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Abstract

Penrose’s idea of asymptotic flatness provides a framework for understanding the asymp-
totic structure of gravitational fields of isolated systems at null infinity. However, the studies
of the asymptotic behaviour of fields near spatial infinity are more challenging due to the
singular nature of spatial infinity in a regular point compactification for spacetimes with non-
vanishing ADM mass. Two different frameworks that address this challenge are Friedrich’s
cylinder at spatial infinity and Ashtekar’s definition of asymptotically Minkowskian space-
times at spatial infinity that give rise to the 3-dimensional asymptote at spatial infinity H.
Both frameworks address the singularity at spatial infinity although the link between the
two approaches had not been investigated in the literature. This article aims to show the
relation between Friedrich’s cylinder and the asymptote as spatial infinity. To do so, we
initially consider this relation for Minkowski spacetime. It can be shown that the solution
to the conformal geodesic equations provides a conformal factor that links the cylinder and
the asymptote. For general spacetimes satisfying Ashtekar’s definition, the conformal factor
cannot be determined explicitly. However, proof of the existence of this conformal factor
is provided in this article. Additionally, the conditions satisfied by physical fields on the
asymptote H are derived systematically using the conformal constraint equations. Finally,
it is shown that a solution to the conformal geodesic equations on the asymptote can be ex-
tended to a small neighbourhood of spatial infinity by making use of the stability theorem for
ordinary differential equations. This solution can be used to construct a conformal Gaussian
system in a neighbourhood of H.

1 Introduction

The theory of isolated systems plays a central role in astrophysical applications of Einstein’s theory
of General Relativity. A particularly influential approach to this theory is through Penrose’s
definition of asymptotic simplicity —see e.g. [22, 29]:

Definition 1. A vacuum spacetime (M̃, g̃) is said to be asymptotically simple if there exists a
smooth, oriented, time-oriented and causal spacetime (M̃, g) and a C∞ function Ξ on M such
that:

(i) M is a manifold with boundary I ≡ ∂M;

(ii) Ξ > 0 on M\I and Ξ = 0, dΞ 6= 0 on I ;

(iii) the manifolds M̃ andM are related by an embedding φ : M̃ →M such that φ(M̃) =M\I
and

φ∗g = Ξ2g̃; (1)
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(iv) each null geodesic of (M̃, g̃) starts and ends on I .

Identifying the interior ofM with M̃ one can write equation (1), in a slight abuse of notation,
as g = Ξ2g̃. Condition (iv) is of global nature which strictly speaking makes black hole spacetimes
like the Schwarzschild solution not asymptotically simple but rather weakly asymptotically simple.

Roughly speaking, a spacetime is said to be asymptotically simple if it admits a conformal
extension similar to that of the Minkowski spacetime whereby a null hypersurface (null infinity)
I is attached to the spacetime. Generically, I consists of two disjoints components I + (future
null infinity) and I − (past null infinity) representing, respectively, the endpoints and startpoints
of null geodesics. As stressed by Geroch [18], the central aim of the definition of asymptotically
simple spacetimes (and, in fact, any approach to define isolated systems) is to identify Universal
structures in a wide class of spacetimes which can, in turn, be used to introduce notions of physical
interest —say, conserved quantities, radiation states. The definition tries to strike a balance
between ensuring the existence of enough structures to be able to extract useful conclusions and
not being too restrictive to avoid that only a handful of exact solutions satisfy it.

A central aspect of the definition of asymptotic flatness is the assumed regularity of the
conformal boundary. The classic definition of asymptotic flatness assumed smoothness. However,
it is now widely accepted that this is an unnecessarily strong requirement — see e.g. [13].
Although to first sight, the issue of the regularity of the conformal boundary may seem like a
technicality, it is in fact, it has great physical content —an important insight of the conformal
approach is that regularity questions in the conformal point of view translate on assertions on
the decay of fields. It is now known that many of the key structures supplied by the notion of
asymptotic simplicity are present under more relaxed regularity assumptions —see e.g. [13, 7].

The definition of asymptotical simplicity only postulates the existence of null infinity, I .
However, the conformal compactification of the Minkowski spacetime in, say, the Einstein cylinder
(see e.g. [29], Section 6.2) shows that the conformal boundary of this spacetime contains a further
point, spatial infinity i0, corresponding to the endpoints of spacelike geodesics. While I is central
in the discussion of radiation properties of isolated bodies in General Relativity, i0 is key in the
discussion of conserved quantities —see e.g. [18, 4]. Also, as evidenced by the stability theorems
of the Minkowski spacetime, the properties of the gravitational field in a neighbourhood of spatial
infinity is closely related to the regularity of null infinity.

While in the Minkowski spacetime i0 is a regular point of the conformal structure, it is
well known that for spacetimes with non-vanishing (ADM) mass one has a singularity of the
conformal structure —see e.g. [29], Chapter 20. This fact makes the analysis of the gravitational
field particularly challenging. To address this difficulty it is necessary to introduce a different
representation of spatial infinity which, in turn, allows to suitably resolve the structure of the
gravitational field in this region. In particular, to avoid having to deal with directional dependent
limits at spatial infinity it is natural to blow up the point i0 to a 2-sphere.

The hyperboloid at spatial infinity. In an attempt to overcome the difficulties posed by
the fact that the classic definition of asymptotic simplicity (see Definition 1 above) makes no
reference to the the behaviour of the gravitational field at spatial infinity, in [3] Ashtekar & Hansen
introduced a new definition of asymptotic simplicity in both null and spacelike directions —see also
[2]. This definition (asymptotically empty and flat at null infinity and spatial infinity, AEFANSI )
combines the conditions on the conformal extension given in the definition of asymptotical flatness
with further assumptions on the conformal factor at spatial infinity. Essentially, it is further
required that spatial infinity admits a so-called point compactification —see, e.g. [29], Section 11.6
for a discussion of this notion. The strategy behind the approach put forward in [3] is to make use
of spacetime notions rather than, say, making use of the initial value problem. Their definition of
asymptotic flatness allows them to blow up i0 to the timelike unit 3-hyperboloid —the hyperboloid
at spatial infinity. The sections of the hyperboloid give the blowing up of i0 to 2-spheres while time
direction along the (timelike) generators of the hyperboloid can be, roughly speaking, associated
with all the possible ways in which the asymptotic region of a Cauchy hypersurface can be boosted.
The definition of AEFANSI spacetimes is geared towards the discussion of asymptotic symmetries
and conserved quantities at spatial infinity.
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In a slightly different context, in [6, 5] the hyperboloid at spatial infinity is used, in conjunction
with the vacuum Einstein field equations to obtain asymptotic expansions of the gravitational
field near spatial infinity in negative powers of a radial coordinate. The main observation is that
the field equations give rise to a hierarchy of linear equations for the coefficients of the expansion.
It turns out that this hierarchy can be solved provided the initial data satisfies certain conditions.
This work can be regarded as the first serious attempt to investigate the consistency between the
Einstein field equations and geometric notions of asymptotic flatness.

The notion of the hyperboloid at spatial infinity has been revisited in [4] where the definition
of asymptotically Minkowskian spacetimes at spatial infinity (AMSI) has been introduced —see
Definition 2 in Section 4 of the main body of the present article. As in the analysis of [3],
the approach in [4] makes use of spacetime structures and, thus, it is not geared towards the
discussion of initial value problems. However, in contrast to the definition of AEFANSI spacetimes
in [3], the definition of AMSI spacetimes focuses entirely on spatial infinity and, thus, it makes
no assumptions about the properties of null infinity. A consequence of the concept of AMSI
spacetimes is the existence of a 3-dimensional manifold H, the asymptote at spatial infinity,
which generalises the notion of the hyperboloid at spatial infinity.

Friedrich’s cylinder at spatial infinity. In [10] Friedrich puts forward an alternative conformal
representation of the region of spacetime in the neighbourhood of spatial infinity —the F-gauge.
The aim of this representation is the formulation of a regular initial value problem at spatial infinity
for the conformal Einstein field equations. This initial value problem is key in the programme
to analyse the genericity of asymptotically simple spacetimes and relies heavily on the properties
of certain conformal invariants (conformal geodesics) and it is such that both the equations and
the initial data are regular at the conformal boundary. A central structure in this representation
of spatial infinity is the cylinder at spatial infinity which, in broad terms, corresponds to the
blow-up of the traditional point at spatial infinity to a 2-sphere plus a time dimension —hence,
the cylinder at spatial infinity. In contrast to the hyperboloid at spatial infinity, the cylinder at
spatial infinity has a finite extension in the time direction. The endpoints of the cylinder, the
critical sets correspond to the points where spatial infinity meets null infinity. Thus, the F-gauge
is ideally suited to the analysis of the connection between the behaviour of the gravitational
field at spatial infinity and radiative properties. This idea has been elaborated in [14] to express
the Newman-Penrose constants in terms of the initial data for the Einstein field equation and to
study the behaviour of the Bondi mass as one approaches spatial infinity —see [23]; also [28]. The
key property of the cylinder at spatial infinity which allows connecting properties of the Cauchy
initial data in a neighbourhood of spatial infinity with the behaviour near null infinity is that the
cylinder at spatial infinity is a total characteristic of the conformal Einstein field equations —that
is, the associated evolution equations reduce in its entirety to a system of transport equations on
this hypersurface. This property precludes the possibility of prescribing boundary data on the
cylinder but allows computing a particular type of asymptotic expansions which make it possible
to understand the role of certain pieces of the initial data have on the regularity properties of the
gravitational at null infinity —the so-called peeling behaviour ; see [10, 14, 25, 24, 26, 27, 17].

The F-gauge used in Friedrich’s representation of spatial infinity is a gauge prescription based
on the properties of conformal geodesics —i.e. a pair consisting of a curve and a covector along the
curve satisfying conformally invariant properties. A remarkable property of conformal geodesics
is that in Einstein spaces, they give rise to a canonical factor that has a quadratic dependence on
the parameter of the curve —see [15, 29]. The resulting expression depends on certain initial data
which can be chosen in such a way that the curves reach the conformal boundary and that no
caustics are formed. In this way, one can obtain a conformal Gaussian gauge in which coordinates
and a frame defined on an initial hypersurface are propagated along the conformal. In effect, this
procedure provides a canonical way of obtaining conformal extensions of Einstein spaces. In the
context of initial value problem for the conformal Einstein equations, one has a gauge in which
the location of the conformal boundary is known a priori.

Melrose-type compactifications. In the context of this introduction, it is worth mentioning
the proof of the stability of the Minkowski spacetime by Hintz & Vasy in which the existence of
spacetimes with polyhomogeneous asymptotic expansions is established —see [20]— makes use of
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of a compactification of spacetime into a manifold with boundary and corners. This procedure
is inspired by the methods of Melrose’s geometric scattering theory programme —see e.g. [21].
This construction has a very strong resemblance to that introduced by Friedrich in [10]. The
precise relation between these two seemingly connected representations of spatial infinity will be
elaborated elsewhere.

Main results of this article

A cursory glance at Ashtekar’s and Friedrich’s constructions of spatial infinity suggests that they
should be closely related. That this is the case has been part of the longstanding folklore of
mathematical relativity. It is the purpose of this article to establish, in a rigorous way, the
connection between these two representations of spatial infinity.

In order to carry out the objective outlined in the previous paragraph, we first analyse this
relation for the Minkowski spacetime where everything can be explicitly computed. The outcome
of this analysis is that Ashtekar’s and Friedrich’s representations are related to each other through
a conformal transformation which preserves the asymptotic behaviour of the metric along spatial
infinity but compactifies the time direction. In particular, the hyperboloid at spatial infinity
is compactified into the 1 + 2 Einstein Universe in the same way as the de Sitter spacetime is
compactified into the 1+3 Einstein Universe. The transformation between the two representations
can be expressed in terms of properties of conformal geodesics —although in the case of the
Minkowski spacetime, because of its simplicity, this does not play an essential role.

The intuition gained in the analysis of the Minkowski spacetime is, in turn used to establish
the relation between Ashtekar’s notion of an asymptote at spatial infinity given by the definition of
an AMSI spacetime —see Definition 2 in the main text. As the definition of an AMSI spacetime
does not imply the existence of null infinity, to carry out our analysis an extra assumption is
required —see Assumption 1 in the main text. In essence, we assume that a sufficiently regular
null infinity can be attached to the neighbourhood of spacetime around Ashtekar’s asymptote.
Our main result, whose proof is based on a stability argument for the solutions to the conformal
geodesic equations in a neighbourhood of the asymptote is the following:

Theorem. Given an AMSI spacetime that can be conformally extended to null infinity, there
exists a sufficiently small neighbourhood of the asymptote at spatial infinity in which is possible
to construct conformal Gaussian coordinates based on curves which extend beyond null infinity.

Associated to the conformal Gaussian system whose existence is ensured by the above state-
ment, there exists a conformal factor that provides the precise relation between Ashtekar’s rep-
resentation of spatial infinity and F-gauge representation.

Outline of the article

This article is structured as follows. In Section 2 we provide a brief summary of the conformal
methods that are required in the analysis of this article. These include: conformal geodesics, con-
formal Gaussian systems, the conformal Einstein field equations and their constraints. For a full
account of the associated literature, the reader is referred to the monograph [29]. Section 3 pro-
vides a discussion of the various representations of spatial infinity in the Minkowski spacetime. In
particular, it contains the explicit connection between the F-gauge and Ashtekar’s representation
at spatial infinity representation. Furthermore, it also contains a discussion on how this connec-
tion can be expressed in terms of conformal geodesics. Section 4 reviews Ashtekar’s definition
of asymptotically Minkowskian spacetimes at spatial infinity (AMSI) and the associated notion
of an asymptote. It further contains a discussion of the consequences of this definition in the
light of the conformal Einstein field equations and the associated constraint equations on timelike
hypersurfaces. Subsection 4.4 provides a detailed discussion of the relation between Ashtekar’s
asymptote and Friedrich’s cylinder viewed as intrinsic 3-manifolds. Section 5 contains the main
analysis in the article —namely, the construction of a conformal Gaussian gauge system in a
neighbourhood of an asymptote. It also provides a more detailed statement of the main theorem
of this article —Theorem 1. In addition, the article contains several appendices. Appendix A
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provides the stability theorem for solutions to a system of ordinary differential equations and their
existence times which is used in the analysis of the solutions to the conformal geodesic equations
in a neighbourhood of the asymptote. Appendix B provides details of the proof of a technical
lemma (Lemma 4) on the regularity of geometric fields at the asymptote. Finally Appendix C
provides details on a certain class of conformal geodesics on the Minkowski spacetime.

Notations and conventions

In what follows a, b, c . . . will denote spacetime abstract tensorial indices, while i, j, k, . . . are spa-
tial tensorial indices ranging from 1 to 3. By contrast, a, b, c, . . . and i, j,k, . . . will correspond,
respectively, to spacetime and spatial coordinate indices.

The signature convention for spacetime metrics is (+,−,−,−). Thus, the induced metrics
on spacelike hypersurfaces are negative definite. The analysis of this article involves several
conformally related metrics. To differentiate between them we adhere to the following conventions:
the tilde (˜) is used to denote metrics satisfying the physical Einstein field equations; the overline
( ¯ ) is used to denote metrics in the F-gauge; metrics without an adornment (e.g. g) are in the
conformal gauge given by the Definition 2 of a spacetime asymptotically Minkowskian at spatial
infinity (AMSI); metrics in a gauge with compact asymptote are denoted by a grave accent ( ` ).
Finally, metrics with a hat ( ˆ ) correspond to conformal representations in which spatial infinity
corresponds to a point.

An index-free notation will be often used. Given a 1-form ω and a vector v, we denote
the action of ω on v by 〈ω,v〉. Furthermore, ω] and v[ denote, respectively, the contravariant
version of ω and the covariant version of v (raising and lowering of indices) with respect to a
given Lorentzian metric. This notation can be extended to tensors of higher rank (raising and
lowering of all the tensorial indices). The conventions for the curvature tensors will be fixed by
the relation

(∇a∇b −∇b∇a)vc = Rcdabv
d.

Also, one can write the decomposition of the curvature tensor as

Rcdab = Ccdab + 2
(
δc[aLb]d − gd[aLb]

c
)

(2)

where Ccdab is the Weyl tensor and Lbd is the Schouten tensor of the metric gab.

2 Tools of conformal methods

The purpose of this section is to introduce the tools of conformal methods that will be required
in this article.

General conventions and notation

In the following assume that (M̃, g̃) denotes a spacetime satisfying the vacuum Einstein field
equation

R̃ab = 0. (3)

Following standard usage, we call the pair (M̃, g̃) the physical spacetime, while any conformally
related spacetime (M, g) with

g ≡ Ξ2g̃

will be referred to as the unphysical spacetime.

2.1 Conformal geodesics

Given an interval I ⊆ R and τ ∈ I, the curve x(τ) is said to be a conformal geodesic if there
exists a 1-form β(τ) along x(τ) such that

∇̃ẋẋ = −2〈β, ẋ〉ẋ+ g̃(ẋ, ẋ)β], (4a)
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∇̃ẋβ = 〈β, ẋ〉β − 1
2 g̃

](β,β)ẋ[ + L̃(ẋ, ·), (4b)

are satisfied. For spacetimes (M̃, g̃) satisfying the vacuum Einstein equations 3, one can explicitly
determine a canonical conformal factor given initial data on an initial hypersurface —see [29, 9],
Proposition 5.1. Specifically,

Proposition 1. Given an Einstein spacetime (M̃, g̃), a solution (x(τ),β(τ)) to the conformal
geodesic equations (4a)-(4b) and an unphysical spacetime g = Θ2g̃ defined such that g(ẋ, ẋ) = 1.
Then the conformal factor Θ can be written as a quadratic polynomial in terms of τ , i.e.

Θ(τ) = Θ? + Θ̇?(τ − τ?) +
1

2
Θ̈?(τ − τ?)2 (5)

with

Θ̇? = 〈β?, ẋ?〉Θ?, Θ?Θ̈? =
1

2
g̃](β?,β?) +

1

6
λ (6)

where λ is the cosmological constant.

Conformal Gaussian systems

Conformal geodesics can be used to construct the so-called Conformal Gaussian Systems in which
coordinates and adapted frames are propagated off an initial hypersurface S. One constructs a
conformal Gaussian system by initially introducing a g-orthonormal Weyl-propagated frame {ea}
along a congruence of conformal geodesics (ẋ(τ),β(τ)) on (M̃, g̃ = Ξ−2g) and choosing the time
coordinate such that e0 = ∂τ . Then if (xi) denotes the coordinates of a point p on S, one can
propagate the spatial coordinates off S by requiring them to be constant along the conformal
geodesic intersecting S at p. Then the conformal Gaussian system is given by (τ, xi).

2.2 Conformal field equations

The vacuum conformal Einstein field equations on the unphysical spacetime are given by

∇a∇bΞ = −ΞLab + sgab, (7a)

∇as = −Lac∇cΞ, (7b)

∇cLdb −∇dLcb = ∇aΞdabcd, (7c)

∇adabcd = 0, (7d)

6Ξs− 3∇cΞ∇cΞ = 0 (7e)

where dabcd = Ξ−1Cabcd is the rescaled Weyl tensor and s is the Friedrich’s scalar given by

s ≡ 1

4
∇c∇cΞ +

1

24
RΞ.

The conformal Einstein field equations constitute a set of differential conditions for the fields Ξ,
s, Lab and dabcd. A solution to the vacuum conformal field equations (7a)-(7e) implies, whenever
Ξ 6= 0, a solution to the vacuum Einstein field equations (3) on the physical spacetime.

Conformal constraint equations

For latter use, we give here the constraint equations implied by the conformal Einstein field
equations (7a)-(7e) on a timelike hypersurface T . These equations can be obtained through a
projection formalism and details of the derivation can be found in [29].

In the following let qij denote the intrinsic metric of the hypersurface T , let Di be the associ-
ated Levi-Civita connection and ω the restriction of the conformal factor Ξ to T . Moreover, let
na denote the (spacelike) normal to T with associated extrinsic curvature given by Kij . We use
the shorthand
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Σ ≡ na∇aΞ. (8)

Finally, the symbol ⊥ will indicate contraction with respect to the unit normal na. In terms
of these quantities, the conformal Einstein constraint equations in vacuum are given by:

DiDjω + ΣKij + ωLij − sqij = 0, (9a)

DiΣ + ωLi⊥ = 0, (9b)

Dis− ΣLi⊥ = 0, (9c)

DiLjk −DjLik + Σdij⊥k = 0, (9d)

DiLj⊥ −Kk
i Ljk −DjLi⊥ +Kk

j Lik = 0, (9e)

Dkdk⊥ij = 0, (9f)

Dkdk⊥j⊥ −Kikdi⊥jk = 0, (9g)

6Ωs− 3DiωD
iω − 3Σ2 = 0. (9h)

In the above expressions the terms dk⊥j⊥ and dk⊥ij correspond, essentially, to the electric and
magnetic parts of the rescaled Weyl tensor with respect to the normal na —respectively.

3 Representations of spatial infinity in the Minkowski space-
time

In this section, we review several representations of spatial infinity for the Minkowski spacetime.
This analysis will provide insight and motivate the analysis in curved spacetimes.

In the following let (R4, η̃) denote the Minkowski spacetime. Let (x) = (xµ) denote the stan-
dard Cartesian coordinates and write x0 = t̃, etc. We will also make use of spherical coordinates
(t̃, r̃, θA) where (θA) denotes some choice of spherical coordinates over S2. One has that

η̃ = ηµνdx
µ ⊗ dxν ,

= dt̃⊗ dt̃− dx̃⊗ dx̃− dỹ ⊗ dỹ − dz̃ ⊗ dz̃,

= dt̃⊗ dt̃− dr̃ ⊗ dr̃ − r̃2σ,

where ηµν ≡ diag(1,−1,−1,−1), and σ is the standard round metric over S2.

3.1 Spatial infinity as point

In first instance, we consider the standard representation of spatial infinity as a point. Intuitively,
the region in the Minkowski spacetime associated to spatial infinity is contained in the domain

D̃ ≡
{
p ∈ R4 | ηµνxµ(p)xν(p) < 0

}
—the complement of the light cone through the origin, see Figure 1. Now, introducing the inver-
sion coordinates x = (xµ) defined by

yµ = − x
µ

X2
, X2 ≡ ηµνxµxν ,

it follows that
ηµνdy

µ ⊗ dyν = X−4ηµνdx
µ ⊗ dxν .

The latter suggests introducing the conformal factor Ξ ≡ 1/X2 so that

η̂ ≡ Ξ2η̃ = Ξ2dxµ ⊗ dxν .
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Figure 1: (a) Diagrammatic depiction of the domain D̃ containing spatial infinity, (b) The
domain D̃ on the conformal diagram of Minkowski spacetime.

This is a conformal representation of the Minkowski spacetime which is flat. The conformal
boundary defined by Ξ decomposes into the sets

I + ≡
{
p ∈ R4|y0(p) > 0, ηµνy

µ(p)yν(p) = 0
}
,

I − ≡
{
p ∈ R4|y0(p) < 0, ηµνy

µ(p)yν(p) = 0
}
,

i0 ≡
{
p ∈ R4|(yµ(p)) = (0, 0, 0, 0)}.

The sets I + (I −), can be shown to be the endpoints of future (past) null geodesics while spatial
geodesics end up in the point i0 —spatial infinity, located in this representation at the origin.
Observe that I + and I − do not contain the whole of null infinity, only the part of the conformal
boundary close to spatial infinity —this is a peculiarity of this conformal representation.

Remark 1. In literature, I + and I − are usually used to denote the whole of future and past
null infinity, respectively. In this setting, in a slight abuse of notation, we use I + and I − to
denote the parts of the conformal boundary close to spatial infinity.

It can be verified that while dΞ|I ± 6= 0, for i0 it holds that

Ξ(i0) = 0, dΞ(i0) = 0, Hess Ξ(i0) 6= 0. (10)

Introducing spherical coordinates (t, ρ, θA), with ρ2 ≡ (y1)2 + (y2)2 + (y3)2, in the unphysical
spacetime one can write

η̂ = dt⊗ dt− dρ⊗ dρ− ρ2σ, Ξ = t2 − ρ2. (11)

For future use, it is noticed that

t̃ = − t

t2 − ρ2
, ρ̃ = − ρ

t2 − ρ2
.
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3.2 The cylinder at spatial infinity

A different representation of spatial infinity can be obtained from the rescaling

η̄ ≡ 1

ρ2
η̂. (12)

In this representation it is convenient to introduce a new time coordinate τ via the relation

t = ρτ, (13)

so that

η̄ = dτ ⊗ dτ +
τ

ρ

(
dτ ⊗ dρ+ dρ⊗ dτ

)
− (1− τ2)

ρ2
dρ⊗ dρ− σ, (14)

with contravariant metric given by

η̄] = (1− τ2)∂τ ⊗ ∂τ + ρτ
(
∂τ ⊗ ∂ρ + ∂ρ ⊗ ∂τ )− ρ2∂ρ ⊗ ∂ρ − σ].

Introducing the coordinate % ≡ − ln ρ, the metric η̄ can be rewritten as

η̄ = dτ ⊗ dτ − (1− τ2)d%⊗ d%− τ
(
dτ ⊗ d%+ d%⊗ dτ

)
− σ.

From this metric and observing equations (11) and (12), one can readily see that spatial infinity
i0, which corresponds to the condition ρ = 0 lies at an infinite distance as measured by the metric
η̄.

It follows from the previous discussion that one can write

η̄ = Θ2η̃, Θ ≡ ρ(1− τ2). (15)

Consistent with the above one can define the set

M̄ ≡
{
p ∈ R4 | − 1 ≤ τ(p) ≤ 1, ρ(p) ≥ 0

}
,

which gives rise to a conformal extension (M̄, η̄) of the Minkowski spacetime. In this represen-
tation the following sets play a role in our discussion:

I ≡
{
p ∈ M̄ | |τ(p)| < 1, ρ(p) = 0

}
, I0 ≡

{
p ∈ M̄ | τ(p) = 0, ρ(p) = 0

}
,

and
I+ ≡

{
p ∈ M̄ | τ(p) = 1, ρ(p) = 0

}
, I− ≡

{
p ∈ M̄ | τ(p) = −1, ρ(p) = 0

}
.

Moreover, future and past null infinity are given by:

I ± ≡
{
p ∈ M̄ | τ(p) = ±1

}
.

Remark 2. In the following, we call the above conformal representation of the neighbourhood
of spatial infinity the F-gauge horizontal representation.

Remark 3. Although the metric (14) is singular on I, it induces the Lorentzian 3-metric

q̄ = dτ ⊗ dτ − σ, (16)

which is regular. This metric can be regarded as the 1 + 2-dimensional version of the Einstein
Universe metric. In particular, its Ricci tensor is proportional to the metric —i.e. one has an
Einstein space.
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3.2.1 Conformal geodesics

A central aspect of the conformal representation of the Minkowski spacetime given by (M̄, η̄) is
its relation to conformal geodesics. More precisely, one has the following:

Lemma 1. The pair (x(s), β̄(s)), s ∈ [−1, 1] with

x(s) = (s, ρ?, θ
A
? ), β̄ =

1

ρ?
dρ, (17)

for fixed (ρ?, θ
A
? ) ∈ S? constitutes a non-intersecting congruence of conformal geodesics in M̄.

The details of the calculations providing the proof of the above lemma can be found in Ap-
pendix C.

Remark 4. In particular, the pair as given by the relations in (17) is a solution to the ḡ-conformal
geodesic equations.

Remark 5. In the following, in a slight abuse of notation, we identify the affine parameter s of
the conformal geodesics with the time coordinate τ . The conformal geodesics given by Lemma 1
have tangent vector given by ∂τ .

The conformal factor Θ given in equation (15) can be deduced from the solution to the
conformal geodesic equation given by Lemma 1 and Proposition 1. More precisely, writing the
canonical conformal factor in terms of the parameter s as

Θ(s) = Θ? + Θ̇?s+
1

2
Θ̈?s

2

with Θ̇? and Θ̈? given by the relations in (6). From Lemma 1, it readily follows that

Θ̇? = 0.

Moreover,
Θ? = ρ, Θ̈? = −2ρ.

Thus, to recover the conformal factor in (15) one identifies the parameters s and τ .

Remark 6. While on the one hand one has Θ?|ρ=0 = 0, on the other hand dΘ|ρ=0 6= 0. Thus,
the choice of Θ? in this conformal representation is not that one of a point compactification. More
generally, if Ω is a conformal factor giving rise to a point compactification of an asymptotic end
of an asymptotically Euclidean manifold (cf. the conditions in (10)) the prescription of Θ? is of
the form κ−1Ω with κ a smooth function of the form κ = κρ and κ(i0) = 1.

3.2.2 Gauge freedom

The conformal representation of the Minkowski spacetime described in the previous subsections
can be generalised to obtain a description in which null infinity does not coincide with hypersur-
faces of constant τ . For this, instead of relation (13) one rather considers

t = κτ, κ = κρ, κ = O(ρ0),

with κ a smooth function of the spatial coordinates. This leads to the conformal factor

Θ =
ρ

κ
(
1− κ2τ2

)
,

with associated metric ḡ = Θ2g̃

ḡ = dτ ⊗ dτ +
τκ′

κ
(dτ ⊗ dρ+ dρ⊗ dτ)− 1

κ2
(1− τ2κ′2)dρ⊗ dρ− ρ2

κ2
σ, κ′ ≡ ∂κ

∂ρ
. (18)
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ψ = 2

ψ = 4

ψ = 6

r(t)

t

i0

i+

i−

I −

I +

(b)(a)

Figure 2: (a) The timelike hyperboloids in the domain D̃ of the Minkowski spacetime used in the
construction of Ashtekar’s hyperboloid at spatial infinity. (b) The timelike hyperboloids shown
on the conformal diagram of Minkowski spacetime.

In this case, the neighbourhood of spatial infinity is given by

M̄ ≡
{
p ∈ R4 | − 1

κ(p)
≤ τ(p) ≤ 1

κ(p)
, ρ(p) ≥ 0

}
,

while null infinity is described by the sets

I ± ≡
{
p ∈ M̄ | τ(p) = ± 1

κ(p)

}
.

Remark 7. The general F-gauge representation of Minkowski spacetime is related to the hori-
zontal representation associated with the line element (14) via a conformal transformation which
is the identity on I. Moreover, also notice that the parameter of the conformal geodesics in both
representations do not coincide and are related to each other via a reparametrisation (Möbius
transformation).

Remark 8. A key difference between the horizontal representation line element (14) and the
more general F-gauge line element (18) is that the former metric loses rank (i.e. degenerates) all
along null infinity (I +) while the latter does it only at the critical sets (I±). Thus, horizontal
representation provides a slightly more singular representation of the neighbourhood of spatial
infinity. This singular behaviour does not play a role in the subsequent discussion of this article.
Accordingly, given its relative analytic simplicity, all further discussion of the F-gauge is done in
the horizontal representation.

3.3 The hyperboloid at spatial infinity

Following the discussion in [4] a different (albeit related) representation of spatial infinity as an
extended set can be obtained by considering hyperbolic coordinates (ψ, χ, θ, ϕ) via the relations

x0 = ψ sinhχ, (19a)

11



x1 = ψ coshχ sin θ cosϕ, (19b)

x2 = ψ coshχ sin θ sinϕ, (19c)

x3 = ψ coshχ cos θ. (19d)

It readily follows that
ρ̃2 − t̃2 = ψ2.

Accordingly, the hypersurfaces of constant ψ are timelike hyperboloids —see Figure 2. As in
Section 3.1 one has that

X2 = ηµνx
µxν = t̃2 − ρ̃2 = −ψ2,

so that, as before, spatial infinity is contained in the region

D̃ ≡ {x ∈ R4 | X2 < 0}.

It follows that the hyperbolic coordinates only cover the domain D̃—see Figure 1. The Minkowski
metric in hyperbolic coordinates takes the form

η̃ = −dψ ⊗ dψ + ψ2`,

where
` ≡ dχ⊗ dχ− cosh2 χσ (20)

is the (Lorentzian) metric of the unit hyperboloid. This metric can be obtained from the pullback
of η̃ to the hypersurface defined by the condition ρ̃2 − t̃2 = 1.

3.3.1 Standard representation of spatial infinity

In order to discuss the behaviour near spatial infinity it is convenient to introduce a new coordinate

ζ ≡ 1

ψ
.

It follows then that

η̃ = − 1

ζ4
dζ ⊗ dζ +

1

ζ2
`. (21)

Thus, it seems natural to introduce a conformal factor of the form

Ω ≡ ζ2

so as to obtain

η̂ ≡ Ω2η̃

= −dζ ⊗ dζ + ζ2`.

This leads to the standard representation of spatial infinity as a point. This is shown by noting
that the metric of the 2-surfaces of constant ζ is given by ζ2`. Hence, the set given by ζ = 0 has
zero volume and is forced to be a single point by the choice of conformal factor Ω = ζ2. Moreover,
one can confirm that at ζ = 0, we have Ω = 0, dΩ = 0, Hess Ω = −2η̂.

3.3.2 The hyperboloid at spatial infinity

In the present case, it is better to define the conformal factor

H ≡ ζ

so that

η ≡ H2η̃,

= − 1

ζ2
dζ ⊗ dζ + `. (22)

12



This particular rescaling readily connects with Friedrich’s framework already discussed in Section
3.4.

Consider in the following the timelike hyperboloids defined by the condition ζ = ζ• where ζ•
is a constant. The key observation in [4] is that although the conformal metric (22) is singular
at ζ = 0, the conformal 3-metric

q = H2q̃ = `

is well defined. Observe also, that the contravariant 4-dimensional metric

η] = −ζ2∂ζ ⊗ ∂ζ + `]

is well defined —although, it losses rank at the set where ζ = 0. In addition to the above, observe
that

(dζ)] = η̃](dζ) = −ζ4∂ζ .

The later suggests introducing a rescaled unit normal vector through the relation

N = H−4(dζ)] = −∂ζ .

Remark 9. Starting directly from the (singular) metric η one readily finds that the unit normal
covector is given by ζ−1dζ. Moreover, one has that(

ζ−1dζ
)]

= −ζ∂ζ

which, despite being well defined at ζ = 0 vanishes. As it will be seen in the following, vectors
with this behaviour at infinity play a key role in Friedrich’s framework of spatial infinity.

Remark 10. In the following, the timelike hyperboloid H described by the condition ζ = 0
together with the induced metric q = ` will be known as the hyperboloid at spatial infinity of
the Minkowski spacetime. This hyperboloid is an example of the general notion of asymptote at
spatial infinity introduced in the definition of an asymptotically Minkowskian spacetime at spatial
infinity (AMSI) —see Definition 2 in Section 4.

3.4 Relating the Ashtekar and F-gauge construction in the Minkowski
spacetime

In this subsection, we obtain the explicit relation between the description of spatial infinity in
terms of the hyperboloidal coordinates and that based on the F-gauge. The procedure for relating
these two representations will serve as a template for an analogous computation in more general
classes of spacetimes.

3.4.1 From the hyperboloid at infinity to the cylinder at infinity

In order to relate the pair (H, `) corresponding to Ashtekar’s hyperboloid at spatial infinity to
the pair (I, q̄) with q̄ as given by equation (16), it is observed while the former can be thought
of as a 1 + 2 version of the de Sitter spacetime, the latter is a 1 + 2 version of the Einstein static
Universe —see Remark 3. As both metrics ` and q̄ are Einstein, their Cotton tensor vanishes
and thus, they are conformally flat. Accordingly, ` and q̄ are conformally related.

In order to find the conformal factor relating ` and q̄ we follow the same procedure used
to show that the (4-dimensional) de Sitter spacetime can be conformally embedded in the (4-
dimensional) Einstein static Universe —see e.g. Section 6.3 in [29]. More precisely, starting
from the metric ` of the unit hyperboloid, introduce the coordinate transformation given by the
relation

dχ = coshχdτ.

It follows readily that
` = cosh2 χ

(
dτ ⊗ dτ − σ

)
from where one can indeed see that ` and q̄ are conformally related. In particular, it can be
shown that coshχ = sec τ .

13



Remark 11. It follows from the previous discussion that Friedrich’s cylinder at spatial infinity
is indeed a time compactified version of Ashtekar’s hyperboloid. In particular, the critical sets
I± correspond to the limits χ→ ±∞.

3.4.2 Relating the neighbourhoods of spatial infinity

Now, to relate the two constructions away from spatial infinity we recall that

η̄ = Θ2η̃, η = H2η̃. (23)

Now, as ζ = 1/ψ, a direct computation then gives that

ρ =
1

ψ
coshχ, τ = tanhχ, (24)

so that
ζ = ρ sechχ.

Moreover, from the rescalings in (23) it follows that

η = $2η̄, $ ≡ HΘ−1.

In terms of coordinates, one has

$ =
ζ

ρ(1− τ2)
= coshχ.

Observing that χ = arctanh τ it follows that

$ =
1√

1− τ2
.

Notice that $|S? = 1. Moreover, $ → ∞ as τ → ±1. Thus, $ gives rise to a conformal
representation of Minkowski spacetime that does not include null infinity.

Remark 12. Using equation (24) and setting ψ = ψ• where ψ• is a constant. One has that
(tanhχ, ψ−1

• coshχ) describes a curve in the (τ, ρ)-plane —see the Figure 3. Observe, in particular,
that

(tanhχ, ψ−1
• coshχ) −→ (±1,∞) as χ→ ±∞.

Accordingly, the hyperboloids of constant ψ never reach the conformal boundary —i.e. I ±;
see Figure 3. Hence, this representation of spatial infinity cannot be used to study the effects of
gravitational radiation and the relation between asymptotic charges at null infinity and conserved
quantities at spatial infinity.

3.4.3 Conformal geodesics and construction of a conformal Gaussian system

The unphysical metric η̄ is conformally related to the physical metric η̃ via the conformal factor
Θ = ρ(1 − τ2). Thus, a solution to the conformal geodesic equations on η̄ implies a solution
to the conformal geodesic equation on the physical metric η̃. Recalling that the pair given by
x(τ) = (τ, ρ?, θ

A
? ) and β̄ = dρ/ρ satisfies the conformal geodesic equations for the metric η̄, it

follows, using the coordinate transformation to hyperbolic coordinates given by (19a)-(19d), that
the tangent vector to the curve x(τ) is given in the (ζ, χ, θA) coordinates by

ẋ = − ρ?τ√
1− τ2

∂ζ +
1

1− τ2
∂χ.

Then, (ẋ,β) provides a solution to the conformal geodesic equation, where β is given by

β = β̄ −$−1d$

14



τ = 1

τ = −1

τ

ρ

Figure 3: Example of one of the timelike hyperboloids used in Ashtekar’s representation of spatial
infinity for the Minkowski as seen from the point of view of the F-gauge. Observe that the
hyperboloid asymptotes the sets described by the conditions τ = ±1. Notice, however, that in
this description the hyperboloid at spatial infinity is compact and corresponds to the portion of
the vertical axis between the values τ = −1 and τ = 1.

=
1

ζ
dζ = d lnH,

where it has been used that

β̄ =
1

ζ
dζ + tanhχdχ, d ln$ = tanhχdχ.

Setting up a conformal Gaussian system. To conclude this discussion, we show how to
compute a conformal Gaussian system on top of Ashtekar’s conformal representation of spatial
infinity in the Minkowski spacetime. As we have already shown that we have a non-intersecting
congruence of conformal geodesics, one can invoke Proposition 1 in Section 2.1 so that one can
associate a conformal factor

Λ(τ) = Λ? + Λ̇?s+
1

2
Λ̈?s

2,

along each of the curves of the congruence and where s is the natural parameter of the curves.
The coefficients in the above expression satisfy the relations

Λ̇? = 〈β̃?, ẋ?〉Λ?, Λ?Λ̈? =
1

2
η̃](β̃?, β̃?).

Consistent with the conformal metric (22), for Λ? one prescribes Λ? = ζ. For the covector β̃
one would like to prescribe a behaviour of the form β̃? = 2dr̃/r̃. Note that the above form of
β̃ is consistent with the conformal geodesic solution obtained on the F-gauge construction with
β̄ ∝ 1/ρ. Also, this type of behaviour near spatial infinity is obtained from the conformal factor
ω = ζ2 = 1/ψ2 ∼ 1/r2, which renders the standard point compactification of spatial infinity.
Consistent with this discussion set

β̃ = d lnω =
2

ζ
dζ.

it follows from the above discussion that Λ̇? = 0 as 〈dζ,∂τ 〉 = 0. Also, notice that

η̃](β̃?, β̃?) = h̃](β̃?, β̃?).
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A quick computation gives the metric on χ = 0 hypersurface

h̃ = − 1

ζ4
dζ ⊗ dζ − 1

ζ2
σ, h̃] = −ζ4∂ζ ⊗ ∂ζ + ζ2σ],

so that h̃](β̃?, β̃?) = −4ζ2. From the latter it follows then that Λ̈? = −2ζ. Accordingly, the
conformal factor associated to the congruence of conformal geodesics has the form

Λ = ζ(1− s2).

Finally, defining η̆ ≡ Λ̆2η̃ so that
β̆ = β̃ − d ln Λ̆,

one concludes that β̆? = dζ/ζ. This shows the consistency of the prescription of initial data for
the covector β̃ given above.

4 Asymptotically Minkowskian spacetimes at spatial infin-
ity

In [4] the notion of spacetimes which are asymptotically Minkowskian at spatial infinity has been
introduced. We want to analyse this definition in the light of Friedrich’s framework. Hence, we
briefly review the relevant definitions and properties.

4.1 Definitions

Following the discussion in [4], in the following we will consider the following definition:

Definition 2. A vacuum spacetime (M̃, g̃) is said to possess an asymptote at spatial in-
finity if there exists a manifold with boundary H, a smooth function Ω defined on M and a
diffeomorphism from M̃ to M\H (which is used to identify M̃ with its image in M; in partic-
ular Ω is non-vanishing in M̃) such that:

(i) Ω = 0 and dΩ 6= 0 on H;

(ii) the fields

q ≡ Ω2
(
g̃ + Ω−4dΩ⊗ dΩ

)
(25)

and
N ≡ Ω−4g̃](dΩ, ·)

admit smooth limits to H. In particular, the pullback of q (to be denoted again by q) to H
is also well defined and has signature (+−−).

In addition, if H has the topology of R × S2 then (M̃, g̃) is said to be asymptotically flat
at spatial infinity. Moroever, if H is geodesically complete with respect to q we say that the
spacetime is asymptotically Minkowskian at spatial infinity (AMSI).

Notation. In the following, for convenience, we will make use of the symbol ' to denote equality
on H. With this notation the conditions in point (i) of the Definition 2 are written as

Ω ' 0, dΩ 6' 0.

Remark 13. The above definition involves some conformal gauge freedom in the sense that if
(M,Ω) satisfy Definition 2 and α is a smooth function which is a non-zero constant on H and
non-vanishing in M̃, then (M,Ω′ = αΩ) also satisfy the definition.
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4.2 Properties and consequences of the definition of an AMSI space-
time

In the following, we explore some direct consequences of Definition 2 which will be used repeatedly
in the rest of this article. Accordingly, throughout we assume that one has a vacuum AMSI
spacetime (M̃, g̃).

For conceptual clarity, let ζ denote a coordinate such that in a neighbourhood of H one has

Ω = ζ.

It follows then that the metric
q ≡ ζ2

(
g̃ + ζ−4dζ ⊗ dζ

)
has a smooth limit as ζ → 0. From this assumption it follows that

q = q̊ + q̆ (26)

with q̊ independent of ζ and, moreover, q̊(∂ζ , ·) = 0. The tensor q̆ has smooth components such
that

q̆ = o(ζ).

Remark 14. Recall that the notation f(ζ) = o(ζα) means that f(ζ)/ζα → 0 as ζ → 0.

The statement (26) can be regarded as a zeroth-order Taylor expansion of the metric q with
respect to ζ. From (25) and (26), it follows that the physical metric g̃ has, close to H, the form

g̃ = − 1

ζ4
dζ ⊗ dζ +

1

ζ2

(
q̊ + q̆

)
.

Following the analogy of the Minkowski spacetime, define the conformal metric

g ≡ Ω2g̃,

so that one has

g = − 1

ζ2
dζ ⊗ dζ +

(
q̊ + q̆) (27)

—cf. the line element (22) for the conformal Minkowski spacetime in hyperboloidal coordinates.

Remark 15. As in the case of the Minkowski spacetime, the conformal metric (27) is singular at
ζ = 0. Dealing with this singular behaviour will be the main challenge in the subsequent analysis
of this section.

Remark 16. As it will be seen, the metric (27) can be further specialised by choosing coordinates
on H so that

q̊ = ` = dχ⊗ dχ− cosh2 χσ,

the metric of the unit timelike hyperboloid.

4.3 The conformal constraint equations on H
In this section, we discuss the implications Definition 2 has on the conformal Einstein constraint
equations (9a)-(9h) when evaluated on the asymptote H. In this way, we recover systematically
the conditions satisfied by the gravitational field on the hyperboloid as discussed in [4].

In order to evaluate the conformal Einstein constraints on H, we first consider the equations
(9a)-(9h) on timelike hypersurfaces for which the conformal factor Ω is constant. On these
hypersurfaces one has, in adapted coordinates, that Diζ = 0 and DiDjζ = 0. Following the
discussion in [4] define

z ≡ Na∇aΩ.
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Note that the unit normal is related to Ashtekar’s normal by na = νNa with ν ≡ Ωz− 1
2 = O(Ω)

i.e. as ζ → 0, we have |ν| ≤ M |Ω|, where M is a positive constant. From (8), we have Σ = νz.
Taking the limit of equations (9a)-(9h) as ζ → 0, one obtains the following equations on H:

Diz ' 0, (28a)

Das ' 0, (28b)

DiLjk −DjLik ' 0, (28c)

DiLj⊥ −DjLi⊥ −Kl
iLjl +Kl

jLil − njKl
iLl⊥ + niK

l
jLl⊥ ' 0, (28d)

Dkdk⊥ij ' 0, (28e)

Dkdk⊥j⊥ ' 0. (28f)

s ' 0, (28g)

As in the previous section, the symbol ' is used to indicate an equality which holds at H and
these equations to be understood as the limit as ζ → 0. For example, equation (28a) is to be
understood as

lim
ζ→0

Diz = 0.

The conformal field equations imply an additional constraint DiDjΩ ' 0 which is satisfied iden-
tically on H. In addition to the above relations, one can also consider the Gauss-Codazzi and
Codazzi-Mainardi equations on H. Assuming vacuum, these give the relations

qi
aqj

bLab ' lij + 1
4qij

(
KklK

kl −K2
)

+KKij −Kk
i Kjk, (29a)

DiKjk −DjKik ' 0, (29b)

where lij denotes the Schouten tensor of the metric qij and one uses qij to raise and lower indices
on H.

A direct consequence of the above relations is that z is constant on H. Moreover, from the
above relations one obtains the following:

Lemma 2. For a spacetime (M̃, g̃) satisfying Definition 2 it follows that on the asymptote H
one has the relation

rij ' 2zqij .

In other words, (H, q) is an Einstein space.

Proof. Starting from the transformation rule for the Schouten tensor

Lab − L̃ab = − 1

Ξ
∇a∇bΞ +

1

2Ξ2
∇cΞ∇cΞgab,

contracting with qi
aqj

b and using Kij = −qicqjd∇cnd and ∇cΞ∇cΞ = Ξ2z, the relation between

Lab and L̃ab can be written as

qi
aqj

bLab = qi
aqj

bL̃ab + z
1
2Kij +

1

2
zqij .

The first term on the right hand side vanishes for a spacetime satisfying Definition 2. Substituting
into the Gauss-codazzi equation (29a) and using Kij ' −z

1
2 qij , we get

lij = zqij .

Then, defining the 3-dimensional Schouten tensor as lij ≡ rij − 1
4rqij , we can confirm that rij =

4zqij . Making use of the conformal gauge freedom, z can be redefined so that rij = 2zqij .

In addition, one has the following peeling-type behaviour for the components of the Weyl
tensor:
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3-dim

Einstein metric

(H, q)

1+2

Minkowski

(M, q̊)
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Spatial infinity

(R× S2, q̄)

ς ω

Figure 4: Schematic summary of the argument showing that the an asymptote H satisfying
Definition 2 and the 1 + 2 Einstein static Universe are conformally related.

Lemma 3. For a spacetime (M̃, g̃) satisfying Definition 2, the electric Eab and magnetic Bab
parts of the Weyl satisfy

Eab ' 0

Bab ' 0.

Proof. Starting with the definition of the electric and magnetic part of the Weyl tensor

Eab = Cacbdn
cnd Bab =∗ Cacbdn

cnd,

where ∗Cacbd is the left hodge dual of Cacbd. Using the decomposition of the curvature
tensor (2) and after a lengthy calculation, one can write

Eab = LnKab + z
1
2DaDbz−

1
2 −Kc

bKac + qcaq
d
bLcd − qabncndLcd

Bab = −εcda
(
D[dKc]b +

1

2
(gdbLecn

e − gbcLedne)
)

where Ln denotes the Lie derivative in the direction of the unit normal n. Then making use of the
transformation law of the Schouten tensor and the fact that L̃ab = 0 and taking the limit as ζ → 0
and again using Kij ' −z

1
2 qij , it can be shown that limζ→0Eab = 0 and limζ→0Bab = 0.

4.4 Relating a general asymptote to Friedrich’s cylinder

The purpose of this section is to show that, as in the case of the Minkowski spacetime, the
3-dimensional Lorentzian manifold (H, q) is conformally related to the 3-dimensional Einstein
Universe (Friedrich’s cylinder) (R× S2, q̄ ≡ dτ ⊗ dτ − σ).

In the following we assume one is given an asymptote H as given by Definition 2. From
Lemma 2, it follows then that

rij = 2zqij
with z constant on H. In order to find the conformal transformation between q and q̄ we proceed
in two steps: (i) first we show that qij is conformally related to the 1 + 2-dimensional Minkowski
spacetime; and (ii) use the fact that the 1 + 2-dimensional Minkowski spacetime is conformally
related to the 3-dimensional Einstein cylinder. The composition of these two conformal rescalings
gives the relation between q and q̄ —see Figure 4.

4.4.1 From the Einstein metric to 1 + 2-Minkowski spacetime

We begin by observing that if q is conformally related to the 1 + 2-Minkowski metric q̊ via a
rescaling of the form q = ς2q̊, then the Schouten tensors of q and q̊ are related via

lij − l̊ij = −1

ς
DiDjς +

1

2ς2
DkςD

kςqij . (30)
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Now, defining
αi ≡ ς−1Diς,

then we can rewrite equation (30) as

lij − l̊ij = −Diαj − αiαj +
1

2
αkα

kqij .

Given that l̊ij = 0, one finds that

Diαj = −lij − αiαj +
1

2
αkα

kqij . (31)

Multiplying by qil and expanding the covariant derivative in local coordinates x = (xα), one ends
up with the expression

∂αα
β = −lαβ − αααβ +

1

2
αγα

γδβα − Γα
β
γα

γ . (32)

This is an overdetermined partial differential equation for the components of the covector α.
To ensure the existence of a solution to this equation, we make use of Frobenius theorem —see
e.g. [8], Appendix C. Specifically, for a system of partial differential equations of N dependent
variables given in terms of n independent variables

∂αA

∂xi
= ψAi (x,α), i = 1, . . . , n, A = 1, ..., N,

the necessary and sufficient condition to find a unique solution αA = αA(x) is given by

∂ψAα
∂xβ

−
∂ψAβ
∂xα

+
∑
B

(
∂ψAα
∂αB

ψBβ −
∂ψAβ
∂αB

ψBα

)
= 0. (33)

In the case of equation (32) one has that n = 3 and N = 9. Thus, making the identification
ψAα 7→ ∂αα

A and after a lengthy calculation, we find that equation (33) can be rewritten as

rlkjiαl − 2α[iDj]αk + 2αlqk[iDj]α
l = 0 (34)

with rlkji denoting the components of the Riemann tensor of q. Now, in 3 dimensions the
Riemann tensor is completely determined by the Schouten tensor —more precisely

rklji = 2
(
δk[j li]l − ql[j li]k

)
.

Using this expression for the Riemann tensor, together with the condition lij = zqij , valid for an
Einstein space, in equation (34) we find that the integrability condition is automatically satisfied.
Accordingly, there exists a solution αα to equation (32). From equation (31), one can show that
D[iαj] = 0, so αj is a closed covector. Hence, it is locally exact. Thus, one can guarantee the
existence of a conformal factor locally relating the 3-dimensional Lorentzian metric q and the
1 + 2-Minkowski metric q̊.

4.4.2 From the 1 + 2-Minkowski spacetime to Friedrich’s cylinder

The next step is to find the conformal factor relating the 1 + 2-Minkowski to the cylinder at
spatial infinity. Starting with the 1 + 2-Minkowski metric in the form

q̊ = dt⊗ dt− dr ⊗ dr − r2dθ ⊗ dθ,

we can write this metric in terms of the double null coordinates u ≡ t− r and v ≡ t+ r as

q̊ =
1

2
(dv ⊗ du+ du⊗ dv)− 1

4
(v − u)2dθ ⊗ dθ.

20



If we introduce the two coordinate transformations

u = tanU, v = tanV

and
R = V − U, T = V + U,

the 1 + 2-Minkowski metric transforms to

q̊ = ω−2
(
dT ⊗ dT − dR⊗ dR− sin2Rdθ ⊗ dθ

)
= ω−2 (dT ⊗ dT − σ)

= ω−2q̄

where q̄ is the metric of Friedrich’s cylinder and Ξ is given by

ω ≡ 2 cosU cosV ≡ cosT + cosR.

4.4.3 Summary

The discussion of the previous subsections can be summarised as follows:

Proposition 2. The metric q of an asymptote H satisfying Definition 2 is conformally related
to the standard metric of Friedrich’s cylinder R× S2.

In the following, we make this relation more precise by recasting the neighbourhood of the
asymptote H in terms of the F-gauge in which the cylinder at spatial infinity is described.

5 Conformal Gaussian gauge systems in a neighbourhood
of an asymptote

In this section, we provide the main analysis of the article: the construction of conformal Gaussian
systems in a (spacetime) neighbourhood of an asymptote H which satisfies Definition 2. More
precisely, we show that Definition 2 provides enough regularity in the conformal geometric fields
to run a stability argument to show that the neighbourhood of the asymptote H can be covered by
a non-intersecting congruence of conformal geodesics extending up to null infinity (and beyond).
This congruence is used, in turn, to build on top a representation of spatial infinity à la Friedrich.

The construction proceeds in various steps and mimics, to some extent, the analysis of the
conformal extension of static and stationary spacetimes given in [12, 1].

5.1 A compactified version of the asymptote H
The construction of a conformal Gaussian system is based on the conformal representation of the
asymptotic region of the spacetime (M̃, g̃) given by the metric (27). Moreover, using arguments
similar to those used in Section 4.4 it can be assumed, without loss of generality that the metric
q̊ is, in fact, the metric of the unit hyperboloid `. Accordingly, in the following we consider a
metric of the form

g = − 1

ζ2
dζ ⊗ dζ +

(
`+ q̆), q̆ = o(ζ). (35)

In order to construct a conformal Gaussian system in a neighbourhood of the asymptote H
it is convenient to consider a representation in which the time dimension has compact extension.
There are several ways of doing this, however, for the present purposes probably the most con-
venient approach is to mimic the discussion of the relation between the F-gauge and hyperboloid
representations of spatial infinity for the Minkowski spacetime given in Section 3.4.2.

In the following introduce new coordinates (τ, ρ, θA) in the line element (35) via the relations

ρ̀ = ζ coshχ, τ̀ = tanhχ.
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This coordinate transformation is formally identical to the one used in Section 3.4.2 but the
geometric interpretation does not follow through as the vector field ∂τ is no longer tangent to a
congruence of conformal geodesics. Observe that τ̀ = 0 if and only if χ = 0. A computation then
shows that

g = $2η̄ + q̆, $ ≡ 1√
1− τ̀2

.

This suggests introducing a new conformal metric g̀ via

g̀ ≡ $−2g̀,

so that
g̀ = η̄ +$−2q̆, (36)

where η̄ is the expression for the Minkowski metric in the F-gauge, equation (14), with the
replacements τ 7→ τ̀ and ρ 7→ ρ̀. Observe that

$−2q̆ = (1− τ̀2) q̆,

= sech2 χ q̆.

In view of the above expression we make further assumption independently of Definition 2:

Assumption 1. (i) The field
(1− τ̀2) q̆ (= sech2 χ q̆)

has a suitably regular limit as τ̀ → ±1 (i.e. χ→ ±∞).

(ii) Moreover, it is required that

(1− τ̀2)q̆(dτ̀ ,dτ̀)→ 0, as τ̀ → ±1.

Remark 17. The above assumption is, in fact, a statement about the regularity of the conformal
metric in the sets where spatial infinity meets null infinity. A programme to analyse this issue
has been started in [10] —see also [29], Chapter 20 for further discussions on the subject.

Remark 18. Condition (ii) above ensures that g̀(dτ̀ ,dτ̀) = 0 for τ = ±1, so that the conformal
boundary is null as it is to be expected. Suitably regular in the present context means that the
limit is assumed to be sufficiently regular for the subsequent argument to hold. The analysis of
how stringent these conditions are or how this can be encoded goes beyond the scope of this
article.

5.2 Regularisation of the conformal fields

The metric g̀ shares with g the property of being singular at the asymptote H. In order to deal
with this difficulty we follow the spirit of the analysis of [12], Section 6, and consider a frame
{ca}, a = 0, 1, +, −, with

c0 ≡ ∂τ̀ , c1 ≡ ρ̀∂ρ̀, cA ≡ ∂A = (∂+,∂−).

where (∂+,∂−) is a complex null frame on S2. The associated coframe {αa} is given by

α0 ≡ dτ̀ , α1 ≡ 1

ρ̀
dρ̀, αA = dθA = (ω+,ω−).

In this frame, the standard round metric of S2 is given by

σ = 2
(
ω+ ⊗ ω− + ω− ⊗ ω+

)
Clearly, 〈αa, cb〉 = δb

a. However, notice that {ca} is not g̀-orthogonal. In the following we ignore
the complications arising from the fact that there is no globally defined basis over S2 as there are
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standard methods to deal with them —see e.g. [11, 1, 16]. The components g̀ab ≡ g̀(ca, cb) of g̀
with respect to the frame {ca} are given by

g̀ab = η̄ab + (1− τ̀2)q̆ab,

where

(η̄ab) =


1 τ̀ 0 0
τ̀ −(1− τ̀2) 0 0
0 0 0 −2
0 0 −2 0

 , q̆ab = o(ρ̀).

Similarly, defining g̀ab ≡ g̀](αa,αb) one finds that

g̀ab = η̄ab +Qab,

where

(η̄ab) =


(1− τ̀2) τ̀ 0 0

τ̀ −1 0 0
0 0 0 − 1

2
0 0 − 1

2 0

 , Qab = o(ρ̀3).

In the following let Γ̀a
b
c ≡ 〈ωc, ∇̀aec〉 denote the connection coefficients of the Levi-Civita

connection of the metric g̀ with respect to the frame {ca}, and L̀ab the components of the
associated Schouten tensor. A detailed computation leads to the following:

Lemma 4. The fields g̀ab, g̀ab, Γ̀a
b
c and L̀ab extend smoothly to H.

The details of the proof of the above result can be found in Appendix B.

5.3 Analysis of the g̀-conformal geodesic equations

In the following, we consider the conformal geodesic equations for the metric g̀ in terms of the
basis {ca} and study their solution in a neighbourhood of the asymptote H with the aim of
establishing the existence of a conformal Gaussian system.

5.3.1 The equations

The conformal geodesic for the metric g̀ is given by a spacetime curve
(
xµ(τ)

)
=
(
τ̀(τ), ρ̀(τ), θA(τ)

)
with tangent vector v(τ) and a 1-form β̀(τ) along the curve such that:

ẋ = v, (37a)

∇̀vv = −2〈β̀,v〉v + g̀(v,v)β̀], (37b)

∇̀vβ̀ = 〈β̀,v〉β̀ − 1

2
g̀(β̀, β̀)v[ + L̀(v, ·). (37c)

Equation (37a) is just the definition of the tangent vector. In order to analyse these equations
consider the expansions

v = vaca,

β̀ = β̀aα
a,

g̀ = g̀abα
a ⊗αb, g̀] = g̀abca ⊗ cb,

L̀ = L̀abα
a ⊗αb.

Using the above expansions equation (37a) gives the components

dτ̀

dτ
= v0,

dρ̀

dτ
= ρ̀v1,

dθA

dτ
= vA. (38)

From equations (37b) and (37c) one gets

dva

dτ
+ Γ̀b

a
cv

bvc = −2β̀dv
dva + g̀bcv

bvcg̀adβ̀d, (39a)

dβ̀a

dτ
− Γ̀b

c
av

bβ̀c = β̀cv
cβ̀a +

1

2
g̀cdβ̀cβ̀dg̀abv

b + L̀bav
b. (39b)
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5.3.2 The initial data

Following the discussion of the Minkowski spacetime, in the sequel the initial data of the curve(
xµ(τ)

)
is chosen so that ẋ is g̀-normalised and orthogonal to the hypersurface

S? ≡ {τ̀ = 0}.

The normal covector to this hypersurface is given by dτ̀ from where it follows that the unit normal
vector is given by

ǹ ≡ 1√
g̀(dτ̀ ,dτ̀)

g̀](dτ̀ , ·),

=
1√

(1− τ̀2)(1− q̆](dτ̀ ,dτ̀))

(
(1− τ̀2)∂τ̀ + ρ̀τ̀∂ρ̀ − (1− τ̀2)q̆](dτ̀ , ·)

)
.

Thus, on S? one has that

ǹ? =
1√

1− q̆](dτ̀ ,dτ̀)

(
∂τ̀ − q̆]?(dτ̀ , ·)

)
,

from where one can readily compute

v0? ≡ 〈α0, ǹ?〉, v1? ≡ 〈α1, ǹ?〉, vA? ≡ 〈αA, ǹ?〉. (40)

The prescription of initial data for the 1-form β̃ in the g̃-conformal geodesic equations is that

β̃? = Ω−1
? dΩ?,

where Ω? is a 3-dimensional conformal factor satisfying the point compactification conditions

Ω?(i) = 0, dΩ?(i) = 0, Hess Ω?(i) 6= 0.

The restriction of the conformal factor Ω = ζ to the hypersurface S? does not satisfy these
conditions. However, the choice Ω? = ζ2 does. In this case one has that

β̃? =
2

ζ
dζ. (41)

Given that g̀ = ζ4g̃, one has that

β̀? = β̃ − 1

ζ
dζ,

=
1

ζ
dζ.

Remark 19. Observe that β̀? is singular at ζ = 0. However, defining β̀i? ≡ 〈β̀?, ci〉 with

i = 1, A, one readily finds that
β̀i? = δi

1, (42)

so that, in fact, β̀? = α1. Thus, the components of β̀? as measured by the frame {ci} are regular.

From the above equations (40) and (42), it follows that the complete initial data for the
equations (38) and (39a)-(39b) takes the form

(xµ? ) =
(
0, ρ̀?, θ

A
?

)
, (43a)

v0? =

√
1− q̆]?(dτ̀ ,dτ̀), (43b)

v1? = − q̆]?(dτ̀ ,dρ̀)

ρ̀

√
1− q̆]?(dτ̀ ,dτ̀)

, (43c)
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vA? = − q̆]?(dτ̀ ,dρ̀)

ρ̀

√
1− q̆]?(dτ̀ ,dθA)

, (43d)

β̀0 = 0, β̀1 = 1, β̀A = 0. (43e)

As q̆? = o(ρ̀), it follows then that

v0? → 1, v1? , v
A
? → 0, as ρ̀→ 0.

Accordingly, the data described by conditions (43a)-(43e) are regular at H.

5.3.3 The solution to the conformal geodesic equations in a neighbourhood of H

In this section, we make use of the information gathered in the previous sections to show the
existence, in a neighbourhood of the asymptote H, of a congruence of non-intersecting conformal
geodesics extending smoothly beyond the null infinity. This congruence gives rise, in a natural
way, to a conformal Gaussian gauge system. The argument in this section makes use of the theory
of perturbations of ordinary differential equations.

The first step in the analysis is the observation that the system (38) and (39a)-(39b) with
initial data given by (43a)-(43e) can be solved exactly on H.

Lemma 5. The unique solution to the conformal geodesic equations (38) and (39a)-(39b) with
initial data given by (43a)-(43e) for ρ̀ = 0 is given by(

xµ(τ)
)

= (τ, 0, θA),

v0(τ) = 1, v1(τ) = 0, vA(τ) = 0,

β̀0(τ) = 0, β̀1(τ) = 1, β̀A(τ) = 0.

This solution is smooth for all τ ∈ R. In particular, it extends smoothly beyond the interval
[−1, 1].

Proof. The proof of the lemma follows from the observation that on H (i.e. ρ̀) the metric g̀
coincides with the metric η̄. As discussed in Section 3.2, Lemma 1, the solution to the conformal
geodesic equations with the given data is given by(

xµ(τ)
)

= (τ, ρ?, θ
A
? ), ẋ = ∂τ , β̄ =

dρ

ρ?
.

Contracting with the frame {ca} and coframe {αa} as necessary one obtains the result.

From the above result, making use of the regularity of the fields appearing in the conformal
geodesic equations (38) and (39a)-(39b) and the initial conditions (43a)-(43e) in a neighbourhood
of H one obtains the following:

Lemma 6. There exists ρ̀• > 0 such that if ρ̀? ∈ [0, ρ̀•) then the system (38) and (39a)-(39b)
with initial conditions (43a)-(43e) has a unique smooth solution with existence interval extending
beyond [−1, 1] —e.g. τ ∈ [− 3

2 ,
3
2 ].

Proof. The result follows from the stability theory of ordinary differential equations. In particular,
the regularity of the components g̀ab, g̀ab and L̀ab in a neighbourhood of the asymptote H and
up to and beyond the sets given by the conditions τ = ±1 allows making use of Theorem 2 in
Appendix A.

Remark 20. By varying the starting point p ∈ S? subject to the condition ρ̀?(p) ∈ [0, ρ̀•) ensures
that a neighbourhood of H can be covered by conformal geodesics. In the next subsection it will
be shown that, possibly by reducing ρ̀• this congruence is non-intersecting.

Remark 21. The curves of the congruence extend beyond I ± as their existence interval is
[− 3

2 ,
3
2 ].
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5.4 The construction of the conformal Gaussian system

In this section, we discuss how the congruence of conformal geodesics obtained in Lemma 5 implies
the existence of a conformal Gaussian system in a neighbourhood of the asymptote H.

5.4.1 General considerations

Given a point p ∈ S? with coordinates x(p) = (ρ̀(p), θ̀A(p)) such that ρ̀(p) < ρ̀•, these coordinates
are propagated off S? by requiring them to be constant along the unique conformal geodesic with
data as given in Lemma 6 passing through p. In order to differentiate between the propagated
coordinates and those on S? we denote the former by (ρ, θA). Points along the conformal geodesic
passing through p are labelled using the parameter τ of the curve. In this way, by varying the
point p and as long as the congruence of conformal geodesics is non-intersecting, one obtains
conformal Gaussian coordinates x̄ = (τ, ρ, θA).

Remark 22. It should be stressed that given a point q in the neighbourhood of H covered
by the curves of Lemma 6 and described, respectively, by coordinates

(
τ̀(q), ρ̀(q), θ̀A(q)

)
and(

τ(q), ρ(q), θA(q)
)
, one has, in general, that ρ̀(q) 6= ρ(q), θ̀A(q) 6= θA(q).

5.4.2 Analysis of the Jacobian

In order to ensure that the collection (τ, ρ, θA) gives rise to a well defined coordinate system in a
neighbourhood of H we need to consider the Jacobian determinant of the change of coordinates

(τ, ρ, θA) 7→ (τ̀ , ρ̀, θ̀A).

In order to ease the presentation in the following, we restrict the discussion to the transformation
between non-angular coordinates (τ̀ , ρ̀) 7→ (τ, ρ). The full analysis follows in a similar manner at
the expense of lengthier computations. Writing

τ̀ = τ̀(τ, ρ), ρ̀ = ρ̀(τ, ρ),

the associated Jacobian determinant is given by

∂(τ̀ , ρ̀)

∂(τ, ρ)
=

∣∣∣∣∣∣∣
∂τ̀

∂τ

∂τ̀

∂ρ
∂ρ̀

∂τ

∂ρ̀

∂ρ

∣∣∣∣∣∣∣
Now, from the solution to the conformal geodesic equations (4a)-(4b) on H as given by Lemma
5 it follows that

∂τ̀

∂τ

∣∣∣∣
H

= 1,
∂τ̀

∂ρ

∣∣∣∣
H

= 0,

so that, in fact, one has
∂(τ̀ , ρ̀)

∂(τ, ρ)

∣∣∣∣
H

=
∂ρ̀

∂ρ

∣∣∣∣
H
.

Differentiating the second equation in (38) one obtains

d

dτ

(
∂ρ̀

∂ρ

)
= v1

∂ρ̀

∂ρ
+ ρ̀

∂v1

∂ρ
,

from where it follows
d

dτ

(
∂ρ̀

∂ρ

) ∣∣∣∣
H

= 0.

In other words, the partial derivative ∂ρ̀/∂ρ is constant on H. To evaluate the constant it is
observed that by construction ρ̀ = ρ on S?. Accordingly, one concludes that

∂ρ̀

∂ρ

∣∣∣∣
H∩S?

= 1.
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It then follows from the above argument that

∂(τ̀ , ρ̀)

∂(τ, ρ)

∣∣∣∣
H

= 1.

By continuity, it follows that the Jacobian determinant is non-zero in a neighbourhood of H.
In order to ensure that this condition holds it may be necessary to reduce the constant ρ̀• in
Lemma 6.

Remark 23. It follows from the fact that the Jacobian of the transformation between the co-
ordinates (τ̀ , ρ̀, θ̀A) and (τ, ρ, θA) is non-zero that the congruence of conformal geodesics in a
neighbourhood of H is non-intersecting as the intersection of curves would indicate a singularity
in the coordinate system given by (τ, ρ, θA).

5.4.3 The conformal factor associated to the congruence

The existence of a congruence of conformal geodesics in a neighbourhood of the asymptote H
ensures that the family of conformal factors given by Proposition 1 is well defined. This, in turn,
completes the construction of a conformal Gaussian system in a neighbourhood of H.

Consistent with the discussion of the initial data for the congruence of conformal geodesics in
Subsection 5.3.2 one has that

Θ? = Ω? = ρ.

Moreover, from (41) it then follows that

Θ̇? = 0.

Finally, from the relations in (6) of Proposition 1 one has that

Θ̈? =
2

ρ
h̃](dρ,dρ).

Let h̄ denote the pull-back to S? of the the metric g̀ as given in equation (36). One then has that

h̄ = − 1

ρ2
dρ⊗ dρ− σ + k̆, h̄ = −ρ2∂ρ ⊗ ∂ρ − σ] + k̆],

where k̆ is the pull-back to S? of q̆. It follows then that

Θ̈? = −2ρ+
2

ρ
k̆](dρ,dρ).

Observe that, in particular, one has

2

ρ
k̆](dρ,dρ)→ 0, as ρ→ 0.

Accordingly, in the neighbourhood of the asymptote H where the congruence of conformal
geodesics is well defined one has the conformal factor

Θ = ρ

(
1−

(
1− k̆

](dρ,dρ)

ρ2

)
τ2

)
.

In particular, it is noticed that:

± ρ√
ρ2 − k̆](dρ,dρ)

→ ±1, as ρ→ 0.
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Thus, one defines, in analogy to the case of the Minkowski spacetime in the F-gauge (see Sec-
tion 3.2) the sets

M̄ρ• ≡

p ∈ R4

∣∣∣∣ − ρ√
ρ2 − k̆](dρ,dρ)

≤ τ(p) ≤ ρ√
ρ2 − k̆](dρ,dρ)

, 0 ≤ ρ(p) < ρ•

 ,

and

I ≡
{
p ∈ M̄ | |τ(p)| < 1, ρ(p) = 0

}
I+ ≡

{
p ∈ M̄ | τ(p) = 1, ρ(p) = 0

}
, I− ≡

{
p ∈ M̄ | τ(p) = −1, ρ(p) = 0

}
.

Moreover, future and past null infinity are given by:

I ± ≡

p ∈ M̄ | τ(p) = ± ρ√
ρ2 − k̆](dρ,dρ)

, 0 ≤ ρ(p) < ρ•

 .

Remark 24. The set I (the cylinder at spatial infinity) coincides with the asymptote H.

Remark 25. Observe that in contrast to the representation of the Minkowski in Section 3.2,
the representation obtained in this section is not horizontal in the sense that the location of null
infinity is not given by the condition τ = ±1. A horizontal representation can be obtained by
considering a more general initial conformal factor of the form Θ? = κρ, κ|ρ=0 = 1, with κ
suitably chosen.

5.4.4 Main statement

We summarise the discussion of the previous subsections in the following theorem which is a more
detailed version of the statement presented in the introductory section:

Theorem 1. Let (M̃, g̃) denote a spacetime satisfying Definition 2 of an asymptotically Minkowskian
spacetime at spatial infinity with asymptote H which, in addition, satisfies Assumption 1. Then
there exists a neighbourhood Mρ• of H which can be covered by a conformal Gaussian coordinate
system (xµ) ≡ (τ, ρ, θA). The domainMρ• includes portions of future and past null infinity which
meet with the asymptote H. In this gauge the asymptote H coincides with the 1 + 2-dimensional
Einstein static cylinder (Friedrich’s cylinder).

A The basic stability theorem for ordinary differential equa-
tions depending on a parameter

In the following let
X′ = F(t,X, λ), X(0) = X?, (44)

denote an initial value problem for a N -dimensional vector-value ordinary differential equation
depending on a parameter λ. One has the following result —see [19], Theorem 2.1 in page 94 and
Corollary 4.1 in page 101.

Theorem 2. Let F(t,X, λ) be continuous on an open set E ⊂ R × RN × R consisting of points
(t,X, λ) with the property that for every (t?,X?, λ) ∈ E, the initial value problem (44) with λ
fixed has a unique solution X(t) = X(t, t?,X?, λ). Let ω− < t < ω+ be the maximal interval of
existence of X(t, t?,X?, λ). Then ω+ = ω+(t?,X?, λ) (respectively ω− = ω−(t?,X?, λ)) is a lower
(respectively upper) semicontinuous function1 of (t?,X?, λ) ∈ E and X(t, t?,X?, λ) is continuous
on the set

{ω− < t < ω+, (t?,X?, λ) ∈ E}.
Moreover, if F(t,X, λ) is of class Cm, m ≥ 1 on E, then X(t, t?,X?, λ) is of class Cm on its
domain of existence.

1The lower semicontinuity of ω+ at (t•,X•, λ•) means that if t] < ω+(t•,X•, λ•) then ω+(t,X, λ) ≥ t] for all
(t,X, λ) near (t•,X•, λ•). Upper semicontinuity is similarly defined.
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So, it follows from the above theorem that if F satisfies the conditions of the theorem above,
and the problem

X′ = F(t,X, 0), X(0) = X?,

has a solution with existence interval t ∈ (ω−, ω+), then any other solution to (44) with λ
sufficiently close to 0 will have, at least the same existence interval. In the above statement the
functions ω+ and ω− can take the values ∞ and −∞.

B Details of the proof of Lemma 4

In this section, we show that the fields Γ̀a
b
c and L̀ab extend smoothly to H.

B.0.1 Connection coefficients

The connection coefficients of the Levi-Civita connection ∇̀ of the metric g̀ with respect to the
frame {ca} are defined by the relation

∇̀acb = Γ̀a
c
bcc.

It can be readily verified that [ca, cb] = 0. Thus, it follows from the Kulkarni formula that

Γ̀a
b
c =

1

2
g̀bd
(
cc(g̀ad) + ca(g̀dc)− cb(g̀ac)

)
. (45)

In the following it will be shown that the connection coefficients Γ̀a
b
c are regular at ρ̀ = 0.

The analysis of the connection coefficients requires further specification of the coordinates. In the
following we will make use of Gaussian coordinates of the asymptote H —that is, the coordinates
(τ̀ , θA) on H are propagated on the bulk of the spacetime using the relation:

∇̀∂ρ̀∂i = 0, i = 0, 2, 3. (46)

Using this condition one can readily verify that

Γ̀1
a
i = 0.

The other components of the connection coefficients not determined by the gauge condition (46)
can be directly computed using Kulkarni’s formula (45). One finds that

Γ̀0
0
0 = O(ρ̀)

Γ̀0
1
0 = −1 +O(ρ̀2)

Γ̀0
A

0 = o(ρ̀2)

Γ̀1
0
1 = −τ̀(1− τ̀2) +O(ρ̀)

Γ̀1
1
1 = −τ̀2 +O(ρ̀)

Γ̀1
A

1 = O(ρ̀2)

Γ̀0
0
A = O(ρ̀3)

Γ̀0
1
A = O(ρ̀2)

Γ̀A
1
B = O(ρ̀)

Γ̀0
A

B = O(ρ̀)

Γ̀A
0
B = O(ρ̀)

Γ̀A
A

B = o(ρ̀3)

Γ̀B
A

B = o(ρ̀4)

Γ̀A
A

A = o(ρ̀4)

Thus, the connection coefficients Γ̀a
b
c are regular with respect to the coordinates (τ̀ , ρ̀) in a

neighbourhood of H. In particular, the components coincide, on H, with those of the Schouten
tensor of the Minkowski spacetime in the F-representation.
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B.0.2 The components of the Schouten tensor

The Schouten tensors L̃ab and L̀ab are related by the formula

L̀ab − L̃ab = − 1

Θ
∇̀a∇̀bΘ +

1

2Θ2
∇̀cΘ∇̀cΘg̀ab.

Where Θ is the conformal factor relating g̃ and g̀. In view of the Einstein field equations we have
that L̃ab = 0 so that

L̀ab = − 1

Θ
∇̀a∇̀bΘ +

1

2Θ2
∇̀cΘ∇̀cΘg̀ab. (47)

Remark 26. The previous expression is singular at ρ̀ = 0. We need to compute the components
L̀ab with respect to the coefficients {ca}.

A direct computation shows that

∇̀aΘ = caΘ =


−2τ̀ ρ̀ if a = 0

ρ̀(1− τ̀2) if a = 1

0 if a 6= 0,1

∇̀a∇̀bΘ = ca(cb(Θ))− Γ̀a
c
b∇̀cΘ

where ca(cb(Θ)) is given by

ca(cb(Θ)) =


−2τ̀ ρ̀ if a 6= b and a = 0,1

−2ρ̀ if a = b = 0

ρ̀(1− τ̀2) if a = b = 1

0 if a, b 6= 0,1

Thus, the first term in the right-hand side of (47) is regular. Moreover,

∇̀cρ̀∇̀cρ̀ = −ρ̀2(1− τ̀2)2

so that the second term in (47) is regular hence, the components L̀ab are regular with respect to
the coordinates (τ̀ , ρ̀) in a neighbourhood of H.

C Conformal geodesics in the Minkowski spacetime

In this section we show that the vector ∂τ in the F-gauge representation of the Minkowski space-
time of Section 3.2 is a conformal geodesic —see Lemma 1. Thus, it should satisfy the equations

∇̄∂τ∂τ = −2〈β̄,∂τ 〉∂τ + η̄(∂τ ,∂τ )β̄], (48a)

∇̄∂τ β̄ = 〈β̄,∂τ 〉β̄ −
1

2
η̄](β̄, β̄)(∂τ )[ + L̄(∂τ , ·). (48b)

In particular, one has that
η̄(∂τ ,∂τ ) = 1.

In the following, we make use of the expansion

β̄ = β̄0dτ + β̄1dρ.

A computation gives that

L̄ =
1

2
dτ ⊗ dτ +

τ

2ρ
(dτ ⊗ dρ+ dρ⊗ dτ) +

τ2 − 1

2ρ2
dρ⊗ dρ+

1

2
σ.
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So, in particular,

L̄(∂τ , ·) =
1

2
dτ +

τ

2ρ
dρ.

One also has that

∇̄∂τdτ = −Γ̄0
0
0dτ − Γ̄0

1
0dρ,

∇̄∂τdρ = −Γ̄1
0
1dτ − Γ̄1

1
1dρ,

so that
∇̄∂τ β̄ = (∂τ β̄0 − β̄0Γ̄0

0
0 − β̄1Γ̄1

0
1)dτ + (∂τ β̄1 − β̄0Γ̄0

1
0 − β̄1Γ̄1

1
1)dρ,

where

Γ̄0
0
0 = τ, Γ̄0

1
0 = −ρ,

Γ̄1
0
1 =

τ

ρ2
(τ2 − 1), Γ̄1

1
1 =

τ2 − 1

ρ
.

Substituting all of the above in equation (48a) one concludes that

β̄0 = 0, β̄1 =
1

ρ
,

so that the vector ∂τ is tangent to timelike conformal geodesics with

β̄ =
1

ρ
dρ.

Equation (48b) can be shown to be satisfied identically.

Finally, let us find the connection to physical spacetime. Recalling that

η̄ = Θ2η̃, Θ = ρ(1− τ2),

one has that
β̃ = β̄ + d ln Θ,

so that

β̃ =
2

ρ
dρ− 2τ

1− τ2
dτ.

To transform to the physical coordinates it is observed that

τ =
t

r
, ρ =

r

r2 − t2
,

so that

dτ =
1

r
dt− t

r2
dr, dr = − r2 + t2

(r2 − t2)2
dr +

2rt

(r2 − t2)2
dt.

From the above, it follows that

β̃ =
2

r2 − t2
(
tdt− rdr

)
.

In particular, one has that

β̃
∣∣
t=0

= −2

r
dr =

1

Ω
dΩ, Ω ≡ 1

r2
.

The conformal Ω above realises the point compactification of infinity in the Euclidean space. A
further computation shows that

∂τ =
ρ(1 + τ2)

Θ2
∂t +

2τρ

Θ2
∂r.
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In particular, one has that

η̃(∂τ ,∂τ ) =
1

Θ2

(
ρ2(1 + τ2)2 + 4τ2ρ2

)
→∞, as τ → ±1.

The associated integral curves are

yµ(τ) =

(
τ

ρ?(1− τ2)
,

1

ρ?(1− τ2)
, θ?, ϕ?

)
.

As

r(τ)2 − t(τ)2 =
1

ρ?(1− τ2)

one has that these curves do not generate (standard) hyperboloids.
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