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Abstract We aim to improve upon the exploration

of the general-purpose random walk Metropolis algo-

rithm when the target has non-convex support A ⊂ Rd,
by reusing proposals in Ac which would otherwise be

rejected. The algorithm is Metropolis-class and under

standard conditions the chain satisfies a strong law of

large numbers and central limit theorem. Theoretical

and numerical evidence of improved performance rela-

tive to random walk Metropolis are provided. Issues of

implementation are discussed and numerical examples,

including applications to global optimisation and rare

event sampling, are presented.
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1 Introduction

A key challenge for Markov chain Monte Carlo (MCMC)

algorithms is the balance between global “exploration”

and local “exploitation”. In this paper we present the
skipping sampler, a general-purpose and easily imple-

mented Metropolis-class algorithm which is capable of
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improving exploration of targets π with nontrivial sup-

port A, by reusing proposals lying outside A. For this to

be useful, we make the following standing assumption:

Assumption 1. π is a probability density function on

Rd whose support

A = supp(π) := {x ∈ Rd : π(x) > 0}

satisfies Leb(Ac) > 0, where Ac is the complement of A

and Leb denotes Lebesgue measure on Rd.

Such targets can arise for example in sampling from the

superlevel sets of a density in the hybrid slice sampler

[23], or when sampling from rare events.

Proposals in Ac would be automatically rejected by

standard algorithms such as random walk Metropolis

(RWM), which exploits only local proposals for the next
state of the chain. If a proposal lies in Ac, the skipping

sampler uses this information by attempting to cross

Ac in a sequence of linear steps, much as a flat stone

can jump repeatedly across the surface of water, and

offer a relevant proposal. Since this can be seen as a

tunnelling effect through the zero-mass region Ac, it is

advantageous when A is non-convex and, in particular,

disconnected. The resulting Markov chain satisfies a

strong law of large numbers and central limit theorem

under essentially the same conditions as for RWM, to

which we provide theoretical and numerical performance
comparisons.

To accelerate global exploration of the state space

in MCMC algorithms, several approaches have by now

been developed including tempering, Hamiltonian Monte

Carlo and piecewise deterministic methods (see [28] for a

recent review). However these methods are best suited to

target densities with connected support, since the chain

cannot cross regions where the target has zero density.
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A disconnected support would thus imply reducibility

of the chain and its failure to converge to the target.

While RWM can be applied to targets with regions

of zero density, its balance between exploration and

exploitation can be problematic. If any state in Ac is

proposed it is discarded and the chain does not progress.

When A is non-convex, in particular, examples may be

constructed where exploration is slow even when RWM
is well tuned, making the chain sensitive to its initial

state. This is illustrated in Figure 1, where red dots show

the trace of a tuned RWM applied to a target with non-

convex support, with four different initial states of the

chain (the blue traces illustrate the increased exploration

achieved by the skipping sampler). One solution is to

use knowledge of the target to design a more advanced

proposal, such as those reviewed in [28]. However this

approach is unavailable if the target density is unknown,

or is known but insufficiently regular. In this case, a

general-purpose method is instead required.

Theorem 2 establishes that the performance of the

skipping sampler is at least as good as that of RWM

according to the Peskun ordering. However the strengths

of the proposed method lie primarily in applications

to difficult low-dimensional problems. Conversely, in

high dimensional problems the method generally offers

similar performance to RWM. The aim of this paper

is to present the method and illustrate its benefits via

numerical examples, rather than to study any particular

application exhaustively.

Although it is not random walk-based, the skipping

sampler is Metropolis class. The symmetry of the skip-

ping proposal can be seen intuitively, provided that the

direction of the first proposal is chosen symmetrically

and the sequence of jump lengths has the same distribu-

tion when reversed. Thus although the proposal density

typically does not have a convenient closed form, it need

not be evaluated in order to access the Metropolis ac-
ceptance probabilities. Another advantage is that the

sampler is general-purpose, in the sense that no knowl-

edge is required of the target density beyond the ability

to evaluate it pointwise. In particular, it is not necessary

to know the target’s support a priori.

Beyond the context of random sampling, our work

has applications to probabilistic methods for determin-

istic non-convex optimisation such as multistart [7,16]

and basin-hopping [14,42]. These methods combine de-

terministic local search, such as given by a gradient

method, with random perturbations or re-initialisations

which may be performed using the skipping sampler

to improve exploration. Section 5 provides numerical

examples of these applications.

1.1 Related work

Many methods for accelerating the exploration of MCMC

algorithms use prior knowledge of the target. For exam-

ple, known mode locations may be used to design global

moves for the sampler [1,26,12,34,35,40], or moves may

be guided by the known derivatives of a differentiable

target density [12,37].

Some exceptions are methods that generate mul-

tiple proposals, such as Multipoint MCMC [27] and

Multiple-try Metropolis [15] which, like the skipping

sampler, do not require additional information about
the target. A fixed number of potentially correlated

trial points are generated and one is selected at ran-

dom, using a weight function which may be chosen to

encourage exploration. Its random-grid implementation,

in particular, has similarities with the skipping sam-

pler. However, instead of fixing the number of draws,

our proposal attempts to continue projecting further

sequentially until it reaches A. Another advantage of our
method is that it is Metropolis class, which simplifies

both implementation and theoretical analysis.

During the review process our attention was brought

to the very interesting sequential proposals of [24], which

also introduces a Metropolis-class sampler that mod-

ifies the proposal sequentially. In the wider class of

algorithms introduced there, it is possible to recognise

methods close in spirit to the skipping sampler. When

skipping is applied to the hybrid slice sampler as in

Section 5.2, for example, the resulting algorithm is a

particular instance of the sequential proposal. While

in [24] the authors are motivated by the efficient imple-

mentation of Hamiltonian Monte Carlo, our own moti-
vation is the efficient sampling of rare events. Together,

these studies are suggestive of further potential to use

sequences of proposals to accelerate MCMC methods in

a range of situations, for instance within the framework

introduced in [2].

Like the hit-and-run sampler [36] and related algo-

rithms (see Section 6.3 of [4]), the skipping sampler

splits a Markovian transition into the random genera-

tion of a direction followed by a move in that direction.

When the target conditioned on any line in the space

is available in closed form, the hit-and-run algorithm

is of course preferable, for the reasons provided in [32].

Otherwise (which is more typical in applications), the

skipping sampler offers a simple alternative and has

the potential to increase exploration in the case of a

non-convex support.

While also designed for targets with non-convex sup-

port, the ghost sampler introduced by the present au-

thors in [22] is not general-purpose since it uses knowl-
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(a) X0 = (0, 3.5) (b) X0 = (2,−4)

(c) X0 = (−4,−4) (d) X0 = (−5, 2)

Fig. 1 Traces of the proposed skipping sampler (blue) and RWM algorithm (red) when the target has disconnected support.
Both samplers are started at the same initial point X0 and use the same underlying Gaussian proposal, whose standard
deviation is tuned for a RWM acceptance ratio of 25%. The RWM typically localises around its initial state.

edge of the geometry of the set A, assuming it is poly-

hedral.

The rest of the paper is structured as follows. We

introduce the skipping sampler in Section 2 and state our

main results in Section 3. Implementation and extensions

are discussed in Section 4. Numerical applications to slice

sampling and rare event sampling are given in Section 5,

together with an application to global optimisation.

Section 6 is devoted to the proof of the main results.

2 Skipping sampler

In this section we introduce the skipping sampler on

Rd, which is a modification of the RWM algorithm [18].

It is Metropolis-class although, unlike RWM, does not

perform a random walk.

Assumption 2. Let q : Rd → R+∪{0} be a symmetric

(q(x) = q(−x)) continuous probability density function

with q(0) > 0. We refer to q as the underlying proposal

density.

Recall that given the state Xn of the chain, the

RWM proposes a state Yn+1 sampled from the density

y 7→ q(y −Xn) and accepts it as the next state Xn+1

with probability

α(Xn, Yn+1) :=

{
min

{
1, π(Yn+1)

π(Xn)

}
if π(Xn) 6= 0,

1 otherwise,

(1)

else it is rejected by setting Xn+1 = Xn. Here π is the

target density, although we do not take care to distin-

guish between π and the corresponding distribution as

it will not cause confusion. For convenience we use the

common shorthand MH(π, q) (after the more general

Metropolis-Hastings algorithm, see [6]) to refer to the

Metropolis-class algorithm with target π and proposal

q.

Algorithm 1 presents the skipping sampler, which

aims to endow RWM with an improved ability to cross

regions in which the target has zero density. Beginning

with a RWM proposal Yn+1, it continues jumping in a

linear trajectory and accepts or rejects the first state

of nonzero target density to be encountered. Thus any

RWM proposal Yn+1 ∈ Ac, which would be rejected by

MH(π, q), is instead reused by adding jumps of random

size in the direction Yn+1−Xn until either A is entered,

or skipping is halted.

Algorithm 1 can be interpreted as follows. The halt-

ing index K is an independent random variable with
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Algorithm 1: Skipping sampler (n-th itera-

tion)

Input :The n-th sample Xn ∈ Rd

1 Set X := Xn and Z0 = X;
2 Generate the initial proposal Y distributed according

to the density u 7→ q(u−X);
3 Calculate the direction

Φ =
(Y −X)

‖Y −X‖
;

4 Generate an independent random halting index
K ∼ K;

5 Set k = 1 and Z1 := Y ;
6 while Zk ∈ Ac and k < K do
7 Generate an independent distance increment R

distributed as ‖Y −X‖ given Φ;
8 Set Zk+1 = Zk + ΦR;
9 Increase k by one;

10 end
11 Set Z := Zk;
12 Evaluate the acceptance probability:

α(X,Z) =

{
min

(
1, π(Z)

π(X)

)
if π(X) 6= 0,

1, otherwise;
(2)

Generate a uniform random variable U on (0, 1);
13 if U ≤ α(X,Z) then
14 Xn+1 = Z;
15 else
16 Xn+1 = X;
17 end
18 return Xn+1.

distribution K on Z>0 ∪ {∞}. If K = 1 then Y , the

usual RWM proposal, is taken as the proposal. However

if K > 1, the proposal is constructed using the skipping

chain {Zk}k≥0 on Rd defined by Z0 := X, with X = Xn

being the current state of the chain, and the update rule

Zk+1 := Zk + ΦRk+1, k ≥ 0 , (3)

where ‖ · ‖ denotes the Euclidean norm, Φ = (Y −
X)/‖Y −X‖, R1 = ‖Y −X‖, and the distance incre-

ments {Rk}k≥2 are independent draws from the distri-

bution of the radial part ‖Y −X‖ conditional on the

angular part Φ.

Let TA be the first entry time of the skipping chain into
A:

TA := min{k ≥ 1 : Zk ∈ A}, (4)

with min ∅ :=∞. Writing TA ∧K for the smaller of the

two indices TA and K, we also require:

Assumption 3. The support A = supp(π) and distri-

bution K are such that E[TA ∧K] < ∞ .

Relevant considerations for the choice of K and q

are discussed in Section 4. Note that almost surely we

have both Y 6= x (since q is a density) and TA ∧K <∞
(Assumption 3), so the skipping proposal Z := ZTA∧K
output by Algorithm 1 is well defined.

Proposition 1 The following statements hold:

(i) Algorithm 1 is a symmetric Metropolis-class al-

gorithm on the domain A. That is, there exists a

transition density qK (which depends on the halt-
ing index distribution K) satisfying qK(x, z) =

qK(z, x) for all x, z ∈ A, such that Algorithm 1

is MH(π, qK).

(ii) The inequality qK(x, z) ≥ q(z − x) holds for every

x, z ∈ A.

Proof. (i) We now make rigorous the intuitive argu-

ment which was provided earlier for the symmetry of

the skipping proposal. Conditional on the direction Φ,

the skipping chain (3) is one-dimensional. We therefore

analyse this one-dimensional chain, before integrating

over Φ to obtain the unconditional transition density.

Consider transitions of the skipping chain (3) be-

tween the states x and z in exactly k ∈ Z>0 steps. The

intermediate states z1, . . . , zk−1 satisfy zi ∈ Ac for i =
1, . . . , k−1. The (sub-Markovian) density z 7→ ξk(x, z) of

these transitions is given by the Chapman-Kolmogorov
equation and the density ξ(r) of the distance incre-

ment R, which can in d-dimensional spherical coordi-

nates be seen to be proportional to q(rΦ)rd−1. Since

the distance increments are i.i.d. and have symmetric

densities (q(−rΦ) = q(rΦ)), simple manipulations of the
Chapman-Kolmogorov integral confirm that it is un-

changed when the start and end point, the order of the

jumps, and the direction of each jump are all reversed.

This establishes that the density ξk is symmetric.

Next note that Assumption 3 implies the decompo-

sition

{Z = z} =

∞⋃
k=1

{Z = z, TA ≤ k, K = k}

∪ {Z = z, TA <∞, K =∞}

∪
∞⋃
k=1

{Z = z, TA > k, K = k} .

Hence, Z given x and Φ has a (sub-Markovian) density

ξK(x, z) =

∞∑
k=1

P[K = k]
∑
j≤k

ξj(x, z)1A(z)

+ P[K =∞]

∞∑
j=1

ξj(x, z)1A(z)

+

∞∑
k=1

P[K = k]ξk(x, z)1Ac(z) .
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When z ∈ A the above can be simplified to

ξK(x, z) =

∞∑
k=1

ξk(x, z)P[K ≥ k] . (5)

Using d-dimensional spherical coordinates, the un-

conditional transition density is then the product of the

density of Φ with the transition density conditional on

Φ:

qK(x,z) = ‖z−x‖1−dξK(x,z) ·
∫ ∞
0

q

(
z−x
‖z−x‖

r

)
rd−1dr .

As the proposal q and the densities ξk (for all k) are

symmetric, so is ξK and so is the skipping proposal qK,

whenever x, z ∈ A.
Since any proposal Z ∈ Ac is almost surely rejected

if x ∈ A, Algorithm 1 is a well defined Metropolis-class

algorithm on A, i.e. it is equivalent to MH(π, qK) on the

domain A.

(ii) As noted above, if K = 1 then Algorithm 1 re-

duces to MH(π, q). From (5) we therefore have

ξK(x, z) =

∞∑
k=1

ξk(x, z)P[K ≥ k] ≥ ξ1(x, z) · 1

which again translates to the desired statement about

proposal densities.

3 Theoretical results

For completeness of the discussion below we provide the

following definitions, further details of which may be

found in [19]. A Markov chain X0, X1 . . . is π-irreducible
if for every x ∈ Rd and every D ⊂ Rd with π(D) > 0

we have

Px

 ⋃
n∈Z>0

{Xn ∈ D}

 > 0 .

Further, if Px
[⋃

n∈Z>0
{Xn ∈ D}

]
= 1 for every x ∈ B

and every D ⊂ B with π(D) > 0 we say that X0, X1, . . .

is Harris recurrent on B. A set B is absorbing for a

Markov chain with transition kernel P if P (x,B) = 1

holds for all x ∈ B. Note that an absorbing set B gives

rise to a Markov chain evolving on B whose transi-

tion kernel is simply P restricted to B (see [19, Theo-

rem 4.2.4]).

It is clear from (1) that if x ∈ supp(π) then

P (x, supp(π)c) = 0,

so that supp(π) is an absorbing set for the Metropolis

algorithm with target π, and is a natural space of reali-

sations of the chain. In what follows we therefore always

consider the chain to evolve on the set A.

Regarding initialisation of the skipping sampler, note

from (2) that if X0 /∈ supp(π) in Algorithm 1 then Z

is automatically accepted. In this case the skipping

sampler first enters supp(π) at a random step N and,

for 0 ≤ n ≤ N − 2, we have Xn+1 = ZK – that is, the

maximum allowed number of skips is performed at each

stage. This implies that the skipping procedure is also

capable of improving exploration in this initialisation

stage. Theorem 1 assumes that π(X0) > 0, or that

initialisation has already been performed. We have

Theorem 1 (SLLN) Suppose that MH(π, q) restricted

to supp(π) is π-irreducible. Then MH(π, qK) restricted

to A = supp(π) is also π-irreducible and Harris recur-

rent. Moreover, the Strong Law of Large Numbers holds:

if {Xi}i∈Z>0
is the skipping sampler (generated by Al-

gorithm 1) initiated at X0 = x ∈ A, then for every

π-integrable function f we have

lim
n→∞

1

n

n∑
i=0

f(Xi)
a.s.
=

∫
Rd
f(x)π(x)dx .

The conditions of Theorem 1, which are mild, are dis-

cussed in Section 4. There are also cases where MH(π, q)

is not irreducible but MH(π, qK) is, for instance when

the dimension d = 1, q is a random walk proposal with

finite support, and Ac is an interval too wide to be

crossed by a single random walk step, but which can be

skipped across.

The statement of the second main result uses some

additional notation (for further details see [29]). Con-

sider the Hilbert space L2(π) of square-integrable func-

tions with respect to π, equipped with the inner product

(for f, g ∈ L2(π))

〈f, g〉 :=
∫
Rd
f(x)g(x)π(x)dx =

∫
A

f(x)g(x)π(x)dx.

Since all Metropolis-class chains are time reversible, the

Markov kernel of MH(π, q) defines a bounded self-adjoint

linear operator P on L2(π), defined for f ∈ L2(π) via

Pf(x) :=

∫
Rd
f(y)α(x, y)q(y − x)dy

+

(
1−

∫
Rd
α(x, y)q(y − x)dy

)
f(x).

If P is irreducible then its operator norm is ‖P‖ = 1,

with f ≡ 1 as the unique eigenfunction for the eigenvalue

1, and the spectral gap of P is defined to be λ :=

1− sup{f : ‖f‖=1, π(f)=0}〈Pf, f〉.

Theorem 2 Under the conditions of Theorem 1, de-

noting respectively by P and PK the Markov kernels of

MH(π, q) and MH(π, qK) restricted to A = supp(π), the

following statements hold:
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i) For every f ∈ L2(π) we have 〈PKf, f〉 ≤ 〈Pf, f〉;
ii) If MH(π, q) has a non-zero spectral gap λ, then

MH(π, qK) also has a non-zero spectral gap λK that

satisfies λK ≥ λ;
iii) If the central limit theorem (CLT) holds for MH(π, q)

and function f with asymptotic variance σ2(f), that

is

√
n

(
1

n

n∑
i=0

f(Xi)− π(f)

)
−→ N(0, σ2(f))

in distribution, then the CLT also holds for MH(π, qK)

and the same function f , with asymptotic variance
σ2
K(f) satisfying σ

2
K(f) ≤ σ2(f).

The inequality at point (i) of Theorem 2 gives a use-

ful way to compare performance and mixing of different

Markov kernels. Indeed, one can consider the Peskun-

Tierney partial ordering (see [25] and [20,21,39]) on the

family of bounded self-adjoint linear operators on L2(π)

by setting P1 ≥ P2 whenever 〈P1f, f〉 ≤ 〈P2f, f〉 holds
for all f ∈ L2(π).

Intuitively, point (ii) of Theorem 2 means that the

skipping sampler has the potential to mix faster than

the classical random walk Metropolis, i.e., converge to

stationarity in fewer steps. As explained in Section 2.1

of [32] the speed of convergence to stationarity can also

be measured by other analytical quantities of the form

inff∈M〈(I − P )f, f〉 for some subsetM of L2(π); it is

straightforward to modify Theorem 2 accordingly. In

the case of the spectral gap presented above we have

M = {f ∈ L2(π) : π(f) = 0 and π(f2) = 1}. It
follows from point (iii) that in stationarity, the samples

produced by the skipping sampler are at least as good

for estimating π(f) as those generated by RWM.

These theoretical benefits are balanced by increased

computational complexity. The exploration added by

the skipping sampler relative to RWM carries a compu-

tational cost, and the tradeoff between cost and benefit

depends on the target density. In particular, this tradeoff
could become disadvantageous if evaluating the target

density (and thus assessing the event {Zk ∈ A}) in Al-

gorithm 1 carries high cost. In the absence of global

knowledge of the target, a pragmatic approach would

be to run both methods and try to judge between their

output. In Section 5.2, for example, we have compared

the mean squared error of the coordinate projections

against the increased number of evaluations of the target

density. As noted in Section 4.1, the evaluations of the

target density can also be vectorised with the aim of

decreasing computation time.

Sufficient conditions for parts (ii) and (iii) of Theo-

rem 2 have been studied in the literature. An aperiodic

reversible Markov chain has non-zero spectral gap if

and only if it is geometrically ergodic (see [29]), a prop-

erty which is explored in [9,17,31] for random walk

Metropolis algorithms. The CLT holds essentially for all

f ∈ L2(π) under the assumption of geometric ergodicity

(see [30, Section 5]), but also holds more generally (see

[10]).

4 Implementation and extensions

Implementing Algorithm 1 involves two choices, an un-

derlying proposal density q and a halting index K, which
are discussed respectively in Sections 4.1 and 4.2. An

alternative to Algorithm 1 using a ‘doubling trick’ for

greater computational efficiency is given in Section 4.3.

4.1 Choice of q

In addition to Assumptions 2–3, to ensure that the
SLLN holds (Theorem 1) we require MH(π, q) to be

π-irreducible. This holds, for example, when π is contin-

uous and bounded and q is everywhere positive. More

generally, MH(π, q) is also irreducible if the interior of

A is (non-empty) connected and there exist δ, ε > 0

such that q(x) > ε > 0 whenever ‖x‖ < δ (see [38,

Section 2.3.2]).

Since skipping can be seen as a way of endowing

RWM with an improved ability to cross regions of zero

density, a minimal approach would be to tune q as

if it were to be employed in the RWM algorithm, for

example achieving an acceptance ratio around 25% when

q is employed in RWM. However we have observed

empirically that a lower acceptance ratio, for example

15%, may further stimulate skipping.

4.1.1 Computational aspects

For sampling of the i.i.d. radial increments R1, R2, . . . ,

it is desirable to choose q such that samples may be

drawn efficiently from

‖Y −X‖ conditional on Φ =
Y −X
‖Y −X‖

= ϕ, (6)

for all ϕ ∈ Sd−1. Convenient cases include when q is

radially symmetric so that conditioning is not required,

or when q ∼ N (0, Σ) for some d× d covariance matrix

Σ, so that, given direction ϕ, each increment Ri follows

a generalised gamma distribution with density

(ϕTΣ−1ϕ)d/2

2d/2−1Γ (d2 )
rd−1 e−(ϕ

TΣ−1ϕ) r
2

2 .

Alternatively one may specify q indirectly by choosing

the unconditional distribution of Φ and the conditional
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distribution of R := ‖Y − X‖ given Φ, then checking

that the conditions of Theorem 1 are satisfied.

If sampling from the distribution (6) is computation-

ally expensive, however, the sampler may be modified

by setting all Rk equal to R, so that only a single sam-
ple is required to generate a proposal and the skipping

chain keeps moving in the direction Φ with jumps of

equal size. While this modification would not change

the mean distance ‖Zm −Z0‖ =
∑m
i=1Ri covered by m

steps of the skipping chain, it would increase its variance

to m2Var(R).

4.1.2 Anisotropy

If A has a known anisotropy, the angular part of the

underlying proposal may be chosen to favour certain di-

rections in comparison to others, for example by tailoring

the covariance matrix in a normal proposal q ∼ N (0, Σ).

This may be useful in high dimensional problems where

otherwise, with high probability, the skipping chain may

fail to re-enter A. It is not difficult to show that if the

distance increment retains the properties used in the

proof of Proposition 1, then the acceptance ratio (1)

depends additionally on the ratio of the angular den-

sities. Denoting by qϕ(x, φ) the density of direction φ

at the location x, for Φ = Yn+1−Xn
‖Yn+1−Xn‖ the acceptance

probability then equals

α(Xn, Yn+1) = min

(
1,
π(Yn+1)qϕ(Yn+1,−Φ)
π(Xn)qϕ(Xn, Φ)

)
.

Although beyond the scope of this paper, in the

absence of geometric knowledge of A other information,

for instance the history of the chain, may be used in an

online fashion to make the angular part of the underly-

ing proposal density dependent on the chain’s current

location.

4.2 Choice of K

The simplest choice is a nonrandom halting index K ≡
ks ∈ Z>1. Under this choice the ks skips can be vec-

torised and stored in memory along with the correspond-

ing states Zi for i = 1, . . . ks, and the evaluations of

whether Zi ∈ A for i = 1, . . . ks can then be performed

in parallel. This increases computational speed at the

expense of a ks-times higher memory requirement plus

the coordination cost of parallelisation, and the balance

between benefit and cost is not explored here. However

if the additional computational costs are low, and if the

costs of evaluating whether Zi ∈ A are bounded, then

the skipping sampler may be run at speed approaching

that of RWM.

There is of course interplay between the choices for K
and q. For example, if an upper bound D is available for

the diameter of Ac then we may use ks =
D

supϕ σϕ
, where

σϕ denotes the standard deviation of the conditional

jump density in the direction ϕ. In the anisotropic case

of Section 4.1.2, mutatis mutandis the halting index may

also be made direction-dependent using a parametric

family of constants (or distributions) Kϕ, ϕ ∈ Sd−1. To
preserve symmetry it is then necessary that Kϕ = K−ϕ
for each ϕ ∈ Sd−1. Similar tradeoffs between K and q

may also be made when K is chosen to be random with

finite mean.

If skipping cannot be efficiently parallelised as sug-

gested above then, clearly, large realisations of K can

result in high computational costs if A is not re-entered.

In the extreme, bearing in mind Assumption 3, an un-

bounded distribution K should only be taken if Ac is

known to be bounded. If K cannot be chosen based on

a known diameter D as above, then the absolute length

of skipping trajectories may alternatively be controlled

probabilistically using a large deviations estimate, as

follows. If the conditional jump distribution is R then

the probability that a distance mr can be traversed in

m skips is approximately (see for example [3]):

P

(
m∑
k=1

Ri ≥ mr

)
≈ exp(−mI(r)),

where I(r) = supθ>0[θr − λ(θ)] is the Legendre-Fenchel

transform of R, provided that R has finite logarithmic

moment generating function, i.e. λ(θ) = lnE[exp(θR)] <
∞ for all θ ∈ R.

Based on the above, if K is random and mass is to be

placed on large values of K then this could lead to large

computational costs. In this case the doubling trick of

Section 4.3 may be applied.

4.3 The doubling trick

For clarity of exposition we first assume that Ac is

convex. From (3), the state Zk of the skipping chain

is the partial sum x + Φ
∑k
i=1Ri, where the Ri are

i.i.d. and R1 = ‖Y − x‖. Recalling (4), define

TA := min{k ≥ 1 : Zk ∈ A}, (7)

SA := min{k ≥ 1 : Z2k−1 ∈ A}. (8)

The convexity of Ac induces an ordering on the skipping

chain, in the sense that

Zk ∈ Ac, if k < TA, (9)

Zk ∈ A, if k ≥ TA. (10)
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If TA < K then Algorithm 1 evaluates TA by sampling

the partial sums {Zk}k≥1 sequentially. The following

alternative implementation evaluates TA significantly

faster, in order log2 TA steps. It requires that for any

k, the sum
∑k
i=1Ri may be sampled directly, both

unconditionally and given the value of
∑2k
i=1Ri, at a

comparable cost to sampling R1. This is possible, for

example, when the Ri are exponentially distributed.

The idea is to search forward through the exponential

subsequence Z1, Z3, Z7 . . . Z2k−1, . . . until k = k̃ = SA
(so that Z2k̃−1 ∈ A), and then to perform a logarithmic

search [41] of the sequence Z2k̃−1−1, . . . , Z2k̃−1 to iden-

tify TA. That is, sample Zm for m = 2k̃−1−1+2k̃−2 and

then, depending on whether or not it lies in A, reduce the

search to either the sequence Z2k̃−1−1, . . . , Z2k̃−1−1+2k̃−2

or the sequence Z2k̃−1−1+2k̃−2 , . . . , Z2k̃−1, repeating un-

til TA is found.

For generalisations of this trick, note first that the

doubling trick can be used only to accelerate skipping

over a convex subset B ⊂ Ac, so that we only add a

single distance increment at a time while the skipping

chain is in Ac \B, and use the doubling trick while in

B. The idea may then be applied to a maximal convex

subset of Ac, provided that such a subset is known.

Then note that if B1, . . . , BnB are all convex subsets

of Ac, the doubling trick may be used to traverse each

convex subset Bi in turn, if needed. Thus the idea may

be applied to an inner approximation of Ac by a union

of balls, for example.

5 Numerical examples

In order to motivate some applications, Section 5.1 be-

gins with a general discussion of targets for which the

skipping sampler offers an advantage over RWM. The

numerical example of Section 5.3, in the context of rare

event sampling, illustrates an improvement in explo-

ration achieved by our method. Then, in an application

to optimisation, Section 5.4 provides quantitative exam-

ples of performance improvements obtained when the

skipping sampler is used as a subroutine in probabilistic

methods for non-convex optimisation. The Python code

used to create all these numerical examples and figures

is available at [43].

5.1 General considerations

Note firstly that if the initial proposal Y lies in Ac then

it would be rejected by the RWM algorithm. Instead,

in Algorithm 1 it is reused. Thus skipping offers an

advantage over RWM if the initial proposal Y regularly

lies in Ac. Secondly, when Y ∈ Ac the skipping proposal

Z of Algorithm 1 needs regularly to be accepted (which

in turn necessitates Z ∈ A). By construction (since Z

lies beyond Y on the straight line between the current

state Xn ∈ A of the chain and Y ∈ Ac), this requires

the support A of the target to be non-convex.

The dimension d also plays a key role. Considering

an example where the support A is the union of two

disjoint balls in Rd, by increasing d we reduce the prob-

ability that Z ∈ A. Hence, the benefit of skipping is

greatest in low dimensions and then gradually decreases.

Nevertheless, in Section 5.3 we show that in special cases

the sampler can be beneficial even in high dimensions.

We also note the following tradeoff. Due to the in-
creased exploration offered by the skipping sampler, the

density encountered upon landing at Z ∈ A after cross-

ing Ac may be significantly different from that at the

current state Xn of the Markov chain. In particular,

if the target density does not vary slowly then the ac-

ceptance ratio α(X,Z) may be so low that such skips

are not regularly accepted. Although this tradeoff is

problem dependent, it does not apply in the rare event

example of Section 5.3.

5.2 Hybrid Slice Sampler

The slice sampler may be used to sample from a density

ρ on Rd as follows. Given the current sample Xn ∈ K,

the following two steps generate the next sample Xn+1:

(i) pick t uniformly at random from the interval [0, ρ(Xn)],

(ii) sample uniformly from the ‘slice’ or superlevel set

A(t) := {x ∈ K : ρ(x) ≥ t}.

We refer the reader to [13,23] and references therein for

more information on the slice sampler and its conver-

gence properties.

Step (ii) is typically infeasible in multidimensional

settings. Instead, in the Hybrid Slice Sampler (HSS)

a Markov chain is used to approximately sample the

uniform distribution on the slice. The following example

illustrates the potential advantage of using the skipping

sampler rather than RWM to generate this chain, since

the slice may not be convex.

For ρ we take a uniform mixture of m = 7 standard

normal densities in d = 5 dimensions, whose means are

drawn uniformly at random from a box B = [−12, 12]5.
The underlying RWM proposal is a spherically sym-

metric Gaussian, with variance tuned to achieve an

acceptance ratio of 23.5% in RWM. Independent trajec-

tories (started in stationarity) of n = 2 · 105 steps were

generated for the HSS algorithm with respectively the

RWM and the skipping sampler used to sample from
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(a) Scatter plot of first two coordinates of HSS with
RWM.

(b) Scatter plot of first two coordinates of HSS with
skipping sampler trajectory.

(c) First coordinate trajectory of HSS with RWM (d) First coordinate trajectory of HSS with skipping
sampler

Fig. 2 Comparison of RWM and skipping sampler as subroutines in HSS when started at the same point. Black diamonds in
(a) and (b) represent true mode centers.

the superlevel sets. The halting index is taken to be

P[Kϕ = 15] = 1 for all ϕ ∈ Sd−1.

As can be seen from Figure 2, the RWM implemen-

tation remains in the mode in which it was initiated.

In contrast, the skipping sampler version transitions

regularly between the seven modes. The experiment was

run m = 100 times (on the same Gaussian mixture),

during which skipping transitions happened on average

16 times per run. While the number of evaluations of the

target density increased 11.61 fold on average, skipping

greatly reduced the mean squared error (MSE) for the

estimators of the coordinate-wise means. The MSE for

RWM and reduction estimates (MSE for RWM divided

by MSE for skipping) for each of the five coordinates

are reported in Table 1. Hence, in this example the

skipping sampler is roughly 12 times more expensive

to compute, but produces samples with much greater

effective sample size.

coordinate 1 2 3 4 5

MSE RWM 22.85 58.45 48.09 35.65 44.20
MSE Skipping 3.90 1.24 0.003 2.84 0.750

reduction 5.86 47.23 18504 12.54 58.91

Table 1 Mean squared errors for HSS with RWM or skipping
sampler and its ratio

5.3 Rare event sampling

The aim in this example is to sample rare points under a

complex density ρ on Rd, by sampling from its intrinsic

tail or sublevel set A = {x ∈ Rd | ρ(x) ≤ a} for some

a > 0. As an illustration let ρ be a mixture of m = 20

Gaussian distributions, with randomly drawn means,

covariances and mixture coefficients.

We use the tails given by the levels a = e−15 and

a = e−350 respectively for dimensions d = 2 and d = 50.
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(a) Scatter plot of RWM trajectory (b) Scatter plot of skipping sampler trajectory

(c) First coordinate trajectory of RWM (d) First coordinate trajectory of skipping sampler

Fig. 3 Comparison of RWM and skipping sampler in dimension 2.

Fig. 4 First coordinate trajectory comparison for RWM (left) and skipping sampler (right) in dimension 50.

In the case d = 2, a visual illustration of Theorem 2

is provided by plotting comparisons of the exploration

achieved in 105 steps of RWM and the skipping sampler

respectively. Since the superlevel sets of a finite Gaussian

mixture are bounded, in this example we may take the

halting index K =∞.

Figure 3 (a)-(b) illustrates that, because of the den-

sity’s exponential decay, samples from its tail are con-

centrated around the boundary ∂A of A. Figure 3 (c)-(d)

compares the trajectories of the first coordinate of the

chain, showing that while RWM diffuses around ∂A, the

skipping sampler regularly passes through Ac. Indeed,
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roughly 20% of the chain’s increments were such ‘skips’

through Ac, almost half of the accepted proposals. The

fact that proposals are often re-used rather than rejected

is well illustrated by the acceptance rates, which are

23.7% and 43.3% for RWM and the skipping sampler

respectively. Further, ∂A is disconnected. While the ‘in-

ner’ component is not visited by RWM in this sample,

the skipping sampler regularly passes through Ac to

visit both components, thus exploring ∂A more quickly.

Despite 3.45 times more target evaluations required for

the skipping sampler, the benefits in this example are
clearly worthwhile.

Figure 4 shows the evolution of the chain’s first co-

ordinate in the case d = 50. While the boundary of A

cannot be easily visualised here, the faster mixing of

the skipping sampler is again apparent. The successful

re-use of proposals by skipping across Ac again consti-

tuted approximately 18% of the chain’s steps, suggesting

superdiffusive exploration. The respective acceptance

rates were 22.2% for RWM and 48.1% for the skipping

sampler. The benefits of skipping are again seen to

be worth the computational cost, since this time the

skipping sampler required only 1.44 times more target

evaluations than RWM.

5.4 Applications to optimisation

The challenging problem of finding the global minimum

of a non-convex function has attracted much atten-

tion and several probabilistic methods and heuristics

have been developed, including simulated annealing [11],

multistart [7,16], basin-hopping [14,42], and random

search [33]. In this section we illustrate how the skip-

ping sampler can be used in difficult low-dimensional

examples to either bias the choice of initial points of

such methods, or as a subroutine, in order to improve

exploration. Below we consider an optimisation problem

in Rd of the form

min f(x) s.t. x ∈ D :=

d∏
i=1

[li, ui], (11)

and consider as the target density the Bolztmann distri-

bution with temperature T ≥ 0 and energy function f ,

conditioned on the region D, that is

π(x) ∝ exp (−f(x)/T )1{x∈D}. (12)

5.4.1 Monotonic skipping sampler

While outside the scope of our theoretical analysis, a

variation on Algorithm 1 is one in which the support

A is not constant. In particular, defining the level sets

S(Xn) = {x ∈ Rd : f(x) ≤ f(Xn)}, a monotonic

skipping sampler (MSS) may be defined in which the

support at the n-th step of Algorithm 1 is An := S(Xn)∩
D (setting A0 := D), and the target density π = πn is

uniform on An. That is, only downward moves (Markov

chain transitions with f(Xn+1) ≤ f(Xn)) are accepted.

By construction we have Xn ∈ An for each n ∈ N. Also,
since the random subsets {An}n=1...,m are themselves

decreasing with An+1 ⊆ An for every n, they contain

progressively fewer non-global minima in addition to

the global minima of the function f . In common with
the skipping sampler where the support A is fixed, the

n-th step of the MSS requires no information about the

sublevel set S(Xn), just the ability to check whether

the proposal Z lies in An.

To illustrate a trajectory of the MSS, take f to be

the so-called eggholder function in dimension d = 2, i.e.

feggholder(x) := − x1 sin
(√
|x1 − x2 − 47|

)
− (x2 + 47) sin

(√∣∣∣x1
2

+ x2 + 47
∣∣∣) ,

an optimisation test function often used in the lit-

erature [8], with D = [−512, 512]2. Figure 5 shows

some snapshots from a trajectory of the MSS, also in-

dicating the progressively shrinking sublevel sets An =

S(Xn) ∩ D. In this subsample the state of the chain

(starred marker) is seen to jump four times between

different connected components of the sublevel sets (in

the subfigures for n = 67, 84, and 108), which happens

by means of the skipping mechanism.

In Sections 5.4.2 and 5.4.3 we provide numerical

examples of performance improvements achieved when

the MSS is used as a subroutine in the multistart and

basin-hopping optimisation procedures respectively.

5.4.2 Augmented multistart method

Given a nonconvex optimisation problem of the form (11)

with possibly several local minima, a classical strategy

to find its global minimum is to restart the local optimi-

sation method of choice at several different points. The

multistart method produces the desired number N of

initial points by sampling them uniformly at random in∏d
i=1[li, ui].

Note that in the above setup, f may be set equal to

positive infinity outside an arbitrary constraint set. If

the set f−1(R) of feasible points has a low volume com-

pared to D then many of the randomly sampled points

may lie outside it, making this multistart initialisation

procedure inefficient. In this case, recalling the remark

on initialisation of Algorithm 1 from Section 2, the MSS

is capable of accelerating the search for feasible starting

points x ∈ f−1(R).
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Fig. 5 Given a trajectory (Xn)n=0,1,... of the MSS started at X0 = (−200, 180), each subfigure displays the point Xn (starred
marker) and corresponding sublevel set S(Xn) (in red) for n = 66, 67, 83 (first row) and n = 84, 107, 108 (second row). There
are a total of 54 skipping moves in this trajectory, which corresponds to 36.0% of the moves. The MSS uses the Gaussian
distribution N (0, 2 · I) as proposal density and a deterministic halting index K = 150.

Equally, sampling starting points uniformly at ran-

dom may not be helpful if the basin of attraction of

the global minimum has low volume. We can mitigate

both of these issues by “improving” each of the points

proposed by the multistart method as follows. Assume

N initial points X
(1)
0 , . . . , X

(N)
0 have been sampled uni-

formly at random in
∏d
i=1[li, ui], which need not be

feasible. For each i = 1, . . . , N , a Markov chain of length

m may be generated using the MSS started at X
(i)
0 ,

returning X
(i)
m . Algorithm 2 summarises in pseudo-code

this MSS-augmented multistart method. By monotonic-

ity, the augmented multistart procedure results in a

greater proportion of feasible points, while each initially

feasible point is improved.

To illustrate the potential of the MSS-augmented

multistart method, we present an example again using

the eggholder function. We first consider the uncon-

strained optimisation problem

min feggholder(x) s.t. x ∈ [−512, 512]2, (13)

Algorithm 2: MSS-augmented multistart

method
Input :The number N of initial points and the

desired length m of MSS trajectories

1 Generate N points uniformly at random

X
(1)
0 , . . . , X

(N)
0 in

∏d
i=1[li, ui];

2 for i = 1 to N do

3 Starting at X
(i)
0 generate a trajectory of length m

using the MSS
4 end
5 return the endpoints of the MSS trajectories

X
(1)
m , . . . , X

(N)
m .

which has the optimal solution x∗ = (512, 404.2319),

attaining the value feggholder(x
∗) = −959.6407. Aver-

aging over N = 1000 runs, in Table 2 we summarise

the “goodness” of the N starting points given by the

following three methods:

(i) multistart method, i.e., initial points uniformly dis-

tributed on [−512, 512]2;
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Metric Multistart method
Multistart method

augmented with m RWM
steps

Multistart method
augmented with m MSS

steps

Fraction of proposed points in
the basin of attraction of the
global minimum x∗

0.004 0.008 0.657

Euclidean distance from the
global minimum x∗

741.85 (87.94, 1218.84) 741.85 (87.94, 1218.84) 0.0 (0.0, 977.869)

Gap between the optimum
f(x∗) and the objective value
of the proposed point

465.68 (24.30, 848.49) 465.68 (24.30, 848.49) 0.0 (0.0, 70.69)

Number of function evaluations
per run

36 (21, 84) 398 (325, 1909) 61527 (7805, 133470)

Running time (sec/run) 0.0021 0.0441 0.4577

Table 2 Comparison of the quality of the starting points returned by the three variants of the multistart method when
solving the optimisation problem (13). The results are averaged over N = 1000 samples. The RWM and MSS variants both
use trajectories of length m = 100 and the Gaussian proposal density N (0, 2 · I). The halting index for MSS was taken to be
deterministic and equal to K = 200. The acceptance probabilities for the RWM are evaluated w.r.t. the target distribution (12)
with T = 1.0. For three of the metrics in the table, we report the median value and, in parenthesis, the 2.5 and 97.5 percentiles.

(ii) the initial points obtained in (i) are evolved for
m = 100 steps with a RWM with Gaussian pro-

posals with covariance matrix 2 · I and the Boltz-

mann distribution π in (12) with T = 1.0 as target

distribution;

(iii) the initial points obtained in (i) are evolved for m =

100 steps with the MSS using a deterministic halting

index K = 200 and the same Gaussian proposal

density as in (ii).

The MSS augumented multistart method effectively

biases the initial points towards the global minimum x∗,

bringing 65.7% of them in the correct basin of attraction,

although at the expense of more function evaluations

than the other two methods.

5.4.3 Skipping sampler as basin-hopping subroutine

Besides improving the multistart method, the skipping

sampler can also be used to improve stochastic tech-

niques for non-convex optimisation, in particular the

so-called basin-hopping method. In this subsection we

explore this novel idea, although the implementation
details and a systematic comparison with other global

optimisation routines are left for future work.

Basin-hopping is a global optimisation technique

proposed in [42], which at each stage combines a random

perturbation of the current point, local optimisation, and

an acceptance/rejection step. The random perturbation

consists of i.i.d. uniform simultaneous perturbations in

each of the coordinates, that is, a random walk step.

The stopping criterion for this iterative procedure is

often a maximum number of function evaluations, or

when no improvement is observed for a certain number

of consecutive iterations.

The random walk step may be replaced by a step
from the MSS. That is, at step n, given the current point

Xn−1 we first sample a new point Yn from the sublevel

set S(Xn−1) ∩D using MSS and then perform a local

optimisation procedure starting from Yn to obtain a new

point Xn. This idea is summarised in the pseudo-code

presented in Algorithm 3.

Algorithm 3: Basin-hopping with skipping

Input :An initial point X0 ∈
∏d
i=1[li, ui], not

necessarily feasible

1 Set n = 1;
2 while basin-hopping stopping criterion is not

satisfied do
3 Perform a single step of the MSS started at

Xn−1, obtaining a new point Yn;
4 Perform a local optimisation step started at Yn to

obtain a new point Xn;
5 Increment the index n by one;

6 end
7 return The last point Xn.

The MSS variant of the basin-hopping method is re-

lated to the monotonic sequence basin-hopping (MSBH)

proposed in [14], which also accepts only new points

in S(Yn−1) ∩ D. However MSBH uses only local uni-

form perturbations and thus faces the same exploration

challenges as RWM when S(Yn−1) ∩D is disconnected.

In Table 3, we compare the performance of basin-

hopping and of the MSBH with the proposed basin-

hopping with skipping. The MSS subroutine leads to

54.4% of the initial (uniformly distributed) points con-

verging to the basin of attraction of the global mini-

mum x∗. This sharp improvement with respect to basin-

hopping (which has a corresponding success rate of only
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Metric
Basin-hopping (with

uniform displacement as
subroutine)

Monotonic sequence
basin-hopping (with

uniform displacement as
subroutine)

Basin-hopping with
skipping

Fraction of proposed points in the
basin of attraction of the global
minimum x∗

0.022 0.017 0.544

Euclidean distance from global
minimum x∗

741.85 (87.94, 1248.15) 752.827 (87.94, 1248.15) 0.0 (0.0, 41.23)

Gap between the optimum f(x∗)
and the objective value of the pro-
posed point

419.21 (24.30, 835.76) 402.03 (24.30, 835.85) 0.0 (0.0, 2.72)

Number of function evaluations 2004 (1776, 3432) 348 (324, 5085) 20370 (19957, 23702)
Running time (sec/run) 0.123 0.065 0.333

Table 3 Performance comparison of the three basin-hopping variants using different subroutines averaged over N = 1000
samples for trajectories of length m = 100. The underlying proposal used for the MSS subroutine is a standard Gaussian
distribution N (0, I) and the uniform displacement of the other two methods is scaled to have the same standard deviation. The
halting index for MSS was taken to be deterministic and equal to K = 200. The acceptance probabilities for the basin-hopping
methods are evaluated w.r.t. the target distribution (12) with T = 1.0. For three of the metrics in the table, we report the
median value and, in parenthesis, the 2.5 and 97.5 percentiles.

2.2%) only requires ten times more function evaluations.

In [5] we present additional performance metrics for the

basin-hopping method with skipping and more extensive

numerical results over a large collection of test functions.

6 Proofs

6.1 Proof of Theorem 1

For each x ∈ supp(π) let Px be a probability measure

carrying all random variables used in Algorithm 1, such

thatX0 = x almost surely under Px. Denote respectively

by {Ym}m≥1 and {Xn}n≥1 the proposals generated by

the MH(π, q) algorithm and the Markov chain returned
by the algorithm. Writing An :=

⋂n
i=1{Xi = Yi} for

the event that the first n proposals of MH(π, q) are all

accepted, we have

Lemma 1 If the chain MH(π, q) restricted to supp(π)

is π-irreducible then Px (Am) > 0 for all x ∈ supp(π)

and all m ≥ 1.

Proof. Fixing x ∈ supp(π) and supposing otherwise for

a contradiction, let n be the smallest integer such that

Px (An) = 0. Clearly n ≥ 2, since otherwise, Px−almost

surely we have Xk = X0 for all k ≥ 1, contradicting the

assumption of π-irreducibility. Therefore Px (An−1) > 0

and we may write p for the density of Xn−1 conditional

on the event An−1. Then by the Markov property we

have

0 = Px (An−1)Px (An|An−1)

= Px (An−1)
∫
supp(p)

p(y)Py(A1) dy,

so that Py(A1) = 0 for some y ∈ supp(p). Arguing as

above, this contradicts the assumption of π-irreducibility.

Denote the Markov kernels of the chains generated

by MH(π, q) and MH(π, qK) by P and PK respectively.

Also let {X ′n}n≥1 be the jump chain associated with X

(that is, the subsequence of {Xn}n≥1 given by excluding

all Xm which satisfy Xm = Xm−1).

Lemma 2 For all x ∈ A = supp(π), n ∈ Z>0 and all

B ⊂ A the following inequality holds:

PnK(x,B) ≥ Px ({Xn ∈ B} ∩ An)
= Px (Xn ∈ B | An)Px (An)
= Px (X ′n ∈ B | An)Px (An) . (14)

Proof. Note first that the last equality in (14) follows

by definition of the jump chain. We will prove the in-

equality in (14) by induction on n. Since supp(π) = A,

Proposition 1 (ii) gives

PK(x,B) ≥
∫
B

α(x, z)qK(x, z)dz

≥
∫
B

α(x, z)q(z − x)dz

= Px ({X1 ∈ B} ∩ A1) .

Assume now the statement holds for some n ∈ Z>0 and

let us prove it for n+ 1. We argue using the induction
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hypothesis and Proposition 1 (ii) again:

Pn+1
K (x,B) =

∫
A

PnK(z,B)PK(x,dz)

≥
∫
A

PnK(z,B)α(x,z)qK(x,z)dz

≥
∫
A

PnK(z,B)α(x,z)q(z−x)dz

≥
∫
A

Pz ({Xn∈B}∩An)α(x,z)q(z−x)dz

=Px({Xn+1∈B}∩An+1) .

Proof of Theorem 1. Take B ⊆ A = supp(π) such that

π(B) > 0, x ∈ A and let {Xn}n≥1 be MH(π, q) started

at X0 = x. Since MH(π, q) is π-irreducible there ex-

ists an integer n ∈ Z>0 such that Px (Xn ∈ B) > 0.

Let Sn be the number of rejections which occur in the

generation of {Xm}1≤m≤n. Then

0 < Px (Xn ∈ B) =

n∑
i=0

Px (Xn ∈ B,Sn = i) .

For some j ∈ {1, . . . , n} we therefore have

Px (Xn ∈ B,Sn = j) > 0.

Consequently

Px
(
X ′n−j ∈ B|An−j

)
> 0,

so that

Pn−jK (x,B) ≥ Px
(
X ′n−j ∈ B | An−j

)
Px (An−j) > 0 ,

where we used the above together with Lemma 2 and

Lemma 1. The skipping chain MH(π, qK) is therefore

π-irreducible, and thus is Harris recurrent by [38, Corol-

lary 2]. Furthermore, [19, Theorem 10.0.1] yields that

π is its unique invariant probability measure. Finally,

the SLLN holds for all π-integrable functions by Harris

recurrence and [19, Theorem 17.1.7].

6.2 Proof of Theorem 2

To prove Theorem 2, we will make use of the following

lemma, whose proof is omitted.

Lemma 3 (Integration with respect to a sym-

metric joint density) Consider a symmetric density

∆ : Rd×Rd → [0,+∞) and a subset B ⊆ Rd. For every
f ∈ L2(∆) the following identity holds:∫
B

∫
B

f(x)2+f(y)2

2
∆(x,y)dydx=

∫
B

f(x)2
(∫

B

∆(x,y)dy

)
dx.

Proof of Theorem 2. (i) For any f ∈ L2(π) the desired

inequality 〈PKf, f〉 ≤ 〈Pf, f〉 can be written more ex-

plicitly as∫
Rd
f(x)

((∫
Rd
f(y)α(x,y)(qK(x,y)−q(y−x))dy

)

+f(x)(rK(x)−r(x))

)
π(x)dx ≤ 0,

where we respectively denote by r(x) and rK(x) the

rejection probabilities starting at point x of MH(ρ, q)

and MH(ρ, qK), i.e., r(x) := 1−
∫
Rd α(x, y)q(y − x)dy

and analogously for rK(x). The above inequality holds

provided that we establish the following one:∫
Rd
f(x)

(∫
Rd
f(y)α(x,y)(qK(x,y)−q(y−x))dy

)
π(x)dx

≤
∫
Rd
f2(x)(r(x)−rK(x))π(x)dx. (15)

Then considering the LHS of (15) and Proposition 1

(ii) we have:∫
Rd
f(x)

(∫
Rd
f(y)α(x,y)(qK(x,y)−q(y−x))dy

)
π(x)dx

=

∫
A

∫
A

f(y)f(x)α(x,y)π(x)(qK(x,y)−q(y−x))dydx

≤
∫
A

∫
A

f2(y)+f2(x)

2
α(x,y)π(x)(qK(x,y)−q(y−x))dydx

(?)
=

∫
A

∫
A

f(x)2α(x,y)π(x)(qK(x,y)−q(y−x))dydx

=

∫
A

f(x)2
(∫

A

α(x,y)(qK(x,y)−q(y−x))dy
)
π(x)dx

=

∫
Rd
f2(x)(r(x)−rK(x))π(x)dx.

In this derivation we used (in order) the fact that

α(x, y) = 0 for y ∈ Ac by definition of α and π and the

classical GM-QM inequality 2f(x)f(y) ≤ f(x)2 + f(y)2.

Furthermore, equality (?) holds thanks to Lemma 3 by

taking ∆(x, y) = α(x, y)(qK(x, y)− q(y − x))π(x) and

B = A. The property that ∆(x, y) = ∆(y, x) for every

x, y ∈ A readily follows by combining the following two

identities that hold for every x, y ∈ A:

α(x, y)π(x) = min(π(x), π(y)) = α(y, x)π(y), and

qK(x, y)− q(y − x) = qK(y, x)− q(x− y).

The first identity is an immediate consequence of the

definition (2) of α, while the second one follows from

Assumption 2 and Proposition 1 (i).

(ii) By (i) we have 〈(I − PK)f, f〉 ≥ 〈(I − P )f, f〉 for
all f ∈ L2(π). The proof follows by λK = inff∈M〈(I −
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PK)f, f〉 ≥ inff∈M〈(I − P )f, f〉 = λ where M = {f ∈
L2(π) : π(f2) = 1, π(f) = 0}.

(iii) This follows by (i) and [21, Theorem 6].
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