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Abstract 26 

The specific niche adaptations that facilitate primary disease and Acute Lymphoblastic 27 

Leukaemia (ALL) survival after induction chemotherapy remain unclear. Here, we show that 28 

Bone Marrow (BM) adipocytes dynamically evolve during ALL pathogenesis and therapy, 29 

transitioning from cellular depletion in the primary leukaemia niche to a fully reconstituted 30 

state upon remission induction. Functionally, adipocyte niches elicit a fate switch in ALL cells 31 

towards slow-proliferation and cellular quiescence, highlighting the critical contribution of the 32 

adipocyte dynamic to disease establishment and chemotherapy resistance. Mechanistically, 33 

adipocyte niche interaction targets posttranscriptional networks and suppresses protein 34 

biosynthesis in ALL cells. Treatment with general control nonderepressible 2 35 

inhibitor (GCN2ib) alleviates adipocyte-mediated translational repression and rescues ALL 36 

cell quiescence thereby significantly reducing the cytoprotective effect of adipocytes against 37 

chemotherapy and other extrinsic stressors. These data establish how adipocyte driven 38 

restrictions of the ALL proteome benefit ALL tumours, preventing their elimination, and 39 

suggest ways to manipulate adipocyte-mediated ALL resistance. 40 

  41 
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Introduction 42 

Despite remarkable improvements in the treatment of paediatric ALL with cure attainable for 43 

the majority (>80%) of patients1, more than half of adults with ALL will relapse and die within 44 

5 years of diagnosis despite achieving an excellent initial response to treatment 2. These 45 

results indicate, that whilst current treatments are effective at eradicating the bulk of the 46 

adult ALL tumour, complete disease eradication in these patients is rare and individuals 47 

remain at risk of disease recurrence. Thus, a central quest in adult ALL is to define the 48 

critical drivers of leukaemia cell persistence as a key strategy for overcoming eventual 49 

therapy failure. Clinically, the therapy-surviving leukaemia, is characterised as the minimal 50 

residual disease (MRD), which strongly and independently predicts a high subsequent risk of 51 

disease recurrence 3-5, emphasizing the key importance of these targets to ALL evolution. 52 

Hallmarks of therapy-latent MRD subclones include intrinsic chemoresistance, dormancy 53 

and long-term persistence as well as functional plasticity, as assessed experimentally 6,7 and 54 

predicted clinically. However, the regulatory mechanisms underpinning these aberrant states 55 

are not completely understood. Of relevance here is the increasing understanding of the 56 

broad biological context of MRD subclone escape beyond that predicted by genotype and 57 

epigenetics alone 8,9, raising interest in nongenetic drivers of this process 10. The relevant 58 

player here is the bone marrow microenvironment (BMM), the primary residence of ALL;  59 

comprising a  highly diverse network of cellular (mesenchymal stroma, osteoblasts and 60 

endothelial cells), soluble and structural factors that work together to coordinate and 61 

maintain haematopoietic stem cell (HSC) function 11. To perform its role, the BMM must 62 

adapt to changing physiological contexts while still regulating and maintaining HSCs, 63 

emphasizing the principle that BMMs are inherently dynamic 12. This distinct property of the 64 

BM niche is co-opted by leukaemia cells to support developing tumours and to shaping the 65 

ecological competition between leukaemia and healthy haematopoiesis, a process driven by 66 

aberrant crosstalk between leukaemia cells and BM stroma 13-17. Upon exposure to 67 

chemotherapeutic stress, BMMs undergo further adaptation12,18,19, highlighting the 68 
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continuously evolving habitat in which leukaemia cells reside. These findings indicate that 69 

niches in the BMM may differ dynamically during primary disease and after chemotherapy 70 

treatment 18,19. However, many studies fail to account for these niche dynamics explicitly and 71 

from the outset. Moreover, the appropriate context for MRD (<5% leukaemia blasts) is 72 

defined after the transition to morphological remission, yet the niche in this setting has yet to 73 

be fully defined. Where this paradigm has been applied, emergent and novel mechanisms of 74 

niche-resistance have been identified 14,20, highlighting the fundamental importance of 75 

temporal dynamics in determining which events precipitate treatment failure. 76 

We therefore hypothesized that the evolving course of BM niches from ALL disease through 77 

to remission-inducing chemotherapy would provide a tool for mapping dynamic parameters 78 

that temporally and biologically contribute to subclone-specific resistance. Here we show, 79 

that the transition from disease to treatment and remission rebuilds the adipocytic BM niche, 80 

a major BMM implicated in ALL resistance, and demonstrate a previously unknown capacity 81 

of adipocytes to non-cell autonomously repress the ALL proteome as a mechanism for 82 

increasing ALL cell quiescence and multistress resistance that may ultimately contribute to 83 

leukaemia re-evolution.  84 

 85 

Results 86 

The adipocyte BM niche is dynamically remodelled during ALL pathogenesis and 87 

treatment 88 

To probe the transitional nature of BMM, we compared the composition of matched BM 89 

biopsies taken at initial ALL diagnosis and after remission induction by gross histology in 90 

eight adult ALL patients. Our studies were limited to B lineage ALL (B-ALL), which accounts 91 

for >80% of the disease incidence 21. Consistent with the assertion of niche evolution, we 92 

observed profound remodelling of the BMM accompanying ALL development and again after 93 
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therapeutic intervention, most strikingly affecting adipocyte compartments, which were 94 

profoundly depleted in ALL-BMs compared to healthy controls, with apparent adipocyte 95 

reconstitution upon remission attainment (Fig. 1a). Adipocytes are microenvironmental cell 96 

types that have established roles in ALL resistance, 14,17,19,22 23-27, however the niche 97 

dynamics leading to this stage have been minimally explored, prompting us to investigate 98 

these BM components further. We first applied custom image analysis to quantify these 99 

macroscopic changes, further revealing both a loss of adipocyte numbers (Fig. 1b) and 100 

major reductions in adipocyte size (Fig. 1c) at ALL diagnosis, implicating both of these 101 

factors in the profound adipocyte suppression observed under this condition. In contrast, 102 

remission biopsies demonstrated an evolution to normal adipocyte numbers (Fig. 1b), 103 

indicating that remission states reset adipocyte population homeostasis. These outcomes 104 

differ from those reported in AML, where chemotherapy leads to an inhibition of 105 

adipogenesis in the BM 28.  Notably, remission states did not fully normalize adipocyte size 106 

(Fig.1d and Table S1a), suggesting that BM adipocyte numbers in particular display striking 107 

sensitivity to the presence of ALL. Importantly, ALL-associated adipocyte suppression was 108 

unrelated to BM cellularity, confirming that these changes reflected absolute versus 109 

proportional losses. (Supplementary Fig. S1a and S1b). We additionally measured 110 

adiponectin production in the marrow plasma from ALL patients as a functional marker of BM 111 

adiposity 29, and showed it was reproducibly decreased (Fig.  1e), consistent with the 112 

population-level losses observed histologically. Altogether, these data clarify that the BM 113 

adipocyte stroma is not a prominent component of the primary tumour microenvironment but 114 

the emergent niche associated with the remission response. 115 

To investigate how these niche dynamics relate to clinical chemoresistance, we examined 116 

ALL cell interactions in BM trephines from patients who failed to achieve complete remission 117 

(>5% blasts morphologically after induction therapy). These analyses revealed two 118 

consistent patterns across independent BM biopsies; chemoresistant ALL cells were 119 

distributed either interstitially throughout the marrow (Fig. 1f) or in close neighbouring 120 
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proximity to adipocytes. Thus, while chemoresistance is spatially heterogeneous within the 121 

BM niche, as previously suggested 17, distinct physical interactions with the surrounding 122 

adipocyte stroma are recurring features of drug survival in ALL. 123 

 124 

ALL corrupts the functioning and lineage priming of the adipocyte precursor 125 

mesenchymal stromal cell (MSC) population 126 

To investigate the mechanism by which adipocytes are depleted in ALL-BMMs, we 127 

performed a global evaluation of the BM-MSC axis, hypothesizing that these precursors for 128 

BM adipocyte generation were disrupted by ALL disease. We found that MSCs could be 129 

generated with similar success from ALL vs healthy control BM (Table Supplementary 2a) 130 

and that the BM-MSC phenotype was highly conserved in ALL disease (Supplementary 131 

Fig. 2a), 30 confirming these were bona fide MSC isolates. We further assessed the growth 132 

properties of ALL-MSCs using the growth rate in vitro as a measure of proliferative potential 133 

and where cell numbers permitted functional assessment of clonogenic capacity. We 134 

observed a nonuniform growth response in ALL-MSCs, reflecting expected differences in 135 

tumour and host biology. We therefore dichotomized growth data into high and low 136 

performers defined by the mean number of ALL-MSCs (Fig. 2a). High performers constituted 137 

a small subgroup (3/12, 25%) whose growth activity and CFU-F were indistinguishable from 138 

healthy BM-MSCs; however, most ALL-MSCs (9/12, 75%) demonstrated significantly 139 

reduced growth capacity (mean ± SEM: ALL-MSCs 0.095 ± 0.046 vs healthy-MSCs 0.254 ± 140 

0.041), although interestingly, they retained CFU-F forming potential (Fig. 2b), suggesting 141 

that the low expansion capacities of ALL-MSCs are driven principally by defective colony 142 

growth vs colony formation. We next assessed the multidifferentiation potential of ALL-MSCs 143 

following in vitro developmental induction. Unexpectedly, we found that ALL-MSCs had a 144 

significantly enhanced capacity for adipogenic differentiation (2.87 ± 0.29-fold increase; n=7; 145 

***p=0.0003), as determined by cell staining for adipocyte-specific fatty acid binding 4 146 
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(FABP4) (Fig. 2c), without any reciprocal disturbance in osteogenesis (Fig. 2d), indicating 147 

that ALL pathogenesis significantly affects the lineage priming of MSCs in an adipocyte-148 

biased manner. As the adipogenic potential of BM-MSCs in AML disease and similar 149 

conditions has been shown to decrease31,32, although not in all reports33, this raises the 150 

possibility that altered differentiation fates in ALL-MSCs may represent a tumour-specific 151 

interplay.  152 

To test the possibility that ALL cells may directly induce changes in their surrounding stromal 153 

cells, we tested the effect of leukaemic serum on healthy age matched MSC stroma (Fig. 154 

2e). We found that enhanced adipocyte commitment could be reproduced by exposing 155 

healthy MSCs to leukaemic but not HSC-enriched GCSF-mobilized peripheral blood 156 

(GMPB)-conditioned media, confirming a direct role of leukaemia specific factors in altering 157 

the cell fate determination of mesenchymal stroma. 158 

To gain further insight into the transcriptional programmes underlying the altered 159 

functionality and commitment of ALL-MSCs, we performed RNAseq studies on MSCs from 160 

three healthy and three low performer ALL-BMs (ALL12, ALL13, ALL22) at the P4 expansion 161 

stage. Three-dimensional principal component visualization clearly differentiated ALL-MSCs 162 

from their healthy counterparts based on log2 transformed unsupervised global profiles 163 

suggestive of disease-specific transcriptional modulation (Fig. 2f). Further gene set 164 

enrichment analysis (GSEA) of these global RNA-seq datasets identified genes involved in 165 

cellular metabolism and multiple aspects of cell cycle function (Fig. 2g and 2h) as 166 

preferentially downregulated in ALL-MSCs, whereas no gene sets were identified as 167 

significantly (FDR q-value<0.05) upregulated. Notably, the BURTON_ADIPOGENESIS 168 

KEGG pathway, which specifies a committed gene program for adipocyte differentiation, was 169 

not significantly enriched in the ALL-MSCs, confirming i) that ALL-MSC isolates were not 170 

adipocyte precursor cells and ii) that ALL-MSCs are poised rather than committed to 171 

programmed adipocyte differentiation. To validate the findings of GSEA suggesting 172 
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attenuated cell cycle function in ALL-MSCs, we performed a functional analysis in four low-173 

performer ALL-MSCs (ALL12-14, ALL22) at the P4 expansion stage. This analysis confirmed 174 

that ALL-MSCs display slower proliferation kinetics (Fig. 2h), providing a potential 175 

mechanistic basis for their impaired growth function in vitro. 176 

Collectively, our data suggest that ALL disease corrupts regenerative growth and the 177 

differentiation of MSCs. Such perturbations may lead to a reduced number of MSC 178 

precursors inhabiting the BM of ALL, which may account for disease-associated loss of 179 

adipocyte stroma. However, accumulation of adipocyte-primed MSCs, in the context of 180 

adipocyte-depleted ALL-BM, leads to the proposal that their differentiation must be stalled, 181 

most likely through a blast-specific mechanism, an effect that likely is reversed upon ALL 182 

clearance. 183 

Adipocytes create a tumour-suppressive niche in ALL 184 

To explore the possibility that variations of adipocyte activity within the BMM   contribute a 185 

meaningful  pathophysiological role  vs merely serving as a by-product of the leukaemic 186 

process, functional studies were performed to establish  the effects of adipocyte stroma on 187 

ALL cells using an in vitro co-culture strategy employing  primary human adipocytes 188 

differentiated from healthy BM-MSCs or adipocytes derived from murine 3T3-L1 cell lines 34 189 

together with ALL cell lines; Nalm-6, REH and RS4;11 (Fig. 3a). 190 

Surprisingly, we observed that both 3T3-L1 and primary BM-MSC adipocytes robustly 191 

impaired the growth capacity of independent ALL cell lines with high reproducibility 192 

compared to log phase monocultures (Fig. 3b), with evidence of a dosage-dependent 193 

effect, as indicated by lower relative growth rates in 3T3-L1 adipocyte conditions that have 194 

more complete adipocyte conversion (Supplementary Fig. 3a). Notably, basal growth of 195 

ALL cell lines was unaffected by coculture with primary osteoblasts, primary BM-MSCs and 196 

3T3-L1 pre-adipocytes, confirming that adipocytes inhibited in vitro ALL growth in a tissue-197 



9 
 

specific manner and that this was a direct causal effect. Mechanistically, we confirmed that 198 

adipocyte niches did not lead to appreciable apoptosis (Supplementary Fig. 3b) but instead 199 

antagonized cell cycle progression, resulting in reproducible expansion of a quiescent cell 200 

pool accompanied by variable reductions in S/G2/M progression (Fig. 3c). Thus, interaction 201 

with adipocyte niches in vitro suppresses the constitutive proliferation of ALL cells and 202 

lowers cell cycle transit in a causal manner. Furthermore, these data confirm that in vitro 203 

murine 3T3-L1-derived adipocytes 34 robustly recapitulate key responses of primary BM-204 

adipocyte tissue cultures thereby establishing the reliability of these models as an 205 

experimental system. As a further validation, adipocytes derived from BM-MSCs obtained 206 

after remission induction were also assessed and were shown to induce similar outcomes to 207 

those of healthy BM-MSC primary adipocytes (Supplementary Fig. 3c), thus extending the 208 

relevance of the described effects to the post treatment context. 209 

To investigate the importance of these data in an in vivo context, experiments were 210 

conducted using xenotransplanted primary B-ALL tumours of both leukaemic cell lines and 211 

primary patient samples (n=4), comparing in vivo ALL development in adipocyte-rich (tail-BM 212 

and gonadal fat) vs adipocyte-poor (femur) tissues (Fig. 3d) . We included gonadal fat based 213 

on findings in 3T3-L1 adipocytes, a non-BM restricted tissue, suggesting that there was no 214 

difference in adipocyte functionality in terms of executed effects on ALL cells. We first 215 

confirmed that NSG strains have low BM adipocyte abundance in femoral BM, as 216 

demonstrated by osmium tetroxide staining (Fig. 3e), validating the study of femoral BM as a 217 

model of adipocyte-poor marrow. We found that both the xenotransplanted Nalm-6 ALL cell 218 

line (Fig. 3f) and primary ALL cells from four genetically distinct tumours (Fig. 3g) had 219 

significantly less leukaemia cell engraftment in all adipocyte-rich tissues at 3-4 and 6-8 220 

weeks following transplantation respectively when compared to adipocyte-poor femoral BM, 221 

which demonstrated robust leukaemia engraftment at this time. Thus, consistent with the 222 

functional outcomes in vitro (Fig. 3b), ALL cells in vivo demonstrated limited expansion in 223 

adipocyte niches. Further direct phenotypic characterization of engrafted tumours confirmed 224 
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that ALL cells resident in adipocyte niches were marked by increased cellular quiescence 225 

(Fig. 3h and 3i) and reduced cell cycle G1/S/M status, substantiating the concept that 226 

adipocytes support tumour dormancy states. These results represent a broader biological 227 

relationship with ALL than previously described24 and are in line with reported effects in 228 

HSCs35. 229 

Taken together, these data conceptualize adipocytes as key drivers of ALL cell plasticity and 230 

switchers of cellular fate from constitutive proliferator status to a phenotype characterised by 231 

proliferative quiescence. These data support the concept that changes in BM-adipocyte 232 

population dynamics facilitate ALL in distinct ways. Compromised adipocyte activity, possibly 233 

through ALL cells actively deregulating adipocyte generation, eliminates a key inhibitory 234 

niche for ALL, thereby enabling the emergence of leukaemia. However, reinstated adipocyte 235 

activity during the treatment response evolves a pro-tumour dormancy setting that could 236 

participate in antagonizing chemotherapy targeting. 237 

Adipocyte niches restrict protein synthesis in ALL via non-canonical factors 238 

We next sought to define the mechanism(s) underlying the dormancy/growth suppressive 239 

response of ALL cells to microenvironmental adipocytes. We selected 3T3-L1 adipocyte 240 

models to initialize these studies based on their strong recapitulation of the BM-adipocyte 241 

interplay (Fig. 3b and 3c) and the ability to control for major confounding effects, e.g., 242 

nonadipocyte stromal-cell contamination (Supplementary Fig. 3a), thus, overcoming the 243 

principal limitation of in vivo adipocyte niche systems 36. 244 

Initial assessments confirmed that a cell cycle checkpoint mechanism was not engaged in 245 

adipocyte-conditioned ALL cells (Supplementary Fig. 4a), suggesting that the phenotypic 246 

response of ALL cells to the adipocyte stroma likely occurs through an indirect vs a direct 247 

effect on the cell cycle. Next, given that lipid crosstalk is the principal mode of adipocyte-248 

tumour cell interplay described to date 37-39, we assessed the contribution of these events to 249 

the adipocyte specific effects on ALL. Lipid profiling studies established that +24 hrs 250 
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following  3T3-L1 adipocyte coculture, Nalm-6 cells demonstrated an accumulation of 251 

intracellular lipids, the components of which included oleic acid, a major subclass of fatty 252 

acid, which resulted, in part, from direct transfer of fatty acid from adipocytes to ALL, 253 

consistent with previous reports 37-39. However, further functional evaluation of  the fatty acid 254 

flux pathway confirmed that this was not a major factor driving ALL growth suppression 255 

(Supplementary Fig. 4b-4j and Supplementary Discussion). Given that these candidate 256 

mechanisms could not robustly account for the adipocyte-ALL interplay, we next turned to 257 

unbiased screens. Here, we reasoned that the rapid adaptive response of ALL cells (Fig. 3b) 258 

suggests that global signalling and transcriptional networks were being stimulated. We 259 

therefore subjected Nalm-6 cells cocultured with 3T3-L1 adipocytes to quantitative LC-260 

MS/MS phosphoproteomic analysis at two timepoints (+24 h and +72 h), comparing 261 

outcomes between 3T3-L1 preadipocyte coculture to control for general stromal effects. At 262 

both timepoints, we detected a substantial impact of adipocyte conditions on the ALL 263 

phosphoproteome (log2 FC≥1 or log2 FC≤-1, p-value≤0.05) involving 1,808 and 981 264 

phosphorylation sites at +24 h and +72 h, respectively (Fig. 4a), consistent with large-scale 265 

rebalancing of these networks. Gene Ontology (GO) enrichment analysis was conducted on 266 

these significantly modulated phosphosites (Fig. 4b), revealing that at +24 h, terms related 267 

to biosynthetic and metabolic processes inclusive of lipid metabolism (e.g., lipid metabolic 268 

process, triglyceride catabolic process) were overrepresented, likely reflecting the ensuing 269 

effects of lipid translocation from 3T3-L1 adipocytes at this time (Supplementary Fig. 4b 270 

and 4c). In addition to these expected modulations, pathways relating to diverse aspects of 271 

protein homeostasis (protein translation, translation initiation, elongation “proteostasis”) and 272 

mRNA processing were significantly overrepresented in adipocyte-modulated ALL cells at 273 

both +24 hr and +72 hr, albeit switching from upregulation to repression over time. Notably, 274 

kinase-substrate enrichment analysis (KSEA), a platform to systematically infer the 275 

activation of given kinase pathways from mass spectrometry-based phosphoproteomics 40, 276 

identified a general increase in proliferation-associated signalling networks, e.g., MAP2K1 277 

JAK2, at +24 h despite robust suppression of cell growth (Supplementary Fig. 4k), 278 
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indicating that mitogenic signalling was not acutely disrupted to explain the acute growth 279 

suppression. 280 

Gene expression profiles of adipocyte-cultured Nalm-6 cells at +24 hr assessed by RNAseq 281 

indicated predominantly low-magnitude changes (Fig. 4c, Supplementary Fig. 4l and 4m) 282 

with the difference in the adipocyte imprinted Nalm-6 transcriptome (adjusted p-value < 0.05) 283 

defined by only 547 genes, of which only a low number of genes (n=50) met conventional 284 

DEG thresholds of log2 FC ≥ 1 or log2 FC ≤ -1.GSEA revealed few overrepresented 285 

pathways (Fig. 4d), namely, glycolysis (p-value<0.05, FDR q-value=0.03) and its 286 

subcomponent fructose biosynthesis (p-value<0.05, FDR q-value=0.03), likely reflecting the 287 

altered intracellular lipid environment (Supplementary Fig 4b and 4c). Notably, and in line 288 

with the phosphoprotetomics data, functions related to mRNA processing and multiple 289 

aspects of protein homeostasis (folding, amino acid metabolism, translation, ribosome 290 

biogenesis) were common pathways most underrepresented, as well as G2/M gene sets, as 291 

expected. 292 

Together, these comparative results indicate that the acute response of ALL cells to 293 

adipocyte stimulation is characterized by significantly altered phosphorylation networks and, 294 

to a lesser extent, transcriptional events affecting cellular metabolism, a predicted outcome 295 

of ALL-adipocyte interaction, as well as major unanticipated effects on posttranscriptional 296 

processes and the protein translation network. 297 

Given that protein homeostasis is a major cellular process modified by the adipocyte stroma, 298 

we next assessed its significance functionally by assessing its endpoint, global protein 299 

translation, using the O-propargyl-puromycin (OP-Puro) incorporation assay as a label of 300 

translational activity. The results demonstrated that compared to both control conditions, 301 

monoculture and 3T3-L1 preadipocytes, Nalm-6 ALL cells subjected to 3T3-L1 adipocyte 302 

coculture demonstrated strikingly lower OP-Puro incorporation, with very low technical and 303 

biological variability, achieving translational attenuation similar to that of cycloheximide 304 
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(CHX), a robust inhibitor of protein translation (Fig. 4e). Similar outcomes were achieved in 305 

other ALL cell lines (Supplementary Fig. 4n), indicating that lowered rates of protein 306 

synthesis were not cell line specific. Importantly, differences in OP-Puro incorporation were 307 

not due to loss of fluorescence, which we confirmed occurred much later; 3 h after OP-puro 308 

administration (Supplementary Fig 4o). Moreover, there was no increased clearance of 309 

OP-puro containing polypeptides (Supplementary Fig. 4p) and no saturation in the OP-puro 310 

signal (Supplementary Fig. 4q). Furthermore, a similar loss of OP-Puro incorporation was 311 

also found in ALL cells cocultured with primary BM-MSC-derived adipocytes 312 

(Supplementary Fig. 4r), confirming that this was a relevant biological interaction not just 313 

restricted to the 3T3-L1 model system. 314 

Next, to test whether differences in OP-puro are explained by differences in the cell cycle, 315 

we assessed OP-puro according to DNA content. We found that 3T3-L1 adipocytes still 316 

imposed significantly lower protein synthesis in ALL cells in both G0/G1 and S/G2/M (Fig. 4f 317 

and Supplementary Fig. 4s). Therefore, lower rates of protein synthesis in ALL cells were 318 

not simply a consequence of increased quiescence. Importantly, these findings were also 319 

consistent with analyses performed using human ALL samples in vivo. Two primary ALL 320 

tumours (ALL24 and ALL25) previously validated as growth repressive/dormancy responsive 321 

to in vivo adipocyte microenvironments (Fig. 3g and 3i) were subjected to repeated 322 

xenografting followed by ex vivo staining with OP-Puro. We found that primary ALL cells in 323 

vivo also demonstrated restricted protein translation in adipocyte-rich niches independent of 324 

the cell cycle stage (Fig. 4g), thus recapitulating the findings obtained with ALL cell lines in 325 

vitro; however, the effect was of lower magnitude, possibly due to some recovery of protein 326 

translation following a longer period of microenvironmental extraction. 327 

Taken together, these data demonstrate that adipocyte microenvironments restrict the level 328 

of protein synthesis in ALL cells. Such reports are of particular interest because modulating 329 

protein synthesis is unique among prior reports of regulatory mechanisms involving 330 
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adipocyte niches 31,37,39,41,42. Furthermore, this observation directly raises the possibility that 331 

adipocyte-mediated cell cycle failure and ALL growth suppression reflect a limitation 332 

imposed by low proteome flux 43. 333 

To address this hypothesis, we first explored the mechanism of adipocyte-mediated 334 

hypotranslation using the 3T3-L1 adipocyte system. Assessment of general translation 335 

determinants established that there were no acute changes in cell diameter 336 

(Supplementary Fig. 4t) or compromise of transcriptional output (total RNA content, 18S or 337 

28S ribosomal RNA) (Supplementary Fig. 4u) that explained the loss of translational 338 

output. Moreover, key signalling pathways representing major control points for protein 339 

translation, namely, mTOR 44 and the endoplasmic reticulum stress-induced (ER) unfolded 340 

protein response plus correlated integrated stress response (ISR) pathways 45, were not 341 

selectively engaged in ALL cells (Supplementary Fig. 4v) to explain the repression in 342 

protein translation. In line with this, there was no evidence of ER stress gene activation by 343 

either RNAseq (Fig. 4d) or RT-qPCR (Supplementary Fig. 4w). Thus, on the basis of 344 

these orthogonal assessments, 3T3-L1 adipocytes appear to modify ALL proteome flux via 345 

factors independent of canonical translation cascades, possibly suggesting that adipocytes 346 

execute their regulatory effects on protein translation via a distinct process. 347 

To further establish whether ALL suppression is a consequence of adipocyte-mediated 348 

translational repression, we turned to pharmacological approaches that modulate the level of 349 

protein translation. Of drugs known to increase protein translation (ISRIB, PERKi, or 350 

GCN2ib), only GCN2ib led to effective target modulation (repressed eIF2α phosphorylation) 351 

when tested in Nalm-6 cells (Fig. 4h), and we therefore progressed this drug to testing in 352 

3T3-L1 adipocyte coculture. We observed that the addition of GCN2ib led to a partial but 353 

notable increase in protein translation in ALL cells (Fig. 4i), which was associated with a 354 

significant reduction in adipocyte-associated ALL cell quiescence (Fig. 4j). Although GCN2ib 355 

did not induce measureable short-term growth effects (Supplementary Fig. 4x), the latter 356 
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may reflect that rescue of protein translation was incomplete. Altogether, these data 357 

establish a causal association between lowered protein translation status in ALL cells and 358 

adipocyte-imposed ALL quiescence and underscore how subversion of a key housekeeping 359 

function contributes to the establishment of a therapy-adverse state. 360 

Adipocyte-adapted ALL proteomes increase global stress resistance 361 

While adipocytes are known to contribute to chemoresistance via diverse mechanisms 362 

14,17,19,22 23-27, the link between ALL resistance and ALL hypotranslational states is least 363 

explored. In particular, given our finding that adipocyte-induced translational loss affects ALL 364 

tumours as a whole and involves all cell cycle stages (Fig. 4f), these data suggest that 365 

adipocyte niches may not exclusively protect leukaemia cells by maintaining them in the 366 

quiescent phase  24. 367 

To directly address whether adipocyte niches provide protective outcomes independent of 368 

target cell quiescence, we challenged Nalm-6 ALL cells with both cell cycle-dependent 369 

chemotherapeutics, an accepted instigator of quiescence-driven chemoresistance, and 370 

mitotic state-independent stresses induced by hydrogen peroxide or withdrawal of FBS. The 371 

latter would not be expected to drive differential outcomes based on target cell dormancy. 372 

Intriguingly, despite significantly reduced proteome flux, adipocyte-cultured ALL cells had 373 

increased cellular fitness against both cell cycle-dependent chemotherapy and mitotic state-374 

independent stressors, although as expected, the outcomes were dependent on the 375 

individual stressors involved (Fig. 5a). Thus, adipocytes instigate more generalized cellular 376 

fitness in ALL cells beyond induction of cellular quiescence, which may relate to their global 377 

effect on protein translation. 378 

In support of this notion, ALL cells were resensitized to chemotherapy and partially also to 379 

mitotic state-independent stressors following prolonged (+48 hr) microenvironmental 380 

extraction (Fig. 5b), when protein biosynthetic activity and quiescence levels had normalized 381 
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(Supplementary Fig. 5b). The possibility to pharmacologically modulate the adipocyte-382 

imposed restrictions on the ALL proteome using GCN2ib (Fig. 4i) offered the opportunity to 383 

test its putative contribution to cellular fitness.  Therefore, we used GCN2ib to rescue protein 384 

translation in coculture prior to applying various cellular stresses. We observed that under 385 

GCN2ib treatment, the cytoprotective effect of adipocytes on ALL cells was decreased in 386 

response to cell cycle-dependent chemotherapy, as anticipated (Fig. 4j); however, we also 387 

observed a notable reduction in cytoprotection against mitotic state-independent stress 49-388 

65% (mean ± SEM: 57% ± 2.4) (Fig. 5c). These observations indicate that adipocytes likely 389 

enable the survival of ALL cells via 2 distinct processes: induction of cellular quiescence and 390 

its wider suppression of protein translation. 391 

Finally, we investigated the possibility that adipocyte-mediated stress protection is 392 

accompanied by activation of selective mRNA translation of proteins required for stress 393 

mitigation 45. To investigate this hypothesis, we subjected Nalm-6 cells under 3T3-L1 394 

adipocyte coculture to pulsed stable isotope chromatography-mass spectrometry (SILAC)-395 

based proteomic analysis (Fig. 5d). As expected, we confirmed potent repression of global 396 

protein synthesis (Fig. 5e). Of the 470 proteins identified, 413 (87.5%) were robustly cross-397 

identified as focally downregulated at both +24 h and +48 h. These co-downregulated 398 

proteins were enriched for pathways related to translational regulation, ribosomal assembly 399 

and mRNA processing (Table 1), reflecting a widespread influence on the translational 400 

network. Notably, we did not detect a high abundance of proteins related to selective mRNA 401 

translation (n=7), suggesting that preferential mRNA translation was not actively engaged. 402 

Thus, we conclude that adipocyte-induced translational reprogramming accompanies a pro‐403 

survival response that does not appear to be driven by a switch to a specialized translational 404 

programme. 405 

 406 

Discussion 407 
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Our study highlights several important findings. First, the adipocyte niche is dynamic in ALL, 408 

evolving from depleted states in ALL disease to full reconstitution during the remission 409 

response, confirming that these niches contribute temporally to an MRD-associated 410 

environment. Second, we identified a protein-based interplay regulated by the adipocyte 411 

stroma that restricts protein translation in ALL cells. Importantly, adipocyte-imposed 412 

restriction of protein translation played a direct role in regulating ALL cell quiescence. To the 413 

best of our knowledge, this is the first report to link the regulation of ALL quiescence with 414 

extrinsically mediated control of protein synthesis, although a similar parallel has been 415 

reported for HSCs involving exogenous angiopoietin 46. Consistent with our findings, the 416 

level of translational activity has also been shown to regulate HSC maintenance 47  further 417 

emphasising the connection between quiescence-proliferation decisions and protein 418 

dynamics. We further show that reduced levels of global protein synthesis are associated 419 

with increased cellular fitness in ALL cells (Fig. 5a-5c) and that this protection was not 420 

limited to the feature of cellular quiescence but encompassed broader multitrait resistance. 421 

In this way, adipocytes act not as selective cell survival factors but as providers of broader 422 

tumour cell protection than previously envisaged 48. Notably, our finding that adipocytes 423 

enhance the survival and persistence of ALL cells through non-cell-autonomous suppression 424 

of the ALL proteome resonates with a form of biosynthetic stress resilience that has recently 425 

gained recognition as a cell-intrinsically determined process 49, emphasizing the importance 426 

of adapted biosynthetics as a critical mark of treatment resistance. How adipocyte-imposed 427 

hypotranslation leads to improved multistress resistance in ALL cells was not attributable to 428 

a switch to selective translation of prosurvival proteins, as reported for other protein 429 

suppression states44,45. This opens up the conceptual possibility that other factors, such as 430 

enhanced proteome quality, may play a contributing role, analogous to paradigms in other 431 

model organisms 50. Although these aspects are yet to be resolved, the observation that 432 

adipocyte-regulated loss of protein translation in ALL cells promotes ALL resistance adds to 433 

the increasing repertoire of stromal mechanisms that present a challenge to therapeutic 434 

success. In vivo targeting of adipocytes should provide further insight into this process but 435 
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was not applied here due to the inability to modulate BM adipocytes exclusively without 436 

introducing significant confounding variables 51-53. Therefore, appropriate model 437 

development will be essential to overcome this limitation and to establish the full in vivo 438 

potential of adipocytes in ALL disease/resistance. 439 

Although our results implicate GCN2 as the potential factor determining ALL translational 440 

repression, given its rescue when GCN2 is inhibited (Fig. 4i), the lack of any selective 441 

increase in eIF2α phosphorylation under adipocyte conditions (Supplementary Fig. 4v) 442 

together with no orthogonal features of activated ISR downstream (Fig. 4d and 443 

Supplementary Fig. 4v-w) as well as incomplete phenotype reversal despite potent eIF2α 444 

inhibition argue against this being a principal driver. We predict that the mechanism coupling 445 

adipocytes with the leukaemia proteome is complex and beyond the scope of this report 446 

given that canonical pathways controlling protein translation were not obvious. Significantly, 447 

our data do yield important insights into potential entry points for therapeutic intervention. 448 

First, therapeutic modulation of GCN2 54 may disrupt the regulatory impact of adipocytes on 449 

ALL protein synthesis, thereby limiting the development of ALL cell phenotypes deleterious 450 

to the therapy response. Second, the interactome between ALL and adipocytes (Fig. 1f) was 451 

a critical effector of adipocyte-induced hypotranslation states (Supplementary Fig. 5c and 452 

5d) and therefore represents a further strategy to disrupt ALL-adipocytic cross-talk (Fig. 1f). 453 

Further work is warranted to deeply characterise the adipocyte-ALL interactome to pursue 454 

this potentially profitable avenue. The tractability of such approaches is supported by our 455 

data, which demonstrates that both proliferation loss and lowered proteome flux are 456 

reversible states upon microenvironmental withdrawal (Supplementary Fig. 5d). 457 

Our results merit comparison with the wider published data relating to adipocyte niches and 458 

leukaemia. While our data are in broad agreement with reports demonstrating that adipocyte 459 

stromal microenvironments are active modulators of the tumoural phenotype, the 460 

tremendous potential for these stroma to elicit both tumour- and tissue-dependent outcomes 461 

is also specifically highlighted. 462 
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In AML, where specifically evaluated, the adipocyte stroma has been shown to enhance 463 

AML proliferation as well as cellular survival 37, similar to reported effects in various solid 464 

cancers 38,55,56. In line with this, adipocytes located in gonadal tissue play a supportive role in 465 

CD36+ AML leukaemia stem cell (LSC) maintenance and expansion 39. The main 466 

mechanism defining the adipocyte-AML interplay relates to facilitated fatty acid transfer37,39. 467 

As our descriptions appear diametrically opposite, both in terms of the effect of adipocytes 468 

on cellular growth, the role of fatty acids and the nature of the modulation, which is a 469 

contextual and reversible property of interactions with adipocyte niches, this supports the 470 

notion of lineage specificity  in adipocyte niche function. Thus, while adipocyte depletion 471 

states are characteristic of AML disease 31,57 as well as other conditions, its biological 472 

significance will be defined by the interplay specific to the tumour cell type. Our study defines 473 

a conceptual framework (Fig. 6) specific to the B-ALL disease-remission transition, based on 474 

the interplay demonstrated with adipocyte stroma and should not be directly extrapolated to 475 

other conditions exhibiting BM-adipocyte dynamics. 476 

 477 

Overall, our report provides insights into the versatility of adipocytes in their capacity for 478 

tumour adaptation. The functional coupling between adipocytes and ALL proteomes goes 479 

beyond known players of adipocyte-tumour cell interplay and represents an important 480 

mechanism of niche-driven resistance that should be targeted to increase therapeutic 481 

success. 482 

 483 

 484 

 485 

 486 
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 488 
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  490 
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Methods 491 

Human samples 492 

The use of human samples, collection and publication of individual-level clinical data was 493 

approved by the NRES Committee London; City & East Research Ethics Committee 494 

10/H0704/65. The conduct of the study was fully compliant with the ethical approval. 495 

Pretreatment bone marrow and peripheral blood samples containing >80% blasts were 496 

collected from adult patients with ALL at diagnosis and cryopreserved after mononuclear 497 

cell (MNCs) isolation using Lymphoprep™ (07851, STEMCELL Technologies) based 498 

density gradient centrifugation. Patient- and disease-specific features are summarized in 499 

Supplementary Table 3. Adult healthy control BM-MNCs were purchased from Lonza (2M-500 

125C) (median age: 27 years, range: 21-47). BM trephine biopsies were obtained from the 501 

posterior iliac crests of patients as part of routine diagnostic procedures and were sourced 502 

from the diagnostic laboratories of St Bartholomew’s, Royal Marsden and Christie Hospitals 503 

U.K . Healthy trephines were selected from adult lymphoma staging biopsies where 504 

histological involvement had been excluded. Peripheral blood stem cells were obtained from 505 

GCSF-mobilized healthy donors (GMPB) who were undergoing an allogeneic stem cell 506 

donation procedure on the COBE Spectra apheresis system (Caridian BCT, Lakewood, 507 

CA). 508 

. 509 

 510 

Histological analysis 511 

Quantitative analysis of adiposity in patient diagnosis, remission (<5% marrow blasts defined 512 

morphologically) and healthy control trephine biopsies was determined using a custom 513 

analysis protocol package (APP) designed using AuthorTM (Visiopharm). In brief, 514 

formaldehyde-fixed paraffin-embedded sections of human trephine biopsies were stained 515 

with haematoxylin and eosin (H&E) to visualize the gross anatomy of BM tissue. Whole H&E 516 

slides were scanned using a Pannoramic 250 Flash at 20x magnification and then imported 517 

into Visiopharm software. Regions of interest (ROIs) consisting of the haematopoietic 518 

marrow space were delineated. Trabecular bone, areas of haemorrhage, processing or 519 

tissue damage artefacts or non-marrow adipocytes were excluded from analysis. ROIs were 520 

verified by expert histopathological review. Filters were applied to the input image combining 521 

median, standard deviation and multiplication of pixel neighbourhoods followed by threshold 522 

analysis to distinguish the empty adipocytes from the background tissue. Post-processing 523 

scripts based on minimum and maximum area and form factor further restricted 524 

measurement to only adipocytes. A separation script was applied to distinguish individual 525 

adipocytes arranged in clusters. Output variables from the APP were adipocyte count and 526 
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size along with the input area of the ROI. Immunostaining of BM trephines was performed on 527 

four μm slides for CD79a (clone SP18, Roche), CD34 (QBend 10, Roche), CD22 (clone 528 

SP104, Roche), Tdt (5267811001, Roche) and PAX5 (EPR3730, Abcam,). Staining was 529 

performed on the Ultra Ventena platform using the Optiview DAB detection kit (Roche 530 

760700). Proximity relationships between drug resistant cells and adipocytes were 531 

determined by 2 independent assessors and verified by an expert haematopathologist. Only 532 

consensus events were reported. 533 

 534 

Adiponectin testing 535 

BM serum samples were collected from patients with newly diagnosed ALL before the 536 

initiation of treatment. For control samples, BM serum was utilized from two sources: 537 

patients with <stage III diffuse large B cell lymphoma without BM involvement (n=5) or 538 

healthy donors (n=2). Adiponectin measurements were performed in technical duplicate 539 

using the commercial RayBio® Human Adiponectin ELISA kit (ELH-Arcp30). 540 

 541 

Generation of mesenchymal stromal cells 542 

BM-MNCs were seeded at densities of 10x106 cells per 175 cm2 in MesenCult™ MSC 543 

Basal Medium (05401, STEMCELL Technologies) supplemented with MesenCult™ MSC 544 

Stimulatory Supplement (05402, STEMCELL Technologies), 100 units/ml penicillin and 100 545 

µg/ml streptomycin (15140122, Thermo Fisher Scientific), 2 mM L-glutamine and 1 ng/ml 546 

recombinant human FGF (233-FB, R&D Systems) and incubated at 37°C and 5% CO2 547 

under humidified conditions for 21 days. The culture medium was changed on day 2 and 548 

every week thereafter to remove nonadherent cells. On day 21, adherent cells, 549 

corresponding to BM-MSC populations at P1, were detached using a Trypsin/EDTA 550 

Solution (R001100, Thermo Fisher Scientific) and counted using the LUNA-FL™ Dual 551 

Fluorescence Cell Counter (Logos Biosystems) and Acridine Orange/Propidium Iodide 552 

Staining (F23001, Logos Biosystems). A subset was subjected to phenotypic 553 

characterization using the Human MSC Analysis Kit (562245, BD Biosciences) to ascertain 554 

whether the criteria defined by the International Society for Cellular Therapy were met: 555 

≥95% expression of CD73, CD90 and CD105 and ≤2% expression of the haematopoietic 556 

and endothelial cell markers CD34, CD45, CD11b, CD19 and HLA-DR 30. The rest of the 557 

cells were passaged to a maximum of P4. 558 

 559 

Colony-forming unit fibroblast (CFU-F) assays 560 

For CFU-F assays, BM-MNCs were plated in duplicate or triplicate at densities of 1x106 cells 561 

per 25 cm2 flask and cultured as described under “Generation of Mesenchymal Stromal 562 
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Cells”. After 10 days, colonies (>50 cells) corresponding to CFU-F were stained with 0.5% 563 

crystal violet (C6158, Merck KGaA) and counted by light microscopy 58. 564 

 565 

MSC differentiation 566 

The ability of MSCs to differentiate into multiple mesenchymal lineages was examined using 567 

the Human Mesenchymal Stem Cell Functional Identification Kit (SC006, R&D Systems). All 568 

differentiation studies were undertaken at the P2-P3 stage, and MSCs were cultured in 569 

MEM α medium (22561021, Thermo Fisher Scientific) supplemented with 10% heat-570 

inactivated foetal bovine serum (FBS; 10500064, Thermo Fisher Scientific), 100 units/ml 571 

penicillin, 100 µg/ml streptomycin and 2 mM L-glutamine prior to inducing differentiation. 572 

Adipogenic differentiation was initiated in confluent MSC cultures by adding adipogenic 573 

differentiation medium containing 1% adipogenic supplement. For osteogenic 574 

differentiation, MSCs were grown to 60-70% confluence prior to initiating osteogenic 575 

differentiation using osteogenic differentiation medium containing 5% osteogenic 576 

supplement. The culture medium was refreshed every 3 days for a total duration of 21 days, 577 

after which differentiated MSC cultures were set up for coculture. For immunofluorescence 578 

studies, MSCs were differentiated on sterile glass coverslips. For osteogenic differentiation, 579 

coverslips were coated with 1 µg/ml fibronectin (1918-FN, R&D Systems) to prevent cell 580 

detachment. Differentiated cells were fixed with 4% PFA for 20 min followed by washes in 581 

DPBS (no calcium, no magnesium; 14190094, Thermo Fisher Scientific). Cells were 582 

permeabilized and blocked with 0.1% Triton X-100 and 2% BSA (A9647, Merck KGaA) in 583 

DPBS for 45 min prior to incubation with either an unconjugated goat polyclonal antibody 584 

recognizing FABP4 (10 μg/mL; AF1443, R&D Systems) followed by a donkey anti-goat 585 

antibody conjugated to Alexa-647 (1:500; A-21447, Thermo Fisher Scientific) or an 586 

unconjugated mouse monoclonal antibody against osteocalcin (10 μg/mL; MAB1419, R&D 587 

Systems) followed by a goat anti-mouse antibody conjugated to Alexa-488 (1:500; A-11001, 588 

Thermo Fisher Scientific) to identify adipocytes and osteoblast cells, respectively. Slides 589 

were mounted with ProLong™ Gold Antifade Mountant with DAPI (P36931, Thermo Fisher 590 

Scientific), and fluorescent images were acquired at 20x magnification using a Nikon 591 

Eclipse Ci fluorescence microscope. Images were analysed with ImageJ software (v1.50b, 592 

USA). At least five independent fields (>50 cells) per differentiation condition were used to 593 

quantify the frequency of DAPI/FABP4-stained adipocytes or DAPI/osteocalcin-stained 594 

osteoblasts. 595 

 596 

Conditioned medium (CM) collection 597 

ALL cell lines (Nalm-6, REH, RS4;11) and three independent healthy human GCSF-598 

mobilized peripheral blood (GMPB) samples enriched for haematopoietic stem cells were 599 
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cultured in RPMI and 10% FBS for +72 h prior to supernatant collection. The cell viabilities 600 

prior to CM collection were >85%. Supernatants were filtered and centrifuged to eliminate 601 

cells and cell debris. Each CM was then aliquoted in a volume 5 ml with the addition of 50 µl 602 

of adipogenic supplement before being frozen at -80°C prior to use. No CM controls were 603 

derived from RPMI, and 10% FBS cultured alone at +72 h was treated similarly. 604 

Precollected CM and non-CM controls were then utilized to induce adipogenic differentiation 605 

in P3 healthy MSCs, with medium changes as detailed under “MSC differentiation”. 606 

 607 

Oil red O staining 608 

Oil red staining was performed by fixing cells with 4% PFA and then incubating them with 609 

60% isopropanol for 5 min prior to staining with 0.3% oil red O (O0625, Sigma-Aldrich) in 610 

60% isopropanol for 10 min at room temperature (RT). Cells were washed with distilled 611 

water to remove excess dye and counterstained with Mayer's haematoxylin. Digital images 612 

were acquired using a Nikon Eclipse Ci microscope. To quantify the staining intensity, oil 613 

red was eluted in isopropanol, and absorbance was measured at a wavelength of 500 nm 614 

using a FLUOstar Omega (BMG Labtech) microplate reader. 615 

 616 

RNA sequencing 617 

Total RNA was extracted from P4 ALL and healthy BM-MSCs as well as Nalm-6 cells 618 

cocultured with 3T3-L1 preadipocytes or 3T3-L1 adipocytes using the RNeasy mini kit 619 

(74104, Qiagen). RNA-seq was performed using NextSeq™ 500 High Output Run (150 620 

cycles) with 40-50 million reads and 150 bp reads paired end. RNA-seq was performed in 621 

one technical run for the BM-MSC samples and in two technical runs for the Nalm-6 cells. 622 

RNA-Seq reads were aligned to the human genome (hg38) using Hisat2. Count files were 623 

generated by mapping reads to the human genome (hg38) p5 using HTSeq. Differential 624 

expression analysis was performed using Limma for BM-MSC RNA-seq and DESeq2 in R 625 

for Nalm-6 cell RNA-seq. The p-values were further adjusted using the Benjamini and 626 

Hocheberg procedure. Gene set enrichment analysis (GSEA) was performed using GSEA 627 

software version 2.1.0 (Broad Institute) and the FGSEA package in R (Broad Institute). 628 

Comparisons were made using curated (C2) gene set collections from the Molecular 629 

Signatures Database (MSigDB). The Ggplot2 package in R was applied to visualize the 630 

results. Publicly available gene expression data sets were used to compare gene 631 

expression profiles between mature human osteoblasts and adipocytes (GSE945129). Heat 632 

map generation was performed using individual probe sets. The array data have been 633 

deposited in the Gene Expression Omnibus repository (GEO accession number 634 

GSE151802). 635 

 636 
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Cell lines 637 

The human ALL cell lines Nalm-6 (CRL-3273), REH (CRL-8286) and RS4;11 (CRL-1873) 638 

were purchased from ATCC (American Type Culture Collection, Rockville, MD). ALL cell 639 

lines were cultured in RPMI 1640 medium (2187534, Thermo Fisher Scientific) 640 

supplemented with 10% FBS, 100 units/ml penicillin and 100 µg/ml streptomycin. 641 

The murine fibroblast cell line 3T3-L1 (CL-173) was purchased from ATCC. 3T3-L1 cells 642 

were cultured in DMEM (41966029, Thermo Fisher Scientific) supplemented with 10% FBS, 643 

100 units/ml penicillin and 100 µg/ml streptomycin. 644 

All cells were incubated at 37°C and 5% CO2 under humidified conditions and were 645 

routinely subjected to mycoplasma testing. Cell counts and viability measurements were 646 

performed with the LUNA-FL™ Dual Fluorescence Cell Counter (Logos Biosystems) using 647 

acridine orange/propidium iodide stain (F23001, Logos Biosystems). 648 

 649 

3T3-L1 adipocyte differentiation 650 

3T3-L1 preadipocytes were differentiated into adipocytes according to standard methods 651 

with slight modifications 59,60. Briefly, two days post confluency (Day 0), DMEM (containing 652 

10% FBS and antibiotics) was supplemented with 0.5 mM 3-isobutyl-1-methylxanthine 653 

(I7018, Merck KGaA), 0.25 μM dexamethasone (D2915, Merck KGaA), 2 μM rosiglitazone 654 

(R2408, Merck KGaA) and 1 μg/ml insulin (I9278, Merck KGaA). After 48 h (Day 2), the 655 

medium was replaced with DMEM supplemented with 10% FBS, 1 μg/ml insulin and 656 

antibiotics. The medium was subsequently changed to DMEM supplemented with 10% FBS 657 

and antibiotics every 2 days until day 10, after which cells were utilized for coculture 658 

experiments. The adipocyte conversion at this time was reproducibly 100%, as 659 

demonstrated by adipocyte specific FABP4 immunofluorescence staining (Supplementary 660 

Fig. 3a). 661 

 662 

ALL coculture experiments 663 

Fully confluent stromal cultures were washed twice with DPBS to remove differentiation 664 

media prior to adding ALL cell line suspensions to RPMI medium containing 10% FBS and 665 

antibiotics. For 150 mm culture dishes, the seeding density was 10x106 ALL cells in 30 ml 666 

media, and for 6-well plates, 0.5x106 ALL cells were seeded in 5 ml medium. The ratio of 667 

stromal cells to ALL cells at the time of coculture was consistently 1:2. For assaying cell 668 

number and cell cycle status, the full contents of cocultures, including stromal elements, 669 

were collected by flushing the wells with DPBS prior to flow cytometry analysis. To isolate 670 

ALL cells for reculture or RNA and protein extraction, cocultures were subjected to light 671 

trypsinization with a 50% diluted trypsin/EDTA solution for 1 min, followed by repeated 672 

washing with DPBS and gentle pipetting to remove supernatant and avoid disturbance of 673 
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the stromal monolayer. Purity assessment of these supernatants by flow cytometry 674 

confirmed that stromal cell contamination was reproducibly <5%. 675 

In specified experiments, coculture was performed in the presence of drugs added 2 hr after 676 

the coculture was set up corresponding to when ALL cells were fully adherent to the 677 

adipocyte stroma. The added drugs were 20 µM SSO (sulfo-N-succinimidyl oleate sodium; 678 

SML2148, Merck KGaA), 40 µM etomoxir (E1905, Merck KGaA), 30 µM BMS309403 (5258, 679 

Tocris Bioscience) and GCN2ib (HY-112654, Generon). 680 

 681 

 682 

 683 

 684 

Flow cytometry 685 

Flow cytometry was performed on an LSRFortessa™ flow cytometer (BD Biosciences). 686 

Data were analysed by FlowJo (version 10.1, Tree Star). Antibody staining was performed 687 

for 15 min in the dark. DAPI (D3571, Thermo Fisher Scientific, 1:2,000 in DPBS containing 688 

2% FBS) was added prior to flow cytometric analysis. Gates were set up to exclude 689 

doublets, nonviable cells (DAPI+, or fixable viability dye+) and isotype-stained populations. 690 

Cell counts were assessed using CountBright™ Absolute Counting Beads (C36950, 691 

Thermo Fisher Scientific) on CD19+-gated populations. 692 

Apoptotic cell death was assessed by dual staining with Annexin V-Alexa Fluor 647 693 

(A23204, Thermo Fisher Scientific) and DAPI in CD19+-gated populations. Cells were 694 

washed in Annexin V binding buffer (556454, BD Biosciences) and stained with the B 695 

lineage ALL marker CD19-PE (clone 4G7; 345777, BD Biosciences) and Annexin V Alexa 696 

Fluor 647 for 15 min, protected from light. DAPI (1:2,000 in Annexin V binding buffer) was 697 

added prior to flow cytometric analysis. 698 

Cell cycle assessment was performed by Ki67 and DAPI dual staining on CD19+-gated 699 

populations. Cells were washed in DPBS containing 2% FBS and stained with CD19-PE 700 

and Fixable Viability Dye eFluor™ 780 (65-0865-14, Thermo Fisher Scientific) for 30 min at 701 

4°C. Cells were then fixed with ice-cold 70% ethanol and kept at -20°C. Subsequently, the 702 

samples were washed twice in DPBS containing 2% FBS, stained with Ki67-FITC (556026, 703 

BD Biosciences) for 30 min, and protected from light. DAPI (1:500 in DPBS containing 2% 704 

FBS) was added prior to flow cytometric analysis. Gating of the different phases of the cell 705 

cycle was determined by population analysis and isotype controls. 706 

Intracellular lipid content was assessed by BODIPY™ 493/503 staining. Cells were washed 707 

in DPBS and stained with BODIPY™ 493/503 (4,4-Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-708 

3a,4a-Diaza-s-Indacene) (D3922, Thermo Fisher Scientific) for 30 min at 37°C. 709 

Subsequently, the samples were washed in DPBS, and DAPI (1:2,000 in DPBS) was added 710 
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prior to flow cytometric analysis. BODIPY median fluorescence intensity (MFI) was 711 

determined as a quantification of intracellular lipid content. 712 

For the assessment of the expression of the transmembrane fatty acid transporter CD36, 713 

cells were washed in DPBS containing 2% FBS and stained with CD36-APC (clone CB38; 714 

550956, BD Biosciences) together with CD19-PE and CD10-APC (clone HI10a 332777 BD 715 

Biosciences) for primary ALL samples or CD34-APC (clone; 555824 BD Biosciences) 716 

together with CD33-PE (clone WM53; 555450, BD Biosciences) for AML samples. Gating 717 

strategies for flow cytometry are summarised in Supplementary Fig. 6. 718 

 719 

 720 

Osmium staining 721 

Following euthanasia, murine tibiae were isolated, thoroughly cleaned and fixed in 10% 722 

formalin at 4°C for 48 h. Bones were decalcified for 14 days in 14% EDTA and washed in 723 

Sorensen’s phosphate buffer. Bones were then stained for 48 h in 1% osmium tetroxide 724 

(Agar Scientific), washed in Sorensen’s phosphate buffer and embedded in 1% agarose, 725 

forming layers of five tibiae arranged in parallel in a 30 ml universal tube. Tubes of 726 

embedded tibiae were then mounted in a Skyscan 1172 desktop micro CT (Bruker microCT, 727 

Kontich). Samples were scanned through 360° using a step of 0.40° between exposures. A 728 

voxel resolution of 12.05 μm was obtained in the scans using the following control settings: 729 

54 kV source voltage, 185 μA source current with an exposure time of 885 ms. A 0.5 mm 730 

aluminium filter and two-frame averaging were used to optimize the scan. After scanning, 731 

the data were reconstructed using NRecon v1.6.9.4 software (Bruker, Kontich, Belgium). 732 

The reconstruction thresholding window was optimized to encapsulate the target image. 733 

Volumetric analysis was performed using a CT Analyser v1.13.5.1 (Bruker microCT, 734 

Kontich). 735 

 736 

Xenotransplantation experiments 737 

All animal experiments were performed under license PPL 70/8540 approved by the Home 738 

Office of the United Kingdom and in accordance with institutional guidelines. 739 

Immunodeficient male (to avoid gender-based variation in adiposity) NSG mice (NOD. Cg-740 

Prkdcscid 112rgtm1Wjl/SzJ) were obtained from Charles Rivers Laboratories. All mice were 741 

housed in barrier accommodation in the Biological Services Unit at Queen Mary University 742 

of London, Charterhouse Square. Thawed MNCs obtained from PB or BM from ALL 743 

patients at diagnosis were resuspended in DPBS containing 10% FBS, and 5-8x106 cells 744 

were administered intravenously into the tail vein of 7- to 10-week-old nonirradiated mice. 745 

For Nalm-6 xenotransplantation, 0.5x106 cells were injected. Engraftment of human 746 

leukaemic cells was examined every two weeks by intratibial bone marrow sampling under 747 
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anaesthesia (isoflurane) and postprocedure analgesia (0.1 mg/kg vetergesic). Animal 748 

wellbeing and weight were regularly monitored, and mice were euthanized when signs of 749 

disease-related symptoms developed, in compliance with approved protocols or at 750 

leukaemia cell engraftment of >70%, as determined by intratibial sampling. This threshold 751 

was approximately reached 6-8 weeks after tumour inoculation of primary ALL and 3-4 752 

weeks with the Nalm-6 ALL cell line. At sacrifice, bone marrow cells from the femur and the 753 

tail vertebrae were isolated by mechanically crushing the bones with a mortar and pestle in 754 

DPBS containing 2% FBS, followed by filtration through a 40 µM nylon mesh to obtain a 755 

single-cell suspension. Following centrifugation, cell pellets were subjected to red blood cell 756 

lysis using ammonium chloride (07850, STEMCELL Technologies) prior to flow cytometric 757 

analysis. Gonadal fat tissue was microdissected at sacrifice, chopped and then digested 758 

with Liberase (5401119001, Roche) for 30 min at 37°C and processed as previously 759 

described 39. Flow cytometric assessment of primary human leukaemia engraftment was 760 

performed by CD19-PE and CD45-FITC (clone 2D1; 345808, BD Biosciences) co-staining 761 

of DAPI-viable cells or CD19-PE and CD10-FITC (clone W8E7; 347503, BD Biosciences) 762 

costaining in the case of Nalm-6 engraftment. Cell cycle analysis was performed on CD19+-763 

gated populations as described under “Flow cytometry”. For Op-Puro analysis, 0.5x106 cells 764 

from femoral or tail bone marrow were incubated with 10 µM OP-Puro reagent in RPMI 765 

medium containing 10% FBS for 20 min at 37°C. OP-Puro incorporation analysis was 766 

performed on CD19- and CD45+-gated populations as described under “O-propargyl-767 

puromycin (OPP) labelling”. 768 

 769 

Western blot analysis 770 

Total cellular protein content was extracted in NuPAGE™ LDS Sample Buffer (NP0007, 771 

Thermo Fisher Scientific) containing 50 mM dithiothreitol (NuPAGE™ Sample Reducing 772 

Agent; NP0009, Thermo Fisher Scientific). Protein content was quantified using the 773 

Pierce™ BCA Protein Assay Kit (23227, Thermo Fisher Scientific). Proteins were separated 774 

on NuPAGE™ 4-12% Bis-Tris polyacrylamide gels (NP0335BOX, Thermo Fisher Scientific) 775 

and transferred onto 0.45 µM PVDF transfer membranes (88518, Thermo Fisher Scientific). 776 

Membranes were blocked in Tris-buffered saline containing 0.1% TWEEN 20 and 5% BSA 777 

for 60 min at RT and then incubated with primary antibodies overnight at 4°C. HRP-778 

conjugated secondary antibodies were used at a 1:5,000 dilution (anti-rabbit 7074 and anti-779 

mouse 7076, Cell Signaling Technology). Protein signals were developed using 780 

SuperSignal™ West Pico PLUS Chemiluminescent Substrate (34577, Thermo Fisher 781 

Scientific), and images were acquired using an Amersham Imager 600 RGB (GE 782 

Healthcare). Densitometric analysis of immunoblots was performed using ImageJ software. 783 
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Primary antibodies were purchased from Cell Signaling Technology: P21 (12D1, 2947), P27 784 

(D69C12, 3686), phospho-P53 (Ser46, 2521), Cyclin D1 (E3P5S, 55506), Cyclin E (HE12, 785 

4129), phospho-Rb (Ser807/811, 8516), E2F-1 (3742), Phospho-AMPK (Thr172, 2531), 786 

Phospho-mTOR (Ser2448; 2971), Phospho-S6 Ribosomal Protein (Ser235/236; 2211), S6 787 

Ribosomal Protein (5G10; 2217), Phospho-4EBP1 (Thr37/46; 2855), 4EBP1 (53H11; 9644), 788 

Phospho-eIF2α (Ser51; 9721), eIF2α (9722) and ATF4 (D4B8; 11815). The anti α-Tubulin 789 

antibody was purchased from Abcam (DM1A; ab7291). All primary antibodies were diluted 790 

1:1,000. In specified experiments, ISRIB (200 nM, S7400, Selleckchem), PERK inhibitor (2 791 

µM; GSK2606414) or GCN2ib (5 µg/mL; HY-112654), 250 nM thapsigargin (1138, Tocris 792 

Bioscience) or 1 µM Torin 1 (4247, Tocris Bioscience) prior to cell harvest and lysate 793 

collection.  794 

 795 

 796 

Lipidomics 797 

Two technical replicates of ALL cells (3x106) were harvested from 3T3-L1 adipocytes or 798 

preadipocytes as described under “ALL coculture experiments”. Cell pellets were washed 799 

twice in ice-cold DPBS, prepared by snap freezing on dry ice and submitted to MS-Omics 800 

for lipidomic profiling. Lipids were extracted from the samples using methanol, ultrapure 801 

water and methyl tert-butyl ether. The organic phase used for lipid analysis was separated, 802 

transferred to injection vials, dried under nitrogen flow and reconstituted in an 803 

isopropanol/acetontril/water mixture. For quality control, a mixed pooled sample (QC 804 

sample) was created by taking a small aliquot from each sample. This sample was analysed 805 

at regular intervals throughout the sequence. Matrix effects were tested for quantified 806 

compounds by spiking the QC sample at a minimum of two levels. Chromatographic 807 

separation was performed using a UPLC system (Vanquish, Thermo Fisher Scientific) 808 

coupled with a high-resolution quadrupole-orbitrap mass spectrometer (Q Exactive™ HF 809 

Hybrid Quadrupole-Orbitrap, Thermo Fisher Scientific). An electrospray ionization interface 810 

was used as the ionization source. Analysis was performed in negative and positive 811 

ionization modes. A QC sample was analysed in MS/MS mode for identification of 812 

compounds. UPLC was performed using a slightly modified version of the protocol 813 

described by Isaas et al. 61. Data were processed using Compound Discoverer 3.0 (Thermo 814 

Fisher Scientific). 815 

 816 

Oleic acid treatment 817 

ALL cells at a concentration of 0.2x106 cells in 1 ml RPMI medium (containing 10% FBS and 818 

antibiotics) were treated with 30 or 100 µM oleic acid-albumin from bovine serum (O3008, 819 

Merck KGaA) for 24, 48 or 72 h. Treatment with 0.3% bovine serum albumin (A7511, Merck 820 
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KGaA) was used as a control. An additional 1 ml of medium with the corresponding 821 

treatment was supplemented after 24 h. Cell counts and viability measurements were 822 

performed using acridine orange/propidium iodide staining. 823 

 824 

Fatty acid translocation experiments using BODIPY 825 

To examine directional lipid transfer from adipocytes to ALL cells, 3T3-L1 adipocytes were 826 

incubated with 2 µg/ml BODIPY™ 558/568 C12 (4,4-Difluoro-5-(2-Thienyl)-4-Bora-3a,4a-827 

Diaza-s-Indacene-3-Dodecanoic Acid) (D3835, Thermo Fisher Scientific) for 4 h. The 828 

adipocytes were washed with HBSS containing 0.2% fatty acid-free BSA to remove 829 

extracellular fatty acids. Subsequently, ALL cell lines at a concentration of 0.2x106 cells/ml 830 

were cocultured with labelled 3T3-L1 adipocytes for 24 h before being harvested, washed 831 

with HBSS containing 0.2% fatty acid-free BSA and analysed by an Amnis® 832 

ImageStream®XMk II flow cytometer. Imagining was performed using INSPIRE™ software. 833 

 834 

 835 

 836 

Short hairpin RNA CD36 targeting 837 

Knockdown of CD36 was achieved using MISSION® shRNA lentiviral transduction particles 838 

cloned into the pLKO.1 lentiviral vector (CD36 shRNA: SHCLNV, nonmammalian shRNA 839 

control: SHC002V, Merck KGaA). Sequences of transduction particles are listed in 840 

Supplementary Table 4. Cells were plated in 6-well plates (0.25x106 cells/well) and treated 841 

with 5 µg/ml polybrene for 15 min prior to transduction with the appropriate lentiviral 842 

particles at a multiplicity of infection of 1. Cells were incubated with the particles for 72 h, 843 

and then selection with 1.0 µg/ml puromycin was performed until use in experiments. Cells 844 

were assayed for knockdown of CD36 by RT-qPCR. 845 

 846 

Quantitative real-time PCR 847 

RNA was extracted with a RNeasy Micro Kit (74004, Qiagen) following the manufacturer’s 848 

protocol. RNA was quantified (total RNA, 18S rRNA and 28S rRNA), and RNA integrity was 849 

assessed using an RNA ScreenTape (5067-5576, Agilent), RNA ScreenTape Sample 850 

Buffer (5067-5577, Agilent) and the 4200 TapeStation System (G2991AA, Agilent). RNA 851 

was reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit (4368814, 852 

Thermo Fisher Scientific). Quantitative real-time PCR was performed on a Touch™ Real-853 
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Time thermal cycler (CFX384, Bio-Rad) using SsoAdvanced™ Universal SYBR® Green 854 

Supermix (1725271, Bio-Rad). Target primer sequences are listed in Supplementary Table 855 

5. β-Actin was used to normalize the RNA content. All samples were analysed in triplicate 856 

and averaged. 857 

 858 

Phosphoproteomic LC-MS/MS analysis 859 

Nalm-6 cells were cocultured with 3T3-L1 adipocytes or preadipocytes for 24 or 72 h in 150 860 

mm culture dishes (see ALL coculture experiments). Cells were isolated from coculture, and 861 

cell lysis and trypsin digestion were performed following previously described protocols in 862 

urea buffer (8 M urea in 20 mM in HEPES pH 8.0 supplemented with 1 mM Na3VO4, 1 mM 863 

NaF, 1 mM Na4P2O7 and 1 mM sodium β-glycerophosphate) 40,62. Briefly, proteins were 864 

quantified by BCA assay, and 250 µg of protein was reduced and alkylated by sequential 865 

incubation with 10 mM dithiothreitol and 16.6 mM iodoacetamyde. Urea was diluted to a 866 

concentration of 1.44 M with 20 mM HEPES (pH 8.0), and samples were incubated with 867 

trypsin beads [50% slurry of TLCK-trypsin (20230, Thermo-Fisher Scientific)] on a 868 

thermoshaker overnight. Peptide solutions were then desalted using 10 mg OASIS-HLB 869 

cartridges (Waters, Manchester, UK) and eluted with glycolic acid buffer (1 M glycolic acid, 870 

50% ACN, 5% TFA). Phosphopeptides were enriched as previously described using 50 µL 871 

of TiO2 beads [(50% slurry in 1% TFA) GL Sciences] 40,62. For phosphopeptide recovery, 872 

peptides were eluted in 5% NH4OH; dried peptide extracts were then dissolved in 0.1% TFA 873 

and analysed in an LC-MS/MS system. This consisted of a nanoflow ultra-high pressure 874 

liquid chromatography system nanoflow ultimate 3000 RSL nano (Dionex) coupled to a Q 875 

Exactive™ Plus Orbitrap™ Mass Spectrometer (Thermo Fisher Scientific). 876 

The LC system used mobile phases A (3% ACN: 0.1% FA) and B (100% ACN; 0.1% FA). 877 

Peptides were loaded onto a μ-precolumn (160454) and separated in an analytical column 878 

(EASY-Spray; ES803). The gradient was 1% B for 5 min and 1% B to 35% B for 60 min. 879 

Following elution, the column was washed with 85% B for 7 min and equilibrated with 3% B 880 

for 7 min at a flow rate of 0.25 µL/min. Peptides were nebulized into the online connected 881 

Q-Exactive Plus system operating with a 2.1 s duty cycle. Acquisition of full-scan survey 882 

spectra (m/z 375-1,500) with a 70,000 FWHM resolution was followed by data-dependent 883 

acquisition in which the 15 most intense ions were selected for HCD (higher energy 884 

collisional dissociation) and MS/MS scanning (200-2,000 m/z) with a resolution of 17,500 885 

FWHM. A 30 sec dynamic exclusion period was enabled with an exclusion list with a 10 886 

ppm mass window. The oxverall duty cycle generated chromatographic peaks of 887 

approximately 30 sec at the base, which allowed the construction of extracted ion 888 

chromatograms (XICs) with at least ten data points. 889 
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Peptide identification and quantification: Mascot Distiller 2.7.1 was used to fit an ideal 890 

isotopic distribution to the MS/MS data to maximize peptide identification, and the Mascot 891 

Daemon 2.6 search engine was used to match peaks to peptides in proteins present in the 892 

UniProt/SwissProt Database (human species). The process was automated with Mascot 893 

Daemon 2.5.0, mass tolerance was set to ± 10 ppm, and variable modifications phospho 894 

(ST), phospho (Y) glnpyro-glu (N-term Q) and oxidation (M) were included in the search. 895 

Carbamidomethyl (C) as fixed modification. Trypsin was selected as the digestion enzyme, 896 

and 2 missed cleavages were allowed. Sites of modification were reported when they had 897 

delta scores >10. Peptide and subsequent protein quantification was achieved using in-898 

house developed Peak statistics calculator (PESCAL) software 63. PESCAL constructs XICs 899 

for each peptide identified with the MASCOT search engine. With each constructed XIC, 900 

peak heights could be calculated. These peptide peak heights were then normalized to the 901 

sum of the intensities for each individual sample, and the average fold change between 902 

conditions could be determined. Statistical significance between conditions was considered 903 

significant when Student’s t tests produced a p-value<0.05 following correction with 904 

Benjamini Hochberg multiple testing. Further data processing and analysis were conducted 905 

within Microsoft Excel (2013) or R (v3.4.4 – reshape2, ggplot2, gplots, readxl, Hmisc and 906 

ggrepel packages). The Z-score was calculated based on the fold change, as previously 907 

described 40,64. 908 

 909 

KSEA and gene ontology analysis  910 

Kinase substrate enrichment analysis (KSEA) was performed as follows40; briefly, peptides 911 

differentially phosphorylated between a set of samples (at non-adjusted p-value<0.05) were 912 

grouped into substrate sets known to be phosphorylated by a specific kinase as annotated 913 

in the PhosphoSite, Phospho. ELM, and PhosphoPOINT databases 65-67. To infer 914 

enrichment of substrate groups across sets of samples, the hypergeometric test was used, 915 

followed by correction with Benjamini Hochberg multiple testing. For gene ontology 916 

analysis, proteins differentially phosphorylated between conditions (at non-adjusted p-917 

value<0.05) were grouped into gene ontologies (biological process) as annotated in UniProt 918 

databases. To infer ontology enrichment across sets of samples, the hypergeometric test 919 

was used, followed by correction with Benjamini Hochberg multiple testing. 920 

 921 

O-propargyl-puromycin (OPP) labelling 922 

The Click-iT™ Plus O-propargyl-puromycin (OPP) Alexa Fluor™ 647 Protein Synthesis 923 

Assay Kit (C10458, Thermo Fisher Scientific) was used to measure global protein 924 

synthesis. ALL cells were isolated from their microenvironment as described under “ALL 925 

coculture experiments” and immediately incubated with 10 µM OP-Puro for 20 min at 37°C 926 
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in ALL cell line-specific media, RPMI containing 10% FBS and antibiotics. In specific 927 

experiments, 10 μg/ml cycloheximide (CHX; C4859, Merck KGaA) was added 10 min prior 928 

to OP-Puro to block protein translation, thereby serving as a positive control. Cells were 929 

subsequently washed in DPBS containing 2% FBS and stained with CD19-PE. A further 930 

wash was performed prior to fixation with the Fixation/Permeabilization Solution Kit 931 

(554714, BD Biosciences). Incubation with the Click-iT® Plus OPP reaction cocktail 932 

provided in the kit containing Alexa Fluor® 647 picolyl azide for 30 min led to the "click" 933 

reaction and azide-alkyne cycloaddition. Additional DPBS containing 2% FBS washes 934 

followed prior to addition of DAPI (1:2,000 in DPBS containing 2% FBS) and flow cytometric 935 

analysis. OP-Puro MFI was measured to quantify protein synthesis. To assess the effect of 936 

proteasome activity on OP-Puro incorporation, cells were treated with 10 µM MG-132 937 

(M7449, Merck KGaA) for 2 h. At the final 20 min of incubation, 10 µM OP-Puro reagent 938 

was added. 939 

For the rescue experiment, ALL cells were cocultured with either 3T3-L1 adipocytes or 940 

preadipocytes for 24 h, and then 0.5x106 cells were extracted from their microenvironment, 941 

washed and recultured in fresh RPMI medium for an additional 48 h. ALL cells (0.5x106) 942 

were plated in parallel as a monoculture control. Cell number and OP-puro incorporation at 943 

24 and 48 h following microenvironmental extraction were assessed. 944 

 945 

In vitro Transwell experiments 946 

Transwell assays were performed as previously described 68. In brief, 0.5x106 Nalm-6 cells 947 

resuspended in 5 ml RPMI containing 10% FBS and antibiotics were added to the upper 948 

chamber, with confluent 3T3-L1 adipocytes or preadipocytes placed in the bottom chamber 949 

of a 24 mm Corning® Transwell system with 0.4 μm pore polyester membrane inserts 950 

(CLS3450, Corning NY Merck KGaA). After +24 h, the number of CD19+ Nalm-6 cells in the 951 

upper chamber and OP-puro incorporation in CD19+ Nalm-6 cells were quantified as 952 

described under “Flow cytometry” and “O-propargyl-puromycin (OPP) labelling”. 953 

 954 

Adipocyte secretome experiment 955 

3T3-L1 adipocytes and preadipocytes were cultured for 72 h in 100% confluent 100 mm cell 956 

culture dishes, and culture medium was collected and stored at -20°C until use. Nalm-6 cells 957 

were adapted to DMEM for 72 h prior to seeding at a concentration of 2x106 cells in 4 ml 958 

adipocyte- or preadipocyte-conditioned medium, following which cell number (using 959 

CountBright™ Absolute Counting Beads) and protein translation were assessed as 960 

described under “Flow Cytometry” and “O-propargyl-puromycin (OPP) labelling”. 961 

 962 
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Stress experiments 963 

Nalm-6 cells were isolated from monoculture or from 3T3-L1 adipocyte coculture at 48 h, 964 

washed twice in DPBS and resuspended in ALL cell line-specific media at equivalent 965 

densities of 105 cells/100 µl per well in black NuncTM F96 MicroWellTM plates (137101, 966 

Thermo Fisher Scientific). Subsequently, various treatments were added (final 967 

concentrations): 0.1 µg/ml cytarabine, 0.01 µg/ml vincristine, 0.1 µg/ml daunorubicin or a 968 

combination of the three chemotherapeutic agents with 100 µM hydrogen peroxide (H1009, 969 

Merck KGaA). Nutritional deprivation was induced by replating cells without the addition of 970 

FBS. In specified experiments, GCN2ib (5 µg/mL; HY-112654, Selleckchem) was added 971 

along with the indicated cellular stressor(s). At the indicated times, cell viability was 972 

assessed using the CellTiter-Glo® Luminescent Cell Viability Assay according to the 973 

manufacturers’ instructions. Luminescence was recorded using a FLUOstar Omega 974 

microplate reader. Luminescence signals were normalized to untreated controls at the 975 

respective timepoints. For confirmation, untreated controls were assessed at +4 h following 976 

microenvironmental extraction to confirm the persistence of translation arrest using O-977 

propargyl-puromycin (OPP) labelling (S5a). 978 

 979 

 980 

 981 

Pulsed SILAC-based proteomic analysis 982 

Nalm-6 cells were cocultured with 3T3-L1 adipocytes or preadipocytes for 24 or 48 h in 150 983 

mm culture dishes (see ALL coculture experiments). Subsequently, the cells were pulsed 984 

with either ‘heavily’ (H) or ‘moderately’ (M) isotope-labelled amino acids for +4 h. Cells were 985 

then isolated from coculture, lysed in 2% SDS and 50 mM Tris-HCl pH 7.5, sonicated and 986 

balanced following protein quantification. Equal amounts of the corresponding H&M lysates 987 

were then mixed together and subsequently trypsin digested using the filter-aided sample 988 

preparation (FASP) method69. Pooled peptides were then fractionated into seven peptide 989 

fractions using the Pierce™ High pH Reversed-Phase Peptide Fractionation Kit (84868, 990 

Thermo Fisher Scientific) according to the manufacturers’ instructions. Different fractions 991 

were then lyophilized and resuspended in 0.1% TFA and 2% acetonitrile prior to analysis on 992 

a Q Exactive™ Plus Orbitrap™ Mass Spectrometer coupled with a nanoflow ultimate 3000 993 

RSL nano HPLC platform (Thermo Fisher Scientific). Briefly, samples were resolved at a 994 

flow rate of 250 nl/min on an Easy-Spray 50 cm x 75 μm RSLC C18 column (Thermo Fisher 995 

Scientific) using a 123 min gradient of 3% to 35% of buffer B (0.1% formic acid in 996 

acetonitrile) against buffer A (0.1% formic acid in water), and the separated samples were 997 

infused into the mass spectrometer by electrospray. The spray voltage was set at 1.95 kV, 998 

and the capillary temperature was 255°C. The mass spectrometer was operated in data-999 
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dependent positive mode with 1 MS scan followed by 15 MS/MS scans (top 15 methods). 1000 

The scans were acquired in the mass analyser at 375-1500 m/z range, with a resolution of 1001 

70,000 for the MS scans and 17,500 for the MS/MS scans. Fragmented peaks were 1002 

dynamically excluded for 30 sec. MaxQuant (version 1.6.3.3) software was used for the 1003 

database search and SILAC quantification of mass spectrometry raw files 70. The search 1004 

was performed against a FASTA file of the human proteome extracted from UniProt.org. A 1005 

precursor mass tolerance of 4.5 ppm and a fragment mass tolerance of 20 ppm were 1006 

applied. Methionine oxidation and N-terminal acetylation were included as variable 1007 

modifications, while carbamidomethylation was applied as a fixed modification. Two trypsin 1008 

miscleavages were allowed, and the minimum peptide length was set to seven amino acids. 1009 

All other MaxQuant parameters apart from the ratio count cut-off (set at 1) were kept as 1010 

defaults. All raw files were searched together with the match between runs option set as 1011 

enabled and re-quantify option as disabled. All downstream data analyses were performed 1012 

with Perseus (version 1.5.5.3) 71 using the MaxQuant ProteinGroups.txt output file. Briefly, 1013 

protein H/M ratio values were converted to Log2 scale. Reverse (decoy) hits, potential 1014 

contaminants, and proteins identified only by modified peptides were filtered out. Proteins 1015 

were also filtered to have at least one valid H/M SILAC value. Fisher’s exact test was 1016 

performed with Perseus using a Benjamini-Hochberg FDR of 5%. 1017 

 1018 

 1019 

Statistical analysis 1020 

Data are presented as the mean with standard error of the mean or as the median with 1021 

interquartile ranges. Results with a p-value<0.05 were considered statistically significant. 1022 

Statistical analyses were performed using GraphPad Prism 8 software (GraphPad, San 1023 

Diego, CA). All data were subjected to normality testing prior to statistical assessment with 1024 

software-recommended tests. 1025 

 1026 

 1027 

Data availability statement 1028 

The datasets generated during the current study have been deposited to the Gene 1029 

Expression Omnibus repository via GEO accession number GSE151802 1030 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE151802]. All raw mass spectrometry 1031 

files reported in this paper have been deposited to the ProteomeXchange Consortium via, 1032 

PXD019186 and PXD019369. All source data supporting the findings of this study are 1033 
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available within the article and its supplementary information files and from the 1034 

corresponding author upon reasonable request.  1035 

Code Availability 1036 

Custom pipelines for BM adipocyte analysis using Visiopharm software are available upon 1037 

reasonable request to the corresponding author. 1038 
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Figure Legends 1229 

Fig. 1: The adipocyte BM niche is dynamically remodelled during ALL pathogenesis 1230 

and treatment. a H&E-stained human BM biopsies from healthy control, patient with ALL at 1231 

diagnosis (ALL01 Diagnostic) and post remission induction treatment (ALL01 Remission 1232 

Induction). Representative of five independent healthy BM biopsies and eight independent 1233 

matched pairs of ALL diagnosis and remission biopsies analysed once/biopsy. Zoomed-in 1234 

images of the boxed regions are presented below. Black arrowheads indicate BM 1235 

adipocytes. Custom image analysis using Visiopharm software identifies individual BM 1236 

adipocytes as green objects. b Adipocyte numbers quantified by Visiopharm analysis in 1237 

healthy controls (n=5) and paired ALL diagnosis vs ALL remission BM biopsies (n=8). Each 1238 

datapoint denotes an independent biopsy. Data are normalized to the size of the biopsy. 1239 

**p<0.01 by one-way ANOVA with Tukey’s multiple comparison test. c Adipocyte size 1240 

quantified by Visiopharm analysis in healthy control (n= 5) and ALL diagnosis  (n=8, ALL01-1241 

ALL08) BM biopsies. Datapoints denote values for individual adipocytes (>45). The mean ± 1242 

SEM are shown. Statistical significance was assessed by a Kruskal-Wallis test with Dunn's 1243 

multiple comparisons test (****p<0.0001). d Adipocyte size quantified by Visiopharm analysis 1244 

in healthy control (n= 5) and ALL remission (rALL) BM biopsies (n=8). Datapoints denote 1245 

values for individual adipocytes (>72). The mean ± SEM are shown. Statistical significance 1246 

was assessed by a Kruskal-Wallis test with Dunn's multiple comparisons test (****p<0.0001). 1247 

e Adiponectin concentrations in serum samples from healthy control vs ALL diagnosis 1248 

(including ALL04, ALL17 and ALL21) BM. Adiponectin was quantified using a commercial 1249 

ELISA kit. Each datapoint denotes an independent BM serum sample. ***p<0.0006 by a 2-1250 

sided unpaired t test. f Morphological evaluation of residual ALL disease in H&E-stained BM 1251 

biopsies from four consecutively assessed patients with an incomplete response (< 5% 1252 

blasts) to remission induction chemotherapy. Individual images show ALL tumour-specific 1253 

immunostaining. Red arrows indicate ALL blasts in close proximity to BM adipocytes while 1254 

black arrows denote interstitially distributed ALL disease as assigned by 2 independent 1255 
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reviews .The percentage of residual ALL disease was obtained from clinical reports and is 1256 

indicated in red text. 1257 

 1258 

Figure 2. ALL corrupts the functioning and lineage priming of the adipocyte precursor 1259 

mesenchymal stromal cell (MSC) population. a Growth outcomes of ALL-MSCs (ALL12-1260 

ALL23) at P1. Each datapoint denotes an independent BM. ALL-MSCs were divided into 1261 

high and low performers defined by the group mean. Horizontal line denotes the median 1262 

*p<0.0132, ***p<0.001. b CFU-F numbers from seven independent ALL (ALL15-17, ALL19-1263 

21 and ALL23) and healthy-BMs after +10 days under MSC differentiation conditions. c 1264 

Adipocyte-specific FABP4 staining in ALL vs healthy-MSCs (left) and FABP4 fluorescence 1265 

quantification (right). Images are representative of seven and six independent BM samples, 1266 

respectively analysing 100 cells/sample. d Osteocalcin staining in ALL vs healthy-MSCs 1267 

(left) and osteocalcin fluorescence quantification (right). Images are representative of six and 1268 

five independent BM samples, respectively. For c and d comparisons are between each 1269 

individual ALL-MSC and the aggregated mean of healthy-MSCs. Horizontal line denotes the 1270 

median; boxes extend from the 25th to the 75th percentile e Representative micrographs (left) 1271 

showing intracellular lipid staining with oil red (magnification, 10x; scale bar, 200µm) 1272 

following in vitro adipogenic differentiation in the absence or presence of conditioned media 1273 

(CM) from cultured GMPB, from n= 3 biologically independent samples or from ALL cell lines 1274 

(Nalm-6, REH and RS4;11). Oil red staining was quantified in three independently assayed 1275 

wells/condition from one experiment. **p= 0.002, ***p=0.0004. f Principal component 1276 

analysis of global RNA-seq data from ALL-MSCs (ALL12-14) and age-matched healthy-1277 

MSCs (n=3). Each dot represents an individual BM-MSC. g GSEA comparing RNA-seq-1278 

generated global transcriptomes of ALL-MSCs (n=3) vs healthy-MSCs (n=3) by KEGG 1279 

pathway annotation. Significance was assigned by FDR q-value<0.05. Bars in green 1280 

correspond to downregulated pathways. h Gene set enrichment plot for the KEGG cell cycle 1281 

pathway demonstrating significant downregulation of these gene sets in ALL-MSCs (left). 1282 
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Ki67 cell cycle analysis of ALL-MSCs (n=4) vs healthy-MSCs (n=4) (right). Statistical 1283 

comparisons are between each cell cycle stage.  NES, normalized enrichment score; FDR 1284 

false discovery rate. *p= 0.029. Unless otherwise stated, all data are presented as mean 1285 

values ± SEM values of independent experiments (n =4 in a, n=3 in b, n= 1 in e and n=3 in 1286 

h.  Statistical significance was assessed using Kruskal-Wallis test with Dunn's multiple 1287 

comparisons test (a,b, c. d) 2-sided unpaired t tests (e,), two-sided Mann-Whitney U test (h). 1288 

*p<0.05, **p<0.01,***p<0.001, ****p<0.0001) or the precise p-value where indicated.  ns, not 1289 

significant. 1290 

 1291 

 1292 

Figure 3. Adipocytes create a tumour-suppressive niche in B-ALL. a Schematic of the 1293 

experimental setup to assess functional interactions between ALL and adipocyte niches. b In 1294 

vitro growth of ALL cell lines (Nalm-6, REH and RS4;11) in adipocyte and unrelated stromal 1295 

environments over time. Primary BM-MSCs from three independent healthy donors were 1296 

evaluated alongside their corresponding osteoblast and adipocyte derivative. c Frequency of 1297 

quiescent (G0) and cycling (G1 and S/G2/M) populations in ALL cells after monoculture (-) 1298 

vs adipocyte co-culture (+) from experiments described in b. Bottom panel shows 1299 

representative Ki67/DAPI staining in CD19+-gated Nalm-6 cells at +72 h. Percentage of cells 1300 

in each phase of the cell cycle is shown in red. d Schematic showing the different 1301 

microenvironments assayed for human ALL xenotransplantation studies. BM from the tail 1302 

and gonadal fat are designated adipocyte-rich niches, whereas femoral BM is adipocyte 1303 

poor. Arrows point to individual adipocytes. e Osmium-stained and micro-CT-imaged BM 1304 

adipocytes in whole femurs from NSG mice at +10 days. BM adipocyte production was 1305 

stimulated by sublethal (2.5 Gy) total body irradiation and served as a positive control. f and  1306 

g Engraftment outcomes of Nalm-6 (CD19+/CD10+) and four independent primary B-ALL 1307 

(CD19+/CD45+) tumours following tail vein IV injection in distinct in vivo niches. Statistical 1308 
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comparisons are with femur. h and i Comparison of cell cycle characteristics in Nalm-6 and 1309 

primary B-ALL xenografts respectively from experiments described in f and g. Not tested 1310 

indicates failure to perform robust cell cycle analysis due to low cell recovery. The panel on 1311 

the right shows representative Ki67/DAPI staining in CD19+ gated primary B-ALL xenografts 1312 

in the indicated niches. The percentage of cells in the G0 phase is shown in red. Data are 1313 

presented as mean values ± SEM values of independent experiments (n = 3 with 2-3 1314 

replicates in b, n = 1 in f,h with n=3 mice and n = 3 in g,i n =4-5 mice. Statistical significance 1315 

was assessed using 2-sided unpaired t tests (b, c, g:- ALL15 vs 23). ANOVA with Dunnett's 1316 

multiple comparisons test (f, g, i:- ALL24  vs ALL25), two-sided Mann-Whitney U-tests (h) 1317 

(*p<0.05, **p<0.01, ***p<0.001, ***p<0.001).  $$p<0.01, $$$p<0.001 for primary vs 3T3-L1 1318 

adipocytes. Only statistically significant comparisons are indicated (b,c). 1319 

 1320 

Figure 4. Adipocyte niches restrict protein synthesis in ALL via non-canonical factors. 1321 

a Venn diagram of significant phosphosites identified in Nalm-6 cells cultured with 3T3-L1 1322 

adipocytes at +24 (green) and +72 h (red). Bracketed values denote the corresponding 1323 

number of proteins. b Pathway analysis of the altered phosphoproteins from a. Z-score, red: 1324 

≤-1.5, pathway underrepresented; green: ≥+1.5, pathway overrepresented. GO terms are 1325 

grouped into categories that were hand curated. c Differential transcription level (log2) 1326 

between Nalm-6 cells cultured with 3T3-L1 adipocytes vs 3T3-L1 preadipocytes at +24 h. 1327 

Differentially transcribed genes (FDR q-value<0.05) are highlighted in red for each indicated 1328 

log2 FC range. Dashed red lines represent log2 FC thresholds -1 and 1.  Data derived from 1329 

RNAseq of three replicates/condition. d. GSEA comparing RNAseq-generated global 1330 

transcriptomes of 3T3-L1 adipocyte vs 3T3-L1 preadipocyte cultured Nalm-6 cells by KEGG 1331 

pathway annotation. Significant pathways defined by FDR q-value <0.05. (Red bar: 1332 

upregulated pathways, Green bar: downregulated pathways). e OP-Puro incorporation by 1333 

Nalm-6 cells under 3T3-L1 preadipocyte (grey) or 3T3-L1 adipocytes (blue) coculture relative 1334 

to monoculture. Nalm-6 monocultures treated with CHX, 10 µg/mL for 10 min (black), served 1335 
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as a positive control. Representative histograms of OP-Puro fluorescence are shown on the 1336 

right. f OP-Puro incorporation in vitro in Nalm-6 cells in G0/G1 vs S/G2/M fractions +72 hrs 1337 

after coculture with 3T3-L1 preadipocytes (grey) or 3T3-L1 adipocytes (blue). Data are 1338 

normalised to monocultures. g OP-Puro incorporation in CD19+/CD45+ xenografted primary 1339 

B-ALL cells (ALL24 and ALL25) harvested from femoral (blue) and tail (red) BMs according 1340 

to cell cycle stage. ALL24 G0/G1 p=0.0002, S/G2/M p=0.0003; ALL25 G0/G1 p=0.017, 1341 

S/G2/M p= 0.045.h Western blot showing p-eIF2α levels in Nalm-6 cells (5x106/) after 72 hrs 1342 

treatment with ISRIB, PERKi, or GCN2ib or Thapsigargin (250 nM), the latter serves as a 1343 

positive control. (representative of two independent experiments).i. OP-Puro incorporation in 1344 

Nalm-6 cells cocultured with 3T3-L1 adipocytes after 72h of GCN2ib  (5ug/mL) vs vehicle 1345 

treatment. The results are expressed relative to the OP-Puro fluorescence of Nalm-6 in 3T3-1346 

L1 pre-adipocyte co-culture. **p=0.0022.  j Frequency of G0 cells in Nalm-6 cells cocultured 1347 

with 3T3-L1 adipocytes after 72h of GCN2ib  (5ug/mL) vs vehicle treatment. **p=0.0017. 1348 

Data are presented as mean values ± SEM values of independent experiments (n=2 in c, n= 1349 

3 in e,f  assessing triplicates, n = 2 in g with n = 4 mice, n=2 in i,j  assessing triplicates. 1350 

Statistical significance was assessed using 2-sided unpaired t tests (e,g, i,j) **p<0.01. 1351 

***p<0.001, ****p<0.0001 or the precise p-value where indicated. 1352 

Figure 5. Adipocyte-adapted ALL proteomes increase global stress resistance.  a Cell 1353 

viability of Nalm-6 cells retrieved from monoculture (black, n=8)  vs 3T3-L1 adipocyte 1354 

coculture (blue, n=8) in the presence of the indicated chemotherapeutic agents or mitosis-1355 

independent stressors (no FBS and hydrogen peroxide). Data are presented relative to 1356 

vehicle controls. b. Cell viability of Nalm-6 cells after +48 h recovery from 3T3-L1 adipocyte 1357 

coculture (blue, n=4) or from monoculture (black, n=4) after exposure to mitosis-dependant 1358 

chemotherapy or mitosis-independent stressors (no FBS and hydrogen peroxide). Data are 1359 

presented relative to vehicle controls.  c. Cell viability of Nalm-6 monocultured (black, n=3) 1360 

or 3T3-L1 adipocyte-cocultured Nalm-6 cells (blue, n=3) in the presence of GCN2ib 1361 

treatment (5 µg/mL) and the indicated cellular stressors. d Schematic for pulsed SILAC-1362 
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based proteomic analysis. Nalm-6 cells cocultured with either 3T3-L1 adipocytes or 1363 

preadipocytes were pulsed at +24 h and at 48 h with either ‘heavy’ or ‘moderately’ isotope-1364 

labelled amino acids. Following a 4 h incubation, Nalm-6 cells were separated from their 1365 

microenvironment for protein extraction. Lysates were mixed in equal amounts (between 1366 

heavily and medium labelled samples at each time point), digested, fractionated and 1367 

analysed using mass spectrometry.e Scatter plot showing the normalized log2 ratio of 1368 

proteins detected following pulsed SILAC-based proteomic analysis in Nalm-6 cells 1369 

cocultured with 3T3-L1 adipocytes (Adipo) relative to preadipocytes (preadipo) at +24 h vs 1370 

48 h from one experiment. Blue Arrows describe the direction of change in adipocyte-1371 

specific coculture. Data are presented as mean values ± SEM values of independent 1372 

experiments (n=2 in a with four replicates, n = 1 with four replicates in b,c. Statistical 1373 

significance was assessed using 2-sided unpaired t tests (a,b for the single-agent 1374 

treatments) , Mann-Whitney U test for combination chemotherapy treatment (b) One-way 1375 

ANOVA followed by Tukey's test for multiple comparisons c. **p<0.01, ***p<0.001, 1376 

****p<0.0001. 1377 

Figure 6. a Graphical abstract showing the temporal course of adipocyte niches across the 1378 

ALL disease-remission transition and its pathophysiological relevance based on the 1379 

demonstration of adipocyte-driven modulations in ALL cell phenotype. 1380 

  1381 
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Table Legends 1382 

Table 1. Pathway analysis of the co-downregulated proteins (n= 413) at +24 and +48 h in 1383 

Nalm-6 cells cocultured with 3T3-L1 adipocytes, as detected by pulsed SILAC. Pathway 1384 

enrichment was assessed by two-sided Fisher’s exact tests with a Benjamini-Hochberg FDR 1385 

of 5%. Pathways with an enrichment >2 are presented. 1386 
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Table 1. Pathway enrichment analysis of downregulated proteins in Nalm-6 cells co-cultured 
with 3T3-L1 adipocytes identified through SILAC 

 

 

 

 

 Category Category value 
Enrichment 

factor 
P value 

Benj. Hoch. 
FDR 

1 Keywords Elongation factor 3.1071 0.00034546 0.01708 

2 GOCC chaperonin-containing T-complex 3.1071 0.0001099 0.003187 

3 Keywords rRNA-binding 2.7618 0.00067496 0.026323 

4 GOCC cytosolic small ribosomal subunit 2.3052 1.25E-06 6.84E-05 

5 GOCC small ribosomal subunit 2.2597 1.31E-06 6.84E-05 

6 GOBP positive regulation of translation 2.244 0.00044973 0.036325 

7 GOBP 
regulation of cysteine-type 

endopeptidase activity 
2.1749 0.00044019 0.036147 

8 KEGG Ribosome 2.1128 4.68E-11 1.04E-08 

9 GOBP 
nuclear-transcribed mRNA catabolic 
process, nonsense-mediated decay 

2.0963 7.60E-12 7.49E-09 

10 GOBP 
nuclear-transcribed mRNA catabolic 

process 
2.0714 1.11E-12 2.73E-09 

11 GOBP mRNA catabolic process 2.0605 1.02E-12 2.73E-09 

12 Keywords Citrullination 2.0315 0.00035833 0.01708 

13 GOCC cytosolic large ribosomal subunit 2.0232 5.17E-06 0.00018405 

14 GOCC cell cortex part 2.0196 0.0019023 0.045137 

15 GOBP RNA catabolic process 2.0196 1.73E-12 2.83E-09 
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