN .

Here 〈x, ξ〉 denotes the standard Euclidean inner product of two vectors x and ξ in RN

and ‖x‖ will denote the Euclidean norm on RN . The Euclidean Fourier transform F on

RN can be described using the spectral information of the harmonic oscillator ∆RN−‖x‖2,

where ∆RN is the Laplacian on RN . In fact, Howe [29] found the following description of

the Euclidean Fourier transform F :

F := exp
(iπN

4

)
exp

(iπ
4

(∆RN − ‖x‖2)
)
. (2)
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This description has been proved to be useful to define generalisations of the Fourier

transform such as Clifford algebra-valued Fourier transform and fractional Fourier trans-

form. These constructions have been explained in an excellent overview article [21]. On

the other hand, Dunkl [19, 20] presented a generalisation of the Euclidean Fourier trans-

form and Euclidean Laplacian on RN , which is now known as Dunkl transform (see [22])

and Dunkl Laplacian, and are usually denoted by Fk and ∆k, respectively, using the root

system R ⊂ RN , a reflection group G ⊂ O(N,R) generated by the root reflections rα,

α ∈ R, and a multiplicity function k : R → R+ such that k is G-invariant. We set

k(α) = kα, 〈k〉 = 1
2

∑
α∈R kα, vk(x) =

∏
α∈R |〈α, x〉|kα , vk,a(x) := ‖x‖2−avk(x). Define

Lpk,a(RN) := Lp(RN , vk,adx) and dµk,a(x) = vk,adx.

To describe the Dunkl Laplacian, let us define the first order Dunkl operator for ξ ∈ RN

and for a fixed multiplicity function k by

Tξ(k)f(x) = ∂ξf(x) +
∑
α∈R+

kα 〈α, ξ〉
f(x)− f(rαx)

〈α, x〉
, f ∈ C1(RN),

where ∂ξ is the direction derivation in the direction of ξ and R+ denotes the positive root

subsystem. Let us fix an orthonormal basis {ξ1, ξ2, . . . , ξN} for the inner product space

(RN , 〈·, ·〉) and write Tξj(k) as Tj(k) for j ∈ {1, 2, . . . , N}. Then the Dunkl Laplacian is

defined by ∆k =
∑N

j=1 Tj(k)2. The Dunkl Laplacian has explicit form and also plays a very

important role in the Dunkl analysis (see [6, 36] for more details and related analysis).

When the multiplicity function is trivial (i.e., k ≡ 0) then Fk and ∆k turn out be to just

the Euclidean Fourier transform F and the Euclidean Laplacian ∆RN , respectively. Using

the Dunkl Laplacian one can define the Dunkl harmonic oscillator (or Dunkl-Hermite

operator) as ∆k − ‖x‖2. Ben Säıd et al. [7] considered the a-deformed Dunkl harmonic

oscillator given by

∆k,a := ‖x‖2−a∆k − ‖x‖a, a > 0.

By making use of this a-deformed Dunkl harmonic oscillator ∆k,a, they introduced a two

parameters unitary operator, (k, a)-generalised Fourier transform, Fk,a on L2
k,a(RN), by

Fk,a := exp

[
iπ

2

(
1

a
(2〈k〉+ n+ a− 2)

)]
exp

[
iπ

2a
(∆k,a)

]
. (3)

The (k, a)-generalised Fourier transform Fk,a includes some prominent transforms on

the Euclidean space RN :
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• For a = 2 and k > 0, Fk,a is the Dunkl transform [22].

• For a = 2 and k ≡ 0, Fk,a is the Euclidean Fourier transform [29].

• For a = 1 and k ≡ 0, Fk,a is the Hankel transform appearing as the unitary

inversion operator of the Schrödinger model of the minimal representation of the

group O(N + 1, 2) (see [31, 32, 33]).

For a > 0 and a + 2〈k〉 + N − 2 > 0, the (k, a)-generalised Fourier transform Fk,a is a

bijective linear operator such that

‖Fk,a(f)‖L2
k,a(RN ) = ‖f‖L2

k,a(RN ). (4)

By the Schwartz kernel theorem there exists a distribution kernel Bk,a(ξ, x) such that

Fk,af(ξ) = ck,a

∫
RN
Bk,a(ξ, x) f(x) dµk,a(x)

with a symmetric kernel Bk,a(ξ, x) ([7]).

The next lemma, which is a corrected version of [30, Lemma 2.8] in view of [25, Section

6], presents some conditions onN, k, and a such that kernelBk,a(ξ, x) is uniformly bounded

(see also [7, Theorem 5.11] and [17, Theorem 9]).

Lemma 1.1. Assume N ≥ 1, k ≥ 0, a + 2〈k〉 + N − 2 > 0, and that exactly one of the

following additional assumption holds:

(i) N = 1 and a > 0;

(ii) a = 1 and 2〈k〉+N − 2 ≥ 0

(iii) a = 2;

(iii) k = 0 and a = 2
m

for some m ∈ N.

Then Bk,a is uniformly bounded, that is, |Bk,a(ξ, x)| ≤M for all x, ξ ∈ RN , where M is a

finite constant that depends only on N, k, and a.

The following result is the Hausdorff -Young inequality for (k, a)- generalised Fourier

transform.

Theorem 1.2. [30, Proposition 2.9] Assume that N, k, and a satisfy the assumption of

Lemma 1.1. For 1 ≤ p ≤ 2, fix p′ = p
p−1 . Then for f ∈ Lpk,a(RN) we have

‖Fk,af‖Lp′k,a(RN )
≤ C‖f‖Lpk,a(RN ), (5)

where C = M2/p−1.
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It was conjectured by Gorbachev et al. [25] that if a+ 2〈k〉+N − 3 ≥ 0 then the kernel

satisfies |Bk,a(ξ, x)| ≤ Bk,a(0, x) = 1 for all x, ξ ∈ RN . So in this case, the constant C in

Hausdorff-Young inequality (5) becomes 1.

From this point onward, we always assume that N, k and a either satisfy assumptions of

Lemma 1.1 with N ≥ 1, k ≥ 0 and a+ 2〈k〉+N − 2 > 0, or, a+ 2〈k〉+N − 3 ≥ 0 without

mentioning it explicitly. In fact, our results will hold if we assume that N ≥ 1, k ≥ 0 and

a > 0 are such that a + 2〈k〉 + N − 2 > 0 and the distribution kernel Bk,a is uniformly

bounded on RN .

With having all the basics of (k, a)-generalised Fourier transform we are now in a

position to state our results. The main result of this paper is the following theorem Lp-Lq

boundedness of (k, a)-Fourier multipliers A for the range 1 < p ≤ 2 ≤ q <∞. Indeed, we

have

‖A‖Lpk,a(RN )→Lqk,a(RN ) . sup
s>0

s

[∫
{ξ∈RN :|h(ξ)|≥s}

dµk,a(ξ)

] 1
p
− 1
q

,

where h is the symbol of the (k, a)-Fourier multiplier A, this means that, Fk,a(Af)(ξ) =

h(ξ)Fk,af(ξ) for ξ ∈ RN and for f in a suitable function space. The main tool to establish

this result is the following Hausdorff-Young Paley inequality for (k, a)-generalised Fourier

transform: For 1 < p ≤ 2, 1 < p ≤ b ≤ p′ <∞, where p′ = p
p−1 and for a positive function

ψ defined on RN we have(∫
RN

(
|Fk,af(ξ)|ψ(ξ)

1
b
− 1
p′
)b
dµk,a(ξ)

) 1
b

.
(

sup
t>0

t

∫
ξ∈RN
ψ(ξ)≥t

dµk,a(ξ)
) 1
b
− 1
p′ ‖f‖Lpk,a(RN ). (6)

Next, we will present applications of our main results in the context of well-posedness of

nonlinear abstract Cauchy problems in the space L∞(0, T, L2
k,a(RN)). First, we consider

the heat equation

ut − |Bu(t)|p = 0, u(0) = u0, (7)

where B is a linear operator on L2
k,a(RN) and 1 < p <∞. We study local well-posedness

of the heat equation (7) above. Secondly, we consider the initial value problem for the

nonlinear wave equation

utt(t)− b(t)|Bu(t)|p = 0, (8)
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with the initial condition u(0) = u0, ut(0) = u1, where b is a positive bounded function

depending only on time, B is a linear operator in L2
k,a(RN) and 1 < p < ∞. We explore

the global and local well-posedness of (8) under some condition on function b.

We organise the paper in following way: In the next section we will state and present the

proof of Paley inequality and Hausdorff-Young-Paley inequality. Then, we give the proof

of our main result concerning the Lp-Lq boundedness of (k, a)-Fourier multipliers and

its consequences. In the last section, the applications of the results obtained in previous

section will be discussed.

2. Main results

Throughout the paper, we shall use the notation A . B to indicate A ≤ cB for a

suitable constant c > 0. In this section, we will present our main results. In the proofs

we follow the ideas in the papers [2, 3]. The first result is the Paley inequality for the

(k, a)-generalised Fourier transform.

Theorem 2.1. Suppose that ψ is a positive function on RN satisfying the condition

Mψ := sup
t>0

t

∫
ξ∈RN
ψ(ξ)≥t

dµk,a(ξ) <∞. (9)

Then for f ∈ Lpk,a(RN), 1 < p ≤ 2, we have(∫
RN
|Fk,a(ξ)|p ψ(ξ)2−pdµk,a(ξ)

) 1
p

.M
2−p
p

ψ ‖f‖Lpk,a(RN ). (10)

Proof. Let us consider a measure νk,a on RN given by

νk,a(ξ) = ψ(ξ)2dµk,a(ξ). (11)

We define the corresponding Lp(RN , νk,a)- space, 1 ≤ p <∞, as the space of all complex-

valued function f defined by RN such that

‖f‖Lp(RN ,νk,a) :=

(∫
RN
|f(ξ)|p ψ(ξ)2dµk,a(ξ)

) 1
p

<∞.

We will show that the sublinear operator T : Lpk,a(RN)→ Lp(RN , νk,a) defined by

Tf(ξ) :=
|Fk,af(ξ)|
ψ(ξ)

, ξ ∈ RN
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is well-defined and bounded from Lpk,a(RN) to Lp(RN , νk,a) for any 1 < p ≤ 2. In other

words, we claim the following estimate:

‖Tf‖Lp(RN ,νk,a) =

(∫
RN

|Fk,af(ξ)|
ψ(ξ)p

ψ(ξ)2dµk,a(ξ)

) 1
p

.M
2−p
p

ψ ‖f‖Lpk,a(RN ), (12)

which will give us the required inequality (10) with Mψ := supt>0 t
∫
ξ∈RN
ψ(ξ)≥t

dµk,a(ξ). We will

show that T is weak-type (2, 2) and weak-type (1, 1). More precisely, with the distribution

function,

νk,a(y;Tf) =

∫
ξ∈RN

|Fk,af(ξ)|
ψ(ξ)

≥y

ψ(ξ)2dµk,a(ξ),

where νk,a is given by formula (11), we show that

νk,a(y;Tf) ≤

(
M2‖f‖L2

k,a(RN )

y

)2

with norm M2 = 1, (13)

νk,a(y;Tf) ≤
M1‖f‖L1

k,a(RN )

y
with norm M1 = Mψ. (14)

Then the estimate (12) follows from the Marcinkiewicz interpolation Theorem. Now, to

show (13), using the Plancherel identity we get

y2νk,a(y;Tf) ≤ sup
y>0

y2νk,a(y;Tf) =: ‖Tf‖2L2,∞(RN ,νk,a) ≤ ‖Tf‖
2
L2(RN ,νk,a)

=

∫
RN

(
|Fk,a(ξ)|
ψ(ξ)

)2

ψ(ξ)2dµk,a(ξ)

=

∫
RN
|Fk,a(ξ)|2 dµk,a(ξ) = ‖f‖2L2

k,a(RN ).

Thus, T is type (2, 2) with norm M2 ≤ 1. Further, we show that T is of weak type (1, 1)

with norm M1 = Mψ; more precisely, we show that

νk,a

{
ξ ∈ RN :

|Fk,a(ξ)|
ψ(ξ)

> y

}
.Mψ

‖f‖L1
k,a(RN )

y
. (15)

The left hand side of (15) is an integral
∫
ψ(ξ)2dµk,a(ξ) taken over all those ξ ∈ RN for

which
|Fk,af(ξ)|
ψ(ξ)

> y. Since |Fk,af(ξ)| . ‖f‖L1
k,a(RN ) for all ξ ∈ RN we have

{
ξ ∈ RN :

|Fk,af(ξ)|
ψ(ξ)

> y

}
⊂

{
ξ ∈ RN :

‖f‖L1
k,a(RN )

ψ(ξ)
& y

}
,
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for any y > 0 and, therefore,

νk,a

{
ξ ∈ RN :

|Fk,a(ξ)|
ψ(ξ)

> y

}
≤ νk,a

{
ξ ∈ RN :

‖f‖L1
k,a(RN )

ψ(ξ)
& y

}
.

Now by setting w :=
‖f‖

L1
k,a

(RN )

y
, we have

νk,a

{
ξ ∈ RN :

‖f‖L1
k,a(RN )

ψ(ξ)
& y

}
≤
∫

ξ∈RN
ψ(ξ).w

ψ(ξ)2 dµk,a(ξ). (16)

Now we claim that ∫
ξ∈RN
ψ(ξ).w

ψ(ξ)2 dµk,a(ξ) .Mψw. (17)

Indeed, first we notice that∫
ξ∈RN
ψ(ξ).w

ψ(ξ)2 dµk,a(ξ) =

∫
ξ∈RN

ψ(ξ)≤cw
dµk,a(ξ)

∫ ψ(ξ)2

0

dτ,

for some c > 0. By interchanging the order of integration we get∫
ξ∈RN

ψ(ξ)≤cw
dµk,a(ξ)

∫ ψ(ξ)2

0

dτ =

∫ c2w2

0

dτ

∫
ξ∈RN

τ
1
2≤ψ(ξ)≤cw

dµk,a(ξ).

Further, by making substitution τ = t2, it gives∫ c2w2

0

dτ

∫
λ∈RN

τ
1
2≤ψ(ξ)≤cw

dµk,a(ξ) = 2

∫ cw

0

t dt

∫
ξ∈RN

t≤ψ(ξ)≤cw

dµk,a(ξ)

.
∫ cw

0

t dt

∫
ξ∈RN
t≤ψ(ξ)

dµk,a(ξ).

Since

t

∫
ξ∈RN
t≤ψ(ξ)

dµk,a(ξ) ≤ sup
t>0

t

∫
ξ∈RN
t≤ψ(ξ)

dµk,a(ξ) = Mψ

is finite by assumption Mψ <∞, we have∫ w

0

t dt

∫
ξ∈RN
t≤ψ(ξ)

dµk,a(ξ) .Mψw.

This establishes our claim (17) and eventually proves (15). Therefore, we have proved (13)

and (14). Then by using the Marcinkiewicz interpolation theorem with p1 = 1 and p2 = 2
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and 1
p

= 1− θ + θ
2

we now obtain

(∫
R+

(
|Fk,af(ξ)|
ψ(ξ)

)p
ψ(ξ)2 dµk,a(ξ)

) 1
p

= ‖Tf‖Lp(RN , νk,a) .M
2−p
p

ψ ‖f‖Lpk,a(RN ).

This completes the proof of the theorem. �

Next we record the following interpolation theorem from [11] for further use.

Theorem 2.2. Let dµ0(x) = ω0(x)dµ′(x) and dµ1(x) = ω1(x)dµ′(x). Suppose that 0 <

p0, p1 <∞. If a continuous linear operator A admits bounded extensions, A : Lp(Y, µ)→

Lp0(ω0) and A : Lp(Y, µ)→ Lp1(ω1). Then, there exists a bounded extension A : Lp(Y, µ)→

Lb(ω) of A, where 0 < θ < 1, 1
b

= 1−θ
p0

+ θ
p1

and ω = ω
b(1−θ)
p0

0 ω
bθ
p1
1 .

Now, we use the previous theorem to establish the Hausdorff-Young-Paley inequal-

ity using the interpolation between Hausdorff-Young inequality and Paley inequality for

(k, a)-generalised Fourier transform.

Theorem 2.3. Let 1 < p ≤ 2, and let 1 < p ≤ b ≤ p′ < ∞, where p′ = p
p−1 . If ψ is a

positive function on RN such that

Mψ := sup
t>0

t

∫
λ∈RN
ψ(ξ)≥t

dµk,a(ξ) (18)

is finite then, for every f ∈ Lpk,a(RN), we have

(∫
RN

(
|Fk,af(ξ)|ψ(ξ)

1
b
− 1
p′
)b
dµk,a(ξ)

) 1
b

.M
1
b
− 1
p′

ϕ ‖f‖Lpk,a(RN ). (19)

This naturally reduced to the Hausdorff-Young inequality (5) when b = p′ and to the

Paley inequality (10) when b = p.

Proof. From Theorem 2.1, the operator defined by

Af(ξ) = Fk,af(ξ), ξ ∈ RN

is bounded from Lpk,a(RN) to Lp(RN , ω0dµ
′), where dµ′(ξ) = dµk,a(ξ) and ω0(ξ) = ψ(ξ)2−p.

From Theorem 1.2, we deduce that A : Lpk,a(RN)→ Lp
′
(RN , ω1dµ

′) with dµ′(ξ) = dµk,a(ξ)

and ω1(ξ) = 1 admits a bounded extension. By using the real interpolation (Theorem 2.2
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above) we will prove that A : Lpk,a(RN) → Lb(RN , ωdµ′), p ≤ b ≤ p′, is bounded, where

the space Lp(RN , ωdµ′) is defined by the norm

‖σ‖Lp(RN , ωdµ′) :=

(∫
RN
|σ(ξ)|pω(ξ) dµ′(ξ)

) 1
p

=

(∫
RN
|σ(ξ)|pω(ξ)dµk,a(ξ)

) 1
p

and ω(ξ) is positive function over RN to be determined. To compute ω, we can use

Theorem 2.2, by fixing θ ∈ (0, 1) such that 1
b

= 1−θ
p

+ θ
p′

. In this case θ = p−b
b(p−2) , and

ω = ω
p(1−θ)
p0

0 ω
pθ
p1
1 = ψ(ξ)

1− b
p′ . (20)

Thus we finish the proof. �

An operator A is a Fourier multiplier then there exists a measurable function h : RN →

C, known as the symbol associated with A, such that

Fk,a(Af)(ξ) = h(ξ)Fk,af(ξ), ξ ∈ RN ,

for all f belonging to a suitable function space on RN . In the next result, we show that if

the symbol h of a Fourier multipliers A defined on C∞c (RN) satisfies certain Hörmander’s

condition then A can be extended as a bounded linear operator from Lpk,a(RN) to Lqk,a(RN)

for the range 1 < p ≤ 2 ≤ q <∞.

Theorem 2.4. Let 1 < p ≤ 2 ≤ q < ∞. Suppose that A is a Fourier multiplier with

symbol h. Then we have

‖A‖Lpk,a(RN )→Lqk,a(RN ) . sup
s>0

s

[∫
{ξ∈RN :|h(ξ)|≥s}

dµk,a(ξ)

] 1
p
− 1
q

.

Proof. Let us first assume that p ≤ q′, where 1
q
+ 1

q′
= 1. Since q′ ≤ 2, the Hausdorff-Young

inequality gives that

‖Af‖Lqk,a(RN ) ≤ ‖Fk,a(Af)‖
Lq
′
k,a(RN )

= ‖hFk,af‖Lq′k,a(RN )

The case q′ ≤ (p′)′ = p can be reduced to the case p ≤ q′ as follows. Using the duality

of Lp-spaces we have ‖A‖Lpk,a(RN )→Lq(RN ) = ‖A∗‖
Lq
′
k,a(RN )→Lp

′
k,a(RN )

. The symbol of adjoint

operator A∗ is equal to ȟ, which equal to h and obviously we have |ȟ| = |h| (see Theorem

4.2 in [1]). Now, we are in a position to apply Theorem 2.3. Set 1
p
− 1

q
= 1

r
. Now, by
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applying Theorem 2.3 with ψ = |h|r with b = q′ we get

‖hFk,af‖Lq′ (R+,Adx)
.

sup
s>0

s

∫
ξ∈RN
|h(ξ)|r>s

dµk,a(ξ)

 1
r

‖f‖Lpk,a(RN )

for all f ∈ Lpk,a(RN), in view of 1
p
− 1

q
= 1

q′
− 1

p′
= 1

r.
Thus, for 1 < p ≤ 2 ≤ q < ∞, we

obtain

‖Af‖Lqk,a(RN ) .

sup
s>0

s

∫
ξ∈RN
|h(ξ)|r>s

dµk,a(ξ)

 1
r

‖f‖Lpk,a(RN ).

Further, the proof follows from the following inequality:sup
s>0

s

∫
ξ∈RN
|h(ξ)|r>s

dµk,a(ξ)

 1
r

=

sup
s>0

s

∫
ξ∈RN

|h(ξ)|>s
1
r

dµk,a(ξ)


1
r

=

sup
s>0

s
1
r

∫
ξ∈RN
|h(ξ)|>s

dµk,a(ξ)

 1
r

= sup
s>0

s

∫
ξ∈RN
|h(ξ)|>s

dµk,a(ξ)

 1
r

,

proving Theorem 2.4. �

Remark 1. For a = 2 and k ≡ 0, we recover the classical theorem of Hörmander [28] on

Lp-Lq boundedness of Fourier multipliers on RN as in this case Fk,a and µk,a become the

Euclidean Fourier transform and the Lebesgue measure on RN , respectively.

As an application of Theorem 2.4 we get the following result.

Corollary 2.5. Let 0 < γ < 2〈k〉+N + a− 2 and let h be a measurable function on RN

such that

|h(ξ)| . ‖ξ‖−γ,

where ‖ξ‖ is the Euclidean norm of ξ ∈ RN . Then the (k, a)-Fourier multiplier Th with

symbol h is bounded from Lpk,a(RN) to Lqk,a(RN) provided that

1 < p ≤ 2 ≤ q <∞, 1

p
− 1

q
=

γ

2〈k〉+N + a− 2
. (21)
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Proof. It follows from Theorem 2.4 that

‖A‖Lpk,a(RN )→Lqk,a(RN ) . sup
s>0

s

[∫
{ξ∈RN :|h(ξ)|≥s}

dµk,a(ξ)

] 1
p
− 1
q

. sup
s>0

s

[∫
{ξ∈RN : s.‖ξ‖−γ}

dµk,a(ξ)

] 1
p
− 1
q

.

Now, using the polar coordinates on RN and the fact that in polar coordinates it holds

that dµk,a(x)(= vk,a(x) dx) := r2〈k〉+N+a−3vk(θ) dr dσ(θ) (see [30]), we get

‖A‖Lpk,a(RN )→Lqk,a(RN ) . sup
s>0

s

[∫
{r∈R+: r.s

− 1
γ }
r2〈k〉+N+a−3dr

] 1
p
− 1
q

. sup
s>0

s
[
s−

2〈k〉+N+a−2
γ

]( 1
p
− 1
q )

= sup
s>0

1 <∞,

by using the assumption (21). �

3. Applications to nonlinear PDEs

This section is devoted to the applications of our main result on Lp-Lq boundedness of

(k, a)-Fourier multipliers to the well-posedness of abstract Cauchy problem on RN . The

method we use here is similar to [14] in the case of the Fourier analysis associated to the

biorthogonal eigenfunction expansion of a model operator on smooth manifolds having

discrete spectrum.

3.1. Nonlinear Heat equation. Let us consider the following Cauchy problem of non-

linear evolution equation in the space L∞(0, T, L2
k,a(RN)),

ut − |Bu(t)|p = 0, u(0) = u0, (22)

where B is a linear operator on L2
k,a(RN) and 1 < p <∞.

We say that the heat equation (22) admits a solution u if

u(t) = u0 +

∫ t

0

|Bu(τ)|p dτ (23)

in the space L∞(0, T, Lpk,a(RN)) for every T <∞. We say that u is a local solution of (22)

if it satisfies the equation (23) in the space L∞(0, T ∗, L2
k,a(RN)) for some T ∗ > 0.
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Theorem 3.1. Let 1 < p <∞. Suppose that B is Fourier multiplier such that its symbol

h satisfies

sup
s>0

s

[∫
{ξ∈RN :|h(ξ)|≥s}

dµk,a(ξ)

] 1
2
− 1

2p

<∞.

Then the Cauchy problem (22) has a local solution in the space L∞(0, T ∗, L2
k,a(RN)) for

some T ∗ > 0.

Proof. By integrating equation (22) w.r.t. t one get

u(t) = u0 +

t∫
0

|Bu(τ)|pdτ.

By taking the L2-norm on both sides, one obtains

‖u(t)‖2L2
k,a(RN ) ≤ C

(
‖u0‖2L2

k,a(RN ) +

∥∥∥∥∫ t

0

|Bu(t)|p dτ
∥∥∥∥2
L2
k,a(RN )

)

= C

(
‖u0‖2L2

k,a(RN ) +

∫
RN

∣∣∣∣∫ t

0

|Bu(t)|p dτ
∣∣∣∣2 dµk,a(x)

)
.

Using the inequality
∫ t
0
|Bu(τ)|p dτ ≤ (

∫ t
0

1 dτ)
1
2 (
∫ t
0
|Bu(τ)|2p dτ)

1
2 = t

1
2 (
∫ t
0
|Bu(τ)|2p dτ)

1
2 ,

we get

‖u(t)‖2L2
k,a(RN ) ≤ C

(
‖u0‖2L2

k,a(RN ) + t

∫
RN

∫ t

0

|Bu(t)|2p dτ dµk,a(x)

)

≤ C

(
‖u0‖2L2

k,a(RN ) + t

∫ t

0

∫
RN
|Bu(t)|2p dµk,a(x) dτ

)

≤ C

(
‖u0‖2L2

k,a(RN ) + t

∫ t

0

‖Bu(t)‖2p
L2p
k,a(RN )

dτ

)
.

Next, using the condition on the symbol h it can be seen, as an application of Theo-

rem 2.4, that the operator B is a bounded operator from L2
k,a(RN) to L2p

k,a(RN), that is,

‖Bu(t)‖L2p
k,a(RN ) ≤ C1‖u(t)‖L2

k,a(RN ) and, therefore, the above inequality yields

‖u(t)‖2L2
k,a(RN ) ≤ C

(
‖u0‖2L2

k,a(RN ) + t

∫ t

0

‖u(t)‖2p
L2
k,a(RN )

dτ

)
, (24)

for some constant C independent from u0 and t.

Finally, by taking L∞-norm in time on both sides of the estimate (24), one obtains

‖u(t)‖2L∞(0,T ;L2
k,a(RN )) ≤ C

(
‖u0‖2L2

k,a(RN) + T 2‖u‖2p
L∞(0,T ;L2

k,a(RN ))

)
. (25)
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Let us introduce the following set

Sc :=
{
u ∈ L∞(0, T ;L2

k,a(RN)) : ‖u‖L∞(0,T ;L2
k,a(RN)) ≤ c‖u0‖L2

k,a(RN )

}
, (26)

for some constant c ≥ 1. Then, for u ∈ Sc we have

‖u0‖2L2
k,a(RN ) + T 2‖u‖2p

L∞(0,T ;L2
k,a(RN ))

≤ ‖u0‖2L2
k,a(RN) + T 2c2p‖u0‖2pL2

k,a(RN )
.

Finally, for u to be from the set Sc it is enough to have, by invoking (25), that

‖u0‖2L2
k,a(RN ) + T 2c2p‖u0‖2pL2

k,a(RN )
≤ c2‖u0‖2L2

k,a(RN ).

It can be obtained by requiring the following,

T ≤ T ∗ :=

√
c2 − 1

cp‖u0‖L2
k,a(RN )

.

Thus, by applying the fixed point theorem, there exists a unique local solution u ∈

L∞(0, T ∗;L2
k,a(RN)) of the Cauchy problem (22). �

3.2. Nonlinear Wave Equation. In this subsection, we will consider that the initial

value problem for the nonlinear wave equation

utt(t)− b(t)|Bu(t)|p = 0, (27)

with the initial condition

u(0) = u0, ut(0) = u1,

where b is a positive bounded function depending only on time, B is a linear operator in

L2
k,a(RN) and 1 < p < ∞. We intend to study the well-posedness of the wave equation

(27).

We say that the initial value problem (27) admits a global solution u if it satisfies

u(t) = u0 + tu1 +

t∫
0

(t− τ)b(τ)|Bu(τ)|pdτ (28)

in the space L∞(0, T ;L2
k,a(RN)) for every T <∞.

We say that (27) admits a local solution u if it satisfies the equation (28) in the space

L∞(0, T ∗;L2
k,a(RN)) for some T ∗ > 0.
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Theorem 3.2. Let 1 < p < ∞. Suppose that B is a Fourier multiplier such that its

symbol h satisfies

sup
s>0

s

[∫
{ξ∈RN :|h(ξ)|≥s}

dµk,a(ξ)

] 1
2
− 1

2p

<∞.

(i) If ‖b‖L2(0,T ) <∞ for some T > 0 then the Cauchy problem (27) has a local solution

in L∞(0, T ;L2
k,a(RN)).

(ii) Suppose that u1 is identically equal to zero. Let γ > 3/2. Moreover, assume

that ‖b‖L2(0,T ) ≤ c T−γ for every T > 0, where c does not depend on T . Then,

for every T > 0, the Cauchy problem (27) has a global solution in the space

L∞(0, T ;L2
k,a(RN)) for sufficiently small u0 in L2-norm.

Proof. (i) By integrating the equation (27) two times in t one get

u(t) = u0 + tu1 +

t∫
0

(t− τ)b(τ)|Bu(τ)|pdτ.

By taking the L2-norm on both sides, for t < T one obtains by simple calculation that

‖u(t)‖2L2
k,a(RN ) ≤C

‖u0‖2L2
k,a(RN ) + t2‖u1‖2L2

k,a(RN ) +

∥∥∥∥∥∥
t∫

0

(t− τ)b(τ)|Bu(τ)|pdτ

∥∥∥∥∥∥
2

L2
k,a(RN )


≤ C

‖u0‖2L2
k,a(RN ) + t2‖u1‖2L2

k,a(RN ) +

∫
RN

∣∣∣ t∫
0

(t− τ)b(τ)|Bu(τ)|pdτ
∣∣∣2dµk,a(x)


≤ C

‖u0‖2L2
k,a(RN ) + t2‖u1‖2L2

k,a(RN ) +

∫
RN

(
t

t∫
0

∣∣∣b(τ)|Bu(τ)|p
∣∣∣dτ)2dµk,a(x)


≤ C

‖u0‖2L2
k,a(RN ) + t2‖u1‖2L2

k,a(RN ) +

∫
RN
t2

t∫
0

∣∣∣b(τ)
∣∣∣2dτ t∫

0

∣∣∣Bu(τ)
∣∣∣2pdτdµk,a(x)


≤ C

‖u0‖2L2
k,a(RN ) + t2‖u1‖2L2

k,a(RN ) + t2‖b‖L2(0,T )

∫
RN

t∫
0

∣∣∣Bu(τ)
∣∣∣2pdτdµk,a(x)


≤ C

‖u0‖2L2
k,a(RN ) + t2‖u1‖2L2

k,a(RN ) + t2‖b‖L2(0,T )

t∫
0

‖Bu(τ)‖2p
L2p
k,a(RN )

dτ

 .
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Next, using the condition on the symbol it can be seen, as an application of Theorem

2.4, that the operator B is a bounded operator from L2
k,a(RN) to L2p

k,a(RN), that is,

‖Bu(t)‖L2p
k,a(RN ) ≤ C1‖u(t)‖L2

k,a(RN ) and, therefore, the above inequality yields

‖u(t)‖2L2
k,a(RN ) ≤ C(‖u0‖2L2

k,a(RN ) + t2‖u1‖2L2
k,a(RN ) + t2‖b‖2L2(0,T )

t∫
0

‖u(τ)‖2p
L2p
k,a(RN )

dτ), (29)

for some constant C not depending on u0, u1 and t. Finally, by taking the L∞-norm in

time on both sides of the estimate (29), one obtains

‖u‖2L∞(0,T ;L2
k,a(RN )) ≤ C(‖u0‖2L2

k,a(RN ) + T 2‖u1‖2L2
k,a(RN ) + T 3‖b‖2L2(0,T )‖u‖

2p

L∞(0,T ;L2
k,a(RN ))

).

(30)

Let us introduce the set

Sc :=
{
u ∈ L∞(0, T ;L2

k,a(RN)) : ‖u‖2L∞(0,T ;L2
k,a(RN )) ≤ c(‖u0‖2L2

k,a(RN ) + T 2‖u1‖2L2
k,a(RN ))

}
(31)

for some constant c ≥ 1. Then, for u ∈ Sc we have

‖u0‖2L2
k,a(RN ) + T 2‖u1‖2L2

k,a(RN ) + T 3‖b‖2L2(0,T )‖u‖
2p

L∞(0,T ;L2
k,a(RN ))

≤ ‖u0‖2L2
k,a(RN ) + T 2‖u1‖2L2

k,a(RN ) + T 3‖b‖2L2(0,T )c
p
(
‖u0‖2L2

k,a(RN ) + T 2‖u1‖2L2
k,a(RN )

)p
. (32)

Observe that, to be u from the set Sc it is enough to have, by invoking (30) and using

(32), that

‖u0‖2L2
k,a(RN )+T

2‖u1‖2L2
k,a(RN ) + T 3‖b‖2L2(0,T )c

p
(
‖u0‖2L2

k,a(RN ) + T 2‖u1‖2L2
k,a(RN )

)p
≤ c(‖u0‖2L2

k,a(RN ) + T 2‖u1‖2L2
k,a(RN )).

It can be obtained by requiring the following

T ≤ T ∗ := min


 c− 1

‖b‖2L2(0,T )c
p‖u0‖2p−2L2

k,a(RN )

 1
3

,

 c− 1

‖b‖2L2(0,T )c
p‖u1‖2p−2L2

k,a(RN )

 1
3

 .
Thus, by applying the fixed point theorem, there exists a unique local solution u ∈

L∞(0, T ∗;L2
k,a(RN)) of the Cauchy problem (27).

To prove Part (ii), we repeat the arguments of the proof of Part (i) to get (30). Now,

by taking into account assumptions on u1 and b inequality (30) yields

‖u‖2L∞(0,T ;L2
k,a(RN )) ≤ C

(
‖u0‖2L2

k,a(RN ) + T 3−2γ‖u‖2p
L∞(0,T ;L2

k,a(RN ))

)
. (33)
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For a fixed constant c ≥ 1, let us introduce the set

Sc :=
{
u ∈ L∞(0, T ;L2

k,a(RN)) : ‖u‖2L∞(0,T ;L2
k,a(RN )) ≤ cT γ0‖u0‖2L2

k,a(RN )

}
,

with γ0 > 0 is to be defined later. Now, note that for u ∈ Sc we have

‖u0‖2L2
k,a(RN ) + T 3−2γ‖u‖2p

L∞(0,T ;L2
k,a(RN ))

≤ ‖u0‖2L2
k,a(RN ) + T 3−2γ+γ0pcp‖u0‖2pL2

k,a(RN )
.

To guarantee u ∈ Sc, by invoking (33) we require that

‖u0‖2L2
k,a(RN ) + T 3−2γ+γ0pcp‖u0‖2pL2

k,a(RN )
≤ cT γ0‖u0‖2L2

k,a(RN ).

Now by choosing 0 < γ0 <
2γ−3
p

such that γ̃ := 3− 2γ + γ0p < 0, we obtain

cp‖u0‖2p−2L2
k,a(RN )

≤ cT−γ̃+γ0 .

From the last estimate, we conclude that for any T > 0 there exists sufficiently small

‖u0‖L2
k,a(RN ) such that IVP (27) has a solution. It proves Part (ii) of Theorem 3.2. �

Acknowledgment

The authors thank the referees for useful comments and suggestions which have greatly

improved the exposition. VK also thanks Wentao Teng for helpful suggestions. VK and MR

are supported by FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential

Equations and by the Methusalem programme of the Ghent University Special Research

Fund (BOF) (Grant number 01M01021). MR is also supported by the EPSRC Grant

EP/R003025/1 and by the FWO grant G022821N.

References

[1] R. Akylzhanov, E. Nursultanov and M. Ruzhansky. Hardy-Littlewood-Paley inequal-

ities and Fourier multipliers on SU(2). Studia Math. 234 (2016), no. 1, 1-29.

[2] R. Akylzhanov, E. Nursultanov and M. Ruzhansky. Hardy-Littlewood, Hausdorff-

Young-Paley inequalities, and Lp − Lq Fourier multipliers on compact homogeneous

manifolds. J. Math. Anal. Appl. 479 (2019), no. 2, 1519–1548.

[3] R. Akylzhanov and M. Ruzhansky. Lp−Lq multipliers on locally compact groups, J.

Func. Anal., 278(3) (2019), DOI: https://doi.org/10.1016/j.jfa.2019.108324

[4] B. Amri and M. Gaidi. Lp-Lq estimates for the solution of the Dunkl wave equation,

Manuscripta Math., 159, 379-396 (2019).

[5] J.-P. Anker, Fourier multipliers on Riemannian symmetric space of the noncompact

type, Ann. of Math. (2), 132(3) (1990) 597-628.



18 VISHVESH KUMAR AND MICHAEL RUZHANSKY

[6] J.-P. Anker, An introduction to Dunkl theory and its analytic aspects. In Analytic,

algebraic and geometric aspects of differential equations, Trends Math., pages 3–58.
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