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Abstract: Several researchers are considering the plausibility of being able to rapidly launch a mission
to an asteroid, which would fly in close proximity of the asteroid to deliver an impulse in a particular
direction so as to deflect the asteroid from its current orbit. Planetary motion, in general, and the
motion of asteroids, in particular, are subject to planetary influences that are characterised by a kind
of natural symmetry, which results in an asteroid orbiting in a stable and periodic or almost periodic
orbit exhibiting a number of natural orbital symmetries. Tracking and following an asteroid, in close
proximity, is the subject of this paper. In this paper, the problem of synthesizing an optimal trajectory
to a NEO such as an asteroid is considered. A particular strategy involving the optimization of a
co-planar trajectory segment that permits the satellite to approach and fly alongside the asteroid is
chosen. Two different state space representations of the Hill–Clohessy–Wiltshire (HCW) linearized
equations of relative motion are used to obtain optimal trajectories for a spacecraft approaching an
asteroid. It is shown that by using a state space representation of HCW equations where the secular
states are explicitly represented, the optimal trajectories are not only synthesized rapidly but also
result in lower magnitudes of control inputs which must be applied continuously over extended
periods of time. Thus, the solutions obtained are particularly suitable for low thrust control of the
satellites orbit which can be realized by electric thrusters.

Keywords: simulation; dynamic modelling of satellite relative motion; optimal control of relative
motion; optimal trajectory synthesis; asteroids

1. Introduction

Near-earth objects (NEOs) moving in resonant, Earth-orbit like orbits are potentially
important, as there is always the possibility of a few of them colliding with the Earth at
some point in the future. One example is 3753 Cruithne, the Earth’s first co-orbital asteroid
discovered in 1986. In 1997, 3753 Cruithne was found to move around the Earth in a
horseshoe orbit. However, it was found not to follow the same orbit as the Earth around
the Sun and so cannot strictly be called a co-orbital asteroid.

The object is 2002 AA29, found to be closely following Earth’s orbit in a reversible
horseshoe orbit. It is known to become a temporary second moon to the Earth from time
to time, with the next rendezvous expected in 2600. Its orbit is special as it approaches
the Earth on one side, as it did in 2003, and then in about 95 years sweeps to the other
side of the Earth. Calculations show that in a time frame of 600 years, this asteroid will
orbit the Earth, once a year for 50 years. In a sense, its orbit can resemble that of a satellite.
Behaviours such as the above, involving large amplitude oscillations of the eccentricities
and inclinations, could in principle be predicted by the Kozai–Lidov mechanism, which is
a secular phenomenon in the case of co-orbiting bodies and involves a family of resonance
type librations and bifurcations of the equilibrium states, leading to set of stable Kozai
resonance states. The coupling of large oscillations of eccentricities and inclination with
the continuous motion or libration of the argument of the perhelion is known as the Kozai
resonance (Kozai [1]).
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In the co-orbital region of the Earth, three types of orbit can occur: tadpole, horseshoe
and quasi-satellite orbits. Moreover, spatial tadpole or horseshoe orbits could merge with
quasi-satellite orbits and transitions between different types of orbits could appear, in
principle. Co orbital asteroids (Brasser, [2]) with tadpole orbits are also known as trojans as
they librate about the trojan Lagrangian points of the Sun–Earth and third body system.
Horseshoe orbits enclose the L4, L3 and L5 points while Tadpole orbits oscillate or librate
only about the L4 or L5 Lagrangian points. Horseshoe orbits librate over much larger
amplitude and consequently their shape resembles a horseshoe. Quasi satellite orbits are
co-orbital orbits with a high eccentricity so part of the orbit lies well beyond the planet’s
sphere of influence and could be unstable in the long term.

Another Earth co-orbital asteroid recently discovered is designated 2010 SO16, and is
on a “horseshoe” class orbit. Since its discovery eight other asteroids, 2010 TK7, 2013 BS45,
2013 LX28, 2014 OL339, 2015 SO2, 2015 XX169, 2015 YA and 2015 YQ1 have also been added
to list of Earth co-orbiting satellites. Over 24 Earth co-orbital asteroids that have been
discovered so far, only 2010 TK7 is a trojan asteroid (Connors, Wiegert and Veillet, [3]) and
its orbit is a tadpole or trojan orbit (Dvorak, Lhotka and Zhou, [4]). While it is stable in the
short term, its stability in the long term over periods ranging from 10,000 to a million years
is questionable. In 2016, HO3, an asteroid discovered on 27 April 2016, is possibly the most
stable quasi-satellite of Earth. As it orbits the Sun, 2016 HO3 appears to circle around Earth
as well. It is too distant to be a true satellite of Earth, but is the best and most stable example
of a quasi-satellite, a type of near-Earth object. They appear to orbit a point other than
Earth itself, such as the orbital path of the NEO asteroid 3753 Cruithne. Other small natural
objects in orbit around the Sun may enter orbit around Earth for a short amount of time,
becoming temporary natural satellites. To date, the only confirmed example has been 2006
RH120 in Earth orbit during 2006 and 2007, though further instances are already predicted.
The increasingly high number of potentially hazardous asteroids discovered so far has
led to the concept of asteroid deflection (Izzo and Rathke [5]). The problem of artificially
changing the orbit of an asteroid to avoid possible future impacts is discussed from the
orbital mechanics point of view, by Izzo, Olympio and Yam [6] and the consequences of the
deflection of an asteroid by Rathke and Izzo [7]. Izzo et al. [8] discussed the computation
of optimal trajectories for the impulsive deflection of near Earth objects.

The primary idea is to give the asteroid an impulse in a particular direction so as to
deflect the asteroid from its current orbit and place it in a new orbit which is the preferred
orbit of the asteroid in order to avoid a possible collisions. Possibilities of collisions are
found by evaluating the minimum orbit intersection distance (MOID). Phenomenon such
as the Kozai resonance offer protection from possible collision with several of the asteroids
(Libert and Tsiganis [9]). However, there are several others and the potential threat of
a collision with an asteroid remains (Domingos and Winter [10]). For this reason, several
researchers are considering the need and plausibility of being able to launch a mission
to an asteroid, which would fly in close proximity to the asteroid and then deliver the
impulse in a particular direction so as to deflect the asteroid from its current orbit and
place it in another orbit. Based on the currently available methods of trajectory design
such a mission could take up to three years, before a satellite could arrive at an asteroid
and fly alongside it in order to be able to deliver a precomputed impulse to it. There is
also a need to minimize the fuel requirements in such a mission. Thus, methods are being
developed so as to reduce the overall fuel requirements to complete such mission within
the constraints of currently available technologies.

In order to compare trajectories and times, a baseline reference trajectory is essential.
The initial conditions for the baseline trajectory computation were chosen in the following
way: for the Trojan asteroid, the almost stationary orbital elements, the semi-major axis,
orbit inclination and the argument of the perihelion and the non-stationary orbital elements,
the mean anomaly ‘M’, the argument of the ascending node ‘Ω’ and the eccentricity ‘e’, were
defined from values known on a particular Julian day. For the Earth, the corresponding
orbital elements were obtained for the same Julian day from JPL’s Horizon’s website. The
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integrations were started in the ecliptic plane. The satellite was assumed to be at the edge
of Earth’s sphere of influence (SOI) and an impulse was given to it so it intersects the
asteroid’s orbit plane. At this node, a further impulse is provided to change the satellites
inclination and align its orbit plane with that of the asteroid. Now the satellite and the
asteroid are on the same plane but moving in slightly different orbits and with different
speeds. When the phase angle between the two is relatively small, an optimally calculated
continuous thrust is applied to the satellite so it eventually flies alongside the asteroid. The
above methodology could be applied to planning a trajectory to any of the asteroids named
in this paper.

The calculation of the optimal segment and the associated thrust history applied in the
baseline reference trajectory is done using the HCW linearized equations of relative motion.
The HCW equations (Clohessy and Wiltshire [11]) assume that both the target body and the
chaser satellite are in near locally circular orbits and that the relative perturbations acting
on the chaser satellite relative to the target body are small. The HCW equations may be
extended to include all the nonlinearities and Earth oblateness perturbations (Kuiack and
Ulrich [12], Vepa [13]). The assumptions on which the derivation of the HCW linearized
equations of relative motion is based, are quite restrictive and to initiate a change in both
the change in the position and velocity of the satellite so it flies alongside or just behind the
target body, the application of the continuous thrust should be done when the phase angle
between the two is within certain acceptable limits. Of course, there is always the option of
using the full nonlinear equations of relative motion of the chaser satellite relative to the
target body. An alternate approach is to use the full nonlinear equations of relative motion,
with true anomaly as the independent variable. It is expected that such an approach would
provide some flexibility in choosing the optimal trajectory over which the continuous thrust
is applied to the chaser satellite. It must be mentioned at this stage, extensive computations
of optimal relative motion trajectories have been carried out by Patel, Udrea and Nayak [14]
and by Frey et al. [15].

In this paper, the problem of synthesizing an optimal trajectory to a NEO such as
an asteroid is considered. In particular, the focus is on the synthesis of low, continuous
thrust, trajectories that could be realized by the use of electric propulsion. While there are
several possible alternate strategies that one could adopt, a particular strategy involving
the optimization of a co-planar trajectory segment that permits the satellite to approach and
fly alongside the asteroid is chosen. It must be said, that HCW equations are not generally
used for orbit prediction. They are used mainly for guidance and control applications.
The HCW equations of motion are derived by linearizing about a reference solution, and
as such they are valid in the vicinity of the target point. When used far away from the
reference point their validity is questionable, and therefore, are not generally used to design
trajectories starting from Earth and flying to an asteroid, which requires solving a fully
nonlinear optimal control problem. In this application, they have been used when the
spacecraft is in close proximity of the asteroid. Initially, the spacecraft is manoeuvred into a
position close to the asteroid by a minimal set of discrete impulses. Once the spacecraft is in
close proximity to the asteroid, the HCW equations may be used to synthesize a co-planar
trajectory segment that permits the satellite to approach and fly alongside the asteroid.
How close the spacecraft should be to an asteroid before one can adopt the HCW equations,
depends on a number of factors such as the differences in the orbital elements of the
Cartesian position coordinates. There are two cases to consider, without and with perturba-
tions. When the perturbation effects on the asteroid and the spacecraft are approximately
the same, then the nonlinear equations of relative motion can be approximated by the
linear equations of relative motion. When the closeness that can be determined by a single
parameter, δ which must be relatively small and, δ = 2(x/r) + (ρ/r)2<< 0.001,where x
is the relative local vertical position coordinate of the spacecraft, r is the distance of the
asteroid from the Sun and ρ is the relative distance of the spacecraft from the asteroid. (The
derivation of this parameter is presented in Vepa [13]). In practice, however, for a satellite
in circular co-planar orbit, with almost the same orbit radius as the asteroid, (ρ/r)2 ≤ 0.05.
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Because of the appearance of two different time scales in the solutions, one of which
represents the secular motion, it is extremely important that the reduction to a state space
is done carefully, separating the solutions with different time scales. In this paper, this has
been demonstrated by a simple application.

Two different state space representations of the HCW linearized equations of relative
motion are used to obtain optimal trajectories for a spacecraft approaching an asteroid. It
is shown that by using a state space representation of HCW equations where the secular
states are explicitly represented, the optimal trajectories are not only synthesized rapidly
but also result in lower magnitudes of control inputs which must be applied continuously
over extended periods of time. Thus, the solutions obtained are particularly suitable for
low thrust control of the satellites orbit which can be realized by electric thrusters.

2. Governing Equations of Relative Satellite Motion

The HCW equations (see for example, Vepa [13]) in terms of the local vertical and
local horizontal (LVLH) coordinates are:

..
x(t) = 2n

.
y(t) + 3n2x(t) + aTx, (1)

..
y(t) = −2n

.
x(t) + aTy, (2)

..
z(t) = −n2z(t) + aTz, (3)

where n =
√

µ/a3 is the angular rate of the target body, which is assumed to be in
almost circular orbit with radius a and µ is the gravitational parameter associated with the
central body. In Equations (1)–(3), aTx, aTy and aTz are the control accelerations that could
include disturbances.

The linear state space representation of the HCW equations given by six first or-
der equations:

.
x(t) = vx, (4)
.
y(t) = vy, (5)
.
z(t) = vz, (6)

.
vx(t) = 2nvy(t) + 3n2x(t) + aTx, (7)

.
vy(t) = −2nvx(t) + aTy, (8)

.
vz(t) = −n2z(t) + aTz, (9)

The general solutions to the LVLH coordinates and their rates in the HCW equations
are as follows:

x(t) =
( .

x0/n
)

sin nt−
(
3x0 + 2

.
y0/n

)
cos nt + 2

(
2x0 +

.
y0/n

)
, (10)

y(t) = 2
( .

x0/n
)

cos nt + 2
(
3x0 + 2

.
y0/n

)
sin nt− 3

(
2nx0 +

.
y0
)
t− 2

( .
x0/n

)
+ y0, (11)

z(t) =
( .
z0/n

)
sin nt + z0 cos nt, (12)

.
x(t) = n

( .
x0/n

)
cos nt + n

(
3x0 + 2

.
y0/n

)
sin nt, (13)

.
y(t) = −2n

( .
x0/n

)
sin nt + 2n

(
3x0 + 2

.
y0/n

)
cos nt− 3

(
2nx0 +

.
y0
)
, (14)

.
z(t) = n

( .
z0/n

)
cos nt− nz0 sin nt. (15)

3. HCW Equations in Terms of the Secular and Periodic Relative Orbital Motion States

Following Lovell and Spencer [16], it may be observed that only one of the solutions
has a secular or linearly time dependent term. It may also be observed that time scales of
the periodic terms are the same, but the magnitudes of the secular would depend on the
initial velocity perturbations in a direction tangential to the orbit.
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From the solutions we observe that, the secular and constant terms may be isolated by
considering the combinations of states given by:

2
.
x(t)− ny(t) = 2

.
x0 − ny0 + 3n

( .
y0 + 2nx0

)
t, (16)

.
y(t) + 2nx(t) = −3

(
2nx0 +

.
y0
)
+ 4
(
2nx0 +

.
y0
)
=

.
y0 + 2nx0. (17)

From the above equations, one may introduce a transformation of the variable to
separate the periodic and secular parts of the solution:

xr ≡ nx(t) +
.
y(t)

2
= nx0 +

.
y0
2

; ⇒ .
y(t) = 2(xr(t)− nx(t)), (18)

yr ≡ ny(t)− 2
.
x(t) = ny0 − 2

.
x0 − 6

(
nx0 +

.
y0
2

)
t; ⇒ .

x(t) =
1
2
(ny(t)− yr(t)). (19)

Using the above definitions of the relative orbital states, xr and yr, the original in-plane
HCW equations may be expressed as:(

2
..
x(t)− n

.
y(t)

)
/2 = 3n

(
nx(t) +

.
y(t)/2

)
+ aTx; ⇒ .

yr(t) = −6nxr(t)− 2aTx, (20)

2
( ..
y(t)/2 + n

.
x(t)

)
= aTy; ⇒ .

xr(t) = aTy/2, (21)

For the periodic part, one observes that the combinations of states 2
.
y(t) + 3nx(t) and

the radial relative velocity,
.
x(t) are purely periodic.

2
.
y(t) + 3nx(t) = 2

.
y0 + 4nx0 − nx(t) = − .

x0 sin nt +
(
3nx0 + 2

.
y0
)

cos nt, (22)

.
x(t) =

.
x0 cos nt +

(
3nx0 + 2

.
y0
)

sin nt. (23)

It follows that the amplitudes of these velocities satisfy,(
2

.
y(t) + 3nx(t)

)2
+

.
x2
(t) =

.
x2

0 +
(
3nx0 + 2

.
y0
)2

= A2, (24)

Writing the velocities in terms of the relative orbital states, xr and yr, and using
Equations (18) and (19), the amplitude relation reduces to:

(4xr(t)− nx(t))2 + (ny(t)− yr(t))
2/4 = A2, (25)

Introducing the phase angle, Φ, such that,

A cos Φ = 4xr(t)− nx(t), A sin Φ = (ny(t)− yr(t))/2, (26)

it follows that,
.
x(t) = (ny(t)− yr(t))/2 = A sin Φ, (27)

.
y(t) = 2(xr(t)− nx(t)) = 2A cos Φ− 6xr(t). (28)

It can then be shown that, oscillation amplitude A and the phase angle Φ, respec-
tively satisfy,

.
A = 2aTy cos Φ + aTx sin Φ, (29)

.
Φ = n + aTx cos Φ− 2aTy sin Φ/A. (30)

In the out-of-plane direction the motion is purely oscillatory and for this reason the
out-of-plane oscillation amplitude Az and phase angle Ψ may be defined from,

.
z = Az cos Ψ, nz = Az sin Ψ, tan Ψ = nz/

.
z. (31)
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Thus, the equations governing the evolution of the out-of-plane oscillation amplitude
Az and phase angle Ψ may be shown to be:

.
Az = aTz cos Ψ, (32)

.
Ψ = n− aTz sin Ψ/Az, (33)

It may be observed that both Equations (30) and (33) are singular when A and Az are
respectively equal to zero. For this reason, to establish a complete state space presentation
of the HCW equations, one could use Equations (6), (9) and (18)–(21).

4. Dynamic Modelling Including the Oblateness Effect

It is now important to sure that the state space model is valid irrespective of the
appearance of secular responses. For this reason, the state space would now be generalized
to include the effect of the oblateness of the central body.

First the transformations to the secular state representation are summarized. The
transformations and inverse transformations are respectively given by:

xr ≡ nx(t) +
.
y(t)/2, yr ≡ ny(t)− 2

.
x(t),

.
x(t) = (ny(t)− yr(t))/2,

.
y(t) = 2(xr(t)− nx(t)). (34)

Hence it follows that,
 x

y

 =
1
n

 xr

yr

+
1
n

 0 −0.5

2 0

 .
x
.
y

,
d
dt

 x

y

 =

 0 n/2

−2n 0

 x

y

+

 0 −1/2

2 0

 xr

yr

. (35)

The inverse matrix relationships are,

 xr

yr

 = n

 x

y

+

 0 0.5

−2 0

 .
x
.
y

,


xr

yr
.
z

 =


n 0 0

0 n 0

0 0 0




x

y

z

+


0 0.5 0

−2 0 0

0 0 1




.
x
.
y
.
z

, (36)

and,

d
dt

 x
y
z

 =

 0 n/2 0
−2n 0 0

0 0 0

 x
y
z

+

 0 −1/2 0
2 0 0
0 0 1

 xr
yr.
z

. (37)

Summarizing the Hill–Clohessy–Wiltshire equations, one has,

..
x(t) = 2n

.
y(t) + 3n2x(t) + aTx,

..
y(t) = −2n

.
x(t) + aTy;

..
z(t) = −n2z(t) + aTz, (38)

In matrix form,

d
dt

 .
x
.
y
.
z

 =

 0 2n 0
−2n 0 0

0 0 0

 .
x
.
y
.
z

+ n2

 3 0 0
0 0 0
0 0 −1

 x
y
z

+

 aTx
aTy
aTz

. (39)

Transformations to the secular state representation yields,

.
xr(t) = aTy/2,

.
yr(t) = −6nxr(t)− 2aTx,

.
z(t) = −n2z(t) + aTz, (40)

In matrix form,

d
dt


xr

yr
.
z

 =


0 0 0

−6n 0 0

0 0 0




xr

yr
.
z

+


0 0 0

0 0 0

0 0 −n2




x

y

z

+


0 0.5 0

−2 0 0

0 0 1




aTx

aTy

aTz

, (41)

To include the oblateness effects, note that the general formulae relating the angular
velocity components to the 3 Euler angles given in Vepa [13], the right ascension of the
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ascending node Ω, the orbit plane inclination i and the true latitude of the satellite θ, and
to their rates

.
Ω,

.
i and

.
θ, are,

ωx = cθ

.
i + sθsi

.
Ω, ωy = −sθ

.
i + cθsi

.
Ω ≡ 0 and ωz =

.
θ + ci

.
Ω. (42)

To start with, h = r× v = r× .
r = r2ωz

^
z, h = |h| = ωzr2 where

^
z is a unit vector

normal to the orbit plane, for the reference satellite. The dynamics of reference satellite in
the LVLH frame considering both the spherical gravitational potential and the perturbation
gravitational potential due to oblateness is first established. Given the equatorial radius of
the central body, Re and J2 the quadrupole moment coefficient, the governing equation is,
..
r = −∇U,

U = −µ

r
− 3J2

2
µ

r
R2

e
r2

(
1
3
− z2

r2

)
= −µ

r
− 3µJ2R2

e
2

1
r3

(
1
3
− z2

r2

)
≡ −µ

r
− k J2

1
r3

(
1
3
− z2

r2

)
, (43)

where, k J2 = 3µJ2R2
e /2. Hence one obtains,

∇U =
µ

r2
r
r
+ k J2

1
r4

r
r

(
1− 5

z2

r2

)
+ 2k J2

1
r4

zk
r

. (44)

From Wang, Wu and Poh [17], it can be shown that in the LVLH frame the equations
of motion are,

..
r− h2

r3 = − µ

r2 − k J2

(
1− 3s2

i s2
θ

)
r4 ,

.
h = −k J2

s2
i s2θ

r3 and ωx = −k J2

s2isθ

hr3 . (45)

Thus, using the expression for ωx and the general formulae relating the angular
velocity components, one has,

.
Ω = −

2k J2

hr3 cis2
θ ,

.
i =

.
Ω

cθsi
sθ

= −
k J2

2hr3 s2is2θ ,
.
θ =

h
r2 +

2k J2

hr3 c2
i s2

θ and n2 =
µ

r3 +
k J2

r5

(
1− 5s2

i s2
θ

)
. (46)

With the oblateness effect, the angular accelerations are obtained by taking the time
derivatives of ωx and ωz, and are given by,

αx =
.

ωx = −k J2

cθs2i
r5 + 3k J2

.
rs2isθ

r4h
−
(
k J2

)2 8s3
i s2

θcθci

r6h2 ,αz =
.

ωz = −
2h

.
r

r3 +

.
h
r2 = − 2h

.
r

r3 − k J2

s2
i s2θ

r5 . (47)

The equations of relative motion in the LVLH frame developed by Wang, Wu and
Poh [17] may be written as,

d
dt


.
x
.
y
.
z

 =


0 2ωz 0

−2ωz 0 0

0 0 0




.
x
.
y
.
z

+ ω2
z


3 0 0

0 0 0

0 0 −1




x

y

z

+


aTx

aTy

aTz

,


aTx

aTy

aTz

 =


0 0 0

0 0 2ωx

0 −2ωx 0




.
x
.
y
.
z

+ (K1 + K2)


x

y

z

 =


0

2ωx
.
z

−2ωx
.
y

+ (K1 + K2)


x

y

z

+


aTx

aTy

aTz

,

(48)

where the last column vector represents the non-gravitational and third body perturbations and,

K1 =


2
(
n2 −ω2

z
)

αz −5ωxωz

−αz −
(
n2 −ω2

z
)
+ ω2

x αx

−5ωxωz −αx −
(
n2 −ω2

z
)
+ ω2

x

,K2 =
k J2

r5


2
(
1− s2

i s2
θ

)
4s2

i s2θ 0

4s2
i s2θ −2s2

i c2
θ −s2icθ

0 −s2icθ −2c2
i

. (49)
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Thus,


aTx

aTy

aTz

 =


0 0 0

0 0 2ωx

−4ωx 0 0




xr

yr
.
z

+


0 0 0

0 0 0

4ωxωz 0 0




x

y

z

+ (K1 + K2)


x

y

z

+


aTx

aTy

aTz

. (50)

In Equation (50), the coordinates are transformed, with
.
y(t) = 2xr(t)− 2ωzx(t), which

is obtained by replacing n by ωz in Equation (36). The transformed equations of motion are
obtained from Equations (37) and (41), and are,

d
dt


x

y

z

 =


0 ωz/2 0

−2ωz 0 0

0 0 0




x

y

z

+


0 −1/2 0

2 0 0

0 0 1




xr

yr
.
z

,

d
dt


xr

yr
.
z

 =


0 0 0

−6ωz 0 0

0 0 0




xr

yr
.
z

+


0 0 0

0 0 0

0 0 −ω2
z




x

y

z

+


0 0.5 0

−2 0 0

0 0 1




aTx

aTy

aTz

,

(51)

Hence, substituting for the last column vector in Equation (51) from Equation (50),

d
dt

 xr

yr
.
z

 =

 0 0 ωx

−6ωz 0 0
−4ωx 0 0


 xr

yr
.
z

+
¯
K

 x
y
z

+

 0 0.5 0
−2 0 0
0 0 1


 aTx

aTy

aTz

,

¯
K =

 0 0 0
0 0 0

4ωxωz 0 −ω2
z

+

 0 0.5 0
−2 0 0
0 0 1

(K1 + K2).

(52)

Finally, the complete state space equations are,

d
dt

 x
y
z

 =

 0 ωz/2 0
−2ωz 0 0

0 0 0

 x
y
z

+

 0 −1/2 0
2 0 0
0 0 1

 xr
yr
.
z

,

d
dt

 xr
yr
.
z

 =

 0 0 ωx
−6ωz 0 0
−4ωx 0 0

 xr
yr
.
z

+
¯
K

 x
y
z

+

 0 0.5 0
−2 0 0
0 0 1

 aTx
aTy
aTz

.

(53)

5. Optimal Relative Motion Trajectory Synthesis Using the Linear State
Space Representation

The process of defining the optimal trajectory is briefly summarized. To begin with
the linear state space representation of the HCW equations may be expressed in matrix
form as,

dq
dt

= Aq + Bu. (54)

In the absence of the quadrupole moment coefficient J2, the matrices A and B may be
appropriately defined as,

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0

, B =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

. (55)

With the effect of the quadrupole moment coefficient J2, the matrices A and B may be
modified using Equations (48) and (49).
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In Equation (55), the state vector and the control accelerations are respectively de-
fined as,

q =
[

x y z vx vy vz
]T , (56)

u =
[

aTx aTy aTz
]T . (57)

When one is interested in the problem of finding the control accelerations,

u = u(t), t0 ≤ t ≤ t f , (58)

the state vector time history is sought, such that it minimizes the cost functional,

J =
1
2

t f∫
0

uTRudt + 0.5 (q(t)− qd)
TQ f (q(t)− qd)

∣∣∣
t=t f

=
1
2

t f∫
0

uTRudt + Φ{q(t)}|t=t f
, (59)

subject to, Equations (56) and (57). Following Bryson and Ho [18] one may construct the
corresponding Hamiltonian function, which is,

H =
1
2

uTRu + λT
q(Aq) + λT

q(Bu), (60)

where R is a positive definite and symmetric weighting matrix. In our case, the relative
costs of applying an acceleration in any direction are the same and for this reason we may
choose R ≡ I3×3 to be the 3× 3 identity matrix. The corresponding co-state differential
equations are,

d
dt

λT
q(t) = −

∂H
∂q

= −λT
qA. (61)

It may be observed that the time history of the co-state vector λqr
is independent of

the control accelerations. The optimal control is obtained from,

∂H
∂u

= uTR + λT
qB = 0 u = −R−1BTλq. (62)

For the co-state boundary conditions one has,

λq

(
t f

)
=

∂Φ{q(t)}
∂q

∣∣∣∣
t=t f

= Q f

(
q
(

t f

)
− qd

)
. (63)

Equations (54) and (61) are numerically integrated and once the control is found from
Equation (62), and Equation (55) is used to define the optimal state vector.

6. Trajectory Optimization Using the Secular Relative Orbital Motion State Vector

The state space representation of the HCW equations in terms of the secular relative
orbital motion states may be expressed in matrix form as,

dqr
dt

= Arqr + Bru. (64)

In Equation (66), the state vector is defined as,

qr =
[

x y z xr yr
.
z
]T , (65)
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while in the absence of the quadrupole moment coefficient J2, the matrices Ar and Br may
be appropriately defined as,

Ar =



0 0.5n 0 0 −0.5 0
−2n 0 0 2 0 0

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 −6n 0 0
0 0 −n2 0 0 0

, Br =



0 0 0
0 0 0
0 0 0
0 0.5 0
−2 0 0
0 0 1

, (66)

With the effect of the quadrupole moment coefficient J2, the matrices Ar and Br may
be modified using Equation (53).

The control input vector continues to be defined by Equation (57). It may be noted
that the states defined by Equation (65) and the corresponding state-space equations of
motion are not the same as those defined by Lovell and Spencer [16]. In choosing the state
vector, the response time scales were given due consideration.

As in Section 6, when one is interested in the problem of finding the control accelerations,

u = u(t), t0 ≤ t ≤ t f , (67)

the state vector time history is sought, such that it minimizes the cost functional,

J =
1
2

t f∫
0

uTRudt + 0.5 (qr(t)− qrd)
TQ fr (qr(t)− qrd)

∣∣∣
t=t f

=
1
2

t f∫
0

uTRudt + Φ f r{qr(t)}
∣∣∣
t=t f

, (68)

subject to Equations (66), (65) and (57). The control accelerations continue to be defined by
Equation (57). The corresponding Hamiltonian function is defined by an equation similar
to Equation (60). The corresponding co-state differential equations are,

d
dt

λT
qr
(t) = − ∂H

∂qr
= −λT

qr
Ar, (69)

The optimal control is obtained from an equation similar to Equation (62) and is,

u = −R−1BT
r λqr

. (70)

For the co-state boundary conditions one has,

λqr

(
t f

)
=

∂Φr{qr(t)}
∂qr

∣∣∣∣
t=t f

= Q fr

(
qr

(
t f

)
− qrd

)
(71)

Equations (66) and (69) are numerically integrated and once the control is found
from Equation (70), and Equation (66) is used to define the optimal state vector. In prin-
ciple, since both approximate representations of the satellite’s relative motion defined by
Equations (55) and (66) are related by a similarity transformation, the solutions must also
be linearly related. However, in practice, the optimal solutions are found numerically by
solving a two-point boundary value problem where the boundary values are obtained from
the actual measured data.

Equation (66) is easier to use because it is not only solved faster in real time but also
results in lower magnitudes of control inputs, which must be applied continuously over
extended periods of time. Thus, the solutions obtained are particularly suitable for low
thrust control of the satellites orbit which can be realized by electric thrusters.

7. Application Example: Trajectory Design to a Near Earth Asteroid

The initial position and velocity of the asteroid 2010 TK7 are obtained from the initial
classical orbital elements defined by Dvorak, Lhotka and Zhou [4] and reproduced in
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Table 1. The orbital elements of the Earth for the same day (27 August 2011) are obtained
from the JPL Horizons website and also shown in Table 1.

Table 1. Orbital elements defining the initial position 2010 TK7 and Earth as on JD2455800.5.

a (in au) e i Ω ω M

2010 TK7 1.00037 0.190818 20.880◦ 96.539◦ 45.846◦ 217.329◦

Earth 1.000806 0.01610329 0.0007◦ 243.305◦ 217.926◦ 233.474◦

From the orbital elements in Table 1, the initial position and velocity vector of the
asteroid and Earth are obtained. The asteroid’s orbit was also checked with the actual
JPL HORIZONS data over the time frame of the simulation. High precision ephemerides
for solar-system bodies are available on-line using JPL’s HORIZONS system (https://
ssd.jpl.nasa.gov/horizons.cgi (accessed on 19 March 2020)). The JPL HORIZONS on-
line solar system data and ephemeris computation service provides access to key solar
system data and flexible production of highly accurate ephemerides for solar system
objects. HORIZONS is provided by the Solar System Dynamics Group of the Jet Propulsion
Laboratory. All of the simulations were initially carried out in MATLAB using the equations
of motion of the six body problem. Once it was established that a four body simulation
was adequate, the other two bodies, the Moon and Mars were dropped and the simulation
was done using the equations of motion of the four body problem. All simulations of
the orbits of all the planetary bodies considered were done using the full nonlinear multi-
body equations, including all the known the gravitational effects and compared with the
HORIZON’s data. The linear equations were used for the synthesis of the controller only.
The control inputs over the powered segment was determined using the optimal trajectory
synthesis methodology outlined in Sections 3 and 6. The relative orbit data obtained from
the optimization was used to smoothly interpolate the satellite orbit from is initial to it
final position.

The post-powered phase of the orbit was obtained by continuing with the integration
of the four body equations beyond the powered phase, to verify that the satellite and the
asteroid traverse the same orbit.

8. Typical Simulation Results

Initially, the satellite is assumed to be orbiting the Earth at the edge of the Earth’s
SOI. Following the application of a ‘∆v’ impulse the satellite is on a transfer orbit till it
intersects the asteroid’s orbit plane where, following a plane change, the satellite is orbiting
the Sun in the same plane as the asteroid. This initial phase of the satellite’s orbit is shown
in Figure 1.

In Figure 1, the descending node is shown both on the satellite’s orbit by a ‘*’. The
satellite’s orbit after the plane change is shown in Figure 2. (The preceding orbits are not
shown for clarity). The initial location of the asteroid is shown by ‘ai’. When the satellite is
at the descending node, the asteroid is at ‘an’. At the end of the simulation of these phases
the satellite is at ‘sf ’ while the asteroid is at ‘af ’. At this juncture, the satellite is sufficiently
close to the asteroid to make it feasible for the synthesis of the optimal trajectory during
the powered phase. In Figure 3, are shown the trajectory of the satellite and the orbit of
the asteroid, after the start of the powered phase and beyond. (The preceding orbits are
not shown for clarity). The end of these phases is shown as ‘na’ and on this last phase the
satellite and asteroid are co-located.

https://ssd.jpl.nasa.gov/horizons.cgi
https://ssd.jpl.nasa.gov/horizons.cgi
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Figure 3. Trajectory of the satellite, and the orbit of the asteroid (dash-dot line), including the powered
phase and beyond.

The control accelerations used to generate the optimal trajectory were generated using
the original HCW Equation (54), the adjoint Equation (61) with the co-state boundary
conditions (63) and the control Equation (62) and are shown in Figure 4. In this simulation,
example both R and Qf in Equation (59) are chosen to be identity matrices.
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Figure 4. Control accelerations computed using Equations (54), (61) and (62).

It may be observed that the time frame required for the satellite to catch up with the
asteroid was just under 700 h. The time histories of the position and velocity coordinates
corresponding to the control accelerations in Figure 4, are shown in Figure 5. In Figure 6 is
shown the time history of the distance of the satellite relative to the asteroid as well as the
x-y plane orbit of the position of the satellite relative to the asteroid.
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Figure 5. Position and velocity coordinate time histories corresponding to the control accelerations
in Figure 3.

The control accelerations are now recomputed and used to generate the optimal trajec-
tory were generated using the alternate HCW Equation (64) in terms of the secular relative
orbital motion states, the adjoint Equation (69) with the co-state boundary, Condition (71)
and the control, Equation (70). In the simulation both R and Qfr in Equation (68) are chosen
to be identity matrices. In Figure 7 are shown the corresponding trajectory of the satellite
and the orbits of the Earth and asteroid, including the powered phase and beyond. The



Symmetry 2021, 13, 1403 14 of 17

end of these phases is shown as ‘na’ and on this last phase the satellite and asteroid are
co-located. It may be observed that the time frame required for the satellite to catch up
with the asteroid is now just under 2560 h.
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phase and beyond with the control accelerations computed using Equation (70).

There are indeed several differences between the two sets of results, shown in Figures 4–7
and Figures 8–11, although Figures 6 and 10 are apparently similar. The most signifi-
cant differences are in the optimal control accelerations computed using the two sets of
representations, shown in Figures 4 and 8.

For the initial and final conditions under which the optimal controls were computed,
the maximum control accelerations are 100 times lower when Equations (64), (69) and (70)
are used although the time frame required has almost tripled. Moreover, the behavior
of both components of the control accelerations in the LVLH frame, is monotonic when
Equations (64), (69) and (70) are used and not monotonic when Equations (54), (61) and (62)
are used. However, the overall mission time was 2.7 years when Equations (64), (69) and
(70) are used and 2.49 years when Equations (54), (61) and (62) are used.
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Figure 9. Position and velocity coordinate time histories corresponding to the control accelerations
in Figure 7.

A search of feasible trajectories showed that it was indeed possible to reduce the total
mission time to 2.67 years albeit with an increase in the control accelerations almost by a
factor of ten. The time frame over which the control acceleration was deployed reduced
to just under 2300 h. In Figure 11, the control acceleration was deployed about 36 days,
earlier than in Figure 7. The general nature of the time histories of the control accelerations
and relative positions and velocities in Figures 10 and 11 was similar to those shown in
Figures 6 and 7.

While the effect of the quadrupole moment coefficients of the central bodies were
included in all the trajectory simulations, the control accelerations were computed both
with and without these oblateness effects to ensure that the control accelerations in both
cases were not significantly different. No significant differences were found in the con-
trol accelerations with the effect of the quadrupole moment coefficients of the central
bodies included.
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9. Discussions and Conclusions

In this paper, it has been clearly demonstrated that the choice of the state space repre-
sentation can have a significant impact on the optimal trajectories that can be synthesized
when considering the relative motion orbits of two orbiting bodies. This is quite under-
standable as the state representations are essentially approximations to the relative motion
dynamics and it is indeed plausible that one representation leads to better approximation
to the feasible optimal trajectory than the other. In particular, in the case of the HCW
equations, the existence of two different time scales in the solutions, requires that the
reduction to a state space is done carefully, separating the solutions with different time
scales. Although the existence of multiple time scales has been recognized in the past by a
few authors, the particular reduction to state space form has not been employed in the past
for optimal trajectory synthesis.

One important application of the relative motion dynamics is to the problem of a
satellite seeking to fly in close proximity to an asteroid. Thus, using this problem as a bench
marking example, it has been demonstrated that significant reductions in the magnitudes
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of the control accelerations can be achieved by choosing the right state representation of
the approximate dynamics of the relative motion. It must be said that the methodology
could be applied to host of other problems, where it is essential to synthesize an optimal
trajectory to another orbiting body in close proximity to a satellite. However, it is expected
that the methodology will be most useful in designing optimal low-impulse trajectories
for flying in close proximity to a host of other asteroids. Once this is done, the delivery
of an optimum impulse to deflect the asteroid is feasible. This facilitates several deep
space missions requiring control continuous thrust deployment. Thus, the methodology
developed can have a significant impact on the design of low thrust trajectories of the
satellites which are equipped by electric thrusters.
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