
Learning by Demonstration and Robust Control of
Dexterous In-Hand Robotic Manipulation Skills

Gokhan Solak1 and Lorenzo Jamone1

Abstract— Dexterous robotic manipulation of unknown ob-
jects can open the way to novel tasks and applications of robots
in semi-structured and unstructured settings, from advanced
industrial manufacturing to exploration of harsh environments.
However, it is challenging for at least three reasons: the desired
motion of the object might be too complex to be described
analytically, precise models of the manipulated objects are not
available, the controller should simultaneously ensure both a
robust grasp and an effective in-hand motion. To solve these
issues we propose to learn in-hand robotic manipulation tasks
from human demonstrations, using Dynamical Movement Prim-
itives (DMPs), and to reproduce them with a robust compliant
controller based on the Virtual Springs Framework (VSF),
that employs real-time feedback of the contact forces measured
on the robot fingertips. With this solution, the generalization
capabilities of DMPs can be transferred successfully to the
dexterous in-hand manipulation problem: we demonstrate this
by presenting real-world experiments of in-hand translation
and rotation of unknown objects.

I. INTRODUCTION

Hand manipulation is a crucial skill for the robots that will
work together with humans and use objects that are designed
for human hands. Complex human-like robot hands can
accomplish a large variety of tasks which would otherwise re-
quire special-purpose end-effectors. However, some of these
tasks are hard to program manually, as they have complex
trajectories (i.e., writing) or have significant acceleration
profiles (i.e., cutting). In addition, the robust control of these
actions is not trivial, since it requires the coordination of
multiple articulated robots (i.e. the fingers) which have to
exert appropriate forces on the manipulated object to ensure
both grasp stability and the desired in-hand motion.

Robot learning can be highly beneficial to achieve effec-
tive control of complex actions since less prior knowledge
about the world (e.g. object properties) and about the task
(e.g. motion trajectories) are required. This can be framed
as either autonomous robot learning (e.g. model learning
[10] or reinforcement learning [6]) or learning from human
demonstration [1]; interestingly, the two approaches can also
be combined, as in recent reinforcement learning results [11].
Here we follow the learning by demonstration approach,
since it does not require to collect large amounts of data,
and in particular the Dynamical Movement Primitives (DMP)
framework [4] which allows to learn a motion from a

*This work was partially supported by the EPSRC UK (with projects
MAN3, EP/S00453X/1, and NCNR, EP/R02572X/1).

1Gokhan Solak and Lorenzo Jamone are with ARQ (Advanced
Robotics at Queen Mary), School of Electronic Engineering
and Computer Science, Queen Mary University of London, UK
{g.solak,l.jamone}@qmul.ac.uk

O

Ht
Ht+1

H0

(a) (b)
Fig. 1. (a) Virtual spring framework and object trajectory control. Robot
fingertips are connected to the object frame O with virtual springs. Object
pose is controlled in order to minimize the error between O and the reference
frame Ht. The reference frame follows a trajectory that is learned from
demonstration. (b) Our experiment setup. The initial state (top image), the
final state after translation (middle image) and the final state after rotation
(bottom image).

single demonstration and to generalize it to different con-
ditions (e.g. initial/final pose of the object, duration of the
movement). However, the application of DMPs to in-hand
manipulation is not trivial, and to our knowledge has not
been attempted so far, as it requires the coordinated control
of the trajectory of multiple fingers, which have to maintain
contacts and to exert appropriate forces on the manipulated
object simultaneously. In order to satisfy these requirements,
we use a compliant controller, based on the virtual springs
framework (VSF [21], [2], [9]), which takes advantage from
real-time force feedback provided by force sensors mounted
on the robot’s fingertips.

Overall, our solution combines DMPs, VSF and force
feedback to achieve effective in-hand manipulation of un-
known objects: while DMPs permit to extract the desired
object trajectories from a single human demonstration, and to
easily generalize them to new conditions, the VSF with force
feedback allows to keep coordination between the fingers and
proper contact forces with the object, without requiring an
explicit model of the manipulated object (Fig. 1.a).

We demonstrate the effectiveness of our system through
real-world experiments, using a four fingers Allegro Hand
robot with 16-DOFs, equipped with OptoForce 3D force
sensors on the fingertips and mounted on a 6-DOFs UR5



robot arm, autonomously performing in-hand translations and
rotations of an object (Fig. 1.b). The robot learns the task
from a single demonstration on an object and reproduces it
with different initial state, final state, object size conditions.

The rest of the paper is organized as follows. In Section
II we review the related works on these methods and other
approaches to our problem. Details of our system are given
in Section III. The experiment setup and results are presented
in Section IV. Then, in Section V, we summarize our
conclusions and sketch future work directions.

II. RELATED WORKS

Learning from human demonstration is based on transfer-
ring a human expert’s knowledge to a robot. This approach
proceeds as one or more experts demonstrate the desired
task and a learning method is used to create a control policy.
Representation of learned control knowledge is important for
the generality and robustness of the method [1]. Expressing
the policy in a parametrized form to account for task-level
adjustments is fundamental. Task conditions may change
the initial state, goal state, object parameters, environment
constraints or timing. The representation should also account
for the requirements of real-world control problems such
as continuous action/state domains, robustness, and stability.
Dynamical systems are widely used to represent control
policies, and existing formulations allow generalization to
different task conditions. There are various frameworks built
on dynamical systems such as dynamical movement primi-
tives (DMP) [4] and stable estimator of dynamical systems
(SEDS) [5]. Although principally similar, these frameworks
differ in some aspects. The most prominent ones of these
differences are that in SEDS dynamical system is time-
invariant and multi-dimensional while in DMP there is a
temporal phase variable and each dimension is modeled with
an independent system.

In this work, DMP is chosen as it is more mature, with
many extensions been proposed over time to increase its
generalization capabilities. However, SEDS remains as a
possible path to explore.

Although DMP is a well-established framework for learn-
ing robot control from demonstration, it is not adequately
applied for dexterous hand manipulation yet. DMP is usually
applied to object manipulation problems where a single ma-
nipulator is used [4], [7]. However, dexterous hand manipula-
tion requires coordinated behavior of multiple manipulators,
i.e. fingers. In this case, dynamical systems controlling the
fingers cannot be independent of each other. A coupling
should be defined between the DMPs in order to achieve
coordinated behavior. This coupling is needed for both
robustness to perturbations that can happen on some of the
fingers and generalization of the initial and goal states where
spatial relations of fingers matter. Some existing works apply
coupling for coordination in bimanual manipulation tasks
([3], [18]). Both approaches modify the DMP formulation
by adding a coupling term that affects the behavior of the
second manipulator. Another related approach [13] based on
SEDS representation, uses the state of one manipulator as

the phase of another to achieve coupling. In their application,
the evolution of hand system is driven by the arm system.
When the master system, i.e. arm state is perturbed, the slave
system, i.e. hand state is set back accordingly. [14] use a spe-
cific formulation to obtain generalizable policies, named Task
Parametrized Gaussian Mixture Model (TP-GMM). Task-
specific Cartesian frames are encoded in TP-GMM to adjust
the trajectory. They encode express the Cartesian frame of the
secondary manipulator in the primary manipulator’s frame to
realize coupling in a bimanual task. Bimanual manipulation
methods are related to our problem, however, they cannot
be applied directly on dexterous manipulation as they are
not limited to point contacts, i.e. the object can be tightly
grasped by manipulators.

In this work, we use a virtual springs approach for the
coordination between multiple fingers. It has been already
applied to grasping [2] and dexterous manipulation problems
([21], [9]). In our approach, we do not modify the DMP
formulation, but create a coupling at a lower level of control.
Virtual springs also add compliance to the system as shown
in [2]. This choice also allows us to learn object-centric
trajectories, hence the task-level control is independent of
the underlying robot hardware.

In addition, we use the real-time measurements of the
contact forces at the fingertips to improve grasp robustness
and to prevent the object from slipping. Similar approaches
in the literature have used tactile sensors to estimate the
contact force and to compute corrective control terms [12];
in other cases, tactile sensors or force sensors have been used
to detect [19] or to anticipate [20] a slip, before applying the
corrective control term. [8] is similar to our work as they use
virtual springs for grasping and use tactile information for
adapting the grasp. However, they adapt the grasp in a static
scenario when the grasp is predicted to be unstable, while
we continuously adapt the stiffness of the virtual springs in
real-time; this allows to keep a stable grasp of the object
while performing the in-hand manipulation.

III. METHODOLOGY

We combine DMPs and virtual springs at different levels.
While DMPs are used to learn the motion of the virtual
object in Cartesian-space, virtual springs are used to control
the fingertip forces to keep the object in grasp and create a
compliant coupling between fingers. Thus, we can say that
DMPs are located at a higher-level, i.e. task-level. Learned
DMPs can be used to reproduce trajectories for different task
conditions, such as the execution time, the initial and the goal
states. These task trajectories are transformed into fingertip
frame, then applied inverse kinematics to obtain joint-space
trajectories of all fingers. Finally, the joint-space trajecto-
ries are executed using PID control. Virtual springs appear
at this level, they generate the fingertip forces which are
transformed to joint-torques using the manipulator Jacobian.
Fingertip forces ensure contact with the object. Stiffness of
finger-object springs are updated continually to keep the
fingertip force magnitude in a boundary. Force magnitude
is monitored using sensors.



Demonstrations are recorded kinesthetically, that is, the
supervisor holds the robot physically and guides it to achieve
the task at hand as shown in Figure 3.a. We activate the
virtual springs to maintain the grasp while recording the
demonstration. This helps the supervisor to focus on the
object motion. Kinesthetic teaching eliminates the corre-
spondence problem [1], however, it also limits the dexterity
of the motion as it is difficult to move multiple fingers
simultaneously.

A learned action is stored as a set of DMPs. A DMP is
trained for each dimension of the motion. Since we learn
object trajectories in task space, a state contains the pose
of the object. The pose is encoded by 9 values: 3 for
the Cartesian position and 6 for the rotation matrix. We
store only the first two unit axes of the rotation matrix and
calculate the third axis as the cross product of others.

Learned DMPs can be reproduced with new conditions.
The first step of reproduction is the observation of the
initial state, that is, the virtual frame approximated using
the measured fingertip positions. We parametrize the DMPs
using the initial state, the desired goal state and the desired
action time. Then, we integrate the dynamical systems and
obtain a concrete object trajectory. In order to execute this
trajectory, we transform the whole trajectory to each of
fingertip frames, assuming that the contacts are intact during
the motion, i.e., no slip or roll occurs. This implies that the
initial transforms between the object frame and the contact
frames do not change. Finally, these trajectories are converted
to joint-space using inverse kinematics.

Reproduced joint-space trajectories are then used to gen-
erate the manipulation signal um using PID control. We
activate the virtual springs prior to the execution of a
trajectory. We assume that a stable and manipulable grasp
configuration is given. Virtual springs generate the grasp
signal ug to maintain the object in contact. Manipulation and
grasping signals are combined to obtain the control signal
uc = um + ug .

In the following subsections, we detail the underlying
methods: The VSF and the DMP. Then, we specify the
implementation details.

A. Virtual Spring Framework

We define virtual springs between fingers and the virtual
object frame as shown in Fig. 1.a. These springs generate
the grasping forces to hold the manipulated object. We also
use force feedback at the fingertips in order to adjust the
stiffness of springs during manipulation.

We organize the components of VSF into 3 subsections.
First, we define the virtual object frame which is used
in the subsequent sections. Then, we present the rules for
calculating grasping force generated by the springs. Finally,
adaptive stiffness control using force feedback is described.

1) Virtual Object Frame: We follow the previous ap-
proaches [9] and [16] in calculation of the virtual object pose.
We only modify the orientation formula in order to account
for more than 3 fingers. Approximate object position po and
orientation Ro are calculated using the fingertip positions pi:

po =
1

n

n∑
i=1

pi (1)

Ro = [rx, ry, rz] ∈ SO(3)

rx =
pn − p1

‖pn − p1‖

rz =
(pm − p1)× rx
‖(pm − p1)× rx‖

ry = rz × rx

We assume for n fingers, pn is the position of the thumb.
Positions of all fingers other than the index p1 and the thumb
are merged into pm =

∑n−1
i=2 pi/(n− 2).

2) Grasp Force: The manipulated object is kept in grip
by the forces generated by the virtual springs. The following
equation is used to calculate grasp force for finger i:

fgi = Kgi(‖∆pi‖ − Li)
∆pi
‖∆pi‖

(2)

∆pi = po − pi is the vector between positions of ith

fingertip and the virtual frame. Li is the rest length of the
spring connecting ith fingertip to the virtual frame origin.

We follow a simple strategy to determine rest lengths for
holding the object in grasp. The springs are activated when
the object is in contact with the fingertips. At the same
moment, Li is set as a proportion of the actual distance
between the virtual frame and the fingertip frame lk ‖∆pi‖.
We use lk = 0.9 in this paper since lower values distort the
grasp shape by dragging outer fingers closer to the center
and higher values result in weaker grasps.

The stiffness Kgi, i = 1, 2...n are given a common value
initially and adapted using the force feedback while the
object is in grasp. Stiffness adjustment is explained in the
following subsection.

We add these forces to the trajectory control command for
combining force and positions controls. In order to do this,
we calculate joint torques ug = {ugi, i = 1, 2...n} to achieve
desired Cartesian forces. The forces fgi are transformed to
joint-space torques using manipulator Jacobians Ji:

ugi = JT
i fgi (3)

3) Adaptive stiffness: Stiffness of a spring is updated
using the force data that is read from the corresponding
sensor. The robot is expected to have sensors that monitor
the forces applied on fingertips. Magnitudes of these forces
are controlled indirectly by adjusting the spring stiffness.

Since the movement of fingers is subject to disturbances,
finger contacts may break or apply too much force to disturb
the object pose. Adapting stiffness increases contact stability
during the manipulation.

Stiffness controller is a simple proportional controller
with fingertip force magnitude as the setpoint, current force
magnitude reading as the process variable and stiffness of the
corresponding spring as the control variable. Stiffness control
requires a proportional control gain Kk. In our experiments,



Fig. 2. Measured force magnitudes at three fingertips during the translation
action with (top image) and without adaptive stiffness control (bottom
image). The object is lost during the manipulation without adaptive stiffness.
The parameters are Kgi = 20,Kk = 0.001 for the adaptive, Kgi = 40
for the static cases. The thumb force is excluded as it has a larger scale.

a Kk = 0.001 value is used. We determined this gain
by experimentation as explained in Section IV-B.1. Higher
values of Kk may lead to unstable grasps while lower values
may fail to response disturbances effectively.

Please note that this is a soft gain that allows a rea-
sonable steady-state error. It gives fingertip forces some
independence to deviate from the target value in order to
achieve manipulation. Figure 2 shows the force magnitudes
of fingers during manipulation. It can be seen that there is a
considerable margin around the target value of 20.

B. DMP Formulation

DMP formulation consists of a set of differential equa-
tions which describe the evolution of a dynamical system.
Commonly, a point-attractor equation is used as the trans-
formation system to ensure convergence to a goal state [4].
A forcing term f is added to the system in order to shape
the trajectory of y. A phase variable x defines a temporal
relationship among the basis functions.

τ ÿ = αz(βz(g − y)− τ ẏ) + f (4)

f =

∑N
i=1 ψiwi∑N
i=1 ψi

x (5)

τ ẋ = −αxx (6)

In this one dimensional example, state variable y is
accelerated towards the goal g as a damped spring model.
αz and βz are gain constants. Timing of the whole system
can be scaled with the addition of a new parameter τ . The

forcing term f consists of Gaussian basis functions ψi. wi
denote the weight of ith basis function. The forcing term
can be shaped by modifying the weights which are usually
learned from demonstration. Learning is usually done using
function approximators [4].

This formulation of a DMP is just one out of many in the
literature. There exist different notations and modifications.
In this work, we use the Kulvicious’ DMP formulation [7]
that allows smoothly joining multiple primitives and also
inherits previous enhancements to preserve the shape of the
trajectory after scaling and rotating. We omit the primitive
joining property in this particular work. [7] modifies the
phase variable x and the Gaussian basis ψi as follows:

ẋ = −αx
exp(αx

∆t (τT − t))
(1 + exp(αx

∆t (τT − t)))2
(7)

ψi = exp(−(
t

τT
− ci)2)/2σ2

i (8)

This formulation uses x as only a weighting variable and
handles the phasing using time variables: current time t, total
time T and the sampling time ∆t. Modifications of ψi place
basis functions evenly along the time. Here, ci is the center
and σi is the variance of the ith kernel.

The DMP formulation is designed to preserve the shape
of the learned motion when the initial state y (at time 0), the
final state g or the time scaler τ are modified. Generalization
capabilities of DMPs are discussed in detail in [4] and [7].

In our work, a DMP is learned for each of the object frame
position and orientation dimensions. Hence, the DMPs rep-
resent the dynamic behavior of the object frame. Integration
of the DMP during run-time produces the reference object
frame Ht which was introduced earlier (Fig. 1.a).

C. Implementation Details

Our robot system consists of an Allegro hand mounted
on a UR5 6-DOF arm. Allegro hand has 4 fingers with 4
independently controllable joints each. Fingers of the robot
are equipped with Optoforce OMD 20-SE-40N sensors that
can measure 3-DOF force at their tips with 1 kHz frequency.

We implemented our method as robot operating system
(ROS) programs. The UR5 arm is controlled using MoveIt!
library1. The Allegro hand inverse kinematics and manipula-
tor Jacobian are calculated using Orocos KDL library2. We
use DMPBBO implementation of the DMP and function ap-
proximators [15]. We use Kulvicious’ DMP formulation [7]
and locally weighted regression function estimator provided
in this library. The codebase of our experiments is available
online3.

IV. EXPERIMENTS

The experiments are designed to evaluate the generaliza-
tion capabilities of our method. Ideally, our method should
preserve the properties of the DMP and the virtual spring

1moveit.ros.org
2www.orocos.org
3github.com/gokhansolak/lfd-experiments-iros2019



(a) (c)

(b) (d)
Fig. 3. (a) Kinesthetic demonstration of the translation action. (b) Allegro
hand, task reference frame and 3 objects used in the experiments. (c) Re-
production with different initial and goal positions. (d) Reproduction with
different object sizes. Blue arrows show desired translations.

frameworks. The DMP framework allows reproduction of
learned trajectories with different initial and goal states.
Virtual springs allow the robot to keep hold of objects of
unknown shape during manipulation which enables repro-
duction of the learned motions on objects with different sizes.

We also provide a comparison of static and adaptive
stiffness approaches for virtual springs. This comparison
is necessary to evaluate the effect of force feedback. The
translation action is used as the basis of comparison.

The next subsection contains the details of our experiment
setup. Then, we present the results of force feedback and
generalization experiments.

A. Experiment setup

The UR5 arm is only used to bring the hand in reach of
the object and pull it off the table after grasping. When the
hand is brought to the reach of the object, a human places
the fingertips of the robot on grasping points by intuition.
Then, the virtual springs are activated. The object is pulled
off the table, a hand manipulation action is executed and the
object is put back on the table. This procedure is common for
all experiments. In the experiments that use force feedback,
it is activated together with the springs. Force feedback is
inactive during kinesthetic teaching since the external forces
may introduce instability.

We carry all experiments for translation and rotation
actions that are learned once from demonstration. The trans-
lation action moves the object by −2.37 cm in x- axis. The
rotation action rotates the object by roll-pitch-yaw angles
55◦,17◦,56◦. The reference coordinate frame is shown in Fig.
3.b. The initial and final states of manipulation actions are
shown in Fig. 1.b.

Our experiments contain 3 rectangular prism objects of
different sizes as shown in Fig.3.b. The small one has 25×
150× 25, the medium one has 44× 150× 34 and the large
one has 60× 150× 45 mm dimensions. All objects are held

TABLE I
COMPARISON OF ADAPTIVE AND STATIC STIFFNESS APPROACHES

Stable Intact ep (cm) eR (rad)

Static
stiffness

20 3 1 0.525 0.542
40 1 0 0.239 0.1267
60 0 0 - -

Adaptive
stiffness

gain

0.0001 3 3 1.139 0.168
0.0005 3 3 0.464 0.270
0.001 3 3 0.360 0.087
0.005 0 0 - -

TABLE II
GENERALIZATION EXPERIMENTS

Total
Transform

Average
Final Error

Motion Change xp (cm) xR (rad) ep eR

Translate

Original -2.37 0.18 0.59 0.10
Goal to -1 -1.0 0 0.39 0.14
Initial to -2
Goal to 0 2.0 0 0.57 0.26

Initial to 1
Goal to -2 -3.0 0 0.41 0.16

Small object -2.37 0.18 0.47 0.29
Large object -2.37 0.18 0.86 0.35

Rotate Original 1.63 1.40 0.66 0.63

by their parallel surfaces lying along the yz- axes (Fig. 3.b).
We use the medium sized object for learning the translation
and rotation actions.

B. Results

1) Contribution of Force Feedback: We tested 3 cases of
static stiffness (Kg = 20, 40, 60) and 4 cases of stiffness
adaptation gains (Kk = 0.0001, 0.0005, 0.001, 0.005) with
the initial stiffness of 20. We repeated each case 3 times on
the translation action. The results are presented in Table I.
Stable is the count of trials that finished without dropping
the object, intact is the count of trials that maintained all
finger contacts. The average final state errors for position
ep and orientation eR are also given. The results show that
the force feedback improves the stability of the grasp and
decreases the final state error. We use the adaptive stiffness
with a gain of 0.001 in the rest of the experiments as it is
stable and yields the minimum average error.

2) Generalization Experiments: We apply 3 types of
generalization; object size, initial state and goal state. The
translation action is repeated for multiple task conditions.
The rotation action is tested as a proof of concept. Each case
is repeated 5 times with slight changes in contact positions.
Changes in contact positions are arbitrary results of human-
provided grasps.

We reproduce the learned motion with initial and goal
states which are different than that of the demonstrated
motion. In our problem specification, a state corresponds to
the pose of the object in the hand frame. For initial and goal
state modification, we test 3 different conditions. Considering
that the original translation is from 0 to −2.37 cm on the x-
axis, modified conditions are as follows: Scaling down the



translation by moving the goal to −1 cm on the x- axis,
reversing the direction by moving the initial state to −2 cm
and the goal to 0 cm (Fig. 3.c, left image), and shifting the
grasp pose by moving the initial state to 1 cm and the goal
to −2 cm (Fig. 3.c, right image).

Granted that a plausible grasp is given for an object, we
generalize the learned actions for similar objects. We apply
the translation action that is learned on the medium object to
the small and the large objects as shown in Figure 3.d. No
parameter tuning is done for DMPs, VSF nor force feedback.

Table II presents the average final state errors of 5 repe-
titions of each task. We present the position error ep in cm
and the orientation error eR in radians. These error values
are calculated by taking the absolute difference between the
desired final pose and the actual final pose of the virtual
frame. We also present the total transform expected to be
generated by an action both in position xp and orientation
xR as a reference.

As it is seen on Table II, it is possible to generalize a
learned hand manipulation action to new conditions. The er-
ror values may increase slightly in some cases, but the change
is insignificant. Our method can transfer the generalization
capabilities of DMPs to dexterous manipulation problem
with the virtual springs and force feedback enhancements.

V. CONCLUSION

We can learn and generalize dexterous hand manipula-
tion skills by a combination of DMPs, the VSF and force
feedback. Our method answers the trajectory execution and
maintaining stable grasp problems simultaneously.

We show that our method can achieve dexterous ma-
nipulation of objects without having access to the object
model. However, the control algorithm would benefit from
more information about the object. We used force sensors
to increase the stability of a grasp, however, these sensors
require the assumption that a contact point is limited to the
fingertip. More information about contact can be retrieved
using distributed tactile sensors [17]. A possible future work
is to use such sensors to infer useful information about an
object such as its weight, its center of mass and the surface
normals at the contact points. This information can be used
to regulate the fingertip forces in order to increase the contact
stability and generalize to new objects with various weights
and mass distributions.

We show that the VSF helps generalization of object size
on the objects with a prism shape. However, its robustness
with irregularly shaped objects needs further validation.

Kinesthetic teaching is a practical solution to transfer
human skills to the robot. However, this system may benefit
from different teaching methods such as data gloves or visual
tracking devices in order to learn more complex manipulation
trajectories.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and autonomous systems,
57(5):469–483, 2009.

[2] Z. Chen, C. Ott, and N. Y. Lii. A compliant multi-finger grasp
approach control strategy based on the virtual spring framework. In
International Conference on Intelligent Robotics and Applications,
pages 381–395. Springer, 2015.

[3] A. Gams, B. Nemec, A. J. Ijspeert, and A. Ude. Coupling movement
primitives: Interaction with the environment and bimanual tasks. IEEE
Trans. Robotics, 30(4):816–830, 2014.

[4] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal.
Dynamical movement primitives: learning attractor models for motor
behaviors. Neural computation, 25(2):328–373, 2013.

[5] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear
dynamical systems with gaussian mixture models. IEEE Transactions
on Robotics, 27(5):943–957, 2011.

[6] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in
robotics: A survey. The International Journal of Robotics Research,
32(11):1238–1274, 2013.

[7] T. Kulvicius, K. Ning, M. Tamosiunaite, and F. Worgötter. Joining
movement sequences: Modified dynamic movement primitives for
robotics applications exemplified on handwriting. IEEE Transactions
on Robotics, 28(1):145–157, 2012.

[8] M. Li, Y. Bekiroglu, D. Kragic, and A. Billard. Learning of grasp
adaptation through experience and tactile sensing. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
3339–3346. Ieee, 2014.

[9] M. Li, H. Yin, K. Tahara, and A. Billard. Learning object-level
impedance control for robust grasping and dexterous manipulation. In
Robotics and Automation (ICRA), 2014 IEEE International Conference
on, pages 6784–6791. IEEE, 2014.

[10] D. Nguyen-Tuong and J. Peters. Model learning for robot control: a
survey. Cognitive Processing, 12(4):319–340, Nov 2011.

[11] A. Rajeswaran, V. Kumar, A. Gupta, J. Schulman, E. Todorov,
and S. Levine. Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations. arXiv preprint
arXiv:1709.10087, 2017.

[12] M. Regoli, U. Pattacini, G. Metta, and L. Natale. Hierarchical
grasp controller using tactile feedback. In IEEE-RAS International
Conference on Humanoid Robots (Humanoids), pages 387–394, 2016.

[13] A. Shukla and A. Billard. Coupled dynamical system based hand-arm
grasp planning under real-time perturbations. Robotics: Science and
Systems VII, page 313, 2012.

[14] J. Silvério, L. Rozo, S. Calinon, and D. G. Caldwell. Learning biman-
ual end-effector poses from demonstrations using task-parameterized
dynamical systems. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 464–470. IEEE, 2015.

[15] F. Stulp. Dmpbbo–a c++ library for black-box optimization of
dynamical movement primitives, 2014.

[16] K. Tahara, S. Arimoto, and M. Yoshida. Dynamic object manipulation
using a virtual frame by a triple soft-fingered robotic hand. In Robotics
and Automation (ICRA), 2010 IEEE International Conference on,
pages 4322–4327. IEEE, 2010.

[17] T. P. Tomo, A. Schmitz, W. K. Wong, H. Kristanto, S. Somlor,
J. Hwang, L. Jamone, and S. Sugano. Covering a robot fingertip with
uskin: A soft electronic skin with distributed 3-axis force sensitive
elements for robot hands. IEEE Robotics and Automation Letters,
3(1):124–131, 2017.

[18] J. Umlauft, D. Sieber, and S. Hirche. Dynamic movement primitives
for cooperative manipulation and synchronized motions. In Robotics
and Automation (ICRA), 2014 IEEE International Conference on,
pages 766–771. IEEE, 2014.

[19] K. Van Wyk and J. Falco. Calibration and analysis of tactile sensors
as slip detectors. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 2744–2751, 2018.

[20] F. Veiga, J. Peters, and T. Hermans. Grip stabilization of novel objects
using slip prediction. IEEE Transactions on Haptics, 11(4):531–542,
2018.

[21] T. Wimböck, C. Ott, A. Albu-Schäffer, and G. Hirzinger. Comparison
of object-level grasp controllers for dynamic dexterous manipulation.
The International Journal of Robotics Research, 31(1):3–23, 2012.


